快速傅里叶变换fft的Matlab实现 实验报告-推荐下载
- 格式:pdf
- 大小:377.53 KB
- 文档页数:10
快速傅立叶变换〔FFT〕算法试验一.试验目的1.加深对DFT 算法原理和根本性质的理解;2.生疏FFT 算法原理和FFT 子程序的应用;3.学习用FFT 对连续信号和时域信号进展谱分析的方法,了解可能消灭的分析误差及其缘由,以便在实际中正确应用FFT。
二.试验设备计算机,CCS 3.1 版软件,E300 试验箱,DSP 仿真器,导线三.根本原理1.离散傅立叶变换DFT 的定义:将时域的采样变换成频域的周期性离散函数,频域的采样也可以变换成时域的周期性离散函数,这样的变换称为离散傅立叶变换,简称DFT。
2.FFT 是DFT 的一种快速算法,将DFT 的N2 步运算削减为〔N/2〕logN 步,极大2的提高了运算的速度。
3.旋转因子的变化规律。
4.蝶形运算规律。
5.基2FFT 算法。
四.试验步骤1.E300 底板的开关SW4 的第1 位置ON,其余置OFF。
其余开关不用具体设置。
2.E300 板子上的SW7 开关的第1 位置OFF,其余位置ON3.阅读本试验所供给的样例子程序;4.运行CCS 软件,对样例程序进展跟踪,分析结果;记录必要的参数。
5.填写试验报告。
6.供给样例程序试验操作说明A.试验前预备用导线连接“Signal expansion Unit”中2 号孔接口“SIN”和“A/D 单元”的2 号孔接口“AD_IN0”。
〔试验承受的是外部的AD模块〕B.试验1.正确完成计算机、DSP 仿真器和试验箱的连接后,系统上电。
2.启动CCS3.1,Project/Open 翻开“algorithm\01_fft”子名目下“fft.pjt”工程文件;双击“fft.pjt”及“Source”可查看各源程序;加载“Debug\fft.out”;3.单击“Debug\Go main”进入到主程序,在主程序“flag=0;”处设置断点;4.单击“Debug \ Run”运行程序,或按F5 运行程序;程序将运行至断点处停顿;5.用View / Graph / Time/Frequency 翻开一个图形观看窗口;设置该观看图形窗口变量及参数;承受双踪观看在启始地址分别为px 和pz,长度为128,数值类型为16 位整型,p x:存放经A/D 转换后的输入信号;p z:对该信号进展FFT 变换的结果。
实验二用FFT做谱分析实验报告一、引言谱分析是信号处理中一个重要的技术手段,通过分析信号的频谱特性可以得到信号的频率、幅度等信息。
傅里叶变换是一种常用的谱分析方法,通过将信号变换到频域进行分析,可以得到信号的频谱信息。
FFT(快速傅里叶变换)是一种高效的计算傅里叶变换的算法,可以大幅减少计算复杂度。
本实验旨在通过使用FFT算法实现对信号的谱分析,并进一步了解信号的频谱特性。
二、实验目的1.理解傅里叶变换的原理和谱分析的方法;2.学习使用FFT算法对信号进行谱分析;3.通过实验掌握信号的频谱特性的分析方法。
三、实验原理傅里叶变换是将信号从时域转换到频域的一种数学变换方法,可以将一个非周期性信号分解为一系列正弦和余弦函数的叠加。
FFT是一种计算傅里叶变换的快速算法,能够在较短的时间内计算出信号的频谱。
在进行FFT谱分析时,首先需要对信号进行采样,然后利用FFT算法将采样后的信号转换到频域得到信号的频谱。
频谱可以用幅度谱和相位谱表示,其中幅度谱表示信号在不同频率下的幅度,相位谱表示信号在不同频率下的相位。
四、实验装置和材料1.计算机;2.信号发生器;3.数字示波器。
五、实验步骤1.连接信号发生器和示波器,通过信号发生器产生一个周期为1s的正弦信号,并将信号输入到示波器中进行显示;2.利用示波器对信号进行采样,得到采样信号;3.利用FFT算法对采样信号进行频谱分析,得到信号的频谱图。
六、实验结果[插入频谱图]从频谱图中可以清晰地看到信号在不同频率下的幅度和相位信息。
其中,频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。
七、实验分析通过对信号的频谱分析,我们可以得到信号的频率分量和其对应的幅度和相位信息。
通过分析频谱图,我们可以得到信号中各个频率分量的相对强度。
在本实验中,我们可以看到频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。
这说明信号中存在2Hz和5Hz的周期性成分,且2Hz的成分更为明显。
FFT频谱分析实验报告引言频谱分析是一种用于分析信号频率特征的方法,可应用于多个领域,如音频处理、图像处理、通信系统等。
本文将介绍FFT(快速傅里叶变换)频谱分析方法,并通过实验验证其有效性。
实验目的本实验旨在探索FFT频谱分析方法,了解其原理,并通过实验验证其在信号处理中的应用。
实验步骤1.准备实验材料–一台装有MATLAB软件的电脑–需要进行频谱分析的信号数据2.导入信号数据在MATLAB环境中,导入需要进行频谱分析的信号数据。
可以通过以下命令完成数据导入:data = importdata('signal.txt');这里假设信号数据保存在名为signal.txt的文件中。
3.对信号数据进行FFT变换利用MATLAB中的fft函数对信号数据进行FFT变换。
具体命令如下:fft_data = fft(data);这将得到信号数据的FFT变换结果。
4.计算频率谱通过对FFT变换结果的分析,可以计算信号的频率谱。
根据FFT变换的性质,频率谱可以通过计算FFT变换结果的模值得到:spectrum = abs(fft_data);这将得到信号的频率谱。
5.绘制频谱图利用MATLAB的plot函数,可以将频率谱绘制成图形。
命令如下:plot(spectrum);xlabel('频率');ylabel('幅值');title('频谱图');这将绘制出信号的频谱图。
6.分析频谱图通过观察频谱图,可以分析信号的频率特征,如频率成分的强度、主要频率等。
实验结果与讨论在完成以上步骤后,我们得到了信号的频谱图。
通过观察频谱图,我们可以分析信号的频率特征。
例如,我们可以确定信号中主要的频率成分,并通过频率成分的强度判断信号的特性。
在实验中,我们可以尝试使用不同的信号数据进行频谱分析,并观察结果的差异。
通过比较不同信号的频谱图,我们可以进一步了解信号的特性,并探索不同应用场景下的频谱分析方法。
FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。
本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。
二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。
DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。
FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。
常见的 FFT 算法有基 2 算法、基 4 算法等。
三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。
四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。
设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。
2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。
3、频谱分析计算 FFT 结果的幅度谱和相位谱。
通过幅度谱确定信号中各个频率成分的强度。
4、误差分析与理论上的频率成分进行对比,计算误差。
五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。
峰值的大小反映了相应频率成分的强度。
2、相位谱分析相位谱显示了各个频率成分的相位信息。
3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。
误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。
fft实验分析实验报告FFT实验分析实验报告一、引言傅里叶变换(Fourier Transform)是一种重要的信号分析工具,它能够将一个信号分解成不同频率的成分。
快速傅里叶变换(Fast Fourier Transform,FFT)是一种高效的计算傅里叶变换的算法。
本实验旨在通过实际操作,探究FFT在信号分析中的应用。
二、实验设备与方法1. 实验设备:本实验使用的设备包括示波器、信号发生器和计算机。
2. 实验方法:(1)将信号发生器的输出接入示波器的输入端。
(2)调节信号发生器的参数,如频率、振幅等,产生不同的信号。
(3)通过示波器观察信号的波形,并记录相关数据。
(4)将示波器与计算机通过USB接口连接,将示波器上的数据传输到计算机上。
(5)使用计算机上的软件进行FFT分析,得到信号的频谱信息。
三、实验结果与分析1. 实验一:正弦波信号的FFT分析(1)设置信号发生器的频率为1000Hz,振幅为5V,产生一段正弦波信号。
(2)通过示波器观察信号的波形,并记录相关数据。
(3)将示波器上的数据传输到计算机上,进行FFT分析。
实验结果显示,正弦波信号的频谱图呈现出单个峰值,且峰值位于1000Hz处。
这说明FFT能够准确地分析出信号的频率成分,并将其可视化展示。
2. 实验二:方波信号的FFT分析(1)设置信号发生器的频率为500Hz,振幅为5V,产生一段方波信号。
(2)通过示波器观察信号的波形,并记录相关数据。
(3)将示波器上的数据传输到计算机上,进行FFT分析。
实验结果显示,方波信号的频谱图呈现出多个峰值,且峰值位于500Hz的倍数处。
这说明方波信号由多个频率成分叠加而成,FFT能够将其分解出来,并显示出各个频率成分的强度。
3. 实验三:复杂信号的FFT分析(1)设置信号发生器的频率为100Hz和200Hz,振幅分别为3V和5V,产生一段复杂信号。
(2)通过示波器观察信号的波形,并记录相关数据。
(3)将示波器上的数据传输到计算机上,进行FFT分析。
matlab fft谱分析实验报告Matlab FFT谱分析实验报告引言谱分析是一种常用的信号处理技术,用于研究信号的频率成分和能量分布。
傅里叶变换是一种常见的谱分析方法,而Matlab中的FFT函数则是实现傅里叶变换的强大工具。
本实验旨在通过使用Matlab中的FFT函数对不同类型的信号进行谱分析,探索其在实际应用中的作用和价值。
实验方法1. 生成信号首先,我们使用Matlab中的函数生成几种不同类型的信号,包括正弦信号、方波信号和噪声信号。
通过调整信号的频率、幅度和噪声水平,我们可以模拟不同的实际场景。
2. 调用FFT函数接下来,我们使用Matlab中的FFT函数对生成的信号进行频谱分析。
FFT函数将信号从时域转换到频域,提供了信号在不同频率上的能量分布情况。
3. 绘制频谱图通过调用Matlab中的绘图函数,我们可以将FFT函数输出的频谱数据可视化为频谱图。
频谱图通常以频率为横轴,能量或幅度为纵轴,展示了信号在不同频率上的能量分布情况。
实验结果1. 正弦信号的频谱分析我们首先对一个频率为50Hz、幅度为1的正弦信号进行频谱分析。
结果显示,该信号在50Hz附近有一个明显的峰值,表示信号主要由50Hz频率成分组成。
2. 方波信号的频谱分析接下来,我们对一个频率为10Hz、幅度为1的方波信号进行频谱分析。
由于方波信号包含丰富的谐波成分,频谱图中出现了多个峰值,每个峰值对应一个谐波成分。
3. 噪声信号的频谱分析最后,我们对一个包含高斯噪声的信号进行频谱分析。
噪声信号的频谱图呈现出平坦的能量分布,没有明显的峰值。
这说明噪声信号在各个频率上都有一定的能量分布,没有明显的频率成分。
讨论与分析通过对不同类型信号的频谱分析,我们可以得出以下结论:1. 正弦信号的频谱图呈现出一个明显的峰值,表示信号主要由该频率成分组成。
这对于识别和分析周期性信号非常有用。
2. 方波信号的频谱图呈现出多个峰值,每个峰值对应一个谐波成分。
数字信号处理_快速傅里叶变换FFT实验报告快速傅里叶变换(FFT)实验报告1. 引言数字信号处理是一门研究如何对数字信号进行处理、分析和提取信息的学科。
傅里叶变换是数字信号处理中常用的一种方法,可以将信号从时域转换到频域。
而快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的算法,广泛应用于信号处理、图象处理、通信等领域。
2. 实验目的本实验旨在通过编写程序实现快速傅里叶变换算法,并对不同信号进行频谱分析。
3. 实验原理快速傅里叶变换是一种基于分治策略的算法,通过将一个N点离散傅里叶变换(DFT)分解为多个较小规模的DFT,从而实现高效的计算。
具体步骤如下: - 如果N=1,直接计算DFT;- 如果N>1,将输入序列分为偶数和奇数两部份,分别计算两部份的DFT;- 将两部份的DFT合并为整体的DFT。
4. 实验步骤此处以C语言为例,给出实验的具体步骤:(1) 定义输入信号数组和输出频谱数组;(2) 实现快速傅里叶变换算法的函数,输入参数为输入信号数组和输出频谱数组;(3) 在主函数中调用快速傅里叶变换函数,得到输出频谱数组;(4) 对输出频谱数组进行可视化处理,如绘制频谱图。
5. 实验结果与分析为了验证快速傅里叶变换算法的正确性和有效性,我们设计了以下实验:(1) 生成一个正弦信号,频率为100Hz,采样频率为1000Hz,时长为1秒;(2) 对生成的正弦信号进行快速傅里叶变换,并绘制频谱图;(3) 生成一个方波信号,频率为200Hz,采样频率为1000Hz,时长为1秒;(4) 对生成的方波信号进行快速傅里叶变换,并绘制频谱图。
实验结果显示,对于正弦信号,频谱图中存在一个峰值,位于100Hz处,且幅度较大;对于方波信号,频谱图中存在多个峰值,分别位于200Hz的奇数倍处,且幅度较小。
这与我们的预期相符,说明快速傅里叶变换算法能够正确地提取信号的频谱信息。
6. 实验总结通过本次实验,我们成功实现了快速傅里叶变换算法,并对不同信号进行了频谱分析。
实验三用FFT对信号作频谱分析_实验报告一、实验目的1.学习使用FFT(快速傅里叶变换)对信号进行频谱分析;2.掌握频谱分析的基本原理和方法;3.熟悉使用MATLAB进行频谱分析的操作。
二、实验原理FFT是一种基于傅里叶变换的算法,可以将时域信号转换为频域信号,并将信号的频谱特征展示出来。
在频谱分析中,我们通过分析信号的频谱可以获得信号的频率、幅值等信息,从而对信号的性质和特征进行研究。
对于一个连续信号,我们可以通过采样的方式将其转换为离散信号,再利用FFT算法对离散信号进行频谱分析。
FFT算法可以将信号从时域转换到频域,得到离散的频谱,其中包含了信号的频率分量以及对应的幅值。
MATLAB中提供了fft函数,可以方便地对信号进行FFT分析。
通过对信号进行FFT操作,可以得到信号的频谱图,并从中提取出感兴趣的频率信息。
三、实验步骤1.准备工作:(2)建立新的MATLAB脚本文件。
2.生成信号:在脚本中,我们可以通过定义一个信号的频率、幅值和时间长度来生成一个信号的波形。
例如,我们可以生成一个频率为1000Hz,幅值为1的正弦波信号,并设置信号的时间长度为1秒。
3.对信号进行FFT分析:调用MATLAB中的fft函数,对信号进行FFT分析。
通过设置采样频率和FFT长度,可以得到信号的频谱。
其中,采样频率是指在单位时间内连续采样的次数,FFT长度是指离散信号的样本点数。
4.绘制频谱图:调用MATLAB中的plot函数,并设置x轴为频率,y轴为幅值,可以绘制出信号的频谱图。
频谱图上横坐标表示信号的频率,纵坐标表示信号的幅值,通过观察可以得到信号的频率分布情况。
四、实验结果在实验过程中,我们生成了一个频率为1000Hz,幅值为1的正弦波信号,并对其进行FFT分析。
通过绘制频谱图,我们发现信号在1000Hz处有最大幅值,说明信号主要由这一频率成分组成。
五、实验总结本实验通过使用FFT对信号进行频谱分析,我们可以方便地从信号的波形中提取出频率分量的信息,并绘制出频谱图进行观察。
fft实验报告傅里叶变换(Fast Fourier Transform, FFT)是一种重要的数学工具,广泛应用于信号处理、图像处理、通信系统等领域。
本文将从理论和实验两个方面,介绍FFT的原理、应用以及实验结果。
一、FFT的原理FFT是一种将时域信号转换为频域信号的算法,它基于傅里叶级数展开的思想。
傅里叶级数展开可以将一个周期信号表示为一系列正弦和余弦函数的叠加,而FFT则能够将非周期信号分解成一系列频率成分。
FFT的核心思想是将一个N点的离散信号变换为N/2个频率分量,其中前一半为正频率分量,后一半为负频率分量。
通过分别计算正频率和负频率的离散傅里叶变换(DFT),再利用对称性质进行合并,最终得到频域信号。
二、FFT的应用1. 信号处理:FFT在信号处理中有广泛应用,例如音频信号的频谱分析、滤波、降噪等。
通过将信号转换到频域,可以方便地分析信号的频率成分,从而实现各种信号处理算法。
2. 图像处理:FFT在图像处理中也有重要应用。
通过对图像进行二维FFT变换,可以将图像转换为频域表示,从而实现图像增强、去噪、压缩等操作。
例如,图像的频域滤波可以有效地去除图像中的噪声,提高图像的质量。
3. 通信系统:FFT在通信系统中也扮演着重要角色。
例如,在OFDM(正交频分复用)系统中,FFT用于将多个子载波的频域信号转换为时域信号进行传输。
这种技术能够提高信号的传输效率和抗干扰能力。
三、FFT实验结果为了验证FFT算法的正确性和效果,我们进行了一系列实验。
首先,我们使用MATLAB编程实现了FFT算法,并将其应用于音频信号处理。
通过对一段音频信号进行FFT变换,我们成功地获得了该信号的频谱图,并观察到不同频率成分的存在。
接下来,我们将FFT算法应用于图像处理。
我们选择了一张包含噪声的图像,并对其进行FFT变换。
通过对频域图像进行滤波操作,我们成功去除了图像中的噪声,并获得了清晰的图像。
最后,我们将FFT算法应用于通信系统中的OFDM技术。
实验一离散时间系统的时域分析、实验目的1 .运用MATLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
2 .运用MATLAB中的卷积运算计算系统的输出序列,加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。
、实验原理离散时间系统其输入、输出关系可用以下差分方程描述:N Md k y[n k] k0P k X[n k]k 0当输入信号为冲激信号时,系统的输出记为系统单位冲激响应[n] h[n],则系统响应为如下的卷积计算式:y[n]迥h[n] Xm]h[n m]m当h[n]是有限长度的(n : [0 , M])时,称系统为FIR系统;反之,称系统为IIR系统。
在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数y=Conv(x,h) 计算卷积。
例1clf;n=0:40;a=1;b=2;x1= 0.1*n;x2=sin(2*pi*n);x=a*x1+b*x2;num=[1,0.5,3];den=[2-3 0.1];ic=[0 0]; %设置零初始条件y1=filter(num,den,x1,ic); % 计算输入为x1(n)时的输出y1(n)y2=filter(num,den,x2,ic); % 计算输入为x2(n)时的输出y2(n)y=filter(num,den,x,ic); % 计算输入为x (n)时的输出y(n)yt= a*y1+b*y2;%画出输出信号subplot(2,1,1)stem(n,y);ylabel('振幅’);title('加权输入a*x1+b*x2 的输出');subplot(2,1,2)stem(n,yt);ylabel('振幅’);title('加权输出a*y1+b*y2 ');(一)、线性和非线性系统对线性离散时间系统,若y1(n)和y2(n)分别是输入序列x1(n)和x2(n)的响应,贝膊俞入x(n) ax〔(n) 成2(n)的输出响应为y(n) ay〔(n) by2(n),即符合叠加性,其中对任意常量a和b以及任意输入X I (n)和x2(n)都成立,否则为非线性系统。
《数字信号处理》课程
(2010-2011学年第1学期)成绩:
实验二快速傅里叶变换(FFT)及其应用
学生姓名:闫春遐
所在院系:电子信息工程学院自动化系
年级专业:2008级自动化系
学号:00824049
指导教师:王亮
完成日期:2010年9月27日
实验二快速傅里叶变换(FFT )及其应用
一、实验目的(1)在理论学习的基础上,通过本实验,加深对
FFT 的理解,熟悉MATLAB 中的有关函数。
(2)应用FFT 对典型信号进行频谱分析。
(3)了解应用FFT 进行信号频谱分析过程可能出现的问题,以便在实际中正确应用FFT 。
(4)应用FFT 实现序列的线性卷积和相关。
二、实验内容
实验中用到的信号序列:
a )高斯序列
2
()015()0
n p q a e n
x n 其他b )衰减正弦序列
sin(2)
015()0an b e fn n x n 其他
c )三角波序列
03()847
0c n
n x n n
n 其他d )反三角波序列
4
03()447
0d n n x n n
n 其他上机实验内容:
(1)观察高斯序列的时域和幅频特性,固定信号()a x n 中参数8p ,改变q 的值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当
q 取不同值时,对信号的时域和幅频特性的影响;固定8q ,改变p ,使p 分别等于8、13、。
实验二 快速傅里叶变换(FFT)及其应用一、 实验目的(1) 在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。
(2) 应用FFT 对典型信号进行频谱分析。
(3) 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。
(4) 应用FFT 实现序列的线性卷积。
二、 实验内容实验中用到的信号序列 a) 高斯序列2()015()0n p q a en x n --⎧⎪≤≤=⎨⎪⎩其他b) 衰减正弦序列sin(2)015()0an b e fn n x n π-⎧≤≤=⎨⎩其他c) 三角波序列03()8470c nn x n n n ≤≤⎧⎪=-≤≤⎨⎪⎩其他d) 反三角波序列403()4470d n n x n n n -≤≤⎧⎪=-≤≤⎨⎪⎩其他(1) 观察高斯序列的时域和幅频特性,固定信号()a x n 中参数p =8,改变q 的值,使q 分别等于2,4,8,观察它们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域幅频特性的影响;固定q =8,改变p ,使p 分别等于8,13,14,观察参数p 变化对信号序列的时域及幅频特性的影响,观察p 等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
实验程序:function gauss(p,q) n=0:1:15; N=length(n);xa=exp(-(n-p).^2/q); M=10000;w=2*pi/M*(0:1:M-1); Xa=zeros(1,M); for k=1:MXa(k)=sum(xa*(exp(-j*w(k)*(0:N-1)'))); endsubplot(2,1,1); stem(n,xa);xlabel('n'),ylabel('x_a(n)') subplot(2,1,2); plot(w,abs(Xa))xlabel('\omega'),ylabel('幅度谱') 实验结果: P=8,q=2P=8,q=4nx a(n )01234567123幅度谱P=8,q=8p=13,q=8nx a(n )123456701234ω幅度谱nx a(n)01234567246ω幅度谱p=14,q=8(3) 观察三角波和反三角波序列的时域和幅频特性,用N =8点FFT 分析信号序列()c x n 和()d x n 的幅频特性,观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其幅频特性nx a(n )01234567246ω幅度谱nx a(n )123456701234ω幅度谱曲线。
一、实验目的1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2熟悉并掌握按时间抽取FFT算法的程序;3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。
二、实验内容1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序;用MATLAB语言编写的FFT源程序如下:%% 输入数据f、N、T及是否补零clc;clear;f=input('输入信号频率f:');N=input('输入采样点数N:');T=input('输入采样间隔T:');C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0if(C==0)t=0:T:(N-1)*T;x=sin(2*pi*f*t);b=0;e lseb=input('输入补零的个数:');while(log2(N+b)~=fix(log2(N+b)))b=input('输入错误,请重新输入补零的个数:');endt=0:T:(N+b-1)*T;x=sin(2*pi*f*t).*(t<=(N-1)*T);end%% fft算法的实现A=bitrevorder(x); % 将序列按二进制倒序N=N+b;M=log2(N); % M为蝶形算法的层数W=exp(-j*2*pi/N);for L=1:1:M %第L层蝶形算法B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔K=N/(2^L); % K为每层蝶形算法中独立模块的个数for k=0:1:K-1for J=0:1:B-1p=J*2^(M-L); % p 是W 的指数q=A(k*2^L+J+1); % 用q 来代替运算前面那个数 A (k*2^L+J+1)=q+W^p*A(k*2^L+J+B+1); A(k*2^L+J+B+1)=q-W^p*A(k*2^L+J+B+1); end end end%% 画模特性的频谱图z =abs(A); % 取模z=z./max(z); %归一化hold onsubplot(2,1,1);stem(0:1:N-1,x,'DisplayName','z');title('时域信号');subplot(2,1,2);stem(0:1:N-1,z,'DisplayName','z');title('频谱图');figure(gcf) %画图2用FFT 程序计算有限长度正弦信号()sin(2),0*y t f t t N Tπ=≤<分别在以下情况下所得的DFT 结果并进行分析和讨论:a )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625sT=0.005sb)信号频率f=50Hz,采样点数N=32,采样间隔c)信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875sd)信号频率f=50Hz,采样点数N=32,采样间隔T=0.004se)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625sf)信号频率f=250Hz,采样点数N=32,采样间隔T=0.005sg)将c)信号后补32个0,做64点FFT三、实验分析DFT是对有限序列做傅里叶变换后在频域上进行采样,而相对应的时域以频谱上的采样频率的倒数进行周期拓展。
Matlab FFT 谱分析实验报告介绍本实验报告旨在通过使用Matlab进行FFT(快速傅里叶变换)谱分析,详细介绍该方法的步骤和应用。
FFT是一种常用的信号处理技术,可将时域信号转换为频域信号,并提供了对信号频谱特征进行分析的能力。
实验步骤以下是进行FFT谱分析的步骤:1. 导入信号数据首先,我们需要将待分析的信号数据导入Matlab中。
可以使用load函数加载存储信号数据的文件,或者直接在脚本中定义信号数据。
2. 对信号数据进行预处理在进行FFT谱分析之前,通常需要对信号数据进行预处理。
这可能包括去除噪声、滤波等操作。
在本实验中,我们将假设信号数据已经经过了必要的预处理步骤。
3. 执行FFT变换使用fft函数对信号数据执行FFT变换。
该函数将信号从时域转换为频域,并返回频谱数据。
4. 计算频谱幅度通过对FFT变换结果应用幅度函数,可以计算出信号在不同频率下的幅度。
这将揭示信号中包含的主要频率分量。
5. 绘制频谱图通过使用Matlab的绘图功能,可以将频谱数据可视化为频谱图。
频谱图可以帮助我们更好地理解信号的频谱分布情况。
6. 分析结果根据频谱图,我们可以观察信号的主要频率成分以及它们的幅度。
这有助于我们了解信号的频域特征,并可以用于识别信号中的噪声或其他异常。
实验应用FFT谱分析在许多领域中都有广泛的应用。
以下是一些常见的应用领域:1. 信号处理FFT谱分析可用于处理和分析各种类型的信号,例如音频信号、生物医学信号和电力信号等。
通过分析信号的频谱特征,我们可以提取出信号中的重要信息。
2. 通信系统在通信系统中,FFT谱分析可以用于频谱分配、频谱监测和信号调制等方面。
通过分析信号的频谱特征,我们可以更好地设计和优化通信系统。
3. 振动分析FFT谱分析可用于振动分析领域,用于分析和诊断机械系统的振动特征。
通过分析振动信号的频谱,可以检测到机械系统中的故障和异常。
4. 音频处理在音频处理中,FFT谱分析可用于音频信号的频谱分析、音频合成和音频特征提取等方面。
快速傅里叶变换实验实验名称 快速傅里叶变换一.实验目的1 在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2 熟悉并掌握按时间抽取FFT 算法的程序;3 了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。
二.实验要求1 记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。
频谱只做模特性,模的最大值=1,全部归一化;2 打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明;3 用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。
三.实验内容1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序;2.用FFT 程序计算有限长度正弦信号()s i n (2**)[()()],0y t f t u t u t N T t N T π=--<< 分别在以下情况下所得的DFT 结果并进行分析和讨论:a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625sb ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005sc ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875sd ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004se ) 信号频率f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005sg ) 将c ) 信号后补32个0,做64点FFT(1)实验结果:信号的频率为50Hz,采样周期为0.000625s,则采样频率为1600Hz,在数字域,采样频率对应的是2*pi,由于sin信号的频谱为在pi/16和-pi/16上的冲激,所以时域采样后,在频域以2*pi为周期进行周期延拖。
fft实验分析实验报告
实验报告主要包括实验目的、实验原理、实验步骤、实验结果分析和结论等内容。
以下是一个关于FFT实验分析的实验报告示例:
实验报告
实验目的:
1. 了解傅里叶变换(FFT)的基本原理和应用;
2. 学会使用FFT算法对信号进行频谱分析。
实验设备和材料:
1. 计算机;
2. 音频文件或实时采集的音频信号。
实验原理:
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法,可以将信号表示为不同频率的复指数函数的叠加。
而FFT(快速傅里叶变换)是一种高效的傅里叶变换算法,可以快速计算信号的频谱。
实验步骤:
1. 准备音频文件或实时采集的音频信号;
2. 将音频信号输入计算机中的FFT算法进行处理,得到信号的频谱;
3. 对频谱进行可视化表示,如绘制频谱图;
4. 根据频谱图分析信号的频率分布和能量分布等特征。
实验结果分析:
通过实验,我们得到了音频信号的频谱图。
根据频谱图可以得到信号的频率分布情况,即哪些频率的分量相对强,哪些频率的分量相对弱。
频谱图还可以展示信号的能量分
布情况,能量较高的频率分量对应着声音的主要特征。
结论:
通过本次实验,我们学习了傅里叶变换(FFT)的基本原理和应用,并掌握了使用FFT 算法进行信号频谱分析的方法。
频谱分析是一种常用的信号处理方法,可以帮助我们
了解信号的频率特征和能量分布情况,对于音频、图像等领域的信号处理具有重要的
应用价值。
1.快速傅里叶变换FFT实验.1)快速傅里叶变换FFT源程序:#include"iostream.h"#include"math.h"//using namespace std#define pi 3.1415926536 //定义pai void swap(double &a,double &b) //定义交换函数swap{double t=a;a=b;b=t;}void fft(double A[],double B[],int M) //定义fft快速傅里叶函数{ long int J,I,L,LE,LE1,P,Q,R;double N,K,Wr,Wi,W1r,W1i,WTr,WTi,theta,Tr,Ti;J=0;N=pow(2,M);//雷达算法码位倒置程序for(I=0;I<N-1;I++){if(J>I){swap(A[I],A[J]);swap(B[I],B[J]);}K=N/2;//向低位进位while(K>=2&&J>=K){J-=K;K=K/2;}J+=K;}//蝶形运算程序//最外层循环由蝶形图的级数确定for(L=1;L<=M;L++){LE=pow(2,L); //各级群间隔LE1=LE/2; //输入间隔Wr=1.0; //Wn的实部Wi=0.0; //Wn的虚部theta=(-1)*pi/LE1;W1r=cos(theta);W1i=sin(theta);//中层循环由Wn的个数确定for(R=0;R<LE1;R++){//内层循环由每一级群的个数确定for(P=R;P<N-1;P+=LE){Q=P+LE1;Tr=Wr*A[Q]-Wi*B[Q];Ti=Wr*B[Q]+Wi*A[Q];A[Q]=A[P]-Tr;B[Q]=B[P]-Ti;A[P]+=Tr;B[P]+=Ti;}//计算每一级的Wn的值WTr=Wr;WTi=Wi;Wr=WTr*W1r-WTi*W1i;Wi=WTr*W1i+WTi*W1r;}}}void main(){int M;double N;cout<<"实验人的信息:姓名:张超华学号:200801000728 专业班级:电力电子0801"<<endl;cout<<"输入序列的个数N(N必须为2^M),N=";cin>>N;//判断输入N的个数是否符合2^M个while(1){double b=log10(N)/log10(2);int a=b/1;if(a-b==0){M=a;break;}else{cout<<"输入序列的个数须为2^M个,重新输入N=";cin>>N;}}double *A=new double[N]; //为序列的实部分配动态空间double *B=new double[N]; //为序列的虚部分配动态空间for(int i=0;i<N;i++){A[i]=0.0;B[i]=0.0;}// 输入序列cout<<"请在下方输入序列的实部:"<<endl;for(int j=0;j<N;j++){cin>>A[j];}cout<<"请在下方输入序列的虚部:"<<endl;for(j=0;j<N;j++){cin>>B[j];}fft(A,B,M); //调用fft函数 cout<<"经快速傅里叶变换后得到的结果为:"<<endl; //输出变换结果 for(int m=0;m<N;m++){cout<<" "<<A[m]<<"+j("<<B[m]<<")"<<endl;}//释放内存空间delete [] A;delete [] B;}2)FFT程序运行结果:(参考课本160页的‘例6-3’运行程序。
一、实验目的1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2熟悉并掌握按时间抽取FFT算法的程序;3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。
二、实验内容1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序;用MATLAB语言编写的FFT源程序如下:%% 输入数据f、N、T及是否补零clc;clear;f=input('输入信号频率f:');N=input('输入采样点数N:');T=input('输入采样间隔T:');C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0if(C==0)t=0:T:(N-1)*T;x=sin(2*pi*f*t);b=0;e lseb=input('输入补零的个数:');while(log2(N+b)~=fix(log2(N+b)))b=input('输入错误,请重新输入补零的个数:');endt=0:T:(N+b-1)*T;x=sin(2*pi*f*t).*(t<=(N-1)*T);end%% fft算法的实现A=bitrevorder(x); % 将序列按二进制倒序N=N+b;M=log2(N); % M为蝶形算法的层数W=exp(-j*2*pi/N);for L=1:1:M %第L层蝶形算法B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔K=N/(2^L); % K为每层蝶形算法中独立模块的个数for k=0:1:K-1for J=0:1:B-1p=J*2^(M-L); % p 是W 的指数 q=A(k*2^L+J+1); % 用q 来代替运算前面那个数 A (k*2^L+J+1)=q+W^p*A(k*2^L+J+B+1); A(k*2^L+J+B+1)=q-W^p*A(k*2^L+J+B+1); end end end%% 画模特性的频谱图z =abs(A); % 取模z=z./max(z); %归一化hold onsubplot(2,1,1);stem(0:1:N-1,x,'DisplayName','z');title('时域信号');subplot(2,1,2);stem(0:1:N-1,z,'DisplayName','z');title('频谱图');figure(gcf) %画图2用FFT 程序计算有限长度正弦信号()sin(2),0*y t f t t N Tπ=≤<分别在以下情况下所得的DFT 结果并进行分析和讨论:a )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625sT=0.005sb)信号频率f=50Hz,采样点数N=32,采样间隔c)信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875sd)信号频率f=50Hz,采样点数N=32,采样间隔T=0.004se)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625sf)信号频率f=250Hz,采样点数N=32,采样间隔T=0.005sg)将c)信号后补32个0,做64点FFT三、实验分析DFT是对有限序列做傅里叶变换后在频域上进行采样,而相对应的时域以频谱上的采样频率的倒数进行周期拓展。
而在此题中,题中给出时域上的连续信号,对该连续信号进行加窗采样后得到有限序列,要求对该有限序列求DFT。
所以整个步骤为:对时域加窗,则相对应的频域与窗函数的傅里叶变换即sinc函数相卷积;再对时域采样,则对应的频域以时域采样频率的倒数进行周期性拓展;再将时域以窗长为周期进行周期性拓展,对应的频域以该周期的倒数进行采样,即得所求DFT。
a)信号频率f=50Hz,采样点数N=32,采样间隔T=0.000625s。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为,(对应时域以0.02s进行周期性拓展,不予考虑)。
此时我们可以发现除了在f=50Hz(对应为第1个点)上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即此时采到的值为0。
又因为DFT满足共轭对称,所以可得图如上。
b)信号频率f=50Hz,采样点数N=32,采样间隔T=0.005s。
与a相比,采样间隔T不同,所以窗长,为a中窗长的8倍,所以窗长在频域上对应的sinc函数主瓣宽及波节与波节间距都为a中的即,两信号相卷,将sinc函数平移到;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为。
此时我们可以发现除了在f=50Hz上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即采到的值为0,而f=50Hz=8*6.25Hz,则第8个点为1;又因为DFT满足共轭对称,所以可得图如上。
c)信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875s。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为,与波节间距相等。
但可以发现f=50Hz对应第7.5个点,而所求必须采到整数点上,所以采出来的点即没有最大值,也不存在0点。
又因为DFT满足共轭对称,所以可得图如上。
d)信号频率f=50Hz,采样点数N=32,采样间隔T=0.004s。
Sin函数信号对应频谱图为在窗长,对应的sinc函数主瓣宽,波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为,与波节间距相等。
但可以发现f=50Hz对应第6.4个点,而所求必须采到整数点上,所以采出来的点即没有最大值,也不存在0点。
又因为DFT满足共轭对称,所以可得图如上。
e)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625s。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采64个点,则对应每个点之间的间距为。
此时我们可以发现除了在f=50Hz(对应为第2个点)上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即此时采到的值为0。
又因为DFT满足共轭对称,所以可得图如上。
f)信号频率f=250Hz,采样点数N=32,采样间隔T=0.005s。
与a相比,采样间隔T不同,所以窗长,为a中窗长的8倍,所以窗长在频域上对应的sinc函数主瓣宽及波节与波节间距都为a中的即,两信号相卷,将sinc函数平移到;在时域以进行采样,即频域以进行周期性拓展,又因为,所以相当于将sinc函数平移到。
在频域上采32个点,则对应每个点之间的间距为。
此时我们可以发现除了在f=50Hz上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即采到的值为0,而f=50Hz=8*6.25Hz,则第8个点为1;又因为DFT满足共轭对称,所以可得图如上。
与b比较易得两图所得结果相同。
g)将c信号后补32个0,做64点FFT。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采64个点,则对应每个点之间的间距为。
可以发现f=50Hz对应第15个点,并且每个波节刚好被采到。
又因为DFT满足共轭对称,所以可得图如上。
与c信号相比较易发现刚好在c信号的每两点的中间多采一点。
小结:影响DFT结果的参数有信号频率f,采样点数N,采样间隔T,是否补零。
信号频率f:由b)和f)比较得,f影响到sinc函数做卷积后的位置,而这这两个信号中的频率差恰好等于时域采样频率,又在频域上以为周期做拓展,所以得到的DFT结果一样。
采样点数N:由a)和e)比较得,频谱上虽然采样更密,但同时频谱也被压缩,所以采样点数N并不产生影响。
采样间隔T:由a)、b)、c)、d)比较得,采样间隔T与N一起决定了窗的长度,与f一起决定了频谱上采样点的位置,是影响频谱图像的主要因素。
补零:由c)和g)比较得,补零对应在频谱上采样密度增加一倍,使频谱图更加清晰。
如果补零后的总点数是原采样点数的倍,则频谱上采样的密度为原来的倍。
四、实验总结这次实验让我对fft算法有了详细的掌握,能够熟练地用fft算法求解DFT。
除此之外,对DFT的物理意义有了更加深入的了解,掌握了求解DFT的详细过程,并对影响DFT的几种因素进行了分析,对栅栏效应、频谱分辨率、泄露效应及各种参数的选择有了进一步的了解。
总而言之,这次实验编程部分还算比较容易,而因为对DFT的原理不是很熟练,所以觉得对各种参数的分析比较难,但在老师和同学们的帮助下最后还是掌握了这部分知识,也是这种感觉让我很期待下一次的实验。