高速电机的特点与关键技术问题
- 格式:pdf
- 大小:3.13 MB
- 文档页数:8
高速永磁同步电机电磁分析与转子动力学研究1. 本文概述本文旨在深入研究高速永磁同步电机(PMSM)的电磁分析与转子动力学特性。
随着现代工业技术的发展,高速永磁同步电机以其高效率、高功率密度和良好的调速性能,在航空航天、机床工具、新能源发电等领域得到了广泛应用。
对高速永磁同步电机进行深入的电磁分析和转子动力学研究,对于优化电机设计、提高电机性能、拓宽应用领域具有重要意义。
本文将首先介绍高速永磁同步电机的基本结构和工作原理,为后续分析提供理论基础。
随后,文章将重点围绕电磁分析展开,包括电机绕组设计、磁路分析、电磁场计算等方面,以揭示电机内部电磁过程的本质规律。
在此基础上,本文将进一步探讨高速永磁同步电机的转子动力学特性,包括转子动力学模型建立、模态分析、振动噪声控制等内容,以揭示电机在高速运行过程中的动态响应和稳定性问题。
本文将对高速永磁同步电机的电磁分析与转子动力学研究进行总结,归纳出电机设计优化的关键因素,为未来的电机研发和应用提供有益的参考。
通过本文的研究,期望能为高速永磁同步电机的技术进步和产业发展做出一定的贡献。
2. 高速永磁同步电机的基本理论高速永磁同步电机(HighSpeed Permanent Magnet Synchronous Machine, HSPMSM)是一种广泛应用于航空航天、高速列车、风力发电等领域的电机。
其基本工作原理基于电磁感应定律和洛伦兹力定律。
在电机中,通过在转子上安装永磁体和在定子上布置三相绕组,当三相交流电通过绕组时,产生旋转磁场。
这个旋转磁场与永磁体的磁场相互作用,产生转矩,驱动转子旋转。
电磁场的分析是理解HSPMSM运行特性的关键。
主要分析内容包括磁场的分布、磁通量的路径以及电磁力的大小和方向。
这些分析通常基于麦克斯韦方程组,通过有限元分析(Finite Element Analysis, FEA)等数值方法进行。
通过电磁场分析,可以准确预测电机的电磁性能,如转矩、反电动势和效率。
高速电机原理高速电机是一种具有高转速、高功率和高效率的电动机。
它采用先进的技术和材料制造,可以应用于许多领域,如航空航天、高速列车、机床、电动汽车等。
本文主要介绍高速电机的原理。
一、高速电机的构成和工作原理高速电机由转子和定子两部分组成,其中定子部分固定而转子部分旋转。
定子由线圈、磁芯和支撑结构组成。
转子由永磁体或者电磁绕组、轴承和支撑结构组成。
高速电机的工作原理可以用麦克斯韦方程组来描述。
麦克斯韦方程组是描述电磁现象的基本方程,它描述了磁场、电场和电流之间的相互作用。
高速电机的工作原理如下:1.如果定子线圈中通有电流,那么在定子线圈周围会产生磁场。
2.由于磁场的存在,转子永磁体或电磁绕组中也会产生磁场,它们之间发生作用力。
3.作用力使得转子开始旋转。
4.随着转子的旋转,电磁绕组中的电流会随之改变,这会导致电磁绕组中产生的磁场随之改变。
5.随着磁场的变化,将在转子部分中感应出电动势,这会导致电流在转子中产生。
6.这些电流会产生磁场,同时也会与定子中的磁场相互作用,继续推动转子旋转。
二、高速电机的分类按照转子类型,高速电机可以分为永磁同步电机和感应电机两种。
1.永磁同步电机永磁同步电机是一种使用永磁体作为转子磁场的电机。
与感应电机不同,永磁同步电机不需要电磁绕组来产生磁场,因此其转子结构简单、效率高。
永磁同步电机也具有较好的速度控制特性,常用于高精度控制。
2.感应电机感应电机是一种使用电磁绕组作为转子磁场的电机。
通过在定子线圈中注入电流,能够在转子中产生电流和磁场,继而完成旋转。
感应电机主要分为两种:异步电机和同步电机。
异步电机的旋转速度略低于磁场旋转速度,因此也称作非同步电机。
同步电机的转速与磁场旋转速度相等,因此称为同步电机。
三、高速电机的应用1.航空航天高速电机在航空航天领域的应用非常广泛。
它们可以驱动飞行器的动力系统,如飞机发电机、液压泵、氧气泵、燃油泵等。
高速电机还可以用于滑翔机、直升机、飞艇等载具的飞行控制和操纵系统。
203中国设备工程C h i n a P l a n t E n g i n e e r i ng中国设备工程 2021.05 (上)高速电主轴,即为内装式电机主轴单元,是数控机床的重要部件。
其是在机床主轴单元内部安装主轴电机,对主轴起到了驱动作用,由此促使电机和主轴成为一个整体。
要提高数控机床的运行效率,就要掌握高速电主轴技术要点,充分发挥其优势,同时,推进电主轴技术不断完善。
1 高速电主轴所具备的优点传统的数控机床上的主轴运行,在发挥电机驱动作用的过程中,主要是带动中间的变速装置和传动装置,诸如齿轮、皮带以及联轴节等,此为“机械主轴”,也被形象地称为分离式和直联式主轴。
与这种传统的主轴相比,电主轴具备的优点如下。
(1)主轴运行中,是通过内部安装的电机驱动的,不需要通过中间的变速装置和传动装置,其设计结构简单而且紧凑,能够提高运行效率而且精度很高。
在运行的过程中,不会产生很大的噪声,振动也非常小。
(2)将交流变频技术充分利用起来,在额定转速范围内,电主轴可以无级变速。
当机床运行的过程中,无论发生任何的工况,或者在负载变化的情况下,电主轴都有很好的适应性。
(3)内装电机运行中,能够控制闭环矢量,还可以按照控制命令有效调控功率,且能够灵活控制驱动装置运行速度、输出力矩等等。
电主轴可以满足各种大功率要求,诸如低速重切削大转矩的时候,或者高速精加工的时候,电主轴都能够很好地发挥作用,还可以实现准停,同时满足C 轴传动功能。
(4)电主轴可以高速运行,有良好的稳定性,动态精度较高,使数控机床切削的速度更高,加工的精密度也更高。
(5)由于电主轴的运行不需要经过中间传动环节,因此其平稳性更高,不会受到外来的冲击,主轴的轴承不需要承受很大的动负荷,精度寿命得以延长。
(6)电主轴使电机和主轴构成一个整体,形成一个单元,使电主轴可以系列化生产,形成一定的规模,而且生产更加专业化。
电主轴作为数控机床功能部件,也作为一种商品进入到市场中。
收稿日期:2006-04-22.基金项目:国家自然科学基金重点资助项目(50437010).作者简介:王凤翔(1938-),男,山东寿光人,教授,博士生导师,主要从事特种电机及其控制、高速电机与磁悬浮、风力发电与能量转换系统等领域的研究. 电气工程文章编号:1000-1646(2006)03-0258-07 【特约】高速电机的设计特点及相关技术研究王凤翔(沈阳工业大学电气工程学院,沈阳110023)摘 要:简要介绍了高速电动机和发电机的结构类型、设计特点、关键技术及研究现状.以高速永磁电机为例,重点阐述了高速转子的电磁与结构设计、转子强度与刚度分析、永磁体的保护方法、定子铁心与绕组的结构设计与电磁性能计算、高频与高速附加损耗计算、温升计算与冷却散热方式.此外还简要介绍了高速磁悬浮轴承的结构原理与控制方法、高速发电机和电动机的功率变换与控制技术,并对高速电机的发展趋向进行了展望.关 键 词:高速电机;永磁电机;电磁与机械设计;控制方法;发展趋势中图分类号:TM 355 文献标识码:AStudy on design feature and related technology of high speed electrical m achinesWAN G Feng 2xiang(School of Electrical Engineering ,Shenyang University of Technology ,Shenyang 110023,China )Abstract :Structure ,design feature ,key technology and research status of high speed electrical machines are summarized.Taking the high speed permanent magnet machines as an example ,electromagnetic and structure designs of rotor ,analysis of rotor strength and rigidity ,protection of permanent magnets ,electromagnetic design of stator core and winding ,calculation of additional losses caused by high frequency and high speed ,prediction of temperature rise and selection of cooling mode are mainly introduced.In addition ,structure and control method of magnetically suspension bearings ,power conversion and control technique of high speed motor and generator as well as their development tendency are discussed briefly.K ey w ords :high speed electrical machine ;permanent magnet machine ;electromechanical design ;controlmethod ;development tendency 高速电机的研究目前正在成为国际电工领域的研究热点.由于转速高,电机的功率密度大,其几何尺寸远小于输出功率相同的中低速电机,因此可以有效地节约材料;由于高速电机的转动惯量较小,因此动态响应较快;又由于高速电机可与原动机或负载直接相连,省去了传统的机械变速装置,因而可减小噪音,提高传动系统的效率.上世纪末以来,由于军用和民用对高速电机的需求,英美等发达国家竞相开展了对高速电机的研究,其典型代表是:美国麻省理工学院(M IT )的电磁和电子系统实验室研究的5MW 高速感应发电机;德克萨斯州立大学机械电子中心用于先进机车推进系统的3MW 高速同步发电机和高速感应飞轮电机;英国Turbo G enset 公司推出的以112MW 高速永磁发电机为核心的新型移动电站;美国Calnetix 公司开发的舰用2MW 高速永磁发电机,转速范围为19000~22500r/min [1].目前已研制出500000r/min 的永磁发电机[2].高第28卷第3期2006年6月沈 阳 工 业 大 学 学 报Journal of Shenyang University of TechnologyVol 128No 13J un.2006速电机的应用领域越来越为广泛,如高速磨床及其他加工机床,高速飞轮储能系统,天然气输送及污水处理中采用的高速离心压缩机和鼓风机等.近来,用于分布式供电系统的微型燃气轮机驱动高速发电机越来越受到人们的关注,我国对高速电机的需求也比较迫切,但研究工作尚处于起步阶段.现正在研制215MW高速感应电机[3],同时已研制了转速50000r/min以下的小功率高速电机.在高速和超高速运行情况下,电机的运行特性与常规电机有很大的不同,对电机的设计理论和控制技术提出了一系列新的研究课题.本文对此作一介绍和阐述.1 高速电机的特点与关键技术高速电机的主要特点有两个:一是转子的高速旋转,转速高达每分钟数万转甚至十几万转,圆周速度可达200m/s以上;二是定子绕组电流和铁心中磁通的高频率,一般在1000Hz以上.由此决定了不同于普通电机的高速电机特有的关键技术. 111 高速发电机的结构及其控制方式高速发电机可以有多种结构形式,如永磁电机、感应电机和磁阻电机等[4~6],它们各有优缺点.从功率密度和效率来看,选择次序为永磁电机、感应电机和磁阻电机;然而从转子机械特性来看,其选择次序需要颠倒过来,即磁阻电机、感应电机和永磁电机.在确定高速电机结构型式时,需要对其电磁和机械特性、控制方式和功率变换系统进行综合对比研究.目前中小功率高速电机采用永磁电机较多,中大功率高速电机采用感应电机较多.112 高速电机转子动力学电机在高速旋转时转子的离心力很大,当线速度达到200m/s以上时,常规的叠片转子难以承受高速旋转产生的离心力,需要采用特殊的高强度叠片或实心转子.对于永磁电机来说,转子强度问题更为突出,因为烧结而成的永磁材料不能承受高速旋转产生的拉应力,必须对永磁体采取保护措施.转子强度的准确计算和动力学分析是高速电机设计的关键技术[7].113 高速电机的损耗、温升计算与散热技术高速电机不仅由于绕组电流和铁心中磁通交变频率增加导致基本电气损耗的增加,而且还增加了高频附加损耗,特别是转子表面由于高速旋转产生的风磨损耗和轴承损耗在总损耗中所占有较大的比重,且与电机运行速度和散热条件密切相关,因而难以准确计算.同时,由于单位体积功率密度与损耗的增加和总体散热面积的减小,因此有效的散热和冷却方式,是高速电机设计中的一个重要问题[8,9].114 高速电机的磁悬浮技术高速电机不能采用传统的机械轴承,而需要采用非接触式轴承.磁悬浮是目前唯一可以实现主动控制的现代支承技术,具有允许转速高、摩擦功耗小、无需润滑和寿命长等优点,磁悬浮技术成为高速电机的重要研究内容.115 高速电机的控制策略与功率转换技术不管采用永磁发电机还是感应发电机,都需要采用适当的功率变换系统,将高速发电机输出的高频交流电能转化为恒频恒压的电能供给用户使用.高速电动机则需要变频调速系统.因此需要研究高速电机功率变换和控制系统的电路拓扑结构和控制策略.下面将对上述某些关键技术内容作进一步的阐述.2 高速永磁电机的转子设计由于永磁电机的高效率和高功率密度,永磁转子成为中小功率高速电机的首选结构,然而永磁材料的抗拉强度较低,成为高速永磁转子设计的难题.在永磁转子设计中需要重点考虑以下问题[10]. 211 转子直径与长度的选取从减小离心力的角度来看,高速电机转子直径应选得越小越好,然而转子要有足够大的空间放置永磁体和转轴,因而转子直径不可过小.高速电机转子一般为细长型,为了保证转子具有足够的刚度和较高的临界转速,转子轴向不可过长.特别是对于采用磁悬浮轴承的高速电机转子,为了减小跨越临界转速时磁悬浮控制的难度,希望设计成为刚性转子,采用适当的转子长径比.高速永磁转子的直径和长度需要进行精确的电磁和机械特性分析后才可确定.212 永磁材料的选取高速电机的永磁体不仅要具有良好的磁性能,即较高的剩余磁通密度、矫顽力和最大磁能积,而且应具有足够高的工作温度和热稳定性.由于高速永磁转子的高速、高频附加损耗较大而散热条件较差,因此防止转子过热造成永磁体不可逆失磁,是需要考虑的一个重要问题.213 极数选择高速电机一般为2极或者4极,各有优缺点.952第3期王凤翔:高速电机的设计特点及相关技术研究 2极电机的优点是转子永磁体可采用整体结构,保证转子沿径向各向同性有利于转子的动态平衡,同时可减小定子绕组电流和铁心中磁场的交变频率,有利于降低高频附加损耗.2极电机的缺点是定子绕组端部较长而铁心轭部较厚.4极电机刚好与2极电机相反,优点是定子绕组端部较短和铁心轭部较薄,缺点是永磁转子需要多块永磁体拼接以及定子绕组电流和铁心中磁场的交变频率较高.从电磁和机械两个方面综合考虑,特别是从转子结构设计来看,采用2极方案比较有利.214 永磁转子护套设计高速电机一般选用的稀土永磁体为烧结钕铁硼,是一种类似于粉末冶金的永磁材料,能承受较大的压应力(1000MPa ),但不能承受大的拉应力,其抗拉强度一般低于抗压强度的十分之一(<100MPa ).如果没有保护措施,永磁体无法承受转子高速旋转时产生的巨大离心力[11,12].保护永磁体的方法之一,是在永磁体外面加一高强度非导磁保护套,永磁体与护套间采用过盈配合,如图1所示.另外一种保护方法是用采用碳纤维绑扎永磁体,如图2所示.图1 采用非导磁合金钢护套的永磁转子Fig.1 PM rotor with nonmagnetic steel enclosure护套的作用是在转子处于静态不旋转时,使永磁体承受一定的压应力,以补偿高速旋转时离心力产生的拉应力,使永磁体承受的拉应力在永磁材料所许可的范围之内.需要给永磁体施加多大的预压力,永磁体与护套之间需要采用多大的过盈量,需要根据永磁转子的结构、转子运行速度范围和材料特性,进行转子强度分析,通过计算高速旋转时永磁体和护套的应力和应变方可确定.采用非导磁合金钢护套的优点是能够对高频磁场起到一定的屏蔽作用,并能减小永磁体和转子轭中的高频附加损耗,同时导热性能较好,有利于永磁体的散热;其缺点是护套为导电体,会产生涡流损耗.与金属护套相比,碳纤维绑扎带的厚度要小,而且不产生高频涡流损耗;然而碳纤维是热的不良导体,不利于永磁转子的散热,而且对永磁体没有高频磁场的屏蔽作用.研究表明,在碳纤维绑扎的永磁体外加一薄层导电性能良好而不导磁的金属,可以有效地屏蔽高频磁场进入永磁体和转子轭,对减小永磁转子的高频附加损耗十分有效[8,9].图2 采用碳纤维绑扎的永磁转子Fig.2 PM rotor covered by a carbon 2fiber bandage enclosure3 高速电机的定子设计随着转速的增高,电机的体积减小而定子绕组电流和铁心中磁通交变频率增高,电机单位体积的损耗和发热量增加而散热面减小,减小损耗和有效的散热成为高速电机定子绕组和铁心设计需要解决的主要问题[13,14].311 定子铁心材料的选择由于定子铁心中磁通的变化频率与电机的转速成正比,而单位铁损耗与频率的113~115次方成比例,一台60000r/min 的电机磁场变化频率是3000r/min 电机频率的20倍,如铁心中的磁通密度相同,高速电机的单位铁耗将增加50~80倍.降低铁耗的办法有:①适当降低铁心中的磁通密度;②采用低损耗的铁心材料,如特殊软磁合金、非晶态合金钢片(Amorphous steel )和磁粉压制的SMC (Soft magnetic composite )软磁铁心.上述特殊软磁合金成本较高,非晶态合金钢片薄而脆不易加工成型,而SMC 材料尚处于开发和试用阶段.目前高速电机的定子铁心仍以采用超薄型低损耗冷轧电工钢片为主.312 定子铁心结构可以采用如图3所示多槽式、少槽式和无槽062 沈 阳 工 业 大 学 学 报第28卷式三种不同类型的定子铁心.通过对一台2极高速电机在相同定转子尺寸和运行条件下采用不同槽数(24槽、6槽和无槽)定子铁心结构磁场有限元分析,得出的在转子表面一点的磁通密度变化曲线对比,如图4所示.图3 三种典型的定子铁心结构Fig.3 Three typical structures of stator corea.多槽式b.少槽式c.无槽式图4 不同定子铁心结构气隙磁场的比较Fig.4 Comparison of air gap magnetic fields fordifferentstator core structures通过对比图4中永磁转子表面气隙磁通密度的变化曲线可以看出,无槽定子不产生高频齿谐波磁场,对减小转子损耗十分有利,但气隙过大,永磁体产生的气隙磁场较小,材料利用率过低.6槽定子气隙平均磁场最强,材料的利用率最好,但齿谐波磁场幅值过大,转子的损耗较大.相比之下24槽定子结构较好,尽管齿谐波磁场的频率较高,但幅值较小,在转子中产生的损耗比6槽定子要小得多,而平均气隙磁通密度略小于6槽定子.313 定子绕组型式由于转子强度所限,高速电机一般为细长型,而2极和4极电机的传统定子绕组端部比较长,如图5a 所示,这就更增加了转子的轴向长度,从而降低了转子系统的刚度,尤其对采用磁悬浮轴承的高速电机十分不利.为了减小转子的轴向长度,需要缩短定子绕组的端部长度,一种有效的解决办法是采用图5b 所示的环型绕组,使线圈边之间的连接不从端部而是通过定子铁心轭的外部,这样可使绕组端部长大大缩短,其不利之处是线圈嵌线工艺比较复杂,需要穿绕.图5 传统绕组与环型绕组端部示意图Fig.5 Schematic diagram of ring winding andconventional winding a.传统绕组 b.环型绕组4 高速电机的轴承设计411 非机械接触式高速轴承的分类普通的机械轴承在高速电机中应用寿命很短,一般需要采用非机械接触式轴承,主要有三类[10]:1)充油轴承.通过在转动体与非转动体之间形成一层油膜使转子悬浮,需要一套油循环系统.由于存在漏油问题和损耗较大,因此逐渐被先进的气悬浮和磁悬浮技术所代替.2)空气轴承.空气轴承的结构原理如图6所示.用压缩空气代替油膜实现气悬浮,漏气比漏油问题容易解决.与磁悬浮轴承比,空气轴承的体积较小,控制简单;其缺点是用很薄的一层压缩空气(25nm )支撑转子,承受负载能力有限,同时对轴承材料的性能与加工精度要求极高.图6 空气轴承结构原理示意图Fig.6 Schematic diagram of air bearing162第3期王凤翔:高速电机的设计特点及相关技术研究 3)磁悬浮轴承.通过磁力耦合实现定转子之间的非接触悬浮,可进行动态悬浮力控制,不存在漏油和漏气问题,在高速电机中应用较多.412 高速电机的磁悬浮控制高速电机的磁悬浮技术有两种类型,一种是采用与电机分离的磁悬浮轴承(通常称为磁力轴承);另一种是将电机与磁悬浮轴承合为一体的磁悬浮无轴承电机,其结构示意图分别如图7和图8所示.显然,无轴承电机将径向磁力轴承与电机集成为一体,可减小电机的轴向长度,但其控制技术比较复杂.图7 磁力轴承电机的结构示意图Fig.7 Structure diagram of machine with magnetic bearings图8 无轴承电机的结构示意图Fig.8 Structure diagram of bearingless machine41211 磁力轴承磁力轴承可分为被动式、主动式和混合式磁力轴承三种类型.被动式磁力轴承由永磁体构成,不需要控制,但至少在一个自由度上需施加非永磁体产生的力约束,否则不稳定.主动式磁力轴承是由通电线圈产生的电磁力实现转子悬浮,控制器通过动态检测转子位置,调整励磁线圈的电流控制悬浮力大小,实现转子的稳定悬浮.混合式磁力轴承是主动式与被动式磁力轴承的结合,通过施加永磁体的偏磁磁场以减小主动式磁力轴承的控制功率.目前在高速电机中实际应用的是主动式磁力轴承或者混合式磁力轴承[15].图9为主动式磁力轴承的工作原理和控制系统示意图.41212 磁悬浮无轴承电机如图8所示,磁悬浮无轴承电机是将径向磁力轴承与电机集成为一体,电机的定转子不仅要产生驱动电机转动的旋转力矩,而且要产生使转子悬浮的电磁力[16].无轴承电机与传统交流电机的结构基本相同,只是为了产生磁悬浮力,除了原有用以产生旋转力矩的定子绕组外,再加上一套与转矩绕组极数相差为2的磁悬浮力控制绕组.转子可采用传统交流电机的无刷结构型式,如感应式、永磁式和磁阻式等.图9 主动式磁力轴承结构原理与控制系统示意图Fig.9 Structure and control system of active magnetic bearings无轴承电机的磁悬浮力产生原理如图10所示.N A 和N B 表示的是4极的转矩绕组,N α和N β是2极的悬浮力绕组.如果2极悬浮力绕组中没有电流通过,则转矩绕组电流产生的4极磁场是对称的,图10中所示1和2处对应的气隙磁通密度是相等的,此时电机气隙中没有单边磁拉力产生.当在2极的N α绕组中通入一个如图10所示的正方向电流时,N α绕组产生的磁场使2处的气隙磁通密度增加而使1处的磁通密度减少,不平衡的气隙磁场分布将产生单边磁拉力欲使电机转子沿α轴的负方向运动;反之,如果N α绕组中通入反方向电流,那么合成气隙磁场的作用将使转子向α的正方向运动.同理,N β绕组中的电流将产生一个沿β方向的磁拉力.因此可通过控制N α、N β绕组中的电流产生所需要的转子磁悬浮力,从而维持电机定转子之间的间隙不变.由于需要对转矩和磁悬浮力进行解耦控制,无轴承电机的控制技术要比电机与磁力轴承分体的控制技术复杂得多.图10 磁悬浮力产生原理示意图Fig.10 G eneration principle of magnetic levitation force无轴承电机成为近年来国内外的研究热点之262 沈 阳 工 业 大 学 学 报第28卷一,研究人员提出了多种电机结构形式和控制策略,然而由于控制技术的复杂性,目前无轴承电机的研究尚处于应用基础研究阶段[20],在高速电机上尚未得到实际应用.5 高速电机的控制与功率变换技术高速电动机需要采用高频逆变器供电,而高速发电机输出的是高频交流电,需要通过电力电子功率变换装置,变为用户所需要的恒频恒压交流电.由于高速电机的高频供电,电机的损耗密度较大,而散热又比较困难,因此要求电机绕组的电压和电流为正弦波,以减小高次谐波的附加损耗,为此对功率变换装置提出了较高的要求[17,18].目前高速发电机的一个重要应用领域是微型燃气轮机驱动高速发电机分布式供电系统,其控制和功率变换技术比较复杂.图11为一微型燃气轮机驱动高速永磁发电机分布式供电装置的控制和功率变换系统原理框图.由于微型燃气轮机不能自起动,机组起动时高速电机作为电动机运行,拖动机组起动,由蓄电池通过DC/DC 升压斩波器(因为蓄电池组的电压较低)和DC/AC 逆变器供电,当机组转速上升到一定值后微型燃气轮机点火,随着转速的升高和微型燃气轮机驱动功率的增加,高速电动机输出机械功率逐渐减小进而变为发电机输出电功率,此时原来用作为高速电动机供电的逆变器变为正弦波整流器,将高速发电机输出的高频交流电转换为直流电,然后由输出逆变器转换为恒频恒压的工频交流电向用户供电.此时蓄电池由放电变为充电状态,因而DC/DC 斩波器的功率流向改变,由升压斩波变为降压斩波.图11 微型燃气轮机驱动高速发电机功率变换系统原理框图Fig.11 Power conversion system block diagram of ahigh speed generator driven by micro 2turbine6 高速电机的研究展望随着军工和民用对高速发电机和电动机的需求,高速电机已成为国内外研究的热点之一.由于高速电机的高功率密度和高速、高频运行特点,涉及到材料、机械、电磁、电力电子、自动化、检测技术与计算机控制等多学科的前沿技术,因此需要深入研究的问题很多,在我国尚处于起步阶段.在电机结构上除了继续深入研究高速永磁电机并扩大其转速和功率范围外,还需要研究感应式和磁阻转子等其他结构形式的高速电机.需要进行高速电机电磁与机械综合设计方法研究,应用电磁场、应力场与温度场耦合方法,分析计算电机定转子的高频和高速损耗和温升分布,电机的强度、刚度、振动和噪声.需要研究高温高速磁悬浮轴承系统的关键技术,具有冗余容错能力的高可靠性的磁悬浮轴承系统以及磁悬浮轴承—柔性转子系统的控制方法.需要进行高速电机功率变换和控制系统变流器的拓扑结构与控制策略研究;供电与控制系统运行状态监测与可靠性研究;高速发电机供电质量控制技术、多机并网及与其他供电系统并联运行技术的研究[19,20].参考文献:[1]Huynh C ,Hawkins L ,Farahani A ,et al .Design anddevelopment of a 2MW ,high speed permanent magnet alternator for shipboard application [C/OL ].USA :Electric Machines Technology Symposium ,Philadel 2phia ,http :///white papers/PDF/2004%20ASN E %20EM TS %20Pa per.pdf ,2004.[2]Zwyssig C ,K olar J W ,Thaler W ,et al .Design of a100W ,500000rpm permanent magnet generator for mesoscale gas turbines [C/CD ].Hong K ong :Confer 2ence Record of the IEEE Industry Applications S ociety Fortieth Annual Meeting (IEEE 2IAS ’2005),2005.[3]Ma W M ,Wang D ,Xiao F ,et al .A high speed induc 2tion generator based on power integration techniques [C/CD ].Hong K ong :IEEE 2IAS.Conference Record of the IEEE Industry Applications S ociety Fortieth Annual Meeting Kwloon ,2005.[4]Rahman M A ,Chiba A ,Fukao T.Su per high speedelectrical machines 2summary [A ].IEEE Power Engi 2neering S ociety G eneral Meeting [C ].Denver :IEEE ,2004:1272-1275.[5]Bianchi N ,Bolognani S ,Luise F.Potentials and limitsof high 2speed PM motors [J ].IEEE Transactions on Industry Applications ,2004,40(6):1570-1578.[6]G ieras J parison of high 2power high 2speed ma 2chines:cage induction versus switched reluctance mo 2362第3期王凤翔:高速电机的设计特点及相关技术研究 tors[A].1999IEEE Aericon25th Conference in Africa[C].S outh Africa:IEEE,1999:675-678.[7]Wang F X,Zheng W P,Z ong M,et al.Design consid2erations of high2speed PM generators for microturbines[A].China Electric Power Research Institute.2002IEEE International Conference on Power S ystemTechnology Proceedings[C].Kuming:Yunnan Scienceand Technology Press,2002:158-162.[8]Aglen O,Andersson A.Thermal analysis of a highspeed generator[A].IEEE2IAS.Conference Record ofthe IEEE Industry Applicatons S ociety Thirty EinghtAnnual Meeting[C].Salt Lake City:IEEE,2003:547-554.[9]Aglen O.Loss calculation and thermal analysis of ahigh2speed generator[A].IEEE Electric Machines andDrives Conference[C].Madison:IEEE,2003:1117-1123.[10]Wang F X,Z ong M,Zheng W P,et al.Design featuresof high speed PM machines[A].Proceedings of theSixth International Conference on Electrical Machines and Systems[C].Beijing:International Academic Pub2 lishers Word Publishing Corporation,2003:66-70. [11]Binder A,Schneider T,K lohr M.Fixation of buriedand surface mounted magnets in high2speed permanentmagnet synchronous motors[A].Conference Record ofthe IEEE Industry Applications S ociety Fortieth An2nual Meeting[C].Hong K ong:IEEE,2005:2843-2848.[12]王继强,王凤翔,鲍文博,等.高速永磁电机转子设计与强度分析[J].中国电机工程学报,2005,25(15):140-145.(Wang J Q,Wang F X,Bao W B,et al.Rotor designand strength analysis of high speed permanent magnetmachine[J].Proceedings of the CSEE,2005,25(15):140-145.)[13]Yu T,Wang F X,Wang J Q,et al.Investigation onstructure of stator core and winding for high speed PMmachines[A].Proceedings of the Eighth InternationalConference on Electrical Machines and S ystems[C].Beijng:International Academic Publishers Word Pub2lishing Corporation,2005:903-906.[14]Schatzer C,Binder A.Design optimization of a highspeed permanent magnet machine with the V EKOPTalgorithm[C/CD].Roma:Conference Record of theIEEE Industry Applications S ociety Thirty Fifth An2nual Meeting(IEEE2ISA’2000),2000.[15]Filatov A V,Maslen E H,G illies G T.A method ofnoncontact sus pension of rotating bodies using electro2magnetic forces[J].Journal of Applied Physics,2002,91(4):2355-2371.[16]Ooshima M,Chiba A,Fukao T,et al.Design and anal2ysis of permanent magnet2type bearingless motors[J].IEEE Transactions on Industrial Electronics,1996,43(2):292-299.[17]Wang F X,Bai H R,Yu S F.A re pression method ofcurrent harmonics using phase2shifting reactor for highspeed generator[A].Proceedings of the Eighth Inter2national Conference on Electrical Machines and S ys2tems[C].Beijing:International Academic PublishersWord Publishing Corporation,2005.[18]Ochije K N,Pollock C.A controlled PWM AC/DCconverter for a high2speed brushless generator for mini2mum kVA rating[J].IEEE Transactions on IndustryApplications,2004,40(3):861-868.[19]Offringa L J J,Duarte J L.A1600kW IG B T conver2ter with interphase transformer for high speed gas tur2bine power plants[C/CD].Roma:Conference Record of the IEEE Industry Applications S ociety Thirty FifthAnnual Meeting(IEEE2IAS’2000),2000.[20]Ochije K N,Pollock C.A controlled PWM AC/DCconverter for a high2speed brushless generator for mini2mum kVA rating[J].IEEE Transactions on IndustryApplications,2004,40(3):861-868.(责任编辑:王艳香 英文审校:杨俊友)462 沈 阳 工 业 大 学 学 报第28卷。
摘要高速电机现正成为电机领域的研究热点之一。
其主要特点有两个:一是转子的高速旋转;二是定子绕组电流和铁心中磁通的高频率。
由此决定了不同于普通电机的高速电机特有的关键技术。
本文针对一台已经研制出的100KW高速永磁电机的机械特性进行了分析研究。
主要包括以下内容:首先,对高速永磁电机的定子、转子结构,工作原理和ANSYS软件进行了简单的介绍。
定子主要由机座、主磁极、换向极和电刷装置组成,作用是产生磁场。
转子由电枢铁心和电枢绕组,换向器,轴及风扇等组成,作用是产生电磁转矩和感应电动势。
电机中的电磁能与机械能的转换是在磁场中完成的,本设计中采用永磁体建立磁场,完成能量的转换。
其次,对高速永磁电机的转子强度进行了分析。
基于弹性力学理论和有限元接触理论建立了高速永磁转子应力计算模型,确定了护套和永磁体之间的过盈量,分析了永磁体和护套的强度。
永磁体与护套之间采用过盈配合,用护套对永磁体施加静态预压力抵消高速旋转产生的拉应力,使永磁体高速旋转时仍能承受一定的压应力,从而保证永磁转子的安全运行。
关键词:高速永磁电机,转子强度,ANSYS软件AbstractThe high-speed electrical motors are now becoming one of the hot areas of research. There are two main features: First, the rotor high-speed rotation and the other is the stator windings current and iron hearts of the high-frequency magnetic flux. This decision is different from the ordinary high-speed electrical motor unique key technologies. This paper has developed a 100 KW of high-speed permanent magnet motor of the mechanical properties of the analysis. Mainly include the following: First, It is the simple introduction to the high-speed permanent magnet motor stator and rotor structure, working principle and ANSYS software. Stator mainly consists of the main magnetic pole, and brush, acting as generating the magnetic field. Rotor consists of the armature core and armature winding, commentator, shaft and fan, and other components, acting a role in the electromagnetic torque sensors and EMF. The conversion between the electromagnetic energy and mechanical energy is completed in the magnetic field, and permanent magnet was applied in this designing to establish magnetic field to complete the conversion of energy.Secondly, the analysis of the rotor strength of the high-speed permanent magnet motor. On the basis the elasticity theory and finite element contact theory established a high-speed permanent magnet rotor stress model to determine the sheath between the permanent magnet and a win amount of sheathing and the permanent magnet strength. Permanent magnet and used between the jacket fit, with the permanent magnet sheath static pre-imposed pressure to offset high-speed rotation of the stress so that the permanent magnet can bear a certain stress at high-speed rotation, thus ensuring permanent magnet rotor the safe operation.Key words:high-speed permanent magnet motor, the rotor strength, ANSYS software1.1课题的来源及意义现代社会中,电能是使用最广泛的一种能源。
高速电机发展与设计综述张凤阁;杜光辉;王天煜;刘光伟【摘要】对高速电机的发展现状进行了分析,总结了现有不同类型高速电机的极限指标,详细论述了高速电机的结构与设计特点,包括定子设计、不同类型转子结构设计、转子系统动力学分析以及轴承选型和冷却系统设计等,最后论述了高速电机发展所面临的问题,展望了高速电机的发展趋势.【期刊名称】《电工技术学报》【年(卷),期】2016(031)007【总页数】18页(P1-18)【关键词】高速电机;转子强度;冷却系统;高速轴承;电机设计【作者】张凤阁;杜光辉;王天煜;刘光伟【作者单位】沈阳工业大学电气工程学院沈阳 110870;沈阳工业大学电气工程学院沈阳 110870;沈阳工程学院机械工程学院沈阳 110136;沈阳工业大学电气工程学院沈阳 110870【正文语种】中文【中图分类】TM355高速电机具有体积小、功率密度大、可与高速负载直接相连、省去传统的机械增速装置、减小系统噪音和提高系统传动效率等特点[1-3],在高速磨床、空气循环制冷系统、储能飞轮、燃料电池、天然气输送高速离心压缩机以及作为飞机或舰载供电设备的分布式发电系统等领域具有广阔的应用前景[4-6],目前已成为国际电工领域的研究热点之一。
高速电机的主要特点是转子速度高、定子绕组电流和铁心中磁通频率高、功率密度和损耗密度大[1]。
这些特点决定了高速电机具有不同于常速电机特有的关键技术与设计方法。
高速电机的转子速度通常高于10 000 r/min,在高速旋转时,常规叠片转子难以承受巨大的离心力,需要采用特殊的高强度叠片或实心转子结构[7,8];对于永磁电机来说,转子强度问题更为突出,因为烧结而成的永磁材料不能承受转子高速旋转产生的拉应力[9],必须对永磁体采取保护措施;转子与气隙高速摩擦,在转子表面造成的摩擦损耗远大于常速电机,给转子散热带来很大困难;为了保证转子有足够的强度,高速电机转子多为细长型,因此与常速电机相比,高速电机转子系统接近临界转速的可能性大大增加,为了避免发生弯曲共振,必须准确预测转子系统的临界转速;普通电机轴承无法在高速下可靠运行,必须采用高速轴承系统。
高速电机标准高速电机是一种能够以高速运转的电动机,广泛应用于各个领域,包括工业生产、交通运输、医疗设备等。
由于高速电机的运转速度较快,因此对其标准和规范的要求也相对较高,以确保其安全可靠地运行。
高速电机标准的主要目的是为了确保高速电机的设计、制造和使用符合相应的技术要求和安全标准。
这些标准和规范旨在规范高速电机的性能、质量、可靠性和安全性,以确保高速电机的正常运行和使用,减少事故的发生,保护人员和设备的安全。
高速电机标准主要包括以下几个方面:1. 电机性能要求:高速电机的性能要求包括额定转速、额定功率、额定电压、额定电流、效率等。
这些性能参数的要求和测试方法应符合国家标准或国际标准的规定,以确保电机的性能符合要求。
2. 电机结构要求:高速电机的结构要求包括外壳材料、轴承、冷却系统、绝缘系统等。
这些要求旨在确保电机具有足够的强度和刚度,以抵抗高速旋转时产生的离心力和振动,并保证电机的散热和绝缘性能。
3. 电机制造和检测要求:高速电机的制造和检测要求包括材料选择、加工工艺、装配过程、检测方法等。
制造过程应符合相关的质量管理体系和工艺要求,以确保电机的质量和可靠性。
同时,检测方法应能够准确地检测电机的性能和质量,包括转速、功率、温升、振动等。
4. 电机安全要求:高速电机的安全要求包括防护装置、接地保护、过载保护、绝缘等级等。
这些要求旨在保护人员和设备的安全,避免电机的故障和事故的发生,同时减少对环境的影响。
高速电机标准的制定和执行需要相关的技术和管理人员的共同努力。
制定标准的过程应充分考虑高速电机的特点和应用需求,同时参考国内外的相关标准和经验,以确保标准的科学性和可操作性。
标准的执行需要企业和用户的共同配合,加强对高速电机的质量控制和安全管理,确保电机的正常运行和使用。
总之,高速电机标准是保证高速电机性能和质量的重要保障。
只有通过制定和执行相关的标准和规范,才能确保高速电机的安全可靠运行,减少事故的发生,保护人员和设备的安全。
电动机保护器电动机保护器的作用是给电机全面的保护控制,在电机出现过流、欠流、断相、堵转、短路、过压、欠压、漏电、三相不平衡、过热、接地、轴承磨损、定转子偏心时、绕组老化予以报警或保护控制。
主要种类(一)热继电器是五十年代初引进苏联技术开发的金属片机械式电动机过载保护器。
它在保护电动机过载方面具有反时限性能和结构简单的特点。
但存在功能少,无断相保护,对电机发生通风不畅,扫膛、堵转、长期过载;频繁启动等故障不起保护作用。
这主要是因为热继电器动作曲线和电动机实际保护曲线不一致,失去了保护作用。
且重复性能差,大电流过载或短路故障后不能再次使用,调整误差大、易受环境温度的影响误动或拒动,功耗大、耗材多、性能指标落后等缺陷。
(二)温度继电器是采用双金属片制成的盘式或其他形式的继电器,具有结构简单、动作可靠,保护范围广泛等优点,但动作缓慢,返回时间长,3KW以上的三角形接法电动机不宜使用。
如今在电风扇、电冰箱、空调压缩机等方面大量使用。
温度继电器与热继电器不同。
温度继电器是装在电动机内部,靠温度变化时期动作的。
而热继电器装在动力线上,靠电流热效应动作的。
(三)电子式电动机保护器已由晶体管发展到集成电路至今已发展到微处理芯片厚模电路,从功能上一般分为断相保护、综合保护(多功能保护)、温度保护和智能保护。
此类保护器具有节能、动作灵敏、精确度高、耐冲击振动,重复性好、保护功能齐全、功耗小等优点。
1.电动机保护器(电机保护器)是以检测线电流的变化(包括采取、正序、负序、零序和过流)为原则,可检测断相或过载信号。
除具有断相保护功能外,还具有过负荷、堵转保护功能。
2.智能保护:集保护、遥测、通讯、遥控与一体的电动机保护装置,对电动机发生断相、过载、短路、欠压、过压和漏电等故障时实现保护,还具有电流电压显示,时间控制,软件自诊断,来电自恢复,自启动顺序,故障记忆,自琐和远传报警,显示故障时的电流、电压故障前后用代号闪烁示警,配置RS485通讯接口,实现计算机联网。
高速永磁电机设计与分析技术综述一、概述高速永磁电机,作为现代电机技术的杰出代表,正以其高效率、高功率密度以及优秀的控制性能,在多个领域展现出广阔的应用前景。
随着能源危机和环境污染问题的日益严峻,对高速永磁电机设计与分析技术的研究显得尤为重要。
本文旨在对高速永磁电机的设计与分析技术进行综述,以期为相关领域的研究者提供全面的技术参考和启发。
高速永磁电机的设计涉及电磁设计、结构设计、热设计、强度设计等多个方面,其关键在于如何在高速运转的条件下保证电机的性能稳定、安全可靠。
电磁设计方面,需要优化绕组布局、磁路设计以及永磁体的选择,以提高电机的效率和功率因数。
结构设计则着重于提高电机的刚性和强度,防止在高速运转时产生过大的振动和噪声。
热设计则关注电机内部的热传递和散热问题,防止电机因过热而损坏。
强度设计则要求电机在承受高速运转产生的离心力时,能够保持结构的完整性。
高速永磁电机的分析技术则涵盖了电磁场分析、热分析、结构分析等多个方面。
电磁场分析可以预测电机的电磁性能,为优化设计提供依据。
热分析则用于评估电机在不同工况下的热状态,为散热设计提供参考。
结构分析则关注电机在高速运转时的动态特性,为强度设计提供支撑。
随着计算机技术和数值分析方法的快速发展,高速永磁电机的设计与分析技术也在不断进步。
通过采用先进的电磁仿真软件、热仿真软件以及结构仿真软件,可以更加精确地预测电机的性能,为设计优化提供有力支持。
1. 高速永磁电机的定义与重要性高速永磁电机(HighSpeed Permanent Magnet Synchronous Motor, HSPMSM)是一种特殊类型的电机,其核心特点在于使用永磁体来产生磁场,以及能够在高转速下稳定运行。
与传统的电励磁电机相比,HSPMSM具有更高的功率密度、更高的效率以及更低的维护成本,因此在许多现代工业应用领域中具有显著的优势。
HSPMSM的重要性体现在以下几个方面:随着全球能源危机的日益加剧和环境保护需求的不断提升,节能减排、提高能源利用效率已成为工业生产中的重要目标。
高速电机的六大关键技术目录前言 (1)1 .散热的问题 (1)2 .电机选型问题 (2)3 .转子结构的问题 (3)4 .震动噪音的问题 (4)5 .高效的问题 (5)6 .轴承的问题 (7)前言“在体积更小、功率更高追求驱动下,电机的转速一路攀升,从早期的两三千转,一直攀升到几万甚至几十万转,更高的转速使得功率密度和原材料利用率提高。
因此高转速是强趋势,以新能源驱动为例,丰田PriUS推出的第一代产品最高转速才6000r∕min,到第四代产品转速达到17000r/min。
本期我们用更高的视角去看看转速电机的应用场合及背后的关键技术。
”高速、超高速的应用前景广阔但同时给电机带来了极高的挑战,我们将这些问题合并同类项后发现有六大类:散热、选型、转子结构、振动噪音、高效设计、轴承。
1.散热的问题电机损耗随转速几何级数提高,高损耗产生的热使得电机温升极速提升,为维持高速运行,必须设计散热良好的冷却方式。
我们能看到常见的高速电机冷却方式为:1) “内强迫风冷”如下图所示,强冷风能够直接吹入电机内部带走绕组和铁芯上的热量,这种方式一般出现在空压机、鼓风机、飞机电机这类本来就有强风可利用的场合。
2) “内油冷”在电机必须封闭防护,或者无强风的应用环境中,采用最多的是内油冷方式,比如AV1设计的高速电机采用的定子槽内油冷的方式的组合。
有些电机也采用绕组喷油冷却+定子油冷+转子油冷等多种方式的组合。
高速电机带来的问题High1oss=4158W,1owweight=18kg冷却方式举例某25OkW@2OkrPmSPM高速空压机强迫风冷结构AV1230kw@20krpmSPM槽内冷却技术油路通过幅口庖接为了实现高功率密度、发热和冷却是高速电机必须要面对的重要问题。
2.电机选型问题永磁电机还是感应电机?还是开关磁阻等其它类型的电机,高速电机种类的选择一直是一个没有标准答案的问题。
一般从功率密度和效率的角度出发,选择永磁电机比较有优势,而从可靠性出发选择感应电机和开关磁阻电机。
超高速电机转子的动平衡技术研究随着科技的进步和工业的发展,电机在我们的日常生活中扮演着越来越重要的角色。
超高速电机作为电机家族的重要组成部分,具有转速高、功率大、效率高等优点,广泛应用于航空航天、能源和交通等领域。
然而,超高速电机转子的动平衡问题却成为了研究者们面临的重要挑战。
超高速电机转子的动平衡是保证电机运行稳定性和效率的关键。
动平衡技术是通过在转子上添加平衡块或者通过调整转子的质量分布,使得转子在高速旋转时能够保持平衡。
首先,我们需要理解什么是动平衡。
动平衡即使转子在运转中,都能够保持绕中心轴线旋转,而不产生外力矩的状态。
当电机转子存在不平衡时,会引起振动、噪声和磨损等问题,甚至导致电机失效。
在超高速电机转子的动平衡技术研究中,同时需要考虑到静平衡和动平衡两个方面。
静平衡是指在不转动的情况下,转子质量中心与轴线重合的状态。
动平衡则更加复杂,需要考虑转子的质量不仅在静止时平衡,同时在高速旋转时也能够保持平衡。
超高速电机转子的动平衡技术研究主要包括动平衡质量的确定和动平衡方法的选择。
对于动平衡质量的确定,研究者们通常使用动平衡试验台进行实验测定。
试验台利用传感器测量转子的振动信号,通过数据处理和分析,计算得出动平衡质量。
这一过程需要准确的测量装置和灵敏的传感器,以及高效的数据分析算法。
有些研究者还利用数值模拟方法进行动平衡质量的优化设计,通过在计算机中模拟转子的运行状态,找到合适的平衡块位置和质量,以达到最佳的动平衡效果。
在动平衡方法的选择上,不同的研究者有不同的思路和方法。
一种常见的方法是在转子上添加平衡块,通过增加或减少平衡块的质量,来调整转子的质量分布,使其达到动平衡的要求。
另一种方法是调整轴的几何形状,来达到动平衡的效果。
还有一些研究者尝试使用主动控制系统来实现动平衡,通过感应转子的振动信号,控制系统可以实时调整平衡块的位置和质量,以实现转子的动平衡。
动平衡技术的研究不仅需要理论上的分析和计算,还需要实验验证。
Mechanical Engineering and Technology 机械工程与技术, 2018, 7(6), 429-436Published Online December 2018 in Hans. /journal/methttps:///10.12677/met.2018.76052Manufacturing Process and Key Technology of High-Speed Permanent Magnet ElectricMachineWenhua ZhangHunan XEMC Power Co. Ltd., Xiangtan HunanReceived: Nov. 5th, 2018; accepted: Nov. 23rd, 2018; published: Nov. 30th, 2018AbstractBecause of the advantages of less volume, lighter weight, and higher efficiency, high-speed permanent magnet electric machine has been used widely in many applications. With the increasing demand for high-speed permanent magnet electric machine applications in the power application market, its manufacturing process and key technology problems are becoming more and more serious. So, the analysis of the characteristics and development trend of the electric machine process is provided, which can be usefully employed in design and fabrication of similar kind of electric machines.KeywordsPermanent Magnet Electric Machine, Manufacturing Process, Key Technology高速永磁电机制造工艺特点及相关技术张文华湖南湘电动力有限公司,湖南湘潭收稿日期:2018年11月5日;录用日期:2018年11月23日;发布日期:2018年11月30日摘要高速永磁电机具有体积小、重量轻、效率高等特点,其应用范围越来越广泛,随着电力应用市场对高速永磁电机使用要求的不断提高,永磁电机制造工艺及关键技术问题逐渐突出,对此分析电机制造工艺特点及其发展趋势,为同类电机工艺设计及施工提供参考。
高速电机高速电机通常是指转速超过10000r/min的电机。
它们具有以下优点:一是由于转速高,所以电机功率密度高,而体积远小于功率普通的电机,可以有效的节约材料。
二是可与原动机相连,取消了传统的减速机构,传动效率高,噪音小。
三是由于高速电机转动惯量小,所以动态相应快。
高速电机正成为电机领域的研究热点。
基于以上优点,高速电机在以下各方面具有广阔的应用前景:(1)高速电机在空调或冰箱的离心式压缩机等各种场合得到应用[6],而随着科学技术的发展,特殊要求越来越多,它的应用也会越来越广泛。
(2)随着汽车工业混合动力汽车的发展,体积小,重量轻的高速发电机将会得到充分的重视,并在混合动力汽车,航空,船舶等领域具有良好的应用前景。
(3)由燃气轮机驱动的高速发电机体积小,具有较高的机动性,可用于一些重要设施的备用电源,也可作为独立电源或小型电站,弥补集中式供电的不足,具有重要的实用价值。
由于高速电机转子上的离心力与线速度的平方成正比,高速电机要求具有很高的机械强度;又由于高速电机频率高,铁耗大,在设计时应适当降低铁心中的磁密,采用低损耗的铁心材料。
轴承的研究也是与高速电机密不可分的内容,因为普通轴承难以承受在高速系统中承受长时间运行,必须采用新材料和新结构的轴承。
目前人们正在研究的类型有气动轴承及磁力轴承。
高速电机可以有多种结构形式,如感应电机、永磁电机和磁阻电机等。
电机在高速旋转时的离心力很大,当线速度达到200m/s以上时,常规叠片转子难以承受高速旋转产生的离心力,需要采用特殊的高强度叠片或实心转子。
在转子动力学发展的近百年的历史中,出现过很多计算方法,发展到今天,现代的计算方法主要可以分为两大类:传递矩阵法和有限元法。
有限元法的运动方程表达方式简洁,规范,在求解转子动力学问题或转子和周围结构一起组成的复杂机械系统的问题时,有很多优点。
有限元法对复杂转子系统剖分庞大,计算结果比传递矩阵法准确,然而计算耗时长,占用内存大。
CRH380A牵引电机1. 简介CRH380A牵引电机是中国高速动车组CRH380A的关键部件之一。
本文档将详细介绍CRH380A牵引电机的特点、结构、工作原理以及维护注意事项。
2. 特点CRH380A牵引电机具有以下特点:•高效能:牵引电机具备高功率和高转速的特点,能快速带动高速动车组起步。
•节能环保:采用先进的电机控制技术,有效减少能耗,并降低对环境的影响。
•高可靠性:牵引电机采用高品质零部件和可靠性设计,具备出色的可靠性和稳定性。
•长寿命:经过精确计算和测试的牵引电机,能够经受长时间的高速工作而不易损坏。
•易于维护:牵引电机的结构简单,易于拆卸和维护,降低了维修成本和时间。
3. 结构CRH380A牵引电机的结构可分为以下几个主要部分:•外壳:由高强度金属材料制成,具有良好的耐腐蚀性和机械强度。
•定子:由铁芯和绕组组成,绕组经过精确绝缘和安装,确保电流传导和绝缘性能。
•转子:由铁芯和永磁体组成,通过电流激励产生磁场,与定子之间产生相互作用。
•联轴器:将电机与传动系统连接,传递动力并保持同步运作。
•冷却系统:采用强制循环的风冷系统,有效降低电机温度,保证长时间高效工作。
4. 工作原理CRH380A牵引电机的工作原理基于电磁感应和电流互作用的原理。
具体工作过程如下:1.电源供电:将高压直流电源接入电机,提供驱动电能。
2.定子绕组激励:通过定子绕组输入电流,产生旋转磁场。
3.转子磁场感应:转子磁场与定子磁场相互感应,产生电动势。
4.电流互作用:电动势驱动转子电流激励,进一步增强转子磁场。
5.动力输出:转子磁场与定子磁场相互作用,产生转矩,驱动牵引系统。
5. 维护注意事项为确保CRH380A牵引电机的正常运行和延长其寿命,需注意以下几个维护事项:•定期检查冷却系统:清理风道和散热器,保证电机散热效果。
•检测绝缘性能:定期使用绝缘测试仪检测电机的绝缘性能,确保安全使用。
•拆卸维护时注意:在拆卸电机进行维修时,注意磁铁吸力和安全操作。
高速电机的理解高速电机是一种能够高效转动的电动机,其转速通常在5000转/分钟以上。
相比传统的低速电机,高速电机具有更高的转速和更小的体积,因此在许多应用中得到了广泛的应用。
高速电机的工作原理和低速电机类似,都是通过电磁感应产生转矩来驱动转子转动。
不同之处在于,高速电机采用了一些特殊的设计和材料,以提高其转速和效率。
首先,高速电机通常采用轻质材料制造转子和定子,以减小转子的惯性和风阻。
这样可以降低机械损耗,提高电机的响应速度和效率。
其次,高速电机采用了先进的轴承和润滑系统,以减小摩擦和磨损。
这样可以减少能量损耗,并延长电机的使用寿命。
另外,高速电机还采用了高效的电磁设计和绕组结构,以提高电机的功率密度和效率。
通过优化磁场分布和绕组布局,可以减小铜损和铁损,提高电机的效率。
高速电机广泛应用于各个领域。
在工业领域,高速电机常用于风力发电机组、压缩机、泵等设备中,以提供高效的驱动力。
在交通运输领域,高速电机常用于电动汽车、高铁等交通工具中,以提供高速驱动和快速响应。
在家电领域,高速电机常用于洗衣机、吸尘器等家用电器中,以提供强劲的动力和高效的清洁效果。
除了应用领域的广泛性外,高速电机还具有许多其他优点。
首先,由于其转速高、体积小,可以在有限空间内实现更大功率输出,提高设备的紧凑性和效率。
其次,由于高速电机的响应速度快,可以实现更精确的控制和调节,提高设备的稳定性和性能。
此外,高速电机还具有低噪音、低振动、低温升等特点,可以提供更舒适、安静的工作环境。
然而,高速电机也存在一些挑战和限制。
首先,由于其转速高、运行环境苛刻,对轴承、润滑系统等关键部件提出了更高的要求,增加了制造成本和维护难度。
其次,由于高速电机的转子惯性小,对负载变化敏感,需要精确的控制算法和系统来保证稳定运行。
此外,由于高速电机的工作温度较高,对散热系统要求较高,增加了散热设计和成本。
总之,高速电机是一种具有高效、小型化、快速响应等优点的电动机。
科学瞎想系列之四十八高速电机为什么那么难搞所谓高速电机就是转速很高的电机,究竟多高转速的电机算高速电机,没有一个严格的定义,通常说转速超过10000转/分钟的电机就算高速电机,其实这也就是那么一种说法,转速大于10000转/分钟与小于10000转/分钟在本质上并没有一个分水岭式的意义和区别,与其从转速上区分高低速电机倒不如从转子表面线速度上区分更科学些,因为电机里的许多限制条件与线速度密切相关。
因此我们这里所说的高速电机就是指利用一般电机设计制造技术难以满足电机高转速要求,必须特殊考虑的那些电机。
学过电机设计的宝宝们都知道,电机转速的高低与电机的体积重量密切相关,同样功率的电机转速越高体积重量越小。
随着电机技术和电力电子技术的飞速发展,高速越来越被人们重视,许多高速设备希望去掉变速箱,直接用高速电机来驱动(即所谓的'直驱'),以简化系统、降低成本、提高效率。
从电机本身来讲,也希望通过提高转速减小体积重量以降低成本。
因此,近年来高速电机的需求越来越大,许多厂家也纷纷打出高速电机的招牌,然而,真正要订货,却难以找到技术成熟的货架产品。
这么好的事,厂家用户都在追求的一种东东,怎么就很少有成熟的产品呢?前面说了,不是厂家不想做,而是研发高速电机的难度不是一般的大,那是相当的大,难在哪呢?今天老师就给宝宝们说说高速电机为什么那么难搞。
1 轴承的限制。
旋转电机都离不开轴承,传统的轴承除了它的承载能力外还有一个重要的制约条件,那就是它的dn值(其实这个值代表了轴承档的线速度),所谓dn值就是轴承档的直径与转速的乘积,一般来讲,轴承的dn值不能超过2*10^6,如果电机转速过高功率又比较大,那必然会受到这个值的制约,采用一般的轴承就不能满足要求了。
解决这个问题一方面需要轴承行业提高技术,另一方面需要另辟蹊径,采用一些新技术,如气悬浮轴承、磁悬浮轴承等。
2 转子结构限制。
转子高速旋转时,转子上的零部件必然会受到强大离心力的作用,还有气隙磁场径向和切向电磁力的作用,当转速高到一定程度,则相关的结构强度就会受到制约,特别是转子绕组端部、磁钢的紧固结构、槽根部、槽契、磁极紧固结构、转子铸铝结构或铜条焊接、换向器等零部件和结构都会受到制约,传统的设计和紧固方法已不能满足要求,必须采取特殊的设计和工艺来保证。
超导电机因体积小、功率密度高、效率高等优势,在航空电推进领域有较大的应用潜力。
基于固氮蓄冷的超导单极电机攻克了传统超导电机的低转速、高故障率、制冷系统庞大复杂等难题,可以在航空环境中稳定运行,有助于实现基于超导电驱动的航空飞行器工程化研制。
航空电推进具有分布式推进、灵活机动、高效低污染等显著特点,同时多电/全电推进飞机对电推进系统空间及质量的限制有严格的要求,其发展需要依靠功率大、结构紧凑、体积小、质量轻、可靠性高的特种电推进系统。
超导材料以大电流、无电阻的特性,通过绕制成电磁线圈,分别应用于电机系统的励磁磁体和定子电枢,有望大幅度提高电机系统的气隙磁密、定子绕组电负荷,从而实现更高的功率等级、功率密度、电机效率(97%以上)和更小的电机功率损耗,对于大功率航空电推进技术取得实质性进展具有重要意义。
目前,高温超导电机在连接到高转速工作的航空燃气轮机时,具备实现大于10kW/kg功率密度的能力,已经优于传统飞机涡轮发动机的功率密度。
随着电推进飞机总推进功率的增加,动力系统对于推进电机的需求功率越来越大。
相比于常规电机,超导电机拥有的高功率密度优势,在大功率条件下更加显著,从而为实现大型航空器的紧凑型设计和经济性运营提供了关键的技术支持。
航空超导电推进系统方案分析目前,航空超导电推进系统根据动力来源的不同,分为超导全电推进系统与超导混合电推进系统。
又根据系统架构的不同,将超导混合电推进系统分为并联式与串联式两类。
超导全电推进系统受限于电池技术的发展,无法有效保证长时间续航、大起飞质量及高飞行速度等需求,目前只适用于小功率等级电推进飞行器,而大功率飞行器则需要由航空发动机驱动的超导混合电推进系统。
其中,并联式混合电推进系统由于机械齿轮箱的存在,架构较为复杂且质量较大;串联式混合电推进系统通过航空发动机轴与超导电机直连,结构紧凑,能量利用效率更高。
涡轮发电超导电推进系统是目前实现大功率航空电推进飞机动力需求最有前景的一种方案。
高速电机设计注意事项高速电机是一种在工业和科技领域中广泛应用的设备,它具有快速转速、高功率输出和紧凑的结构特点。
在设计高速电机时,需要注意一些关键事项,以确保其性能和可靠性。
本文将介绍一些高速电机设计的注意事项。
高速电机设计时需要考虑电机的材料选择。
由于高速运转会产生较大的离心力和摩擦热,因此电机的材料需要具有较高的强度和耐热性。
常见的材料选择包括高温合金、陶瓷材料和特殊钢材。
此外,电机的绝缘材料也应具备较高的耐温性能,以防止绝缘老化和击穿。
高速电机设计时需要考虑电机的轴承选用。
轴承是支撑电机转子的关键部件,它直接影响电机的转速和寿命。
在高速电机设计中,需要选择适合高速运转的精密轴承,并进行合适的润滑和冷却措施,以减少摩擦和热量积聚,提高电机的运转效率和寿命。
第三,高速电机设计时需要考虑电机的冷却系统。
高速运转会产生大量的热量,如果不能及时有效地散热,将导致电机温升过高,甚至损坏电机。
因此,设计高速电机时需要合理设计冷却系统,包括风冷、水冷或油冷等方式,以确保电机能够在高速运转时保持合适的工作温度。
第四,高速电机设计时需要考虑电机的动平衡和振动控制。
高速运转会产生较大的离心力和振动力,如果电机存在不平衡或振动问题,会导致电机的性能下降和寿命缩短。
因此,在设计高速电机时需要进行动平衡处理,并采取合适的振动控制措施,以减少振动和噪音,提高电机的稳定性和可靠性。
第五,高速电机设计时需要考虑电机的电磁设计。
电磁设计直接关系到电机的输出功率和效率。
在高速电机设计中,需要合理选择电机的磁场分布和绕组结构,以提高电机的转矩和效率。
此外,还需要注意电机的温升和损耗问题,避免过高的温升和损耗对电机性能的影响。
高速电机设计时需要进行严格的性能测试和验证。
在设计完成后,需要对电机进行各项性能测试,包括转速、功率输出、效率和温升等指标的测试。
通过测试和验证,可以评估电机是否满足设计要求,并及时调整和改进设计,确保电机的性能和可靠性。
高速电机标准
高速电机的标准主要涉及到电机的转速和功率。
一般来说,高速电机是指转速超过3000转/分的电机。
高速电机通常用于需要高转速的场合,如精密加工、航空航天、高速传动等。
此外,高速电机的功率通常在100W以上,最高可达2000W左右。
高速电机具有较高的转矩和过载能力,能够承受较大的负载。
对于高速电机的性能指标,包括额定电压、额定功率、最大扭矩等都有一定的要求。
例如,额定电压通常为380V/220V,额定功率在100W~2000W之间,最大扭矩可达2000nm。
总的来说,高速电机的标准主要涉及到转速和功率两个方面,具体标准可能会因不同的应用场景和要求而有所差异。
如需了解更多信息,建议查阅相关文献或咨询专业技术人员。
Vol.61,2019,No.4Chinese Journal of Turbomachinery 高速电机的特点与关键技术问题*戴睿1张凤阁1王惠军2(1.沈阳工业大学;2.北京航空航天大学)摘要:高速电机具有体积小、功率密度大、动态响应快以及能够与高速负载直接相连等优点,在高速离心式压缩机,飞轮储能,高速磨床,微型燃汽轮机等产品具有广泛的应用。
本文对高速电机的现状进行分析,概述了高速电机的主要特点及关键技术。
关键词:高速电机;转子强度;转子刚度;高速轴承;冷却系统中图分类号:TM355;TK05文章编号:1006-8155-(2019)04-0059-08文献标志码:A DOI:10.16492/j.fjjs.2019.04.0010Characteristics and Key Technical Issues of High SpeedMotorsRui Dai1Feng-ge Zhang1Hui-jun Wang2(1.Shenyang University of Technology,2.Beihang University)Abstract:The high speed electrical machine(HSEM)has been widely used due to its advantages of small size,high power density,fast dynamic response,and the characteristics can be directly connected with the load.HSEM is of interest for use in many applications such as compressors,flywheels,high speed grinding machine and mirco gas turbines.In this paper,the current status of HSEM is analyzed,and the main features and key technologies of HSEM are outlined.Keywords:High Speed Electrical Machine,Rotor Strength,Rotor Stiffness,High Speed Bearing,Cooling System0引言国务院颁布的《中国制造2025》中明确提出:装备制造业是国民经济的主体,是立国之本、兴国之器、强国之基,据此规划了要大力发展的十大重点装备领域[1],其中有八大领域皆与高性能电机系统密切相关,因此高性能电机系统已成为我国高端装备制造业发展的核心与关键。
上述重点发展的领域均对电机系统高品质运行性能提出了更高的需求[2],如高功率或转矩密度、高效能、高可靠、低成本及多功能复合等。
高速电机系统具有功率密度和可靠性高、体积小、质量轻和便于实现高速直驱(取消变速箱)等显著优势,非常适合并能满足高端装备的特殊要求,在关乎我国军工装备、能源安全及节能减排等多种高速驱动装备领域应用前景十分广阔[3]。
目前国内高速驱动装备大多采用常速电机+变速箱增速方式[4],以耗电量约占我国电力总消耗30%的压缩机和鼓风机行业为例[5],受常速电机极限转速(通常*基金项目:国家自然科学基金重点国际合作项目(51920105011)为3000r/min)的限制,现有高速压缩机和鼓风机必须依靠增速箱获得高速动力,其主要缺点为:增速箱可靠性差且占用空间较大;增速箱齿轮必须通过油站进行润滑,密封问题很难解决,漏油事故时有发生;维护成本高,寿命短,噪声污染严重;增速箱的传动会带来效率损失,导致整个系统效率低下,能源浪费严重。
若采用高速电机直接驱动,则可省去增速箱环节,系统体积可缩小40%~60%[6],而且具有转动惯量小、动态响应快、系统噪声低、可靠性高、免维护、传动效率高等突出优势,可实现节能15%以上[7]。
高速电机相比于常规电机主要具有3个特点:定子绕组电流和铁芯中磁通频率高;转子表面离心力大;功率密度和损耗密度大。
这些特点决定了高速电机设计的关键技术区别于常规电机的设计方法[8]。
高速电机通常是指转速超过10000r/min或难度值(转速和功率平方根的乘积)超过1×105的电机[9]。
高速感应电机在高速运行时,常规叠片转子难以承受巨大的离心力,需要采用特殊的高强度叠片或实心转子结构;而对于高速永磁电机来说,由于永磁材料具有较差的抗拉强度,转子强度问题更为突出,必须对永磁体采取保护措施;同时,转子与气隙高速摩擦,在转子表面产生的摩擦损耗远大于常速电机,给转子散热带来很大困难;为了保证转子有足够的强度,高速电机转子多为细长型,因此与常速电机相比,高速电机转子系统接近临界转速的可能性大大增加,为了避免发生弯曲共振,必须准确预测转子系统的临界转速,采用高速轴承[10]。
高速电机的一个直接的优势就是减小系统的重量,在实际应用中,任何重量的节省直接导致成本的减少。
在某些应用中采用高速电机另一个普遍认为的优势是消除了中间变速机构(直接驱动)而提高了系统的可靠性。
高速电机的发展离不开电力电子开关设备,转换器拓扑结构和控制方法的研究和开发,可以实现电机更高的工作频率,同时也与软磁材料和硬磁材料的发展相结合,这些材料能够承受更高的机械应力,同时具有低交流损耗,从而允许更高的转子圆周速度和更高的功率密度。
本文将重点介绍高速电机的主要特点及关键技术问题。
1高速电机发展现状高速电机通常指转速超过10000r/min或难度值(转速和功率平方根的乘积)超过1×105的电机,现有的各类电机中,成功实现高速化的主要有感应电机、永磁电机、开关磁阻电机[9]。
目前常见的高速电机功率—转速水平如图1所示。
三种类型高速电机的优缺点如表1所示。
国内外对高速电机已经进行了多年的研究,根据转速与功率等级可分为4类:1)小功率高速电机:功率在数十瓦至数千瓦范围,转速一般超过10万转/分钟2)中小功率高速电机:功率在数十千瓦,转速范围一般在5~10万转/分钟3)中等功率高速电机:功率为数百千瓦,转速范围一般在1~6万转/分钟。
4)大功率高速电机:功率为数兆瓦,转速范围一般在0.6~2万转/分钟。
目前国外最大功率的高速感应电机是ABB公司研制的15MW,20000r/min实心转子高速感应电机;国外最大转速的高速感应电机转速为180000r/min,功率为10kW,采用磁悬浮轴承,实心转子结构,线速度可达219m/s,效率约为85%。
国外最大功率的高速永磁电机功率可达8MW,转速为15000r/min,为面贴式永磁转图1现有高速电机功率-转速水平Fig.1The current power-speed level of high speedmotor表1各类型高速电机特点Tab.1Characteristics of various types of high speedmotor优点缺点高速感应电机易启动易制造、成本低转子耐高温转子损耗大功率因数较低叠片转子端环易损坏实心转子涡流损耗大高速永磁电机效率高功率因数高功率密度大结构多样转子强度较低高温下永磁易退磁成本较高高速开关磁阻电机转子结构简单转子损耗低绕阻端部短效率低噪声大转子风摩耗大需要位置传感器 Vol.61,2019,No.4Chinese Journal of Turbomachinery子,采用碳纤维绑扎护套;最高转速的高速永磁电机转速可达500000r/min,功率为1kW,转子表面线速度为261m/s,采用合金保护套。
图2为一些国外现有高速电机产品,其中英国西风公司曾研制了200W,300000r/min的PCB 钻床高速电主轴;英国Bladon 公司曾研制了50kW,80000r/min 的微型燃气轮机;美国Calnetix 公司成功研制了2MW、19000~22500r/min 高速永磁电机。
国内对高速电机的研究起步较晚,目前哈尔滨工业大学,华中科技大学,东南大学,浙江大学,南京航空航天大学,沈阳工业大学等对高速电机的电磁场,应力场,温度场,流体场以及转子动力学等方面进行了深入的研究。
沈阳工业大学自2005年开始进行高速电机设计方面的相关研究,先后完成了国家自然科学基金重点项目“微型燃气轮机—高速发电机分布式发电与能量转换系统研究”(项目号:50437010)、教育部长江学者与创新团队项目“极端条件下新型永磁电机理论及其应用技术研究”(项目号:IRT1072)以及企业委托的各型号高速电机的设计研发工作。
先后设计研制了从75kW,60000r/min 到1.12MW,18000r/min 的多种规格型号的高速电机系统。
图2国外已有高速电机产品Fig.2Foreign high-speed motor products图3沈工大高速电机Fig.3High-speed motor research status of Shenyang University of Technology(b)160kW,17000r/min(a)75kW,60000r/min (c)355kW,20000r/min (d)1.12MW,18000r/min2高速电机的“三高”属性高速电机体积小、质量小,功率密度大,转动惯量小、动态响应快,其几何尺寸远小于输出同功率的中低速电机,可有效地节约材料,同时可与原动机或负载直接相连,省去了传统的机械变速装置[11-13]。
高速电机通常存在三个特点:高频率、高转速以及高损耗密度。
高速电机的这一“三高”属性引起一系列的关键问题。
1)高频率由于定子绕组电流供电频率较高,绕组将会产生明显的邻近效应和集肤效应,绕组铜耗增加;定子铁心(a)PCB 钻床高速电主轴(b)微型燃汽轮机(c)2MW 高速永磁电机磁场交变频率较大,电机铁耗将明显增加;同时空间谐波和时间谐波将会在转子中产生大量的涡流损耗。
因此高速电机绕组通常采用多根导线并绕,绞线,电机磁密的选择也要较常规电机偏低以减小铁芯损耗,同时对电机的控制器较常规电机也有更高的要求,特别是大功率高压变频电源。
2)高转速高速电机转子转速高,转子所受离心力大,对转子强度有较高的要求以保障电机高速运行时的可靠性;高速电机的风摩耗与常规电机相比不可忽略,转子与气隙高速摩擦,将会产生远大于常规电机的风摩耗,因此对高速电机转子工艺要求大大提高,要保证电机转子表面的光滑度,尤其是超高速电机;由于高速电机转子表面线速度不能过高,因此高速电机大多设计为细长型结构,转子系统接近临界转速的可能性亦大大增加,进而对转子刚度以及轴承的要求大大提高。