2016年高考全国三卷理科数学试卷
- 格式:docx
- 大小:456.23 KB
- 文档页数:5
2016年普通高等学校招生全国统一考试理科数学(全国3卷)及参考答案绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学(全国3卷)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST = (A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(2BA = ,31(),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n = (A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010 (B )1010 (C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。
2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。
2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)(2)若z=1+2i ,则41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1(),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18+(B )54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π (C )6π (D )323π (11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23(D )34 (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。
请考生完整、准确填写以下信息姓名 准考证号考场号 座位号本 试 卷 上 交 至 各 地、州、市、师 招 办 封 存装订线 装订线2016年 普通高考绝密★启用前2016年普通高等学校招生全国统一考试(全国3卷)理科数学试题一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞) 2.若z =1+2i ,则4iz z -1=( )A.1B.-1C.iD.-i 3.已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低 气温的雷达图。
图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃。
下面叙述不正确的是( )A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个 5.若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825C.1D.16256.已知a =243,b =425,c =2513,则( ) A.b <a <c B.a <b <cC.b <c <aD.c <a <b7.执行如图的程序框图,如果输入的a =4,b =6,那么输出的n =( ) A.3 B.4 C.5 D.68.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C.-1010D.-310109.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+18 5C.90D.8110.在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π311.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点,P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.3412.定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( ) A.18个 B.16个 C.14个 D.12个第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.14.函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移 个单位长度得到.15.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.16.已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x轴交于C ,D 两点,若|AB |=23,则|CD |=________.装订线 装订线三、解答题17.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图:注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B.1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++=:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =,则||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.552.646≈.参考公式:相关系数1()()nii i tt y y r =--=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥; (Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+. (Ⅰ)当2a=时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞.【考点】解一元二次不等式,交集 2.【答案】C【解析】易知12i z =-,故14zz -=,4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3.【答案】A【解析一】32cos 11BA BC ABC BA BC ∠===⨯,30ABC ∴∠=.【解析二】可以B 点为坐标原点建立如图所示直角坐标系,易知60ABx ∠=,30CBx ∠=,30ABC ∴∠=.【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左右,故最多3个. 【考点】统计图的识别 5.【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 2cos sin 1tan 25ααααααααα+++===++. 【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】423324a ==,233b =,1233255c ==,故c a b >>. 【考点】指数运算,幂函数性质 7.【答案】B【考点】程序框图 8.【答案】C【解析】如图所示,可设1BD AD ==,则AB =2DC =,AC ∴=知,cos A =.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯+. 【考点】三视图,多面体的表面积 10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2,又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为349ππ32R =. 【考点】内接球半径的求法11.【答案】A【解析】易得ON OB aMF BF a c==+,2MF MF AF a c OE ON AO a -===,12a a c a c a c a a c --∴==++,13c e a ∴==.【考点】椭圆的性质,相似12.【答案】C【解析】011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32【解析】三条直线的交点分别为(2,1)--,11,2⎛⎫⎪⎝⎭,(0,1),代入目标函数可得3-,32,1,故最大值为32. 【考点】线性规划14.【答案】2π3【解析】sin 2sin 3y x x x π⎛⎫==- ⎪⎝⎭,sin 2sin 3y x x x π⎛⎫=+=+ ⎪⎝⎭,故可前者的图像可由后者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】210x y ++=【解析一】11()33f x x x-'=+=+-,(1)2f '∴-=,(1)2f '∴=-,故切线方程为210x y ++=.【解析二】当0x >时,()()ln 3f x f x x x =-=-,1()3f x x'∴=-,(1)2f '∴=-,故切线方程为210x y ++=.【考点】奇偶性,导数,切线方程 16.【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,AB =OA =,3OF ∴=,即3=,m ∴=,∴直线l 的倾斜角为30,3CD AE ∴===.【考点】直线和圆,弦长公式 三、解答题17.【答案】(Ⅰ)1n n S a λ=+,0λ≠,0n a ∴≠,当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=-,即1(1)n n a a λλ--=,0λ≠,0n a ≠,10λ∴-≠,即1λ≠,即11n n a a λλ-=-,(2)n ≥,{}n a ∴是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=,即111a λ=-,1111n n a λλλ-⎛⎫∴= ⎪--⎝⎭;(Ⅱ)若53132S =,则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--,1λ∴=-. 【考点】等比数列的证明,由n S 求通项,等比数列的性质18.【答案】(Ⅰ)由题意得123456747t ++++++==,71 1.3317i i y y ==≈∑,7()()0.99nii i itt y y t ynt yr ---===≈∑∑,因为y与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系; (Ⅱ)121()()2.890.10328()nii i ni i tt y y b t t ==--==≈-∑∑, 1.330.10340.92a y bt =-=-⨯≈,所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+,将9t =代入回归方程可得, 1.82y =,预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得223AM AD ==,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN BC ∥,122TN BC ==,又AD BC ∥,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是MN AT ∥,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB ;(Ⅱ)取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则(0,0,0)A 、(0,0,4)P 、C 、N ⎫⎪⎪⎝⎭()0,2,0M,52AN ⎛⎫∴= ⎪ ⎪⎝⎭,(0,2,4)PM =-,22PN N ⎛⎫=-⎪ ⎪⎝⎭,故平面PMN 的法向量(0,2,1)n =,4cos ,52AN n ∴<>==,∴直线AN 与平面PMN 所成角的正弦值为25.【考点】线面平行证明,线面角的计算20.【答案】(Ⅰ)由题设1,02F ⎛⎫⎪⎝⎭,设1:l y a =,2:l y b =,则0ab ≠,且2,2a A a ⎛⎫ ⎪⎝⎭,2,2b B b ⎛⎫ ⎪⎝⎭,1,2P a ⎛⎫- ⎪⎝⎭,1,2Q b ⎛⎫- ⎪⎝⎭,1,22a b R +⎛⎫- ⎪⎝⎭,记过A ,B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=,由于F 在线段AB 上,故10ab +=,记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a---=====-=+-,所以AR FQ ∥; (Ⅱ)设l 与x 轴的交点为1(,0)D x ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=,由题设可得111222a b b a x ---=,所以10x =(舍去),11x =,设满足条件的AB 的中点为(,)E x y ,当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1y x a b x =≠+-,而2a by +=,所以21(1)y x x =-≠,当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为21y x =-. 【考点】抛物线,轨迹方程21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--,令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭,令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-; ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>; 又1(1)(17)|(1)|048a a a g g a a --+⎛⎫--=> ⎪⎝⎭,所以216148a a a A g a a -++⎛⎫==⎪⎝⎭, 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩(Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---≤+-,当105a <≤时,|()|1242(23)2f x a a a A '≤+≤-<-=,当115a <<时,131884a A a =++≥, 所以|()|12f x a A '≤+<,当1a ≥时,|()|31642f x a a A '≤-≤-=,所以|()|2f x A '≤. 【考点】导函数讨论单调性,不等式证明22.【答案】(Ⅰ)连结PB ,BC ,则BFD PBA BPD ∠=∠+∠,PCD PCB BCD ∠=∠+∠,因为AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠,又180PFD BFD ∠+∠=,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上,因此OG CD ⊥. 【考点】几何证明23.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-,当且仅当π2π()6k k Z α=+∈时,()d α,此时P 的直角坐标为31,22⎛⎫⎪⎝⎭.【考点】坐标系与参数方程24.【答案】(Ⅰ)当2a =时,()|22|2f x x =-+,解不等式|22|26x -+≤,得13x -≤≤,因此,()6f x ≤的解集为{|13}x x -≤≤;(Ⅱ)当x R ∈时,()()|2||12||212||1|f x g x x a a x x a x a a a +=-++-≥-+-+=-+,当12x =时等号成立,所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥①. 当1a ≤时,①等价于13a a -+≥,无解;当1a >时,①等价于13a a -+≥,解得2a ≥; 所以a 的取值范围是[2,)+∞. 【考点】不等式。
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68.在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B. 1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =-的图象可由函数sin y x x =+的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++-:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()nii tt y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a的取值范围.][)3,+∞,(][)0,23,S T =+∞.【考点】解一元二次不等式,交集 ,故1zz -=4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3211BA BC BA BC =⨯30.点为坐标原点建立如图所示直角坐标系,易知60ABx ∠,30CBx ∠,30.【考点】向量夹角的坐标运算【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左a c a c a a --=+【解析】sin y x =者的图像可由后者向右平移【考点】三角恒等变换,图像平移【答案】2x y +【解析一】()f x '=,2AB =线l 的倾30,1n S λ=+1n n a a λ-=,0λ≠,1λλ=-,(公比1q λλ=-11λ-,11n λλλ-⎛⎫∴ ⎪-⎝⎭511λλ⎡⎛⎫- ⎪-⎝⎭1λ=-. 求通项,等比数列的性质(Ⅱ)11((ii ni tb ==-=∑∑ 1.33bt -=-的线性回归方程为0.92bt +=+9=代入回归方程可得,2016年我国生活垃圾无害化处理量将约为亿吨.,又PA ⊥面轴建立空间直角坐标系,⎝⎭),52AN ⎛∴= ⎝,(0,2,PM =,5,1,2PN N ⎛= ⎝向量(0,2,1)n =,4,552AN n <>=⨯,AN 与平面PMN 25【考点】线面平行证明,线面角的计算180,PFB ∠180,因此60;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共的垂直平分线上,的垂直平分线上,因此。
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )(2)若z=1+2i ,则 4izz1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有 5 个(5)若tan 34,则 2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3(B)4(C)5(D)61(8)在△ABC 中,πB = ,BC 边上的高等于4 13BC ,则cos A =(A)31010(B)1010(C)10- (D)10-3 1010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC=8,AA 1=3,则V 的最大值是(A )4π(B)92 ( C )6π(D)32 3(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则C 的离心率为(A )13(B)12(C)23(D)34(12)定义“规范01 数列”{a n} 如下:{a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m,a a a 1, 2, , k中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件错误!未找到引用源。
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B. 1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =-的图象可由函数sin y x x =+的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()nii tt y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a的取值范围.][)3,+∞,(][)0,23,S T=+∞.【考点】解一元二次不等式,交集,故1zz-=4ii1zz∴=-.3211BA BC BA BC =⨯30.点为坐标原点建立如图所示直角坐标系,易知60ABx∠,30CBx∠,30.【考点】向量夹角的坐标运算从图像中可以看出平均最高气温高于20C的月份有七月、20C左右,数学试卷第10页(共27页)数学试卷第11页(共27页)a c a c a a --=+【解析】sin y x =者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移【答案】2x y ++【解析一】()f x '=,2AB =数学试卷第16页(共27页)数学试卷第17页(共27页) 30,CD ∴Ⅰ)1n S λ=+1n a -,0λ≠,a ,当1n =时,1S 11n λλλ-⎛⎫⎪-⎝⎭,则11S -=1-.(Ⅱ)11((ii ni tb ==-=∑∑ 1.33bt -=-0.92y a bt =+=+代入回归方程可得,y 处理量将约为1.82亿吨.【考点】相关性分析,线性回归(Ⅰ)由已知得平面PAB ;,又PA ⊥面52AN ⎛∴= ⎝,(0,2,PM =,PN N ⎛= ⎝的法向量(0,2,1)n =,4,552AN n <>=⨯AN 与平面PMN 所成角的正弦值为25【考点】线面平行证明,线面角的计算21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当数学试卷第22页(共27页)数学试卷第23页(共27页)180,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在G 就是过。
在2016年普通高等学校招生全国统一考试(全国新课标卷3)____--------------------答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域4.内作答.答在本试卷上无效.___答__题{}4,则cos2α+2sin2α=A.64C.1D.16_ _2.若z=1+2i,则4izz-1=4,BC边上的高等于BC,则cos A=(3.已知向量BA=(,),=(31,),则∠ABC=()--------绝密★启用前 A.30° B.45° C.60° D.120°------------------------------------ 4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低理科数学气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是()此使用地区:广西、云南、贵州--------------------注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓卷--------------------名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名__和科目.____ 3.答第Ⅰ卷时,选出每题答案后,用2B铅笔把答题卡上对应题目的答案标号涂__黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.号上证考准5.第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B铅笔在答题卡上把所选题目题号后的方框涂黑.__6.考试结束后,将本试卷和答题卡一并交回.--------------------__第Ⅰ卷______名一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符姓合题目要求的.--------------------1.设集合S={x|(x-2)(x-3)≥0},T=x x>0,则S T=()A.[2,3]B.(-∞,2][3,+∞)----平均最低气温——平均最高气温A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.若tanα=34825B.25254216.已知a=23,b=45,c=253,则A.b<a<cB.a<b<cC.b<c<aD.c<a<b7.执行如图的程序框图,如果输入的a=4,b=6,那么输出的n=()()()C.[3,+∞)D.(0,2][3,+∞)无----------------A.1B.-1C.iD.-i ()A.3B.4C.5D.68.在△ABC中,B=π13)效---132222BC数学试卷第1页(共27页)A.310B.101010数学试卷第2页(共27页)参考数据: ∑ y = 9.32 , ∑ t y = 40.17 ,- y )2 = 0.55 , 7 ≈ 2.646 .∑ ⎪ x + 2 y - 2≤0, ∑ (ty - y )- t)(,∑ (t - t )2- y)2∑∑ (t - t )( y - y )∑ (t - t )2在 13. 若 x , y 满足约束条件 ⎨ x - 2 y ≤0, 则 z = x + y 的最大值为______. 32,求 λ .( ) x 3C. 14 个D. 12 个第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22~24 题为选考题,考生根据要求作答.二、填空题:本题共 4 小题,每小题 5 分.⎧ x - y + 1≥0,⎪ ⎩14. 函 数 y = sin x - 3 cos x 的 图 象 可 由 函 数 y = sin x + 3cos x 的 图 象 至 少 向 右 平 移______个单位长度得到.15. 已 知 f ( x ) 为 偶 函 数 ,当 x < 0 时 , f ( x )= l n - x + ,则 曲 线 y = f ( x ) 在 点 (1,-3) 处的切线方程式是______.16. 已 知 直 线 l :mx + y + 3m - 3 = 0 与 圆 x 2 + y 2 = 12 交 于 A , B 两 点 ,过 A , B 分 别 作 l的垂线与 x 轴交于 C , D 两点,若 |AB | = 2 3 ,则 |CD | = ______.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)已知数列{a } 前 n 项和 S = 1 + λ a ,其中 λ ≠ 0 .nnn(Ⅰ)证明{a } 是等比数列,并求其通项公式;n31 (Ⅱ)若 S =518.(本小题满分 12 分)下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码 1~7 分别对应年份 2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.数学试卷第 4 页(共 27 页)附注:777i i iii =1 i =1 i =1ni i 参考公式:相关系数 r = i =1n n iii =1 i =1回归方程 y = a + bt 中斜率和截距的最小二乘估计公式分别为b =n ii i =1 ,a = y - bt . ni i =119.(本小题满分 12 分)如图,四棱锥 P - ABCD 中, PA ⊥ 底面 ABCD , AD ∥ B C , AB = AD = AC = 3 , P A = BC = 4 , M 为线段 AD 上一点, AM = 2MD , N 为 PC 的中点. (Ⅰ)证明: MN ∥ 平面 PAB ;(Ⅱ)求直线 AN 与平面 PMN 所成角的正弦值.20.(本小题满分 12 分)已知抛物线 C : y 2 = 2x 的焦点为 F ,平行于 x 轴的两条直线 l , l 分别交 C 于 A , B 两点,1 2交 C 的准线于 P ,Q 两点.(Ⅰ)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR ∥FQ ;(Ⅱ)若 △PQF 的面积是 △ A BF 的面积的两倍,求 AB 中点的轨迹方程.21.(本小题满分 12 分)设函数 f ( x ) = α cos2 x + (α - 1)(cos x + 1) ,其中 α > 0 ,记 |f ( x )| 的最大值为 A . (Ⅰ)求 f '( x ) ;(Ⅱ)求 A ;数学试卷第 5 页(共 27 页)(Ⅲ)证明: f '( x ) ≤2 A .请考生在第 2223、24 题中任选一题作答,作答时用 2B 铅笔在答题卡上把所选题目题号后的方框涂黑如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4—1:几何证明选讲如图, O 中 AB 的中点为 P ,弦 PC ,PD 分别交 AB 于 E , F 两点.(Ⅰ)若 ∠PFB = 2∠PCD ,求 ∠PCD 的大小;(Ⅱ)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G ,证明: OG ⊥ CD .23.(本小题满分 10 分)选修 4—4:坐标系与参数方程( α 为 参 数 ), 以1坐 标 原 点 为 极 点 ,以 x 轴 的 正 半 轴 为 极 轴 ,建 立 极 坐 标 系 ,曲 线 C 的 极 坐2标 方 程 为 ρ s i n θ + π2 .2(Ⅰ)写出 C 的普通方程和 C 的直角坐标方程;1 2(Ⅱ)设点 P 在 C 上,点 Q 在 C 上,求 | PQ | 的最小值及此时 P 的直角坐标.1 224.(本小题满分 10 分)选修 4—5:不等式选讲已知函数 f ( x ) =| 2 x - a | +a .(Ⅰ)当 a = 2 时,求不等式 f ( x )≤6 的解集;(Ⅱ)设函数 g ( x ) =| 2 x - 1| .当 x ∈ R 时, f ( x ) + g ( x )≥3 ,求 a 的取值范围.数学试卷第 6 页(共 27 页)22016 年普通高等学校招生全国统一考试(全国新课标卷 3)理科数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】易得 S = (-∞,2][3, + ∞ ),∴ ST = (0,2][3,+ ∞ ).【考点】解一元二次不等式,交集2.【答案】C【解析】易知 z = 1 - 2i ,故 zz - 1 = 4 ,∴【考点】共轭复数,复数运算3.【答案】A4i z z - 1= i .3【解析一】 cos ∠ABC = BA BC = 2 = 3 ,∴∠ ABC = 30 .BA BC 1⨯1 2【解析二】可以 B 点为坐标原点建立如图所示直角坐标系,易知∠ABx = 60 , ∠CBx = 30 ,∴∠ A BC = 30 .【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于 20 C 的月份有七月、八月,六月为 20 C 左右,故最多 3 个.【考点】统计图的识别5.【答案】A【解析】 cos 2 α + 2sin 2α = cos2 α + 4sin α cos α 1 + 4 tan α 64 = = .cos 2 α + sin 2 α 1 + tan 2 α 25【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】 a = 2 4 = 4 2 , b = 32 , c = 251= 53 ,故 c > a > b .【考点】指数运算,幂函数性质7.【答案】B2 2 ⨯ 5 =- 如图所示,则由切线长定理可知,内接圆的半径为 2,又 AA =3 < 2 ⨯ 2 ,所以内接球的半径为 ,即V 的2MF MF AF a - c 1 a a - c a - c= = = = OE 2ON AO a 2 a + c a a + c b 6 4646sn0 61 102 163 204【考点】程序框图8.【答案】C【 解 析 】 如 图 所 示 , 可 设 BD = AD = 1 , 则 AB =2 , DC = 2 , ∴ AC = 5 , 由 余 弦 定 理 知 ,cos A = 2 + 5 - 9 10 10.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为 2 ⨯ 3 ⨯ 3 + 2 ⨯ 3 ⨯ 6 + 2 ⨯ 3 ⨯ 9 + 36 = 54 + 18 5 .【考点】三视图,多面体的表面积10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,314 最大值为 πR 3 = 39π 2.【考点】内接球半径的求法11.【答案】A【解析】易得 ON OB a c 1 = = ,,∴ = ,∴e = = . MF BF a + c a 3【考点】椭圆的性质,相似12.【答案】C【解析】⎪ ⎪ ⎪ ⎧0 → 111 ⎪ ⎪0 ⎨1⎪ ⎧0 → 11 ⎪ ⎪ ⎪⎩ ⎪⎩ ⎩1 → 01 ⎪ ⎪ ⎪0 ⎨1⎧0 → 11 ⎪ ⎪ ⎪1 → 0 ⎧0 → 11 ⎪ ⎪ ⎪ ⎪ ⎩ ⎩ ⎪ ⎪ ⎪0 ⎨1⎧0 → 11 1 → 0 ⎨ ⎪⎩ ⎩1 → 01 ⎪ ⎪1 → 0 ⎧0 → 11⎨【解析】三条直线的交点分别为 (-2,- 1), 1, ⎪ , (0,1) ,代入目标函数可得 -3 , ,1,故最大值为 .⎪1⎪⎨ ⎪ ⎩ ⎩⎩ y = sin x - 3 cos x = 2sin x - ⎪ , y = sin x + 3 cos x = 2sin x + ⎪ ,故可前者的图像可由后π ⎫ 3 ⎭ + 3 = + 3 ,∴ f '(-1) = 2 ,∴ f '(1) = -2 ,故切线方程为 2 x + y + 1 = 0 . ∴∴⎧ ⎧ ⎧0 → 1111 ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎨1⎨⎪ ⎪⎪0 ⎨ ⎧ ⎧0 → 111 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎨1 → 01 0 ⎨ ⎪ ⎪ ⎩1 → 01 ⎪ ⎧ ⎧0 → 111 ⎪ ⎪ ⎪ ⎪ ⎨ ⎪⎪ ⎪⎪⎪ ⎩1 → 01【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32⎛ 1 ⎫ 3 3 ⎝ 2 ⎭ 2 2【考点】线性规划14.【答案】2π3【解析】⎛ ⎛ π ⎫ ⎝ ⎝ 3 ⎭者向右平移 2π 3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】 2 x + y + 1 = 0【解析一】 f '( x ) =-1 1-x x【解析二】当 x > 0 时,f ( x ) = f (- x ) = ln x - 3x , f '( x ) = 1 x- 3 , f '(1) = -2 ,故切线方程为 2 x + y + 1 = 0 .【考点】奇偶性,导数,切线方程16.【答案】3【解析】如图所示,作 AE ⊥ BD 于 E ,作 OF ⊥ AB 于 F , AB = 2 3 , OA = 2 3 , ∴ OF = 3 ,即,∴ 直线 l 的倾斜角为 30 ,∴ CD = AE = 2 3 ⨯ = 3 . 即 (λ - 1)a = λa , λ ≠ 0 ,a ≠ 0 ,∴ λ - 1 ≠ 0 ,即 λ ≠ 1 ,即,(n ≥ 2) ,∴{a } 是等比数列,λ a ( 11 ⎛λ ⎫n -1 λ - 1 ⎭ ,当 n = 1 时, S = 1 + λ a = a ,即 a = ,∴ a = 1 - λ 1 - λ ⎝ 1 1 1 ⎪ 32 ⎢1 - ⎪ ⎥ ⎛ λ ⎫5 31 ,∴ λ = -1 . = 1 - ⎪ ⎣ ⎦ 1 + 2 + 3 + 4 + 5 + 6 + 7∑ y∑ (t- t )( y- y) ∑ (t- t)2 ∑( y -y )2∑ t y- nt y∑ (t- t)2 ∑( y-y )228 ⨯ 0.55≈ 0.99 ,因为 y 与 t 的相关系数∑ (t- t )(y - y ) ∑ (t- t )2(3m - 3m 2 + 1 = 3 ,∴ m = -3 33 2【考点】直线和圆,弦长公式 三、解答题17.【答案】Ⅰ) S = 1 + λ a , ≠ 0 ,∴ a ≠ 0 ,当 n ≥ 2 时, = S - S = 1 + λa - 1 - λa= λa - λa,n n n n n n -1n n -1 nn -1aλn n n -1 n aλ - 1nn -1公比 q = λλ - 11 n ;(Ⅱ)若 S = 31 5 ,则 S = 5 1 ⎡ ⎛ λ ⎫5 ⎤1 - λ ⎢ ⎝ λ - 1 ⎭ ⎥ 1 - λλ - 1= ⎝ λ - 1 ⎭ 32【考点】等比数列的证明,由 S 求通项,等比数列的性质n18.【答案】(Ⅰ)由题意得 t =r =7 i =1 7 7i =1i ii ii =1=7 7 i =1 ni =1 i ii ii =1= 40.17 - 7 ⨯ 4 ⨯1.33近似为 0.99,说明 y 与 t 的线性相关程度相当高,从而可以用线性回归方程来拟合 y 与 t 的关系;(Ⅱ) b= ni =1i ini=2.8928≈ 0.103 , a = y - bt = 1.33 - 0.103 ⨯ 4 ≈ 0.92 ,所以 y 关于 t 的线性回归 i =1方程为 y = a + bt = 0.92 + 0.10t ,将 t = 9 代入回归方程可得, y = 1.82 ,预测 2016 年我国生活垃圾无害化处理量将约为 1.82 亿吨.【考点】相关性分析,线性回归19.【答案】 Ⅰ)由已知得 AM = 2AD = 2 ,取 BP 的中点 T ,连接 A T ,TN ,由 N 为 PC 中点知 T N ∥BC ,31TN = BC = 2 ,又 AD ∥ B C ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN ∥ A T ,因2为 A T ⊂ 平面 PAB , MN ⊄ 平面 PAB ,所以 MN ∥ 平面 PAB ;(Ⅱ)取 BC 中点 E ,连接 AE ,则易知 AE ⊥ AD ,又 PA ⊥ 面 ABCD ,故可以 A 为坐标原点,以 AE 为N ,1,2 ⎪ (0,2,0 ),∴ AN = ⎛20.【答案】 Ⅰ)由题设 F ,0 ⎪ ,设 l : y = a ,l : y = b ,则 ab ≠ 0 ,且 A , a ⎪ ,B , b ⎪ ,P ⎛ - , a ⎫⎪ , ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ Q - , b ⎪ , R - , ⎪ ,记过 A , B 两点的直线为 l ,则 l 的方程为 2 x - (a + b ) y + ab = 0 ,由于 F 在线1 + a2 a 2 - ab a a=,由题设可得2 2 2 2 b - a x - =,所以 x = 0 (舍去), x = 1 ,设满足条件的 AB 的中点为 E ( x , y ) ,当 AB 与 x 轴 1可得 2= ( x ≠ 1) ,而 = y ,所以 y 2 = x - 1(x ≠ 1) ,当 AB 与 x 轴垂 21.【答案】(Ⅰ) f ( x ) = -2a sin 2 x - (a - 1)sin x ;Mx 轴,以 AD 为 y 轴,以 AP 为 z 轴建立空间直角坐标系,则 A (0,0,0) 、 P (0,0,4) 、 C ( 5,2,0) 、⎛ 5 ⎫ ⎝ 2 ⎭5 ⎫ ⎛ 5 ⎫2 ,1,2⎪ , PM = (0,2, -4) , PN = N 2 ,1,-2 ⎪ ,故平面 PMN 的法向量 n = (0,2,1) , ⎝ ⎭ ⎝ ⎭∴cos < AN ,n >=4= 8 525 ,5 ⨯52∴ 直线 AN 与平面 PMN 所成角的正弦值为8 5 25.【考点】线面平行证明,线面角的计算⎛ 1 ⎫ ⎛ a 2 ⎫ ⎛ b 2 ⎫ 1(1 2⎛ 1 ⎫⎛ 1 a + b ⎫ ⎝ 2 ⎭⎝ 2 2 ⎭段 AB 上,故1 + ab = 0 ,记 AR 的斜率为 k ,FQ 的斜率为 k ,则 k = 1 21所以 AR ∥FQ ;a -b a - b 1 -ab= = = = -b = k ,2(Ⅱ)设 l 与 x 轴的交点为 D ( x ,0) ,则 S 1 ∆ABF = 1 1 1 a - bb - a FD = b - a x - , S 11 1 a - b2 2 2 1 1不垂直时,由 kAB= kDEy a + ba +b x - 1 2直时, E 与 D 重合,所以,所求轨迹方程为 y 2 = x - 1 .【考点】抛物线,轨迹方程2 (a 1) 1 g ⎪ =- - 1 = - ,令 -1 < < 1,解得 a < - (舍去) a > .①当 0 < a ≤ 时,g (t ) 在 (-1,1)内无极值点,| g (-1)|= a ,| g (1)|= 2 - 3a ,| g (-1)|<| g (1)| ,所以 A = 2 - 3a ;②当 < a < 1 时,由 g (-1) - g (1) = 2(1- a ) > 0 ,知 g (-1) > g (1)> g ( ) ;8a 8a 又 g ⎪ - | g (-1)|= ⎪ => 0 ,所以 A = g 2 - 3a ,0 < a ≤ 5 综上, A =⎨ ⎪ a 2 + 6a + 1 1 8a 5 (1- a )(1+ 7a ) 8a (C 0 < a < 1 时,将 f ( x ) 变形为 f ( x ) = 2a cos 2 x + (a - 1)cos x - 1,令 gt () =at 2+ -t -,则 A 是 | g (t ) |在 [-1,1]上的最大值, g (- 1) = a , g (1) = 3a - 2 ,且当 t =1 - a 4a时, g (t ) 取得极小值,极小值为⎛ 1 - a ⎫ (a - 1)2 a 2 + 6a + 1 1 - a 1 1 ⎝ 4a ⎭ 4a 3 5151 1 - a5 4a⎛ 1 - a ⎫ ⎛ 1 - a ⎫ a 2 + 6a + 1 ⎝ 4a ⎭ ⎝ 4a ⎭8a ⎧1 ⎪ ⎪, < a < 1⎪⎪ 3a - 2, a ≥ 1 ⎪ ⎩(Ⅲ)由(Ⅰ)得 | f '( x ) |=| -2a sin 2 x - (a - 1)sin x |≤ 2a + | a - 1| ,,当 0 < a ≤ 1 5 1 a 1 3时, | f '( x ) |≤ 1 + a ≤ 2 - 4a < 2(2 - 3a ) = 2 A ,当 < a < 1 时, A = + + ≥ 1 ,5 8 8a 4所以 | f '( x ) |≤ 1 + a < 2 A ,当 a ≥ 1 时, | f '( x ) |≤ 3a - 1 ≤ 6a - 4 = 2 A ,所以 | f '( x ) |≤ 2 A .【考点】导函数讨论单调性,不等式证明22.【答案】 Ⅰ)连结 P B , BC ,则 ∠BFD =∠ PBA +∠ BPD ,∠PCD = ∠PCB + ∠BCD ,因为 AP = BP , 所 以 ∠P B A = ∠ P , 又 ∠B P D = ∠ B C , 所 以 ∠B F D = ∠ P C , 又 ∠PFD + ∠BFD = 180 ,∠PFB = 2∠PCD ,所以 3∠PCD = 180 ,因此 ∠PCD = 60 ;(Ⅱ)因为 ∠PCD = ∠BFD ,所以 ∠PCD + ∠EFD = 180 ,由此知 C , D , F , E 四点共圆,其圆心既在CE 的垂直平分线上,又在 DF 的垂直平分线上,故 G 就是过 C ,D ,F ,E 四点的圆的圆心,所以 G 在 CD 的垂直平分线上,因此 O G ⊥ CD . 【考点】几何证明23.【答案】(Ⅰ) C 的普通方程为 + y 2 = 1 , C 的直角坐标方程为 x + y - 4 = 0 ; 3 2 = 2 | sin(α + (k ∈ Z ) 时, d (α ) 取得最小值,最小值为 2 ,此时 P 的直角坐标为 , ⎪ .x 2 12(Ⅱ)由题意,可设点 P 的直角坐标为 ( 3cos α,sin α ) ,因为 C 是直线,所以 | PQ | 的最小值,即为 P 到 C2 2的 距 离 d (α ) 的 最 小 值 , d (α ) = | 3 cos α + sin α - 4 | π 3 ) - 2| , 当 且 仅 当α = 2k π + π 6 ⎛ 3 1 ⎫ ⎝ 2 2 ⎭【考点】坐标系与参数方程24.【答案】(Ⅰ)当 a = 2 时, f ( x ) =| 2 x - 2 | +2 ,解不等式| 2 x - 2 | +2 ≤ 6 ,得 -1 ≤ x ≤ 3 ,因此, f ( x ) ≤ 6的解集为{x | -1 ≤ x ≤ 3} ; (Ⅱ)当 x ∈ R 时, f ( x ) + g ( x ) =| 2 x - a | +a + |1 - 2 x |≥| 2 x - a +1 - 2 x | +a =|1 - a | +a ,当 x =所以当 x ∈ R 时, f ( x ) + g ( x ) ≥ 3 等价于 |1 - a | +a ≥ 3 ①. 当 a ≤ 1 时,①等价于1 - a + a ≥ 3 ,无解; 当 a > 1 时,①等价于 a - 1 + a ≥ 3 ,解得 a ≥ 2 ; 所以 a 的取值范围是[2, +∞) .【考点】不等式 1 2 时等号成立,。
2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P I (A) [2,3] (B)(- ,2] [3,+)∞U ∞(C) [3,+) (D)(0,2] [3,+)∞U ∞(2)若z=1+2i ,则41izz =-(A)1(B) -1(C) i(D)-i(3)已知向量 , 则ABC=1(2BA =u u v 1),2BC =u u u v ∠(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若 ,则 3tan 4α=2cos 2sin 2αα+=(A) (B) (C) 1(D)642548251625(6)已知,,,则432a =344b =1325c =(A ) (B )(C )(D )b a c <<a b c <<b c a <<c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在中,,BC 边上的高等于,则 ABC △π4B =13BC cos A =(A (B(C )(D )-- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B ) 54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB BC ,AB =6,BC =8,AA 1=3,则V 的最大值是⊥(A )4π (B )(C )6π92π(D )323π(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P22221(0)x y a b a b+=>>为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )(B )(C )(D )13122334(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,2k m ≤中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有12,,,k a a a (A )18个(B )16个(C )14个(D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.{x ‒y +1≥0x ‒2y ≪0x +2y ‒2≪0(14)函数的图像可由函数的图像至少向右平移_____________个单位长y =sin x ‒3cos x y =sin x +3cos x 度得到。
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则ST =A. []2,3B. (][),23,-∞+∞C. [)3,+∞D. (][)0,23,+∞【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞,选D【考点】解一元二次不等式、交集 (2)若12z i =+,则41izz =- A. 1 B. 1- C. i D. i - 【答案】C【解析】易知12z i =-,故14zz -=,41ii zz ∴=-,选C 【考点】共轭复数、复数运算(3)已知向量13,22BA⎛⎫= ⎪⎪⎝⎭,BC =(32,12),则ABC∠A. 30°B. 45°C. 60°D.120°【答案】A【解析】法一:332cos112BA BCABCBA BC⋅∠===⨯⋅,30ABC∴∠=法二:可以B点为坐标原点建立如图所示直角坐标系,易知60,30,30ABx CBx ABC∠=∠=∴∠=【考点】向量夹角的坐标运算(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是A. 各月的平均最低气温都在0C以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20C的月份有5个【答案】D【解析】从图像中可以看出平均最高气温高于20C的月份有七月、八月,六月为20C左右,故最多3个【考点】统计图的识别(5)若3tan4α=,则2cos2sin2αα+=A. 6425B.4825C. 1D.1625【答案】A【解析】22222cos4sin cos14tan64 cos2sin225cos sin1tanααααααααα+++===++【考点】二倍角公式、弦切互化、同角三角函数公式(6)已知4213332,3,25a b c===,则A. b a c<< B. a b c<< C. b c a<< D. c a b<<【答案】Ax yCAB【解析】422123333324,3,255a b c =====,故c a b >> 【考点】指数运算、幂函数性质(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A. 3B. 4C. 5D. 6 【答案】B 【解析】列表如下 a4 2 6 -2 4 2 6 -2 4 b6 4 6 4 6 s 0 6 10 16 20 n1234【考点】程序框图(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =A.31010 B. 1010 C.1010- D. 31010-【答案】C【解析】如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,由余弦定理知,25910cos 10225A +-==-⨯ 【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18365+B. 54185+C. 90D. 81 【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为 2332362393654185⨯⨯+⨯⨯+⨯⨯+=+【考点】三视图、多面体的表面积DCAB(10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB. 9π2C. 6πD. 32π3【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2, 又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为34932R ππ=【考点】内接球半径的求法(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A. 13B. 12C. 23D. 34【答案】A【解析】易得,2ON OB a MF MF AF a c MF BF a c OE ON AO a -=====+ 12a a c a ca c a a c --∴=⋅=++ 13c e a ∴== 【考点】椭圆的性质、相似(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( ) A .18个 B .16个 C .14个 D .12个 【答案】C 【解析】86011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32【解析】三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为10-【考点】线性规划(14)函数sin y x x =-的图像可由函数sin y x x =+的图像至少向右平移______个单位长度得到. 【答案】23π【解析】sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-==+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到 【考点】三角恒等变换、图像平移(15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处的切线方程是______【答案】210x y ++= 【解析】法一:11'()33f x x x-=+=+-,()'12f ∴-=,()'12f ∴=-,故切线方程为210x y ++= 法二:当0x >时,()()ln 3f x f x x x =-=-,()()1'3,'12f x f x∴=-∴=-,故切线方程为210x y ++= 【考点】奇偶性、导数、切线方程(16)已知直线l:30mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D两点,若AB =,则||CD =__________. 【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,3AB OA OF ==∴=,即3=,m ∴= ∴直线l 的倾斜角为30°3CD AE ∴=== 【考点】直线和圆、弦长公式三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和S n =1+λa n ,其中λ≠0. (1) 证明{}n a 是等比数列,并求其通项公式; (2) 若53132S =,求λ. 【答案】(1) ;(2) 【解析】 解:(1) 1,0n n S a λλ=+≠0n a ∴≠当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=- 即()11n n a a λλ--=,0,0,10,n a λλ≠≠∴-≠即1λ≠即()1,21n n a n a λλ-=≥-, ∴{}n a 是等比数列,公比1q λλ=-,当n =1时,1111S a a λ=+=, 即111a λ=- 1111n n a λλλ-⎛⎫∴=⋅ ⎪--⎝⎭(2)若53132S =则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭-- 1λ∴=-【考点】等比数列的证明、由n S 求通项、等比数列的性质 (18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑721()0.55ii yy =-=∑7≈2.646.参考公式:12211()()()(y y)nii i nnii i i tt y y r tt ===--=--∑∑∑,回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =- 【答案】(1)见解析;(2)0.920.10y t =+,1.82亿吨 【解析】(1) 由题意得123456747t ++++++==,711.3317ii yy ==≈∑711777722221111()()40.1774 1.330.99280.55()()()()nii i ii i ii ii i i i i tt y y t ynt yr tt y y tt y y ======----⨯⨯===≈⨯----∑∑∑∑∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系(2) 121()()2.890.10328()nii i nii tt y y b tt ==--==≈-∑∑ 1.330.10340.92a y bt =-=-⨯≈所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+ 将9t =代入回归方程可得, 1.82y =预测2016年我国生活垃圾无害化处理量将约为1.82亿吨【考点】相关性分析、线性回归 (19)(本小题满分12分)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.【答案】(1) 见解析;(2)8525【解析】(1) 由已知得223AM AD ==,取BP 的中点T ,连接,AT TN , 由N 为PC 中点知//TN BC ,122TN BC ==. ......3分 又//AD BC ,故TN 平行且等于AM ,四边形AMNT 为平行四边形, 于是//MN AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB . ........6分(2) 取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则()()()()50,0,00,0,45,2,0,1,20,2,02A P CN M ⎛⎫⎪ ⎪⎝⎭、、、、()55,1,2,0,2,4,,1,222AN PM PN N ⎛⎫⎛⎫∴==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故平面PMN 的法向量()0,2,1n =485cos ,52552AN n ∴<>==⨯ ∴直线AN 与平面PMN 所成角的正弦值为8525【考点】线面平行证明、线面角的计算 (20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(1) 见解析;(2) 21y x =- 【解析】(1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---.记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. .....3分 由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a a a ab---=====-=+-. 所以FQ AR ∥. ......5分 法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 与AP ∥BQ ,得∠AFP +∠BFQ =90°, ∴∠PFQ =90°, ∵R 是PQ 的中点, ∴RF =RP =RQ , ∴△P AR ≌△F AR ,∴∠P AR =∠F AR ,∠PRA =∠FRA ,∵∠BQF +∠BFQ =180°﹣∠QBF =∠P AF =2∠P AR , ∴∠FQB =∠P AR , ∴∠PRA =∠PQF , ∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x , 则1111,222ABF PQF a b S b a FD b a x S ∆∆-=-=--=. 由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+-. 而2a by +=,所以21(1)y x x =-≠. 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分 【考点】抛物线、轨迹方程 (21)(本小题满分12分)设函数()()()cos 21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A .(1)求()'f x ;(2)求A ;(3)证明:()'2f x A ≤.【答案】见解析【解析】(1)()()'2sin 21sin f x a x a x =---(2)当1a ≥时,|()||cos 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-. ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (3)由(1)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=.当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤.【考点】导函数讨论单调性、不等式证明请考生在22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA = ,31(,),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010 (B )1010(C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
〔A 〕18 36 5〔B 〕54 18 5〔C 〕 90 〔 D 〕81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1内有一个体积为 V 的球, 假设 AB BC ,AB=6,BC=8,AA 1=3,那么 V 的最大值是〔 A 〕 4π〔B 〕9〔 C 〕 6π〔D 〕3223〔 11〕 O 为坐标原点, F 是椭圆 C :x 2y 2 1(a b 0) 的左焦点,A ,B 分别为C 的a 2b 2左,右顶点 .P 为 C 上一点,且 PF ⊥x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E. 假设直线 BM 经过 OE 的中点,那么 C 的离心率为 〔A 〕1〔B 〕1〔C 〕2〔D 〕33 2 3 4〔 12〕定义“标准 01 数列〞{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意k2m ,a 1, a 2 , , a k 中0的个数不少于 1 的个数 .假设 m=4,那么不同的“标准 01 数列〞共有 〔A 〕18 个〔B 〕16 个〔C 〕 14 个 〔 D 〕12 个第 II 卷本卷包括必考题和选考题两局部 . 第 ( 13) 题 ~第 ( 21) 题为必考题,每个试题考生都必须作答. 第( 22) 题 ~第( 24) 题为选考题,考生根据要求作答. 二、填空题:本大题共3 小题,每题 5 分〔 13〕假设 x , y 满足约束条件那么z=x+y 的最大值为 _____________.〔 14 〕函数的图像可由函数的图像至少向右平移〔 15〕 f(x)为偶函数,当时,,那么曲线y=f(x),在带你〔1,-3〕处的切线方程是_______________。
〔 16〕直线与圆交于A,B两点,过A, B 分别做l的垂线与x 轴交于 C, D 两点,假设,那么__________________.三 . 解答题:解容许写出文字说明,证明过程或演算步骤.〔 17〕〔本小题总分值12 分〕数列的前 n 项和,,其中0〔 I〕证明是等比数列,并求其通项公式〔 II〕假设,求〔 18〕〔本小题总分值12 分〕下列图是我国2021年至2021年生活垃圾无害化处理量〔单位:亿吨〕的折线图〔 I〕由折线图看出,可用线性回归模型拟合y 与 t 的关系,请用相关系数加以说明(II〕建立 y 关于 t 的回归方程〔系数准确到 0.01〕,预测2021年我国生活垃圾无害化处理量。
),=(,),则∠ABC=
4,BC边上的高等于1
2016年普通高等学校招生全国统一考试(I II卷)
理科数学2016.6
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符
合题目要求的。
1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=
A.[2,3]
B.(-∞,2]Y[3,+∞)
C.[3,+∞)
D.(0,2]Y[3,+∞)
2.若z=1+2i,则
4i zz-1=
A.1
3.已知向量BA=(1
,
2
B.-1
C.i
D.-i
331
BC
222
A.30°
B.45°
C.60°
D.120°
4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温
和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约15℃,B点表示四月的平均最低气温约为5℃。
下面叙述不正确的是
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
5.若tanα=3
4,则c os
2α+2sin2α=
A.64
25 B.
48
25
C.1
D.16 25
42
6.已知a=23,b=45,c=2513,则
A.b<a<c
B.a<b<c
C.b<c<a
D.c<a<b
7.执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=
A.3
B.4
C.5
D.6
8.在△ABC中,B=π
A.3
10
3BC,则sinA=
B.
10
10
C.5
5 D.
310
10
3
B.
1
2
C.
2
3
D. 3
13. 设 x 、y 满足约束条件 ⎨x - 2 y ≤ 0,
则 z = x + y 的最大值为___________。
⎪x + 2 y - 2 ≤ 0, 32
9. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该
多面体的表面积为
A. 18 + 36 5
B. 54 + 18 5
C. 90
D. 81
10. 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若 AB ⊥BC ,AB = 6,
BC = 8,AA 1 = 3,则 V 的最大值是 A. 4π
C. 6π
B.
D.
9π
2 32π 3
11. 已知 O 为坐标原点,F 是椭圆 C : x 2 y 2 + a 2 b 2
= 1(a > b > 1) 的左焦点,A 、B 分别为 C 的左、右顶点。
P 为 C 上
一点,且 PF ⊥x 轴,过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E 。
若直线 BM 经过 OE 的中点,则 C 的离心率为
A.
1
4
12. 定义“规范 01 数列”{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k ≤2 m ,a 1、a 2…a k 中的 0 的个数不少于 1 的个数。
若 m = 4,则不同的“规范 01 数列”共有 A. 18 个 B. 16 个 C. 14 个 D. 12 个
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
⎧x - y + 1 ≥ 0, ⎪
⎩
14. 函数 y = sin x - 3 cos x 的图象可由函数 y = sin x + 3 cos x 的图象至少向右平移_______个单位长度得到。
15. 已知 f (x)为偶函数,当 x < 0时,f ( x ) = ln(- x ) + 3x ,则曲线 y = f (x)在点(1,-3)处的切线方程是______________。
16. 已知直线 l : mx + y + 3m - 3 = 0与圆 x 2 + y 2 = 12 交于 A 、B 两点,过 A 、B 分别作 l 的垂线与 x 轴交于 C 、
D 两点,若|AB| = 2 3 ,则|CD| =_______。
三、解答题:共 70 分。
解答应写出文字说明、证明过程或演算步骤。
17. (本小题满分 12 分)
已知数列{a n }的前 n 项和 S n = 1 + λa n ,其中λ ≠ 0 。
(I )证明{a n }是等比数列,并求其通项公式;
(II )若 S = 31
,求λ 。
5
附注:
参考数据: ∑ y
= 9.32 ∑ t y = 40.17,∑ ( y - y)2
= 0.55,7 ≈ 2.646 。
∑ (t ∑ (t - t )2 ∑ ( y - y )
2
ˆ ˆ ˆ ∑ (t - t )( y - y ) ∑ (t - t )
2
ˆ ˆ ˆ 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图。
(I )由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (II )建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量。
7
i =1
i
7 7
i i i
i =1 i =1
参考公式:相关系数 r =
n i =1
i
- t )( y - y )
i
n i =1
i
n i =1
i
回归方程 y
= a + b t 中斜率和截距最小二乘估计公式分别为:
b
= n
i =1
i i
n i =1
i
,a = y - b t 。
19. (本小题满分 12 分)
如图,四棱锥 P-ABCD 中,PA ⊥底面 ABCD ,AD //BC ,AB = AD = AC = 3, P A = BC = 4,M 为线段 AD 上一点,AM = 2MD ,N 为 PC 的中点。
(I )证明 MN // 平面 P AB ;
(II )求直线 AN 与平面 PMN 所成角的正弦值。
20. (本小题满分 12 分)
已知抛物线 C :y 2 = 2x 的焦点为 F ,平行于 x 轴的两条直线 l 1、l 2 分别交 C 于 A 、B 两点,交 C 的准线于 P 、Q 两点。
(I )若 F 在线段 AB 上,R 是 PQ 的中点,证明 AR // FQ ; (△I I )若 PQF 的面积是△ABF 的面积的两倍,求 AB 中点的轨迹方程。
在直角坐标系xOy中,曲线C1的参数方程为⎨(α为参数)。
以坐标原点为极点,以x轴的正半轴
为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+π
设函数f(x)=αcos2x+(α-1)(cos x+1),其中α>0,记|f(x)|的最大值为A。
(I)求f'(x);
(II)求A;
(III)证明|f'(x)|≤2A。
请考生在第22、23、24题中任选一题作答。
如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4—1:几何证明选讲
如图,⊙O中AB的中点为P,弦PC、PD分别交AB于E、F两点。
(I)若∠PFB=2∠PCD,求∠PCD的大小;
(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD。
23.(本小题满分10分)选修4—4:坐标系与参数方程
⎧x=3cosα,
⎩y=sinα,
4
)=22。
(I)写出C1的普通方程和C2的直角坐标系方程;
(II)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标。
24.(本小题满分10分)选修4—5:不等式选讲
已知函数f(x)=|2x-a|+a。
(I)当a=2时,求不等式f(x)≤6的解集;
(II)设函数g(x)=|2x-1|。
当x∈R时,f(x)+g(x)≥3,求a的取值范围。