物理化学经典习题(配南大傅献彩)
- 格式:doc
- 大小:202.50 KB
- 文档页数:23
物理化学经典习题一、填空题1.硫酸与水可形成三种水合盐:H 2SO 4·H 2O 、H 2SO 4·2H 2O 、H 2SO 4 ·4H 2O 。
常压下将一定量的H 2SO 4溶于水中,当达三相平衡时,能与冰、 H 2SO 4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是 。
2.Na +、H +的还原电极电势分别为 –2.71V 和 –0.83V ,但用Hg 作阴极电解 NaCl 溶液时,阴极产物是Na –Hg 齐,而不是H 2,这个现象的解释是 。
3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。
其胶团结构式为 。
注明紧密层、扩散层、胶核、胶粒、胶团。
4.在两个具有0.001mAgNO 3溶液的容器之间是一个AgCl 多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向 极方向流动。
5. 反应 A −→−1k B (Ⅰ) ; A −→−2k D (Ⅱ)。
已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂 改变获得B 和D 的比例。
6.等温等压(298K 及p ø)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol -1,若该反应通过可逆电池来完成,吸热 4.00 kJ·mol -1,则该化学反应的熵变为 。
7.若稀溶液表面张力γ与溶质浓度c的关系为γ0–γ =A + B ln c(γ0为纯溶剂表面张力,A、B为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。
1O2(g) ═ H2O(l) 的8.298.2K、101.325kPa下,反应H2(g) +2(∆r G m–∆r F m)/ J·mol-1为。
二、问答题1.为什么热和功的转化是不可逆的?1O2(g) ═ H2O(g),2.在绝热钢筒中进行一化学反应:H2(g) +2在反应自发进行。
问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,∆U,∆H,∆S和∆F。
《物理化学》考研傅献彩版配套考研真题库第一部分考研真题精选一、选择题1原电池在定温定压可逆条件下放电时,过程中与环境交换的热量在数值上与下列哪个量数值相等?()[北京科技大学2011研]A.Δr H mB.零C.TΔr S mD.Δr G m【答案】C查看答案【解析】等温可逆过程,Q r=TΔr S m。
2采用对消法(或称补偿法)测定电池电动势时,需要选用一个标准电池。
这种标准电池所具备的最基本条件是()。
[首都师范大学2010研]A.电极反应的可逆性很大,常用做参比电极B.电动势精确已知,与测量温度无关C.电池可逆,电势具有热力学意义D.高度可逆,电动势温度系数小,稳定【答案】D查看答案【解析】标准电池指测定电池电动势时,需要的电动势已知的并且稳定不变的辅助电池。
其电池内的反应是可逆的,且与温度的关系很小。
3为延长建筑物的寿命和降低成本,最好不用下面哪种水来搅拌用于浇注钢筋的混凝土?()[中国科学技术大学2010研]A.河水B.超纯水C.海水D.去离子水【答案】C查看答案【解析】钢筋混泥土的主要成分是铁,海水中含有多种矿物质,会与铁形成原电池,而腐蚀钢筋。
4一贮水铁箱上被腐蚀了一个洞,今用一金属片焊接在洞外面以堵漏,为了延长铁箱的寿命,选用哪种金属片为好?()[中国科学技术大学2010研]A.镀锡铁B.铁片C.铜片D.锌片【答案】D查看答案【解析】为了达到防腐蚀的目的,焊接的金属应该与铁构成原电池,且选择的金属片的活性要高于铁,所以为锌片。
5反应A+B→P符合Arrhenius公式,当使用催化剂时,其活化能降低了80kJ·mol -1,在室温(298K)下进行反应时,催化剂使其反应速率常数约提高了()倍。
[中国科学技术大学2010研]A.2×105B.1014C.5000D.9×1012【答案】B查看答案【解析】根据Arrhenius经验式的指数式解得6某具有简单级数的反应,速率常数k=0.1dm3·mol-1·s-1,起始浓度为0.1mol·dm -3,当反应速率降至起始速率的1/4时,所需时间为()。
目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一)第二章热力学第二定律物化试卷(二)第三章统计热力学基础第四章溶液物化试卷(一)第四章溶液物化试卷(二)第五章相平衡物化试卷(一)第五章相平衡物化试卷(二)第六章化学平衡物化试卷(一)第六章化学平衡物化试卷(二)第七章电解质溶液物化试卷(一)第七章电解质溶液物化试卷(二)第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用第十章化学动力学基础(一)物化试卷(一)第十章化学动力学基础(一)物化试卷(二)第十一章化学动力学基础(二) 物化试卷(一)第十一章化学动力学基础(二) 物化试卷(二)第十二章界面现象物化试卷(一)第十二章界面现象物化试卷(二)第十三章胶体与大分子溶液物化试卷(一)第十三章胶体与大分子溶液物化试卷(二)参考答案1.1mol 单原子分子理想气体从298 K,200.0 kPa 经历:①等温, ②绝热, ③等压三条途径可逆膨胀,使体积增加到原来的2倍,所作的功分别为W,W2,W3,三者的关系是: ( )1(A) |W1|>|W2|>|W3| (B) |W2|>|W1|>|W3|(C) |W3|>|W2|>|W1| (D) |W3|>|W1|>|W2|2. 下述说法哪一个是错误的? ( )(A)封闭体系的状态与其状态图上的点一一对应(B)封闭体系的状态即是其平衡态(C)封闭体系的任一变化与其状态图上的实线一一对应(D)封闭体系的任一可逆变化途径都可在其状态图上表示为实线3. 凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是: ( )(A) ΔU > 0 , ΔH > 0 (B) ΔU = 0 , ΔH = 0(C) ΔU < 0 , ΔH < 0 (D) ΔU = 0 , ΔH不确定4. " 封闭体系恒压过程中体系吸收的热量Q p等于其焓的增量ΔH ",这种说法:( )(A)正确(D) 需加可逆过程与无非体积功的条件(B) 需增加无非体积功的条件(C) 需加可逆过程的条件5. 非理想气体进行绝热自由膨胀时,下述答案中哪一个是错误的? ( )(A) Q=0 (B) W=0 (C) ΔU=0 (D) ΔH=06.当体系将热量传递给环境之后,体系的焓: ( )(A)必定减少(B) 必定增加(C)必定不变(D) 不一定改变7. 一定量的理想气体从同一始态出发,分别经(1)等温压缩,(2)绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:( )(A)H1> H2(B)H1= H2(C)H1< H2(D)H1>=H28. 下列诸过程可应用公式dU = (C p-nR)dT进行计算的是:( )(A)实际气体等压可逆冷却(C)理想气体绝热可逆膨胀(B)恒容搅拌某液体以升高温度(D)量热弹中的燃烧过程9. 1mol单原子分子理想气体,从273 K,202.65 kPa,经pT=常数的可逆途径压缩到405.3 kPa的终态,该气体的ΔU为: ( )(A)1702 J (B)-406.8 J (C)406.8 J (D)-1702 J10. 一定量的理想气体从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1,V2,则: ( )(A) V1> V2(B)V1< V2(C) V1= V2(D) 无法确定11.一容器的容积为V1=162.4 立方米,内有压力为94430 Pa,温度为288.65 K的空气。
物理化学经典习题一、填空题1.硫酸与水可形成三种水合盐:H 2SO 4·H 2O 、H 2SO 4·2H 2O 、H 2SO 4 ·4H 2O 。
常压下将一定量的H 2SO 4溶于水中,当达三相平衡时,能与冰、 H 2SO 4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是 。
2.Na +、H +的还原电极电势分别为 –2.71V 和 –0.83V ,但用Hg 作阴极电解 NaCl 溶液时,阴极产物是Na –Hg 齐,而不是H 2,这个现象的解释是 。
3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。
其胶团结构式为 。
注明紧密层、扩散层、胶核、胶粒、胶团。
4.在两个具有0.001mAgNO 3溶液的容器之间是一个AgCl 多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向 极方向流动。
5. 反应 A −→−1k B (Ⅰ) ; A −→−2k D (Ⅱ)。
已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂 改变获得B 和D 的比例。
6.等温等压(298K 及p ø)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol -1,若该反应通过可逆电池来完成,吸热 4.00 kJ·mol -1,则该化学反应的熵变为 。
7.若稀溶液表面张力γ 与溶质浓度c 的关系为 γ0 – γ = A + Bln c(γ0为纯溶剂表面张力,A、B为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。
1O2(g) ═ H2O(l) 的8.298.2K、101.325kPa下,反应H2(g) +2(∆r G m–∆r F m)/ J·mol-1为。
二、问答题1.为什么热和功的转化是不可逆的?1O2(g) ═ 2.在绝热钢筒中进行一化学反应:H2(g) +2 H2O(g),在反应自发进行。
问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,∆U,∆H,∆S和∆F。
热 力 学 第L 如果-个系统从环境吸收了如J 的热,而系统的热力学能却增加r 200 n 问系统从环境得到r 妾少 功?如果该系统<t 膨脈过程对环境作了 10 KJ 的功•同时收了 2« KJ 的热*求系统的热力学施变化值. 解;根据∆U=Q^W 热力学第一定律.可知W r -=∆Lf -Q (系统从环境吸热,QAo)= (200-40)J = 16OJΔΠ=Q÷W (系筑对环境做功MVtD= (28-10)kJ≡18kJ,2, 冇10 πκl 的气体(设为理想气休)■压力为Kx)O kP 酣温度为300 K •分别求出等温时下列过程的功' O )在空气压力为IoOkP 日时.体积胀大I dm½(2) 在空气压力为100 kPa 时•膨胀到气体压力也是IOO kPa ;(3) 等温可逆膨胀至气体的压力为IOo kPa.解:(D 外压始终维持恒定'系统对环境做功W-=-A∆V1(X)XlO J PaXlX 10^3m 3= — 100」*一 E 牛由沖«*>--IOmoixa. 314 J * mol~, ∙ K-I X300KXln IOmOl,300 K IOOokl⅛.V 1 IOmOL 300 KIOOkPa ⅛V;S 2-6^-PΛV 1~VOTIRTI \4 )=-1OnlO1XB, 314 * J ∙ TnOr I ∙ K^l ×30°KX 100^(i⅛-ιδ⅛)=-^ 25XIQ 4J*&尊温可≡K --f : MV一 PE nRT 2 = ~nRT In= -5. 74XIO 4 J. ■3. 1 mcl 单原子理想气体,Cv"∙∣R.始态⑴的温度为273 K,体积为22.4 dπ?,经历如下三步•又叵 到始态•请计算每个状杰的压力、Q ・W 和2.(1) 等容可逆升温由始态(1〉到546K 的状态(2卄(2) 等温(546K)可逆膨胀由状态(2)到44. 8 dm j 的状杰(3卄(3) 经等压过程由状态(3)回到始态(1).解,(1)尊容可逆升温过程如图2-7. 546k,lmol. 44.8×10⅛5图2-7W-~A∆V=0∆L∕=Q÷W≡=Q = J : nCv.m <lT=lmol×-∣-×& 314 ・ J ・ mol"・ KTX(546-273)K=34O4. 58J.(2)等温可逆膨胀过程∆U=0 W≈-∏RT In^ = -ITnol×& 314 J ・ mol^, ∙ K~, Xln ∣∣r ∣×546K=-3146. 50JQ=-W=3146∙ 50J∙ (3〉等压过程W = -P t ∙ ∆V=-vΓ(VI_v :)1I∏212⅛J14 J_LmQLL∙ K J ×273K χc22 4_44 S)X 10-3rn J = 2269. 72J nC fi .m dT ="(∙∣∙R+R)X(273 K -546 K)∆LΓ=Q*W= (-5674. 31+2269. 72)J = -3404. 59J.4. 在29】K 和IOO kPa 下・1 mol Zn(S)溶于足就稀盐酸中•置换出1 mol H, (g).并放热152 kJ.若以Zn和盐酸为系统,求该反应所做的功及系统热力学能的变化. 解:Zn(S)+2HCl —ZnCl 2 ÷ H 2 (g)22∙4X10fQ= -y×8∙314J ∙ moΓ, XK*1 X(-273)KXlmol≡-5674. 31J 5461ςlmol,22,4×10W [T]在291 K-IOOkPa的条件下发生以上反应•产生Hz(g)W=-P r(V J-V I )== — />, =_ p. τ^~ = -nRT(.p,≈ p= IOOkl,a)≡ - Imol X & 3)4 J ∙ moΓ,•KTX291 K=-2419. 37J该反应为放热反应>Q<0.Q=-152X103J∆σ=Q÷W=-(152× IO3+2439. 37)J = -154∙ 42X103J∙5在298 K时,有2 mol N2(g),始态体积为15 dm3.保持温度不变•经下列三个过程膨胀到终态体积为50 dn?,计算各过程的∆U f^H t W和Q的值.设气体为理想气体.(1)自由膨胀;(2)反抗恒定外压100 kPa膨胀;(3)可逆膨胀.解:(1)自由膨胀过程为尊熔过程AH=O由于A=O W=-P.V=O同理∙∆H=Δl7+∆(pV)可推出∆LΓ=O又根据∆U=Q÷W可知Q=O.(2)反抗恒定外压膨胀W=-P e(V2-V l) =-100×103 Pa(50-15) × 10^8m3 = -3500J因为理想气体的U和H都只是温度的函数•等温下∆U=0.∆H-0,Q- W=35OOJ.(3)等温可逆膨胀W =-∫pdV = 一HRT In 普=一2τnol X & 314 J ・moΓ1・ K-I X 298 KXIn 誇=-5965. 86 J2=Q÷W,等温过程∆L∕=O.∆H=OQ=-W=5965. 86 J.6•在水的正常沸点(373. 15 K,101. 325 kPa),有1 mol H2CXD变为同温、同压的H l O(g),已知水的摩尔汽化焙变值为‰=40. 69 kJ・TnOrLiS计算该变化的Q∆U,∆H的值各为多少.解:相变在373.15K,101. 325kPa等温等压下进行,AH=QQ= H. =40. 69kJ ∙ moΓ1×lmol≡=40. 69kJW--^(V g-V r)--TtPT--ImoIX& 314J ∙ mol 订∙ Kβl×373K≡-3. IkJ ∆U=Q÷W=(40. 69-3.1)kg=37. 59kJ.7.理想气体等温可逆膨胀,体积从匕膨胀大到】0匕,对外作f 41.85 kJ的功,系统的起始压力为202.65 kPa⑴求始态体积VZ(2)若气体的Ift为2 mol.试求系统的温度.解,1)等温可逆过程W≈-nRT In^V r)理想气体状态方程pV=nRT两式联合求解PVI =InV =0. 089m ∖202. 65×103Pa41.85×1O 3J Vl=曲(2)同理根据笥温可逆过程中W=-nRTIn存W 41.85 × IO3J "iz可得T= ------------V- ------------------------------------------- :一i∩v;-1°93∙ 05K.nR In 护2mol× & 314 J ∙ mol 1∙ K In&在100 kPa及423 K时閑1 mol NH j(g)等温压缩到体积等于10 dm3,求最少需做多少功?(1)假定是理想气体,(2)假定符合Van der WaHIS 方程式.已知Van der WaaIS 常数α = 0∙ 417 Pa ∙ m4∙ moL"=3∙ 71X 10"5m3∙ moΓ6.解:(1)假定为理想气体,那么气体在等温可逆压缩中做功最小W≈-nRT In 务= -ltnoI×& 314 J ・moΓ,∙ K-l×4Z3 KXIn 35 χ lo⅞'=MQ5, ?4J可根据理想气体状态方程V严警=—X8,314wop√κ—23 K =s35X Io-Jm3 代入上式方可求解.(2)假定符合Van der WaalS方程•方程整理后•可得(6÷T)÷V-7-⅞≡0代入数据Vi-3. 472×10∙t Vl÷4.17× IO-6V flt-L 547×lO',o=O解三次方程后得V m=35×10-3m3= 疑三篇一曲(炳一吉)=0. 417Pa ・m∙ ∙ moΓ> ×12× (5⅛厂5⅛?)4385. 21J.9.巳知在373 K和100 kPa压力时,1 kg H2O(I)的体枳为1. 043 dm∖ 1 kg H20(g)的体积为1677dm3,H2O(I)的摩尔汽化熔变值JpH fn=MO. 69 kJ・moΓ1.当1 mol HQ(I)在373 K和外压为】00 kPa时完全蒸发成H2O(g).试求:(1)蒸发过程中系统对环境所做的功;(2)假定液态水的体积可忽略不计,试求蒸发过程中系统对环境所做的功•并计算所得结果的相对谋3假定把蒸汽看作理想气体,且略去液态水的体积,求系统所做的功;解:<1)«发过程中系统对环境做功W=-A(V<-½)= -100×10,Pa×(1677×10-,-1.043×10"s)m s・⅛~,×(18.0×10^3)kg=-3016. 72J.5解释何故蒸发的熔变大于系统所作的功.6 求(1)中变化的^U a和(2) 假设水的体枳可忽略∙W!J ½=0W=-P •匕= -100X103P8X1677XKΓ'kgT ∙ ∏? X18XlO -'kg=-3O18∙ 6OJ (二眇鹫盍嚮 72)J X ]00% =0 062%.(3) 把水蒸气看作理想气体•则可使用理想弐体状态方程PV=HRT且忽略液态水的体积,则V Z =OW≈-p^V g ≈-nRT= -lmol×8.314J ∙ moΓ, ∙ R -,×373 K= 一3101. 12J.(4) Q ,ιa = ∆r MI Hm = 40. 69kJ ∙ πx>Γ1A ” _Q-J rW 40. 69kJ ・ moL XlmolX103 + (-3016. 72)J 4U in - ---------------- T=S J ------------------------- = 37. 67 X IO 3J ・ moΓl .(5)仝蕉发过程中•用于系统对环境做膨胀功的部分很少•吸收的夬部分热量用于提岛系统的热力学10. 1 mol 单原子理想气体,从始态:273 K.200 kPa,到终态323 K,100 kAu 通过两个途径:(1〉先等压加热至323 K,再尊温可逆膨胀至IOO kPa,(2)先等温可逆膨胀至IOO kPa,再等压加热至323 K.请分别计算两个途径的Q∙W,2和AH,试比校两种结果有何不同•说明为什么.解:⑴因为单原子理想气体Gj=∙∣R,C,rn =今R 过程如图2—&①等压升温W I =_P ,(S_S=_P (呼^_呼^)= -M ∕?(^-T I ) = -ImOlX8. 314 J ∙ moΓl ∙ KrX (323—273)K= — 415∙ 7JHC Arni dT=Imol×γ×8. 314 J ∙ moΓl ∙ K l (323-273)K=1039. 257 心=J : MCv,m dT=ImolXyX8.314 J ・ moL ・ KTM623.55J.②等温可逆总=-叔Tl 唸= -hnolX8. 314 J ・ moL ・ KU 323 KXln 需= -1861∙ 39 J∆LΛ ≡O∙∆Hf =Of Q 2 =-W 2 = 1861. 39JW = W 】+WZ =-2277∙ 09JQ=Ql 卜Q=29OO∙ 64J ∆U=∆IΛ+∆IΛ = 623∙ 55J ∆H=∆Wι +∆H 2 = 1039. 25J.Wz≈~nRT InImOl323 KIOOkPa①等温可逆Vy I =^Tln⅛ = →T Ing≡-lmol×& 314 J ∙ moΓ, ∙ KTX273KXln 需=一 1573∙ 25J∆Uι ==0∙∆Hι =0Q=-Wl= 1573∙ 25J.②等压升温VV 2 = -A (½-V 1) =-n ^(T 2-T 1 J--ImolX& 314 J ∙ mcΓ, ∙ K "】(323—273)K≡= — 415∙ 7J△H2=Q" = J ;: nC pt .dT=1 TnOlX 孑X8.314 J ∙ moΓ1 ∙ KTX(323—273)K=IO39∙ 25J∆U t ≈ P rtC v .m dT=l mo ∣X⅜×& 314 J ∙ moΓl ∙ K^,=623. 55J 儿 2W=W l ÷W 2 = -198& 95J Q=Q+Q = 2612∙ 5J∆U=∆LΓ1 +∆IΛ =623. 55J∆H≡∆Hι ÷∆H 2 = 1039. 25J.比较两种结杲・2和'H 值相同•而Q 和W 值不同.说明Q 和W 不是状态函数•它们的数值与所经 过的途径和过程有关.而2和3H.是状态函数,无论经过何种途径•只要最终状态相同.2和∆H 的数 值必相等.11.273 K,压力为5×10s Pa^.N 2(g)的体积为2.0 dπ?.在外压为IOO kPa 压力下等温膨胀•宜到M (g >的压力也等于IOO kPa 为止.求过程中的Vy,∆M,∆H 和Q 假定气体是理想气体•解:该过程为恒定外压等温膨胀∆U=0∙∆H=0W=-PAVZ-VX y )Q=-W=800J.12.0.02 kg 乙醇在其沸点时蒸发为气体.巳知蒸发热为85E kJ ・kg",蒸气的比容为0. 607 m j ・ 治一'.试求过程的∆U,AH∙W 和Q(计算时略去液体的体积).H IGHSOH(I)I [p],[τ] ∣C 2H 5OH(g)p 、Tb图 2-10P∙Tb 图2-9(理想气体状态方稈PV=HRT)此蒸发过程为等温等压可逆过程∆H=Q Λ≡O. 02kgX858kJ ∙ kg -l =17.16kJ=-p f v g (忽略液体的体积)=-IOOX IO 3PaXO. 02kgX0. 607 m 3 ∙ kgT = -1214JMJ=Q+W= 17. 16×103 + (-1214J) = 15946J∙13. 373 K∙压力为100kI⅛时,LOgH 2O(I)经下列不同的过程变为373 KJOokPa 的出0@〉•请分别 求出各个过程的∆LΓ.∆H,W 和Q 值.⑴在373 KJoO kPa 压力下H 2O(I)变成同温、同压的汽;(2) 先在373 K ・外压为50 kPa 下变为汽,然后加压成373 KJOO kPa 的汽$(3) 把这个H 2O(I)突煞放进恒温373 K 的真空箱中•控制容积使终态压力为100 kPa 的汽.已知水的 N 化热为 ZZ59 kJ ∙ kg l .解:(1)水住同温同压的条件下蒸发∆H≈Q, = l×10-1kg×2259kJ ∙ kg 1=2∙26kjW≈-pV β (忽略液体体积)= _nRT∆U=Q+W=2∙ 26 × IO 3 J+(~ 172J) ≡2088J.图 2-11 [p] AHl=Q 、= 1 × IoTX 2259kJ ∙ k f Γl =2. 26kJWl = -PY l = -WRT= -172J∆Uι =Ql ÷W ∣ =2088J[C AU 2 = 01 ∆H 2 ≡0. W*≡ ~ n RT In^ = - nRT In y ∖PI 一⅛⅛¾X3∙314 J ・ mol- ∙ KT X373 KXln 鑰= 119J、 Q=-W2 = -119JW≈W l ^W z ~-53JQ=Q+Q=214U∆U=NΛ+∆IΛ=2088J∆H=∆H 3 ÷∆H: =2. 26X ]03J.(3) 在真空箱中"∙=0∙故W=O由∆U.∆H 为状态函数•即只奥最终状态相同,则数值相等 ∆H=2. 26×103J∙ W=Q+W=Q= 2088J.14. 1 mol 单原子理想气体•始态为200 kPa. 11. 2 dn?,经PT=储数的可逆过程(即过程中PT=誉數)■ 压缩到终杰为400 kPa.已知气;体的CV tm = -IR 试求 l∙0X107⅛g 18×10β,kg∙ moΓlX&314 J ∙ moΓx ∙ K -I X373KH-172J (2)373K∙ H 2CXD [/>] 50kPa 373K> H 2CXg) CTJ 50kPa373K>H 2O(g) IOOkPa(1) 终态的体积和温度;(2) ∆L r 和 M(3)所做的功•解:(1)根据PT ■常数,则PITI-P I T2丁 =ATl __________________ _________ _____ ______________2 PZ PZ 400ICPaF =航乃_ ImolX& 314 J ・ moL ・ KTXl34.7K gχ 10-3m3PZ Zd • •⑵单原子理想气体CV.,m =J-R2=J ; nCv,m dT=nC v ,m (.T z -T l ) = ImolXyX& 314J ・ mol~,・ KTX(134. 7—269. 4)K=-1679. 84J △H = r nC^dT=nC,.m (T 2-Tχ>JT I= ImoIX--X& 314 J ∙∙tnoΓ, ∙ KTX(134. 7—269. 4)K=-2799∙ 74J.⑶由/「D 丁两式可推出V=曙∖pV^nRT eW=PdVM-J ; £ ・?^XdT=-2nR(7⅛-T 1)= -2×lmol×& 314 J ∙ TnOr l ∙ KTX(134.7—269・ 4>K=2239∙ 79J.15. 设有压力为IOO kPa 、温度为293 K 的理想气体3.0 Bm 3 ,在尊压下加热,直到最后的温度为353 K 为止•计算过程中W.3l7.∆H 和Q.已知该气体的等压摩尔热容为:Q lnI = (27. 28÷3. 26×10^3T∕K)J ・ K~1 ∙ πκ>Γ,.解:该过程为等压升温过程△H=Qp — J ; n C,.m ATC,ιn =(27. 28+3. 26X10-J T)J ・ KT ・ moΓ,∆H =∏Γ27. 28(T 2-T 1)+y×3. 26×10^,(7l-71)]=0.123×[27. 28X(353—293>+* X3. 26X10^X(3532—293J]=209. IJIOO XlO 净X 3 X10Tm3 _8?314 j~∙ τnoΓ1 ∙ K*1 ×^93K理想气体等压过程普=书 ,3X¾^353K =3 6χ 10-3m3(½-V 1 ) = -100× 10, Pa× (3.6-3) X 10-1m 3≡-6DjQ=Q+W=209∙ 1J -6OJ=149∙ 1J∙16. 在1200 KaOO kPa 压力下,有1 mol CaCO (S)完全分解为CaO(S)和CO 2(g),吸热180 kJ.计算过 程的W,∆L ∖∆H 和Q 设气体为理想气体.AV l "c 1 c 2θOX103Pa×11.2×10-3m 3 匕 ⅛ 2°OkP a 石拠314 J=TnO 产T0 = ^. IK400X10讥 RT l =0.】23mol解:CaCO3(S)-^-Cao(S)+CO2(g)⅛化学方程式可知ImOl OCO J(S)分解可生成ImOI CQ(g),计算过程中忽略CaCOa (s)> CaCXs)的体积.w≈ -P f V g≡ -HKT=≡ -ImolX& 314 J ∙ moΓl∙ K*1×12∞K=-9976. 8JQ=180×103J=∆H∆L∕≡Q÷H r=180× IO j J÷(-9976. 8)J≡170×103kJ・17 •证明:(霁),=—〃(霁)「并证明对于理想气体有(黑)广0・(勞)广0・证W:(l)已知H"¾7+z>U •U=H-PV(紮广(霁)厂(锡辽理想气体CP仅是温度函数C产(黑)*故(畀)广G-P(霁)严立.(2)dH-(IH)Vdτ+(IH)Td V理想气体等温过程∆H=O,∆T=O,故dH=O,d:T= O故(霍)∕V=0 等温彩胀或等温压缩∙dVHO所以(黑)广O 成立.⑶ Λ7=(S)V dr÷(^)Λ理想G体等温过程∆LΓ=O,∆T=O,同理ΛJ=O,dT=O由(2)可知dV≠O所以(需)广O成立.由于S(霁)v故,(寫)T=S陽(畀)J = [齐(影)订严他证明:(需),=C,(黑)厂〃—歌[(制厂町证明:(1)U=U(P t V)H⅛J÷∕>V dH=ΛJ÷pdV÷Vdp =(韵严+ (黑)严+ pdV-hVdp 等圧过程dH=(5V)/V+pdV两边同除以dT (霁)广(軌(歌+P(歌提取相同的(霁),収因为C严(霁力所以Cr執[(韵,+打所叫執“-/>(執成立•⑵ H=H[75 dH-(W)∕τ÷(lj)Λ同上题,可知dH=dU÷∕xlv÷VdΛ=dU÷VdZ>(等体积过程)联立等式•两边同除以Crr又由于C 严(黑), CV=(^)V 代人上式,整理后得—3 = -(霁)』(制广可故・证明完毕・19.在标准压力下•把一个极小的冰块投人0.1 kg.268 K 的水中•结栗使系统的温度变为273 K,并有 一定数槓的水凝结成冰•由于过稈进行得很快•可以看作是绝热的•已知冰的溶解热为333. 5 kJ ・kg-> •在 268〜273 K 之间水的比热为4. 21 kJ ・K"・kg^Λ(1) 写出系统物杰的变化•并求出∆H, (2) 求析出冰的质fit.解:(1)在p∙的条件下•此过程为绝热尊压过程故AH=Qp=O. ⑵设析出冰为∙rkg∙那么水为(0∙ l -χ)kg t 如图2-12.268 kQN kg HI O(D图 2-12∆H=∆H ∣ +∆H2 + ∆H3同种物质同温同压下变化AHs ・0・故∆H -∆H ∣ +∆H: ∆Hι +∆W2i =0O. IkgX<2IkJ ∙ K -I ∙ kg ∙,×(273-268)K+(-333.5kJ ∙ kg*1)Xkg=O x=6. 31kg.20.1 mol N 2(g)∙在298 K 和IookPa 压力下•经可逆绝热过程压缩到5 dm 3.试计算(设气体为理想气 (DN√g )的遇后温度, (2) N 2(g )的最后压力; (3) 需做多少功・C解:(1)Imol N 2为双原子分子7=沙= W- = I.42KImOl 气体为理想气体•符合理想气体状态方程 V_迟石 JmoIM& 314 J ∙ mo ∣τ ∙ KTX298 心“心心 VL 例- IOoXlO 3Pa-0.02448m理想气体绝热可逆过程中的过程方民式:TV-I =^数 T I v I L ^I = T 2v 2,4*1298K×<0. 02448)(M = Tl (0. 005)°∙4 Γ2=b62. SK. (2) 同理=X k« H J o(J) [ (0.1∙x)kg H I o(O 273K I 273 K0.1kg H j 0(∕)273IOOxIo j Pa×<O. 02448)1∙4= ∕>2×(0. 005)I∙4∕⅛=924×103kPa.(3)理想气体绝热可逆过程中的功:W "仇S-PlV F]LI■= nCv.m(T2-T)) = ImolXy X& 314 J ・ moL ・ K^1 X(562. 5-298)K=5497. 63J.21.理想气体经可逆多方过程膨胀•过程方程式为PV =C•式中C,”沟为常数.n>l.⑴若/J=2,l mol气体从W膨胀大到匕•温度由T, ≡573 K到T2≈m K •求过稈的功W:(2〉如果气体的Cv.w = 20.9 J・C・moΓ,•求过程的Qz和∆H.解:(】)过程方程式PS=Cm=2∙p=磊W=-[: NV=―匸:翁dV=C(舟一#)=野一響=0S-PX=HR耳一“R蘇=HR(T-T I) = ImoIx & 314 J∙ πκ)Γl∙ K'1 (473~573)K=-831. 4J(2)∆U^ F » C^dT= n Cv.m(T2 ~T3) == 1 molX20. 9J ∙ KT∙(473—573)K=-2090jJ T lC"=G∙u n+R=(20∙9+& 314)J ∙ TnoIτ ∙ Kβl=29.21J ∙ moΓ1∙ K l△H= f 2n C p.f∏dT=n CP^ (T2— Ti)J T I= ImOlX29.21 J ・ moL ・ KTX(473-573)K=-2921J∆U=Q+W(热力学第一定律)Q=∆U-W≡=-2090j-(-83L 4j)≡=-125& 6J.22.在298 K时•冇一定量的单原子理想气体(CV.m = 1.5/?),从始态2000 kPa及20 dm3经下列不同过程,膨胀到终态压力为100 kFa・求各过程的M∕,AH,Q及附. |(1)等温可逆膨胀;(2)绝热可逆膨胀;(3〉以5= I. 3的多方过程可逆膨胀•试在P-V图上画出三种膨胀功的示意图•并比较三种功的大小.解:单原子理想气体・3=号R∙C,m=号R,Z=詮=号I图2—13F a相U圧分大卡砂,_內匕_ 2000X103P8X20X107∏?_, 1, I理想气体状心方程n- RTI-8. 314 J ・moΓl∙ K1X298K~"∙ 14m°1(L)等温可逆膨胀∆U=0,∆H=0W≈-nRT∖n^≈-tιRT In^ (理想气体状态方Spι⅛=p2V2) P2= -16. 14mol×& 314 J ・ mol~,・ K^1×298K -119. 79kJ2=Q+W r=O Q=-W==I19. 79kJ.(2)绝热可逆膨胀Q=O理想气体绝热可逆过程方程式Pi-j TV = P2-TVp1<H>τJ=p1<ι-4>τ3(2000)∙i (298T =(IoO)一专T2IΓ2=89.91K理气绝热过程中W ≡nCv.m<T2-Tι)= 16∙ 14 molXyX8.314 J ∙ moΓ,∙ K*,(89. 91-298)K--4L 88X10,J ∆U≈Q+W≈W≈-41.88X1O3J *∆H=n C h^(-T i) = I6.14 mol×y X& 314 J ∙ moΓl∙ KT ×(89. 91-298)K=-69. 81XIO3J.(3〉多方可逆过程与绝热可逆过程方程式相似故aτ√≡z>21-*τ/(2000)73 (298)】」=(IOO) ^3T2k3T2 = 149. 27KW=器(号一TJ= 16.14molX 普詔]•型T匕KT(149. 27-298)Kn—66. 53kJ∆U=n CV t m ( T: ^~ Ti) = 16.14mol×-∣∙×8. 314 J ・moΓ 1•KTX(149. 27-298)K=-29. 94kJ∆H=nCn.m(T2-T l) = l6.14mol×y X& 314 J ∙ moΓ,•KTX(149. 27-298)K=-49∙ 89kJQ=Q+W(热力学第一定律)Q=∆U-W r=-29. 94kJ一(一66∙ 53kJ) = 36∙ 59kJ.(4)等温可逆膨胀∕>∣½≡p2½求出V2=0. 4m3绝热可逆膨胀∕>1V ∣4 =∕>2v 2i 求出V 2=O. 12m 3 多方过程可逆膨胀Zh⅛, s = ^V 2, 3求出V 2=O. 2 通过0(1)〜(3)的计算,可知杯,如图2-14.23.1 mol 单原子理想气体从始态298 K∙200 kPa.经下列途径使体积加倍•试计算每种途径的终态圧 力及各过程的Q ,W 及 W 的值,画出P-V 示意图,并把2和W 的值按大小次胖排列.(1) 等温可逆膨胀) (2) 绝热可逆膨胀;(3) 沿着^∕Pa=1.0×10*V.∕(dm j ・moΓl )÷6的途牲可逆变化. 解:1 mol 单原子理想气体 C^.β = -∣R.Q.1B = -I-R(1)等温可逆膨胀W=OW=—nRT In^ = -ImQIX& 314 J ・ moL ・ KTX298KXln 孝=-1717. 32J Q=-W=I717. 32J. (2)绝热可逆膨胀Q=OPIVI r ≡P J V J Z *故 Q= ”】(令)≡=200×103Pa伕X2χ連21-镇=鬻=7.7K= ImOlX 售 X8∙314 J ∙ InOr l ∙ K*1 (187. 7-Z98)K= -1375. 55J.V2=2Vι=24.78X10"3m 3p∕Pa≡ 1. OXIO 4V fII (Clm 3 ∙ TnOr l )+6代入数值•求解 6 值 2OOX1O 3 = 1.O× IO 4 × 12. 39+6 6=76100p 2=l× IO 4 XV 2 +∂=1 XIO 4 X24. 78+76100= 32390O(Pa)T =AV2=3239OQFaX24∙ 78X1OT 2~ nR -ImOIx& 314 J ∙ moL ∙ K -'W =_匸 PdV=-£2 (1.0×104V w +6)dV= -[y ×1. 0×104× (Vl-V4)÷76100× (V 2-⅛ )]=^3245. 56J∆U≡ΛCv,m (T 2-Tι)(3)V 1=讐=S 喙蘇3—2.咖E= 965. 4KK 2-15=63. OOXlO 3Pa=1 mol×4×&314 J ∙ moΓl ∙ KTX(965∙ 4-298)K=8323∙ 15J∆LΓ=Q÷H rQ≈∆U -W≈↑1. 57×1O 3J.(4)比较可得W3>W l >W 2f>随丁变大而变大p 3>∕h>p2册力学能变化 4>A3>∆LL,如图2 — 16. 24.某一热BL 的低温热源为313 K,若高温热源分别为: (1) 373 K (在大气压力下水的沸点”(2) 538 K (是压力为5. OXlO 6Pa 下水的沸点)・ 试分别计算热机的理论转换系数.解:(1)热机效3-⅞-I 1-κ=16.08%.T^TX298 K-273 K “一“ ^LT T Wl 273 K 八 33DkJ ∙ I QJ 人 1ICg —30. 68kj系统和环境中得到30. 68kJ 的功.26.有如下反应,设都在298 K 和大气压力下进行,请比较各个反应的2与的大小,并说明这差 别主要是什么因素造成的.(1) C lZ H 22C>1(蔗糖)完全燃烧;(2) CI O H ft (蔡,s)完全氧化为苯二甲酸 C βH 4(COOH 2)(S)I (3) 乙醇的完全燃烧;(4) FbS(S)完全氯化为 Eb(XS)和 5(⅛(gλ解:反应条件为 298 K, 100× IO 3Pa 压力下进行 Δ.H ro (T) = Δ<LΓm (T)+∆^T (1) C 12Hno ne + 1202(g>^12CO l (g)+llH2θ(l) An= 12—12=0 ∆H -∆L∕. (2) Δn<0∆H<∆U.(3) C 2 H 5OH÷3(⅛ (g)-2O⅛ (g) +3H 2O Δn<0 ∆H<∆L7.(4) 2Pbs÷3(⅛ ------- 2PbO+2SC⅛ Δn<0 ∆H<∆L7差别的主要因索在于反应前后气体的物质的虽差M fiiB 当 Δn<0 时.∆H<ΔU 当 Δn>0 时,∆H>∆U.27.0. 500 g 正庚烷放在弹形热量计中,燃烧后温度升高2. 94 K.若热量计本身及其附件的热容量为8. 177 kJ ・K-I •计算298 K 时正庚烷的摩尔燃烧焙(凰热计的平均泯度为298 K).解:GHw(l) + llQ(g)竺 7CO⅛(g)+8H2θ<l)TA373 K(2)热机效率 7=¾^ = 538KzpJS =41 82%.T K 538 K25某电冰箱内的温度为273 K ・空温为298 K ・今欲使1 kg 273 K 的水变 成冰,何最:少需做多少功?已知273 K 时冰的融化热为335 kJ ・kg-*.解:冷冻系数尸籌 W=丑匚耳Q 图 2-16止庚烷燃烧放热反应 ∆U=Q =—& 177kJ ∙ K 1 ×298 K=-24.0lkJ A f U =—= --------- 二?4. O^jeJ --------- = —4817 6kJ ・ mol 勺 d5 π 0∙5X]07⅛g 4*∙wu Inol100. 2 XIr rJ kg ∙ moΓl 正庚烷摩尔燃烧熔ΔcH w (GHιβ∙298K∙z>∙) = Δet∕ιn +∆zιRT= -4817.6kJ ∙ moΓ,+(7-ll)×8.314 kJ ∙ mol"1 ∙ X 10~ X298K=-4827. 5kJ ∙ moΓ,.2&根据下列反应在298.15 K 时的熔变值•计算AgCI(S)的标准摩尔生成给Δ H 紅AgChS,29& 15 K). (1) Afco(4+2HCl(g)—2AgCl(s) + H 2O(l) Δr W∙.ι(29& 15 K) - 32l.9 kJ ∙ moΓ,∣ (2) 2Ag(S)+*Q f (g)-Ag 2(Xs) (3) -∣ H 2 ⅛)+∙∣CI 2 <g)_HCKg) (4) H 2(g)+yO 2(g)-H 2CXI) 解:Ag( S) ÷~-C ∣2( g)—AgCl(S)经(I)Xy+(2)×y÷(3)-(4)×-∣这个计算过程方可得到Δl HX(AgCl,s.29& 15K) = *Δ,H"298. 15K)+*ΔJ H^(29& 15K) + ∆r ‰ 入、吐=×(-324.9)÷y ×(-30. 57) + (-92.31)—*(-285. 84) JkJ ・ mol~, = -127. 13kJ ・ moΓ1.29. 在29& 15 K 及IookPa 压力时•设环丙烷、石零及氢气的燃烧熔∆r ^(298.15 K)分别为一2092 kJ ・moΓ∖-393.8 kJ ・moL 及一285. 84 kJ ・moL.若已知丙烯QH<(g)的标准摩尔生成焙为Δl Hl <298. 15 K) = 2O. SO kJ ・ mol~l .试求:(1) 环丙烷的标准摩尔生成焙4HS,(29& 15 K)I(2) 环丙烷异构化变为丙烯的摩尔反应焙变值Δr HX(298. 15 K). 解:(1 )3C( 5)+3H 2 (g)-C 3 H e (g) ∆r Ht(C 3He,298.15K) = - Y vH∆c Wζ(β)B= -[∆C H; (GHs(g)∙29 & 15K)—3'H :MC(S) .29 & 15K)-3∆eW(H t (g)∙29 & 15K)] = -[-2092-3X(-393. 8) — 3X( — 285∙ 84)]kJ ∙ moΓl =53.08kJ ∙ moΓ∖ (2)C 1H β =GCH=CH2XHl =3(GCH=CH?・298∙ 15K)-Δ(Hζl (GHχ298∙ ISK)= 20. SokJ ∙ moΓ1 —53. 08kJ ∙ moΓ1 = —32. 58kJ ∙ mol~,.30. 根据以下数据•计算乙酸乙商的标准摩尔生成焙(CH J C(XXZ 2H 5.1.29& 15 K) CH3αX)H(l)÷G H 5OH(I)=CH 3CCXX^ H S (1) + H 2O(1) Δf Hζ(29& 15 K) = -9. 20 kJ ∙ TnOr l乙酸和乙醉的标准障尔燃烧席Δt Hζ(298∙15 K)分别为:-874. 54 kJ ・moL 和一1366 kJ ・TnOΓ,, CO z (g),HτO(l)的标准摩尔生成熔分别为:一393・51 kJ ・moL 和一285. 83 kJ ・moΓ,.解:先求出ClhCCKJH(I)和GHsOH(I)的标准摩尔生成焙. CH 3C∞H+2Cλ —2CQ+2Hg∆r‰(29 8. 15 K)--30. 57 kJ ・ moL) ∆r‰(298. 15 K>-92. 31 kJ ・ m 。
目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一)第二章热力学第二定律物化试卷(二)第三章统计热力学基础第四章溶液物化试卷(一)第四章溶液物化试卷(二)第五章相平衡物化试卷(一)第五章相平衡物化试卷(二)第六章化学平衡物化试卷(一)第六章化学平衡物化试卷(二)第七章电解质溶液物化试卷(一)第七章电解质溶液物化试卷(二)第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用第十章化学动力学基础(一)物化试卷(一)第十章化学动力学基础(一)物化试卷(二)第十一章化学动力学基础(二) 物化试卷(一)第十一章化学动力学基础(二) 物化试卷(二)第十二章界面现象物化试卷(一)第十二章界面现象物化试卷(二)第十三章胶体与大分子溶液物化试卷(一)第十三章胶体与大分子溶液物化试卷(二)参考答案1.物质的量为n的纯理想气体,该气体在如下的哪一组物理量确定之后,其它状态函数方有定值。
( )(A) p (B) V (C) T,U (D) T, p2. 下述说法哪一个正确? ( )(A) 热是体系中微观粒子平均平动能的量度(B) 温度是体系所储存热量的量度(C) 温度是体系中微观粒子平均能量的量度(D)温度是体系中微观粒子平均平动能的量度3. 有一高压钢筒,打开活塞后气体喷出筒外,当筒内压力与筒外压力相等时关闭活塞,此时筒内温度将:( )(A)不变(B)升高(C)降低(D)无法判定4. 1 mol 373 K,标准压力下的水经下列两个不同过程变成373 K,标准压力下的水气,(1) 等温等压可逆蒸发,(2)真空蒸发这两个过程中功和热的关系为:( )(A) |W1|> |W2| Q1> Q2(B)|W1|< |W2| Q1< Q2(C) |W1|= |W2| Q1= Q2(D)|W1|> |W2| Q1< Q25. 恒容下,一定量的理想气体,当温度升高时热力学能将:( )(A)降低(B)增加(C)不变(D)增加、减少不能确定6. 在体系温度恒定的变化中,体系与环境之间: ( )(A) 一定产生热交换(B)一定不产生热交换(C) 不一定产生热交换(D)温度恒定与热交换无关7. 一可逆热机与另一不可逆热机在其他条件都相同时,燃烧等量的燃料,则可逆热机拖动的列车运行的速度:( )(A) 较快(B) 较慢(C) 一样(D) 不一定8. 始态完全相同(p1,V1,T1)的一个理想气体体系,和另一个范德华气体体系,分别进行绝热恒外压(p0)膨胀。
第一章物化试卷(一)DDCAB CBBBD ABDAB DCDAD 物化试卷(二)DCDBD DCCDA BBCCD CCBCC第二章物化试卷(一)BCBDA CBBBB AADCC BCAAA 物化试卷(二)CBAAA ACCDB AADBA CBBBC第三章统计热力学基础DDBDC DCDBA DBDBD BDDAB第四章溶液物化试卷(一)BDBAC DCBDC DCCAC DDBAC 第四章溶液物化试卷(二)ABADB DCCBA ACBDD CABAA 第五章相平衡物化试卷(一)ACACC BBBCD CDCCA BABBB 第五章相平衡物化试卷(二)DCCCC BADBB DDCBB CACAD 第六章化学平衡物化试卷(一)CDACA DDDCC ADDAD CCBCA第六章化学平衡物化试卷(二)BBCCD CCBDA DCDBB CCCCB第七章电解质溶液物化试卷(一)CBCDD BCBAD DCCAD DCDAA第七章电解质溶液物化试卷(二)DBCDB ABABC DBDAC CDBAA第八章物化试卷(一)CCCDB BCACD DCABA DDDCC第八章物化试卷(二)DADBC BDBBC CDABD BCDCD第九章电解与极化作用ABACB BDAAD DBCCB DBDDC第十章化学动力学基础(一)物化试卷(一)CDCDB ADCBD BACCD CCABB第十章化学动力学基础(一)物化试卷(二)ABCBB DBCBB BDABA CBCAC第十一章化学动力学基础(二) 物化试卷(一)CBCAC CBCBB BCCDC ACCBC第十一章化学动力学基础(二) 物化试卷(二)CCDCA ADBCC ACBCD BCCAB第十二章界面现象物化试卷(一)CBCAD BCACC AABAB AADBB第十二章界面现象物化试卷(二)AACBC BABCC BBBDA AABBB第十三章胶体与大分子溶液物化试卷(一)DBDCD DDADB BDBDA CCDDD第十三章胶体与大分子溶液物化试卷(二)BADBB DDACB CACBA CBCBA。
物理化学经典习题一、填空题1.硫酸与水可形成三种水合盐:H 2SO 4·H 2O 、H 2SO 4·2H 2O 、H 2SO 4 ·4H 2O 。
常压下将一定量的H 2SO 4溶于水中,当达三相平衡时,能与冰、 H 2SO 4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是 。
2.Na +、H +的还原电极电势分别为 –2.71V 和 –0.83V ,但用Hg 作阴极电解 NaCl 溶液时,阴极产物是Na –Hg 齐,而不是H 2,这个现象的解释是 。
3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。
其胶团结构式为 。
注明紧密层、扩散层、胶核、胶粒、胶团。
4.在两个具有0.001mAgNO 3溶液的容器之间是一个AgCl 多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向 极方向流动。
5. 反应 A −→−1k B (Ⅰ) ; A −→−2k D (Ⅱ)。
已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂 改变获得B 和D 的比例。
6.等温等压(298K 及p ø)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol -1,若该反应通过可逆电池来完成,吸热 4.00 kJ·mol -1,则该化学反应的熵变为 。
7.若稀溶液表面张力γ与溶质浓度c的关系为γ0–γ =A + B ln c(γ0为纯溶剂表面张力,A、B为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。
1O2(g) ═ H2O(l) 的8.298.2K、101.325kPa下,反应H2(g) +2(∆r G m–∆r F m)/ J·mol-1为。
二、问答题1.为什么热和功的转化是不可逆的?1O2(g) ═ H2O(g),2.在绝热钢筒中进行一化学反应:H2(g) +2在反应自发进行。
问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,∆U,∆H,∆S和∆F。
3.对单组分体系相变,将克拉贝龙方程演化为克-克方程的条件是什么?4.为什么有的化学反应速率具有负温度系数,即温度升高反应速率反而下降?5.为什么说,热化学实验数据是计算化学平衡常数的主要基础?三、计算题1.苯在正常沸点353K下的∆vap H mø= 30.77 kJ·mol-1,今将353K及pø下的1molC6H6(l)向真空等温蒸发为同温同压下的苯蒸气(设为理想气体)。
(1) 求算在此过程中苯吸收的热量Q与所做的功W;(2)求苯的摩尔气化熵∆vap S mø及摩尔气化自由能∆vap G mø;(3)求环境的熵变∆S环,并判断上述过程是否为不可逆过程。
2.把一定量的气体反应物A迅速引入一个温度800K的抽空容器内,待反应达到指定温度后计时(已有一部分A分解)。
已知反应的计量方程为2A(g) 2B(g)+ C(g),反应的半衰期与起始浓度无关;t=0时,p总=1.316×104Pa ;t=10min时,p总=1.432×104Pa ;经很长时间后,p总=1.500×104Pa。
试求:(1) 反应速率常数k和反应半衰期t1/2;(2) 反应进行到1小时时,A物质的分压和总压各为多少?3.A和B能形成两种化合物A2B和AB2,A的熔点比B低,A2B的相合熔点介于A和B之间,AB2的不相合熔点介于A和A2B之间。
请画出该体系T ~ x相图的示意图。
4.将正丁醇(M r= 74)蒸气聚冷至273 K,发现其过饱和度(即p/ p°)约达到4方能自行凝结为液滴。
若在273K时,正丁醇的表面张力为0.0261 N·m-1,密度为1000 kg·m-3,试计算:(1) 此过饱和度下开始凝结的液滴的半径;(2) 每一液滴中所含正丁醇的分子数。
5.电池Pt∣H2(pø)∣HCl(0.1mol·kg-1∣AgCl(s) ∣Ag 在298 K时的电池电动势为0.3524V,求0.1mol·kg-1HCl溶液中HCl的平均离子活度a±、平均活度系数γ±及溶液的pH值。
已知 ø(AgCl /Ag)=0.2223V。
计算中可做合理的近似处理,但必须说明。
一、填空题(每小题1分,共15分)1、理想气体等温可逆压缩W()0;Q()0;ΔU()0;ΔH()02、在273K及PØ下,冰融化成水,以水和冰为系统W()0;Q ()0;ΔU()0;ΔH()0;ΔG()0。
3、一级反应以()对时间作图为一直线,速率常数是直线的()。
4、在密闭的容器中硝酸钾饱和溶液与水蒸汽呈平衡,并且存在着从溶液中析出细小硝酸钾晶体,该系统中K为(),Φ为(),f为()。
5、在稀的KI溶液中加入少量的硝酸银稀溶液,当KI过量时此时胶团的结构应表示为()。
二、单项选择(每小题2分,共10分)1、下列各量是化学势的是()。
A)j i n P T n A,,)(∂∂; B)j i n V T n G ,,)(∂∂; C )j i n P T n G ,,)(∂∂; D )j i n P T n H ,,)(∂∂。
2、在同一温度下,液体之中有半径为r 的小气泡,其饱和蒸汽压为Pr ,该平面液体的饱和蒸汽压为P 则( )。
A ) Pr=P ;B )Pr>P ;C )Pr<P;D )无法确定。
3、真实气体节流过程是( )。
A )恒温过程;B )恒熵过程;C )恒焓过程;D )恒内能过程4、零级反应的起始反应物浓度越大,则半衰期( )。
A )不变;B )越短;C )越长;D )无法确定。
5、在下列电解质溶液中,不能用外推法求得无限稀释摩尔电导率的是( )。
A) NaCl; B) HAC; C) NaOH; D) HCl;三、判断题(每小题2分,共20分)1、在标准压力和100℃,1mol 水定温蒸发为蒸气。
假设蒸气为理想气体。
因为这一过程中系统的温度不变,所以⊿U =0。
( )2、熵增加的过程都是自发过程。
( )3、不可逆过程一定是自发的,自发过程一定是不可逆的。
( )4、某一化学反应的热效应⊿r H m 被反应温度T 除,即得此反应的⊿r S m 。
( )5、有简单级数的反应是基元反应 。
( )6、电极电势更低的金属与被保护金属相连接,构成原电池的保护方法称为阳极保护法。
()7、根据热力学第一定律,因为能量不能无中生有,所以一个体系若要对外作功,必须从外界吸收热量。
()8、二元合金的步冷曲线上,转折点对应的温度即为该合金的最低共熔点。
()9、自然界存在温度降低,但熵值增加的过程。
()10、平衡常数改变,则平衡发生移动;平衡发生移动,则平衡常数改变。
()四、(共15分) 2mol理想气体氦(CV,m=1.5R)在 127℃时压力为5×105Pa,今在定温下外压恒定为1×106Pa进行压缩。
计算此过程的Q、W、ΔU、ΔH、ΔS、ΔA和ΔG。
五、(共10分)反应NH2COONH4(s)=2NH3(g)+CO2(g)在30℃时Kø=6.55×10-4。
试求NH2COONH4的分解压。
六、(共20分) 反应C2H4(g)+H2O(g)=C2H5OH(g)的ΔrHøm为-4.602×104J·mol-1, ΔC p=0,Δr Gøm(298)=-8.196×103J·mol-11、导出此反应的Δr Gøm=f(T)及lnKø=f(T)关系式。
2、计算此反应在500K时的Kø及Δr Gøm七、(共20分)HAc及C6H6的相图如下。
1、指出各区域所存在的相和自由度数;2、从图中可以看出最低共熔温度为-8℃,最低共熔混合物的质量分数为含C6H60.64,试问将含苯0.75和0.25的溶液各100g由20℃冷却时,首先析出的固体为何物,计算最多能析出固体的质量。
3、叙述将上述两溶液冷却到-10℃时,过程的相变化。
并画出其步冷曲线。
20A℃10 1 B0 2E 3-10 40 20 40 60 80 100HAc C6H6ω(C6H6)/%八、试将下列化学反应设计成电池(每小题5分,共10分)1、 H + + OH - → H 2O(l)2、 Ag + +I - → AgI(s)九、(共15分) 试设计一个电池,使其中进行下述反应:Fe 2+(a 1) + Ag +(a 3) = Ag(s) + Fe 3+(a 2)设活度系数均为1,己知E ø(Fe 3+|Fe 2+)=0.771V,E ø(Ag|Ag +)=0.7991V1、 写出电池表示式;2、 计算25℃时,上述电池反应的K ø;3、若将过量的银粉加到浓度为0.05mol kg -1的Fe(NO 3)3溶液中,求反应达平衡后Ag +的浓度为多少?十、(共15分) 某气相1—2级对峙反应:)()()(g C g B k k g A +-+ 298K 时,k +=0.20s -1,k -=5.0×10-9Pa -1·s -1,当温度升高到310K 时,k +和k -均增大一倍。
试求算:1、 该反应在298K 时的K ø;2、 正、逆向反应的活化能;3、 总反应的Δr H øm一、填空题1.硫酸与水可形成三种水合盐:H2SO4·H2O、H2SO4·2H2O 、H2SO4 ·4H2O。
常压下将一定量的H2SO4溶于水中,当达三相平衡时,能与冰、H2SO4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是。
2.Na+、H+的还原电极电势分别为–2.71V和–0.83V,但用Hg作阴极电解NaCl溶液时,阴极产物是Na–Hg 齐,而不是H2,这个现象的解释是。
3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。
其胶团结构式为。
注明紧密层、扩散层、胶核、胶粒、胶团。
4.在两个具有0.001mAgNO3溶液的容器之间是一个AgCl多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向极方向流动。
5.反应A B (Ⅰ) ; A D (Ⅱ)。
已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂改变获得B和D的比例。
6.等温等压(298K及p?)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol-1,若该反应通过可逆电池来完成,吸热4.00 kJ·mol-1,则该化学反应的熵变为。