(完整word版)湘教版九年级数学上册知识点总结简洁重点的
- 格式:doc
- 大小:414.18 KB
- 文档页数:6
九(上)数学知识点答案第一章一元二次方程一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c为常数,a≠0)的形式。
(2)一元二次方程的一般式及各系数含义一般式:ax2+bx+c=0(a,b,c为常数,a≠0),其中,a是二次项系数,b是一次项系数,c是常数项.2、分解因式法(1)分解因式的概念当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。
(2)分解因式法解一元二次方程的一般步骤一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解.3、配方法(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法.(2)配方法的步骤和方法一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;三、直接用开平方法求出它的解。
4、公式法(1)求根公式b2—4ac≥0时,x=a acb b24 2-±-(2)求一元二次方程的一般式及各系数的含义一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a≠0);二、计算b2—4ac 的值,当b2—4ac≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根.命题与证明二、知识要点梳理知识点一:定义要点诠释:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.知识点二:命题要点诠释:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.(句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系.)知识点三:命题的结构要点诠释:命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.知识点四:公理要点诠释:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。
湘教版数学九年级上册5.2《统计的简单应用》说课稿2一. 教材分析《统计的简单应用》是湘教版数学九年级上册第五章第二节的内容。
本节内容是在学生掌握了统计的基本知识的基础上进行教学的,主要让学生了解和掌握统计在实际生活中的应用,培养学生运用统计知识解决实际问题的能力。
教材通过实例引导学生学习统计在生产、生活中的应用,让学生感受统计的价值,培养学生的应用意识和解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了统计的基本知识,对统计有一定的认识。
但是,学生在实际应用统计知识解决实际问题时,往往会因为对实际问题的理解不够深入,对统计方法的应用不够熟练,导致解题困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解实际问题,熟练运用统计方法。
三. 说教学目标1.知识与技能目标:让学生掌握统计在实际生活中的应用,培养学生运用统计知识解决实际问题的能力。
2.过程与方法目标:通过实例分析,让学生了解统计方法在解决实际问题中的作用,培养学生的数据分析能力。
3.情感态度与价值观目标:让学生感受统计的价值,培养学生的应用意识和解决实际问题的能力。
四. 说教学重难点1.教学重点:让学生掌握统计在实际生活中的应用,培养学生运用统计知识解决实际问题的能力。
2.教学难点:如何引导学生深入理解实际问题,熟练运用统计方法。
五. 说教学方法与手段1.教学方法:采用案例教学法、问题驱动法、小组合作学习法等。
2.教学手段:利用多媒体课件、统计图表等辅助教学。
六. 说教学过程1.导入新课:通过生活中的实例,引发学生对统计在实际生活中应用的思考,激发学生的学习兴趣。
2.知识讲解:引导学生分析实例,讲解统计在实际生活中的应用方法,让学生掌握统计知识。
3.实践操作:让学生分组讨论,选取实际问题进行统计分析,培养学生的实际操作能力。
4.总结提升:对学生的实践操作进行点评,引导学生总结统计在实际生活中的应用方法,提升学生的应用能力。
湘教版九年级数学上册第一章反比例函数(一)反比例函数1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(二)反比例函数的图象与性质1.函数解析式:()2.自变量的取值范围:3.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质:自变量,函数图象与x轴、y轴无交点,两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,若(a,b)在双曲线的一支上,(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义: 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y 轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).,由双曲线的对称性可知,P关于原点的对称点的面积为.图2)直线与双曲线的关系:当时,两图象没有交点;当时,如果方程化成的形式,那么可得;如果方程能化成 (的形式,那么进而得出方程的根。
配方式基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成(可作为公式记也可以说AB:DE=BC:EF;推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
湘教版数学九年级上册3.3《相似图形》说课稿一. 教材分析湘教版数学九年级上册3.3《相似图形》是整个九年级上册中非常重要的一部分,它主要向学生介绍了相似图形的概念、性质和判定方法。
这一节内容不仅是前面所学知识的巩固,也为后面学习几何图形的变换、三角函数等知识打下了基础。
教材从生活实例出发,引导学生发现相似图形的规律,然后通过探究活动,让学生自主发现相似图形的性质。
教材注重学生的主体地位,鼓励学生动脑思考,动手操作,培养学生的几何思维能力。
二. 学情分析九年级的学生已经掌握了基本的几何知识,对图形的认识有一定的基础。
但是,他们对相似图形的概念和性质的理解还比较模糊,需要通过实例和活动来进一步理解和掌握。
同时,九年级的学生正处于青春期,好奇心强,喜欢探究未知的事物。
他们具有一定的独立思考能力,但还需要教师的引导和启发。
三. 说教学目标根据新课程标准,本节课的教学目标分为三个方面:知识与技能、过程与方法、情感态度与价值观。
1.知识与技能:让学生理解相似图形的概念,掌握相似图形的性质和判定方法。
2.过程与方法:通过观察、操作、探究等活动,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、严谨治学的态度。
四. 说教学重难点1.教学重点:相似图形的概念、性质和判定方法。
2.教学难点:相似图形的判定方法,尤其是如何运用性质进行判定。
五. 说教学方法与手段本节课采用以学生为主体的教学方法,教师引导,学生自主探究。
同时,运用多媒体课件,直观展示相似图形的特点,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:从生活实例出发,引导学生发现相似图形的规律,激发学生的学习兴趣。
2.新课讲解:介绍相似图形的概念、性质和判定方法,通过实例和活动,让学生动手操作,动脑思考。
3.课堂练习:设计一些具有针对性的练习题,让学生巩固所学知识。
4.总结提升:对本节课的内容进行总结,强调相似图形在实际生活中的应用。
九年级知识点复习第一章一元二次方程1. 如果一个方程通过移项可以使右边________,而左边是______的二次多项式,那么这样的方程,叫做________。
2. 一元二次方程的一般形式___________________。
3. 因式分解法解一元二次方程的依据是,如果两个因式的积等于0,那么_______。
即若ab=0,则_____或_______。
4.当一元二次方程的一边为_______,而另一边能分解成两个________的乘积时,可利用"若pq=0时,则______或______"来解一元二次方程,这种方法叫做_____________.5. 对形如x²+(a+b)x+ab=0(a,b为常数)的方程(或通过整理符合其形式的),可将左边__________,方程变形为_______________________,则x+a=0或x+b=0, x1=______,x2=__________.即6. 解一元二次方程时,在方程的左边加上___________,再_____________,使得含未知数的项在___________,这种方法叫做__________________.配方后就可以用________________或_____________.这样解一元二次方程的方法叫做__________________.7. 一般地,一元二次方程 ax²+bx+c+=0(a≠0)通过配方可以化成_______________的形式8. 方程ax²+bx+c=0(a≠0)两边同时除以a,得_______________________.9. 在方程左边加上一次项系数一半的平方_________________,再减去________________, 得_____________________即_____________________________10. 用因式分解法或直接开平方法可得x=__________________________.11. 一元二次方程ax²+bx+c=0(a≠0)的求根公式是________________________________.12. 用公式法解一元二次方程的步骤是:①把方程化为_____________________( )的形式,确定________的值(注意符号)②求出___________的值x1,x2③若___________,则把a,b及________的值入求根公式求出13. 不解方程,运用根的判别式就可以判定一元二次方程根的情况:①若△=b²-4ac>0 ,则方程有__________________________________.②若△=b²-4ac=0 ,则方程有__________________________________.③若△=b²-4ac<0 ,则方程有__________________________________.14. 一元二次方程根与系数的关系是:x1,+x2=__________.,x1x2=_________.15. 三个连续数,常设________为x,则另外两个数分别为_______ ,_________.16 两位数的表示方法是_______________________________________________.17.利息=____________________________ 每件的利润=___________________________利润率=(销售价-_________)÷___________×100%销售额=___________________________________________第二章命题与证明1. ________________________________叫做这个概念的定义,即定义是通过列出__________或者___________的基本属性来描写或者___________一个词或者____________的意义.2. 定义必须是____________,一般避免使用含糊不清的术语.3. 由定义可知,命题由___________和__________两个部分组成."如果两个三角形的三条边对应相等,那么,这两个三角形等"中,______________________________是条件,___________________________结论.4. 如果一个命题叙述的事情是真的,那么它是_______________,如果一个命题叙述的事情是假的,那么它是_______________________.5. 要说明一个命题是假命题,通常可以举一个例子,使它具备命题的_____________________,而不具备命题的___________________,这种例子称为______________________.要说明一个命题是假的只要举出一个_______________就可以了.6. 从一个条件出发,通过___________________( ),得出它的结论_________________,从而判定该命题为真,这个过程叫做_________________.7. 将一个命题的______________与_____________交换得到一个新命题,我们称这个命题为原命题的___________________.8. 写逆命题的关键是分清____________和___________,而判断真假则依赖于对知识的掌握.9. 数学中有些___________的正确性是人们在长期实践中总结出来的,并把它作为判断_________的原始依据,这样的真命题叫做__________.10. 有些________可以从_________或其他________出发,用__________的方法判断它们是否正确,并且可以作为其他命题_________的依据,这样的真命题叫做______________.11. 在进行命题证明时,我们必须先设定若干倒是无条件正确,这些无条件正确的命题就是____________.公理是"______________",而且无须证明,可以直接使用,定理则是由_________推导而来,当人们设定的_____________不同时,由此推导的___________也可能不同.12. 如果一个_______的逆命题也是定理,那么称它是原来定理的_________.这两个定理称为___________,每个命题都有_____________,但并非所有定理都有____________.13.从一个__________的条件出发,通过___________( ),得出它的结论成立,从而判定该命题为____________,这个过程叫做_____________.14. 证明一个命题,首先要分清楚它的__________是什么,___________是什么;把_________作为已知内容,把_________作为求证的内容;其次要从____________出发,运用概念的___________,___________和已证明过的________,通过 讲道理( ),得出它的结论成立,这个___________过程就是____________的过程.15. 几何证明书写的基本结构是:① 根据题意,____________,并在图上标明字母和符号.② 结合图形,用________,________分别把________和_________写在已知和求证的后面③ 依据解题途径,______________________________.16.平行线的判定定理_____________________,平行线的性质定理_____________________17.三角形的一个外角_______________________,三角形的外角_____________________第三章 图形的相似.2. 一如果两个图形的_________,那么称这两个图形相似.3. 把一个图形____________(或________) 得到的图形是__________,即__________, 大小般地,如果选用一个长度单位量得两条线段AB,CD 的长度分别是m,n 。
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。
第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数.2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
a)x为未知数,(0第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点.②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
湘教版九年级数学上册知识点归纳总结九年级数学上册第一章反比例函数一)反比例函数1.反比例函数可以写成y=k/x的形式,注意自变量x的指数为-1,在解决有关量指数问题时应特别注意系数这一限制条件。
2.y=kx可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
二)反比例函数的图象与性质1.函数解析式:y=k/x2.自变量的取值范围:x≠03.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。
1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直;双曲线越小,图象的弯曲度越大。
2)图象的位置和性质:自变量x越接近0,函数图象与x 轴、y轴无交点,两条坐标轴是双曲线的渐近线。
当x>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当x<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)和(1/a,1/b)在双曲线的另一支上。
4.k的几何意义:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是2k。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为k。
5.说明:1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
2)直线与双曲线的关系:当直线与双曲线不相交时,两图象没有交点;当直线与双曲线相切时,两图象有一个交点;当直线与双曲线相交时,两图象必有两个交点,且这两个交点关于原点成中心对称。
三)反比例函数的应用1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式。
2.反比例函数与一次函数的联系。
第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?(k为常数且k≠0)的形式,【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t 可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积S的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.(k是分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx常数,k≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x -是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x.4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知的图象.分析∶画出函数图象一般探究1:反比例函数图象的画法画出反比例函数y=6x分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=6x 与y=-6x之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而增大.探究4:反比例函数的性质反比例函数y=-6x 与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx (k ≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=k x 与y=-kx(k ≠0)的图象关于x 轴或y 轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解 1.教材P9例1.2.如果函数y =2x k +1的图象是双曲线,那么k = . 【答案】 -23.如果反比例函数y=3k x-的图象位于第二、四象限内,那么满足条件的正整数k 的值是 .【答案】 1,24.已知直线y =kx +b 的图象经过第一、二、四象限,则函数y=kbx的图象在第象限. 【答案】 二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】C7.已知函数23-为反比例函数.()2m-y m x(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当-3≤x≤-1时,求此函数的最大值和最小值.2的图象,并根据图象解答下列问题:8.作出反比例函数y=12x(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<6的图象,结合图象回答:9.作出反比例函数y=-4x(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知的图象经过点P(2,4)1.思考:已知反比例函数y=kx(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k 的正负性,利用反比例函数的性质来判定函数图象所在的象限、y 随x 的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k 的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y 1),B(-2,y 2)是该函数图象上的两点,试比较y 1,y 2的大小.分析:(1)由图象可知,反比例函数y=kx 的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y 随自变量x 的增大而减小,因此,k>0.(2)因为点A(-3,y 1),B(-2,y 2)是该函数图象上的两点且-3<0,-2<0.所以点A 、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y 1>y 2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法. 三、运用新知,深化理解1.若点A(7,y 1),B(5,y 2)在双曲线y=-3x上,则y 1、y 2中较小的是 . 【答案】 y 22.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y=kx(k >0)的图象上的两点,若x 1<0<x 2,则有( ).A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.y 2<y 1<0 【答案】 A3.若A(a 1,b 1),B(a 2,b 2)是反比例函数图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A.b 1<b 2B.b 1=b 2C.b 1>b 2D.大小不确定 【答案】 D4.函数y=-1x的图象上有两点A(x 1,y 1),B(x 2,y 2),若0<x 1<x 2,则( )A.y 1<y 2B.y 1>y 2C.y 1=y 2D.y 1、y 2的大小不确定 【答案】 A5.已知点P(2,2)在反比例函数y=kx(k ≠0)的图象上,(1)当x=-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.6.已知y=kx(k ≠0,k 为常数)过三个点A(2,-8),B(4,b),C(a ,2).(1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上? 分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx(k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k ,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5,25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题. 【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力. 【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题. 【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知 1.正比例函数有哪些性质? 2.一次函数有哪些性质? 3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解. 二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43- k 2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1= ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx (k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|. 解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A.12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10. 4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1.(2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A 在反比例函数图象上.把A ′点的横坐标代入一次函数解析式得,y =-2-1=-3,所以点A ′不在一次函数图象上.5.已知一次函数y =kx +b 的图象经过点A(0,1)和点B(a,-3a),a <0,且点B 在反比例函数的y=-3x的图象上.(1)求a 的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y 的值在-1≤y ≤3范围内时,相应的x 的取值范围.(4)如果P(m,y 1)、Q(m +1,y 2)是这个一次函数图象上的两点,试比较y1与y2的大小. 分析:(1)由于点A 、点B 在一次函数图象上,点B 在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k 、b 和a 的值.(2)由 (1)求出的k 、b 、a 的值,求出函数的解析式,通过列表、描点、连线画出函数图象. (3)和 (4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y 的值在-1≤y ≤3范围内时,相应的x 的值为:-1≤x ≤1. (4)从图象可知,y 随x 的增大而减小,又m +1>m ,所以y 1>y 2.或解:当x 1=m 时,y 1=-2m +1;当x 2=m +1时,y 2=-2×(m +1)+1=-2m -1所以y 1-y 2=(-2m +1)-(-2m -1)=2>0,即y 1>y2.6.如图,一次函数y =kx +b 的图象与反比例函数y=mx的图象交于A 、B 两点. (1)利用图象中的条件,求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析:(1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式. (2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?,请你判断:当F一定(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=F,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.S得:p=450/0.005=90000(Pa)类似的,(2)因为F=450N,所以当S=0.005m2时,由p=FS当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y 与x的函数关系式是,自变量x的取值范围是.;x>0【答案】y=12x3.若梯形的下底长为x,上底长为下底长的1,高为y,面积为60,则y与x的函数关系3是(不考虑x的取值范围).【答案】y=90x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000x D.y=6000x【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( )。
湘教版九年级数学上册知识点归纳总结一、反比例函数反比例函数及其图象的性质k 第一章反比例函数y=—1.函数解析式:X (k-:t:-0)2.自变量的取值范围:x;t=O3.图象:(1)图象的形状:双曲线.l k l I叶越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据X 1= x, -4 , X 2 = X2 -0 , …,x,』=x,.-a,那么.s =—f(入,+x2+---+式)]-了2 I立,2(此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方)(3)新数据法:原数据X i,X1,···,X11,的方差与新数据x\= x1 -a , x'2 = x�-a. …,x',. = x,1 -a的方差相等,也就是说,根据方差的基本公式,求得x'i,x'i ,···,x'11, 的方差就等千原数据的方差。
3、标准差:方差的算数平方极叫做这组数据的标准差,用"s"'表示,即s=N =J如-守+(X1三)l+…+(x,, -x)2](方差或标准差越大,离散程度越大,稳定性越差,反之越稳定)识点用样本平均数、方差估计总体平均数、方差由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可用简单随机样本的平均数与方差分别去估计总体的平均数与方差.统计的简单应用1 . 从统计的观点看,一个“卑”就是总伈中共有某些特牲的个休在总休中所占的百分比2· 在实践中,我们常常通过简单随机抽样,用样本的�去估计总体相应的率.3· 通过科学调查,在取得真实可靠的数据后,我们可以运用正确的统计方法来推断总体,除此之外,还可以利用已有的统计数据来对事物在未来一段时间内的发展趋势做出皿和预测,为正确的决策提供服务.。
湘教版数学九年级上册2.3《一元二次方程根的判别式》说课稿1一. 教材分析《一元二次方程根的判别式》是湘教版数学九年级上册第2.3节的内容。
本节主要让学生掌握一元二次方程的根的判别式(()),并能够应用判别式判断一元二次方程的根的情况。
这一节内容是整个一元二次方程部分的核心,对于学生理解和掌握一元二次方程的解法具有重要意义。
二. 学情分析九年级的学生已经学习过一元一次方程和一元二次方程的基本概念,对代数运算有一定的掌握。
但是,对于一元二次方程的根的判别式的推导和应用,还需要进一步引导和启发。
此外,学生可能对于抽象的数学概念和证明过程感到困惑,需要通过具体的例子和实际操作来加深理解。
三. 说教学目标1.知识与技能目标:学生能够理解一元二次方程根的判别式的定义和意义,掌握判别式的计算方法,并能够应用判别式判断一元二次方程的根的情况。
2.过程与方法目标:学生通过观察、实验、推理和证明等数学活动,培养逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与数学学习,对数学产生兴趣和自信心,培养合作和交流的能力。
四. 说教学重难点1.教学重点:一元二次方程根的判别式的定义和意义,判别式的计算方法。
2.教学难点:判别式的推导过程,以及如何应用判别式判断一元二次方程的根的情况。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、实验、推理和证明等数学活动,主动探索和发现一元二次方程根的判别式的性质和规律。
2.教学手段:利用多媒体课件和实物模型等辅助教学手段,生动形象地展示一元二次方程根的判别式的概念和应用。
六. 说教学过程1.导入:通过一个实际问题,引出一元二次方程根的判别式的概念,激发学生的兴趣和思考。
2.新课导入:介绍一元二次方程根的判别式的定义和意义,引导学生理解判别式的作用。
3.案例分析:通过具体的例子,讲解判别式的计算方法,让学生通过实际操作来加深理解。
4.性质探索:引导学生观察和分析判别式的性质,让学生通过推理和证明来发现规律。
湘教版数学九年级上册第三章《图形的相似》复习说课稿一. 教材分析湘教版数学九年级上册第三章《图形的相似》是整个初中数学的重要内容,也是九年级上学期的重点和难点。
本章主要介绍了相似图形的概念、性质和运用。
通过本章的学习,学生能够理解相似图形的定义,掌握相似图形的性质,并能运用相似图形解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。
但是,对于图形的相似这一概念,学生可能比较抽象,难以理解。
因此,在教学过程中,需要通过大量的实例和图形,帮助学生直观地理解相似图形的概念和性质。
三. 说教学目标1.知识与技能目标:学生能够理解相似图形的定义,掌握相似图形的性质,并能运用相似图形解决一些实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间观念和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:相似图形的定义和性质。
2.教学难点:相似图形的性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法。
2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。
六. 说教学过程1.导入:通过展示一些实际的图形,引导学生观察和思考,引出相似图形的概念。
2.新课导入:介绍相似图形的定义和性质,通过实例和图形进行讲解和演示。
3.课堂练习:布置一些相关的练习题,让学生巩固所学的内容。
4.应用拓展:通过一些实际问题,引导学生运用相似图形进行分析和解决。
5.总结提升:对本章的内容进行总结,强调相似图形的重要性和应用价值。
七. 说板书设计板书设计要简洁明了,突出重点。
可以采用图示、列表、流程图等形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。
同时,教师还需要及时进行自我评价,反思教学过程中的不足之处,不断改进教学方法和手段。
2 3 4 1中考数学总复习资料基础知识点: 一、实数的分类:代数部分第一章:实数⎧ ⎧ ⎧正整数⎫ ⎪ ⎪ ⎪⎪ ⎪ 整数⎨零 有理数⎪ ⎪负整数⎪有限小数或无限循环小数 ⎪ ⎨ ⎩ ⎬ 实数⎨ ⎪ ⎧正分数⎪⎪⎪分数⎨ ⎪⎪ ⎪⎩ ⎩负分数⎪⎭ ⎪ ⎧正无理数⎫⎪无理数⎨ ⎬无限不循环小数 ⎩⎪⎩负无理数⎭ p 1、有理数:任何一个有理数总可以写成 的形式,其中 p 、q 是互质的整q数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如 、;特 定结构的不限环无限小数,如 1.101001000100001……;特定意义的数,如π、sin 45 °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数 a 的相反数是 -a ; (2)a 和 b 互为相反数⇔ a+b=0 2、倒数:(1)实数 a (a≠0)的倒数是 ;(2)a 和 b 互为倒数⇔ ab = 1;(3) a注意 0 没有倒数3、绝对值:(1) 一个数 a 的绝对值有以下三种情况:a = ⎩⎧a , ⎪ a ⎨0, ⎪- a , a 0 a = 0 a 0(2) 实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3) 去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1) 平方根,算术平方根:设 a ≥0,称±叫 a 的平方根, 叫 a 的算术平方根。
(2) 正数的平方根有两个,它们互为相反数;0 的平方根是 0;负数没有平方根。
(3) 立方根: 3 a 叫实数 a 的立方根。
(4) 一个正数有一个正的立方根;0 的立方根是 0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
九(上)数学知识点覃勉相似三角形周长的比等于相似比, 相似三角形面积的比等于相似比的平方第一章一兀二次方程一元二次方程:只含有一个未知数 x 的整式方程,并且都可以化作 ax 2+bx+c=0(a,b,c 为常数, 0)的形式。
(2 )一元二次方程的一般式及各系数含义一般式:ax 2+bx+c=0(a,b,c 为常数,a * 0),其中,a 是二次项系数,b 是一次项系数,c 是 常数项。
2、 分解因式法3、 配方法4、 公式法 (1 )求根公式: b .b 2 4acx=—2a(2)求一元二次方程的一般式及各系数的含义 一、将方程化为一元二次方程的一般ax 2+bx+c=0(a,b,c 为常数,a * 0);二、计算 b-4ac的值,当b 2-4ac > 0时,方程有实数根(> 0有两个实数根,=0两个相等实数根)•当b2-4ac v 0时,方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
第三章图形的相似1、 线段的比一般地, 在四条线段中, 如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段2、 比例的基本性质如果a / b = c / d,那么ad = be. 3、 相似三角形的性质和判定角对应相等,且三条边对应成比例的两个三角形叫作相似三角形.如果△A'E'C '与AAEC 相似,且A', E', C'分别与A, B, C 对应, 那么记作△A'B'C's^ABC, 读作“△A'B'C '相似于AABC” .相 似三角形的对应边的比k 叫作相似比判定定理1 三边对应成比例的两个三角形相似. 判定定理2 两角对应相等的两个三角形相似 •判定定理3 两边对应成比例且夹角相等的两个三角形相似。
b 2-4ac > 0 时,4、 相似多边形把对应角相等, 并且对应边成比例的两个多边形叫作相似多边形. 相似多边形的对应边的比k叫作相似比.相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方.取定一点O,把图形上任意一点P对应到射线OP(或它的反向延长线)上一点P ',使得线段OP '与OP 的比等于常数k (k > 0),点O 对应到它自身, 这种变换叫作位似变换 ,点O 叫作位似中心, 常数k 叫作位似比, 一个图形经过位似 变换得到的图形叫作与原图形位似的图形•从位似变换和位似的图形的定义立即得出:两个位似的图形上每一对对应点都与位似中心在一条直线上, 并且新图形与原图形上对应点到位似中心的距离之比等于位似比. 5、 相似多边形的性质性质1相似多边形的对应边成比例 性质2相似多边形的对应角相等. 性质3相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方.6、 相似多边形的判定对应角相等, 对应边成比例的两个多边形相似.第四章、解直角三角形锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做 /A 的锐角三角函数锐角三角函数的取值范围: O W sin a< 1, 0< COS aW 1, tan a 》0.锐角三角函数之间的关系(1) 平方关系sin 2 A cos 2 A 1(2) 倒数关系如图,在△ ABC 中,/ C=90°sin AA 的对边斜边cos AA 的邻边斜边tan AA 的对边A 的邻边 cotAA 的邻边 A 的对边/A 的邻辺NR 的時边tan A?ta n(90 —A)=1(3)弦切关系sin A 仆cos A ta nA= cotA=-cos A si nA(4)互余关系sinA=cos(90 —A), cosA=sin(90 —A)tanA=cot(90 —A), cotA=tan(90 —A)特殊角的三角函数值a sin a cos a tan a cot a30°1273pF45°孚孚1160°"2-12矣T(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)阳越小,图象的弯曲度越大.九下(2)图象的位置和性质: 与坐标轴没有交点当上>0时,图象的两支分别位于一、三象限;在每个象限内, y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.、二次函数相关概念及定义二次函数的概念:一般地,形如 y ax' bx c ( a , b , c 是常数,a 0 )的函数,叫做二 次函数。
初中各种函数知识点总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0x⇔y,0><点P(x,y)在第三象限0x⇔y<,0<点P(x,y)在第四象限0⇔yx,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
九年级数学湘教版知识点一、整数与有理数整数表示及其运算1. 整数的概念整数是由正整数、零和负整数组成的数集,用表示。
2. 整数的运算(1) 加法运算:整数与整数相加的结果仍然是整数。
(2) 减法运算:整数与整数相减的结果仍然是整数。
(3) 乘法运算:整数与整数相乘的结果仍然是整数。
(4) 除法运算:整数之间可以进行除法运算,商不一定是整数,但可以是有理数。
有理数的表示及其运算1. 有理数的概念有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
2. 有理数的运算(1) 加法运算:有理数与有理数相加的结果仍然是有理数。
(2) 减法运算:有理数与有理数相减的结果仍然是有理数。
(3) 乘法运算:有理数与有理数相乘的结果仍然是有理数。
(4) 除法运算:有理数之间可以进行除法运算,商不一定是有理数,但可以是无理数。
二、平面图形与立体图形平面图形的性质1. 正多边形正多边形是指所有边相等、所有角相等的多边形。
2. 直线和平行线(1) 直线是由无数个点连在一起而成的,不存在拐弯。
(2) 平行线是指两条直线在同一个平面上永不相交的线。
立体图形的性质1. 三视图立体图形的三视图包括俯视图、主视图和左视图,可以用来全面了解立体图形的结构和形状。
2. 立体图形的展开图立体图形的展开图是将其各个面展开为一个平面图形,便于计算和构造。
三、比例与相似比例的概念及性质1. 比例的概念比例是指两个数或量之间的相等关系,可以用等号(=)表示。
2. 比例的性质(1) 两个比例相等的四个数依次对应相等。
(2) 如果两个比例的两个对应项分别相等,则这两个比例相等。
相似的概念及判定1. 相似的概念相似是指两个图形形状相同,但大小不一样。
2. 判定相似的条件(1) 对应角相等:两个相似图形的对应角相等。
(2) 对应边成比例:两个相似图形的对应边成比例。
四、一次函数与一元一次方程一次函数与图像1. 一次函数的概念一次函数是指函数的表达式为,其中和为常数。
九年级湘教版数学知识点汇总初三数学上册知识点归纳1、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.(2)配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2)系数化1:将二次项系数化为13)移项:将常数项移到等号右侧4)配方:等号左右两边同时加上一次项系数一半的平方5)变形:将等号左边的代数式写成完全平方形式6)开方:左右同时开平方7)求解:整理即可得到原方程的根(3)公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初三数学复习方法总结按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
九(上)数学知识点覃勉
第一章一元二次方程
一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c为常数,a≠0)的形式。
(2)一元二次方程的一般式及各系数含义
一般式:ax2+bx+c=0(a,b,c为常数,a≠0),其中,a是二次项系数,b是一次项系数,c是常数项。
2、分解因式法
3、配方法
4、公式法
(1)求根公式:
b2-4ac≥0时,x=
a ac
b b
2
4 2-
±
-
(2)求一元二次方程的一般式及各系数的含义
一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a≠0);二、计算b2-4ac 的值,当b2-4ac≥0时,方程有实数根(>0有两个实数根,=0两个相等实数根).当b²-4ac <0时,方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
第三章图形的相似
1、线段的比
一般地,在四条线段中,如果其中两条线段的比等于另外两条线段的比,
那么这四条线段叫作成比例线段
2、比例的基本性质
如果a/b=c/d,那么ad=bc.
3、相似三角形的性质和判定
角对应相等,且三条边对应成比例的两个三角形叫作相似三
角形.如果△A′B′C′与△ABC相似,且A′,B′,C′分别与A,B,C对应,那么记作△A′B′C′∽△ABC,读作“△A′B′C′相似于△ABC”.相似三角形的对应边的比k叫作相似比
判定定理1三边对应成比例的两个三角形相似.
判定定理2两角对应相等的两个三角形相似.
判定定理3两边对应成比例且夹角相等的两个三角形相似。
相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方
4、相似多边形
把对应角相等, 并且对应边成比例的两个多边形叫作相似多边形. 相似多边形的对应边的比k 叫作相似比.
相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方. 取定一点O, 把图形上任意一点P 对应到射线OP (或它的反向延长线)上 一点P ′ , 使得线段OP ′与OP 的比等于常数k(k > 0), 点O 对应到它自身, 这种变换叫作位似变换 , 点O 叫作位似中心, 常数k 叫作位似比, 一个图形经过位似变换得到的图形叫作与原图形位似的图形.从位似变换和位似的图形的定义立即得出:
两个位似的图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于位似比. 5、相似多边形的性质
性质1 相似多边形的对应边成比例 性质2 相似多边形的对应角相等.
性质3 相似多边形周长的比等于相似比, 相似多边形面积的比等于相似 比的平方.
6、相似多边形的判定
对应角相等, 对应边成比例的两个多边形相似.
第四章、解直角三角形
锐角三角函数的概念 如图,在△ABC 中,∠C=90°
c a
sin =∠=
斜边的对边A A
c b
cos =∠=
斜边的邻边A A
b a
tan =∠∠=
的邻边的对边A A A
a
b
cot =∠∠=
的对边的邻边A A A
锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0. 锐角三角函数之间的关系
(1)平方关系
1cos sin 22=+A A
(2)倒数关系
tanA •tan(90°—A)=1 (3)弦切关系 tanA=
A A
cos sin cotA=A
A sin cos (4)互余关系
sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) 特殊角的三角函数值
α sin α
cos α
tan α
cot α
30° 1
2 32
33
3
45° 22 22
1
1
60°
32
12
3
33
说明:锐角三角函数的增减性,当角度在0°~90°之间变化时. (1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大)
九下 一、反比例函数
反比例函数及其图象的性质
1.函数解析式:() 2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.
(2)图象的位置和性质: 与坐标轴没有交点 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.
二、二次函数 ✧ 相关概念及定义
二次函数的概念:一般地,形如
2
y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
✧ 二次函数各种形式之间的变换
➢ 二次函数c bx ax y ++=2
用配方法可化成:()k h x a y +-=2
的形式,其中
a
b a
c k a b h 4422
-=-=,.
✧ 二次函数解析式的表示方法
➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); ➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
➢ 交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).
✧ 二次函数2
ax y =的性质 ✧ 二次函数2y ax c =+的性质 ✧ 二次函数y a x h =-的性质:
a 的符号
开口方向 顶点坐标 对称轴 性质
0a >
向上
()00, y 轴
0x >时,y 随x 的增大而增大;0x <时,y 随
x 的增大而减小;0x =时,y 有最小值0.
0a < 向下
()00,
y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随
x 的增大而增大;0x =时,y 有最大值0.
a 的符号
开口方向 顶点坐标 对称轴 性质
0a >
向上
()0c , y 轴
0x >时,y 随x 的增大而增大;0x <时,y 随
x 的增大而减小;0x =时,y 有最小值c .
0a < 向下
()0c ,
y 轴
0x >时,y 随x 的增大而减小;0x <时,y 随
x 的增大而增大;0x =时,y 有最大值c .
二次函数
y a x h k =-+的性质
三、圆
1、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 2、圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
3、圆周角定理
顶点在圆上,并且两边都与圆相交的角,叫圆周角。
(1)圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
(2)圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
4、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
5、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; (2)性质定理:切线垂直于过切点的半径
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。