东北育才学校数学学科优秀教案 (3)
- 格式:doc
- 大小:57.50 KB
- 文档页数:2
直线与平面平行的判定【教学内容分析】本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大.【学生学习情况分析】任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
【设计思想】本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
【教学目标】通过直观感知——观察-—操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感.【教学重点与难点】重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
【教学过程设计】(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径.(设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备)(二)判定定理的探求过程1、直观感知提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?生1:例举日光灯与天花板,树立的电线杆与墙面.生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
辽宁省东北育才学校高中部高二数学让我们共同成长教学案例[摘要]:对于新班主任来说,了解学生心理状态并与学生共同成长十分必要。
本文讲述了教师巧妙与学生沟通的方法,让学生与教师共同成长的成功案例。
[关键词]:沟通;共同成长[案例背景]晓晓(化名),一个活泼开朗的女孩儿,数学成绩较差,但学习态度认真,有学习数学的热情,在刚刚结束的内测考试中取得136分的成绩,进步显著。
[情景描述]2011年11月25日,星期五,上午,数学课,我激情澎湃地讲解着一道题,并用自信满满的语气对学生们说:“凡是这样有两个问题的题目,在解决第二个问题时一定能用到第一个问题的结论…”学生们都瞪着眼睛专心地听着,教室里只回响着我一个人的演讲词,突然,传来一个清脆女孩儿的声音:“老师,不一定吧?肯定有别的题不是这样的!”我吓了一跳,停顿下来,定睛一看,是晓晓,后背倚在座位上,跷着腿,满脸却布满认真的疑惑。
这个突如其来的声音和她略显悠闲的坐姿让全班学生的眼神开始游动,然后是几乎所有同学都用等待的眼神盯紧我,我一头冷汗,停顿了几秒中,故作平静地说:“我们至今为止见过的题目中大多数都是这样的,大多数的题目有这样的规律。
好吧,下次请有问题的同学举手,请站起来向老师提出问题。
”同时不禁向晓晓投去一个责备的目光。
…下课了…我回到办公室,对刚刚课上发生的这件事心有余悸,主要是因为当时的我太投入自己的演讲,而那个声音又太突然,毫无预兆地打断了我的思路和情绪,这让我差一点不知所措,想到这些我有点生气,为什么晓晓不举手呢?而且她当时的状态让我觉得她很骄傲。
于是我把晓晓叫到办公室,准备和她聊一聊。
我一脸严肃地问:“晓晓,今天在课堂上你突然打断老师讲课,提问的时候不举手,也不站起来,这样做对吗?看你的状态,是不是觉得这次考试考的不错,所以骄傲了?”本以为一向倔强开朗的晓晓态度会很强硬,意料之外的是,她低着头,非常小声地说:“老师,上课的时候我就看出来你好象不高兴了,我没有骄傲…”随即眼泪竟然如泉涌般落了下来,而且发出抽泣的声音,这个意外的反应让我惊呆了,楞了几秒钟,赶忙回转思路说:“好了,好了,别哭了,平静一下,其实你今天提的问题很好,但是你采取的方式对台上的人显得不够尊重,所以老师把你叫过来谈一谈,一会还要上课,你先回去吧,我们下午再谈。
辽宁省东北育才学校高中部高二数学线性规划教学案例生:2 分钟作图师:好,先作到这,我们一起在几何画板上来确定区域.第一步做出边界的直线,注意虚实(几何画板演示),第二部,确定区域是在直线的上方还是下方,有几种方法来确定?生:(1)斜截式的情况 (2)一般式的情况 (3)代点法师:我们用代点法来确定,代入错误!未找到引用源。
点,显然这三个不等式都不满足,故应该在其上方,也就是这样一个区域.(画板演示)二.新课讲授师:在上基础上大家继续来考虑这样一个问题:已知实数错误!未找到引用源。
满足错误!未找到引用源。
,求错误!未找到引用源。
的最小值.(板书)师:前面的不等式组对应的是坐标平面里的一个区域,有形的意义,那这里的错误!未找到引用源。
是否具有形的意义?生:直线的截距师:什么样直线的截距?生:斜率为-1的直线.师:对我们这个问题有什么帮助呢?生:可将直线平移,研究截距的最小值.师:说具体点就是斜率为-1的直线经平移与这个区域有交点时截距的最小值.借助于图形,能否找出截距的最小值?生:在A点取得最小值.师:为何是A点而不是B点呢?借助于坐标纸和几何画板我们比较容易观察出来,可如果作草图势必会出现误差,谁能给出一个更加让人信服的解释?生:斜率的角度考虑.师:从形的角度考虑给我们提供了一个很好的思路,但光靠形来解决问题不够准确,需要数来辅助,斜率为-1恰好介于错误!未找到引用源。
与错误!未找到引用源。
之间,若介于另两条直线之间则取B点,若恰等于AB,这AB段上所有的点都可以让错误!未找到引用源。
取得最小值.好,大家求出A点的坐标及错误!未找到引用源。
的最小值.生:错误!未找到引用源。
,错误!未找到引用源。
师:现在这个问题我们求解完了,下面我们一起来反思一下这是一个什么类型的问题?师/生:错误!未找到引用源。
满足一个不等式组,即在一定的约束条件下,这里的约束条件是直线型,我们称之为线性约束条件,在线性约束条件的基础之上研究什么呢?研究关于错误!未找到引用源。
辽宁省东北育才学校高中部高二数学 锥体的体积 教学案例教学重点:锥体体积公式的推导教学难点:多面体体积的求解方法及应用 教学方法:启发、探究 教学工具:多媒体投影仪 教学程序 教学内容师生活动 设计意图 新 课 引 入1、 回忆复习柱体的体积公式。
2、 回忆复习祖暅原理的内容。
3、 思考:等底面积等高的锥体的体积有何关系? 由祖暅原理推得等底面积等高锥体的体积相等,设锥体的底面积为s ,高为h ,如何表示锥体的体积公式?教师提问,学生回答,同时电脑演示幻灯片。
复习柱体体积和祖暅原理是本节课的知识和理论基础,同时巩固上节课所学。
公 式 推 导1、 锥体的体积公式:应用祖暅原理将锥体体积的推导,转化为求最简单的锥体——三棱锥的体积。
借助已知的三棱柱的体积公式,用割补的方法探究两者的体积关系。
推得锥体体积公式为: 错误!未找到引用源。
2、台体的体积公式: 借助锥体的体积公式和“还台为锥”的方法,推导台体的体积公式。
设台体的上下底面积分别是s ’,s,高是h ,则 V 台体=教师引导学生利用祖暅原理将锥体体积的推导转化为求与其等底等高的三棱锥体积。
引导学生利用割补的方法,利用锥体体积公式求解台体体积公式。
教师板书解题求解过程。
引出本节课获得新知的主导思想以及解决体积问题时常用的方法——割补法。
方1、 求棱长为a 的正四面体的体积?学生计算体锥体体积AB 1A1 C 1 ss / ss /hxB 1C 1A BA 11h(s +ss'+s')3用“补”形的方法。
两个这样全等的三棱锥恰好可以补成一个正四面体,利用已证的正四面体体积公式求解。
方法三:割补法用“割”形的方法。
三棱锥P-ABC可以分割为如上图所示的一个正四面体P-AEF和四棱锥P-EFBC,已证的正四面体体积公式求解正四面体P-AEF的体积,而三棱锥P-ABC为正四面体P-AEF的体积的四倍。
应用举例例1、已知正方体AC1的棱长为a,E、F分别为AA1与CC1的中点,求四棱锥A1-EBFD1的体积.变式三棱台ABC—A′B′C′中,AB∶A′B′=1∶2,则三棱锥A′—ABC,B—A′B′C,C—A′B′C′的体积比为___________.由于时间关系,例1和练习做为课后作业。
教学重点:锥体体积公式的推导教学难点:多面体体积的求解方法及应用教学方法:启发、探究教学工具:多媒体投影仪教学过程:教学程序教学内容师生活动设计意图新课引入1、回忆复习柱体的体积公式.2、回忆复习祖暅原理的内容。
3、思考:等底面积等高的锥体的体积有何关系?由祖暅原理推得等底面积等高锥体的体积相等,设锥体的底面积为s,高为h,如何表示锥体的体积公式?教师提问,学生回答,同时电脑演示幻灯片.复习柱体体积和祖暅原理是本节课的知识和理论基础,同时巩利用锥体体积公式求解台体体积公式.教师板书解题求解过程.方法深化1、求棱长为a的正四面体的体积?变式:已知三棱锥P—ABC中,PA=1,AB=AC=2,∠PAB= ∠PAC= ∠BAC=60°,求三棱锥的体积?解:方法一:直接法学生计算体积公式。
教师引导学生用不同的方法求解.锥体体积公式的直接应用。
引导学生一题多解,探究ss/ss/hx3212V aABCPP中,AB∶A′B′=1∶2,则三棱锥A′-ABC,B-A′B′C,C—A′B′C′的体积比为___________。
多解,培养唯物辨证的思想。
课堂练习练习:将边长为a的正方形ABCD沿对角线AC折起,使B,D两点间距离变为a,则所得三棱锥D-ABC的体积为________.A CBD思考:你能求出A点到面BDC的距离吗?归纳小结这节课你在知识和方法上有怎样的收获?1、锥体的体积公式2、柱体的体积公式3、求多面体的体积时常用的方法教师引领学生共同归纳本节课所学使学生对本节所学知识A BCD。
辽宁省东北育才学校高中部高二数学组合定义教学案例教学构思一、重点难点分析本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。
难点是解组合的应用题。
突破重点、难点的关键是对加法原理与乘法原理的把握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。
组合与组合数:从n个不同元素中任取mm≤n个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。
所有这些不同的组合的个数叫做组合数。
从集合的角度看,从n个元素的有限集中取出m个组成的一个集合无序集,相当于一个组合,而这种集合的个数,就是相应的组合数。
解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步切记:排组分清有序排列、无序组合,加乘明确分类为加、分步为乘二、教法思考1把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系2学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题这样既调动了学生学习的积极性,又在编题辨题中澄清了概念为了理解排列与组合的概念,建议大家学会画排列与组合的树图如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:排列树图由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,,adc,adb,bac,bad,bca,bcd,bda,bdc……dca,dcb组合树图由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是abc,abd,acd,bcd 从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式3排列组合的应用问题,教师从简单问题问题入手,逐步找到有一个附加条件的单纯排列问题或组合问题,最后在涉及排列与组合的综合问题对于每一道题目,教师可以先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判定正误,再给予点播对于排列、组合应用问题的解决提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择最佳方案,总结解题规律对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判定得以提高4两个性质定理教学:定理1:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是什么这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的定理2:从n1个不同元素里每次取出m 个元素的组合,问:1可以组成多少个组合;2在这些组合里,有多少个是不含有元素a 的;3在这些组合里,有多少个是含有元素a 的;4从上面的结果,可以得出一个怎样的公式在此基础上引出定理2对于01n C =,和0!1=一样,是一种规定而学生经常误以为是推算出来的,因此,教学时要讲清楚三、教学设计示例教学目标知识:使学生正确理解组合的意义,正确区分排列、组合问题;使学生把握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;技能:通过学习组合知识,让学生把握类比的学习方法,并提高学生分析问题和解决问题的能力;情感:通过对排列、组合问题求解与剖析,培养学生学习爱好和思维深刻性,学生具有严谨的学习态度。
学生2:我感觉有无数个.老师:理由?学生2:暂时没想好,就是感觉有无数个。
老师:数学是严谨的,不能全靠感觉,有没有想发言的?(略等一会,大家没有举手的)我们现在不管结果如何?来看看解决这道题的有没有合适的解题思路?可以想一想我们所学的数学思想。
学生3:根据解析几何思想,我们不妨建立适当的直角坐标系,设爆炸点坐标为P(x,y),根据几何条件写出方程,通过研究此方程的解的个数来判断能不能确定爆炸点的具体位置。
(此时掌声已经响起)老师:说的非常的好,用方程的解的个数来判断爆炸点的个数,很有创意。
那我们来看,几何条件是什么呢?(边问边写) /PA/—/PB/=4X330=1320。
(边指着这个式子边说)差为1320,那把这个问题一般化,现在就要看P点到A点与到B点的距离的差为常数的点的轨迹问题。
为了直观起见,我带来一块小黑板,请上来两个同学协助我做个实验,我这里有两段长度不等的绳子,将这两段绳子的各一端放在一起打个结,另一端分别固定在小黑板的两个螺丝钉上,注意绳长之差小于两螺丝钉之间的距离。
(老师和学生一起合作画出曲线,把两段绳子的固定点交换位置,再画出另一支曲线,具体操作略)老师:如果黑板无限大,绳子无限长,这两支曲线向四个方向无限延伸,我把这样的两支曲线合在一起叫做双曲线,请同学们根据我们的演示,归纳出双曲线的定义(1分钟后)学生3: 平面内与两个定点1F ,2F 的距离的差的等于常数的点的轨迹叫做双曲线有几个学生小声说: 差的绝对值.老师:有同学说”差的绝对值”,为什么要加"绝对值”。
(老师指向应和的一位学生,让他回答)学生4:如果不加绝对值,只能表示其中一支曲线.老师:很好.那加上绝对值是不是就可以了呢?还有没有持不同意见的. 学生5:刚才老师说. 绳长之差小于两螺丝钉之间的距离,所以我认为常数应该小于两螺丝钉之间的距离。
老师:相当不错,跟椭圆一样,应该有个条件,条件就是这位学生所说的。
四年级数学教案(沈)一、教学目标1. 知识与技能:(1)能够理解和掌握加减法的运算规则;(2)能够运用加减法解决实际问题;(3)能够进行简单的分数运算。
2. 过程与方法:(1)通过小组合作、讨论,培养学生的团队协作能力;(2)利用教具、实物等辅助教学,让学生在实际操作中感受数学的魅力;(3)引导学生运用数学知识解决生活中的问题,提高学生的实践能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生关爱他人、合作共赢的意识。
二、教学内容1. 第一课时:加减法的运算规则(1)复习加法运算规则;(2)学习减法运算规则;(3)进行简单的加减法练习。
2. 第二课时:实际问题中的加减法(1)通过生活实例,让学生运用加减法解决问题;(2)培养学生将实际问题转化为数学问题的能力;(3)进行加减法练习。
3. 第三课时:分数的初步认识(1)了解分数的定义和表示方法;(2)掌握分数的简单运算规则;(3)运用分数解决实际问题。
三、教学重点与难点1. 教学重点:(1)加减法的运算规则;(2)分数的定义和表示方法;(3)运用加减法和分数解决实际问题。
2. 教学难点:(1)分数的理解和运用;(2)解决实际问题时,如何正确转化为一元一次方程。
四、教学方法与手段1. 教学方法:(1)采用讲授法,讲解加减法的运算规则和分数的定义;(2)运用讨论法,让学生在小组合作中解决问题;(3)利用实践法,让学生在实际操作中感受数学的魅力。
2. 教学手段:(1)教具、实物等辅助教学;(2)多媒体课件,生动展示数学知识;(3)练习题,巩固所学知识。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 练习完成情况:检查学生课后练习的完成质量,评估学生对知识的掌握程度;3. 小组合作:评价学生在小组合作中的表现,培养团队合作意识;4. 实际问题解决:通过课后作业或实践报告,评估学生运用数学知识解决实际问题的能力。
四年级数学教案(沈)一、教学内容《认识分数》二、教学目标1. 让学生理解分数的概念,掌握分数的表示方法。
2. 培养学生运用分数解决实际问题的能力。
三、教学重点与难点重点:分数的概念和表示方法。
难点:理解和运用分数解决实际问题。
四、教学方法采用情境教学法、互动教学法、实践操作教学法等。
五、教学过程1. 导入:通过一个故事情境,引入分数的概念。
2. 新课讲解:讲解分数的表示方法,如$\frac{1}{2}$、$\frac{3}{4}$ 等。
3. 实例演示:通过实际操作,让学生理解分数的意义,如把一个苹果分成两份,每份是$\frac{1}{2}$ 个苹果。
4. 练习巩固:设计一些练习题,让学生运用分数进行计算和解决问题。
5. 总结拓展:引导学生思考分数在实际生活中的应用,如分享食物、计算折扣等。
6. 课堂小结:对本节课的内容进行总结,让学生掌握分数的概念和表示方法。
7. 课后作业:布置一些有关分数的家庭作业,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成果评价:对学生的练习作业进行批改,检查学生对分数概念和表示方法的掌握程度。
3. 家庭作业评价:查看学生课后作业完成情况,评估学生对课堂所学知识的巩固情况。
七、教学反思在课后,教师应认真反思本节课的教学效果,包括:1. 教学内容是否适合学生的认知水平。
2. 教学方法是否有效,能否激发学生的学习兴趣。
3. 教学过程中是否关注到学生的个体差异,给予每个学生充分的参与机会。
4. 教学评价是否全面、客观,能否真实反映学生的学习情况。
八、教学调整1. 针对学生的掌握情况,适当调整教学进度和难度。
2. 改进教学方法,尝试采用更多样的教学手段,提高课堂趣味性。
3. 关注学生的个体差异,给予不同学生更多针对性的指导。
4. 加强与学生的互动,鼓励学生主动参与课堂讨论和实践活动。
九、教学拓展1. 组织一些与分数相关的课外活动,如制作分数卡片、举行分数知识竞赛等。