【2020】最新人教版七年级下册数学全套单元测试卷含答案
- 格式:doc
- 大小:552.39 KB
- 文档页数:17
人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。
人教版数学七年级下册《平面直角坐标系》单元测试题一、选择题1.下列关于有序数对的说法正确的是( )A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置2.点P在第三象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.如果点P(m+3,m+1)在直角坐标系的x轴上,那么P点坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,-4)4.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点的坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为()A.(﹣4,3)B.(3,4)C.(﹣3,4)D.(4,3)7.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为( )A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)8.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是( )A.(4,0) B.(0,4) C.(﹣4,0) D.(0,﹣4)9.已知点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是()A.(﹣3,3)B.(3,﹣3)C.(﹣3,3)或(﹣3,﹣3)D.(﹣3,3)或(3,﹣3)10.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣511.若m是任意实数,则点P (m-4,m+1) 一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限12.将一组整数按如图所示的规律排列下去.若有序数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示的数为8,则(7,4)表示的数是()A.32B.24C.25D.-25二、填空题13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1),N(0,1),将线段MN平移后得到线段M′N′(点M,N分别平移到点M′,N′的位置).若点M′的坐标为(-2,2),则点N′的坐标为____________.14.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.15.点N(x,y)的坐标满足xy<0,则点N在第象限.16.在平面直角坐标系中,若将点P (-1,4) 向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为.17.已知点P在第四象限,它的横坐标与纵坐标之和为1,则点P的坐标为(写出一个即可)18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是.三、作图题19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;(2)将△ABC向左平移7个单位,请画出平移后的△A′B′C′,若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M'的坐标为.四、解答题20.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?21.如图,机械手要将一个工件从图中的A处移动到B处,但是这个工件不能碰到图中的障碍(不包括坐标轴所表示的直线),试用坐标写出一条机械手在移动中可能要经过的路线(机械手的行走路线均经过格点).22.已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)若点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.23.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有个整点(即横坐标和纵坐标都是整数的点);(2)求四边形ABCD的面积.24.如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D与点A关于y轴对称,则点D的坐标为___;(2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为____;(3)求A,B,C,D组成的四边形ABCD的面积.25.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.参考答案1.C.2.B.3.B.4.B5.B.6.D.7.C.8.A.9.C.10.C.11.D12.D13.答案为:(2,4);14.答案为:(-3,5).15.答案为:二、四.16.答案为:(1,1)17.答案为:(2,﹣1)18.答案为:(504,2).19.解:(1)利用图形得出:点A的坐标为:(2,8),点C的坐标为:(6,6);(2)∵将△ABC向左平移7个单位,M为△ABC内的一点,其坐标为(a,b),∴平移后点M的对应点M'的坐标为:(a﹣7,b).20.解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2.(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1.21.解:答案不唯一,如:A(1,-2)→(5,-2)→(5,5)→(-4,5)→B(-4,3).22.解:(1)如图所示.(2)S△ABC=3×4-×2×3-×2×4-×2×1=12-3-4-1=4.(3)当点P在x轴上时,S△ABP=AO·BP=4,即×1·BP=4,解得BP=8,∴点P的坐标为(10,0)或(-6,0);当点P在y轴上时,S△ABP=BO·AP=4,即×2AP=4,解得AP=4,∴点P的坐标为(0,5)或(0,-3),∴点P的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).23.解:(1)填空:四边形ABCD内(边界点除外)一共有 13个整点.(2)如下图所示:∵S四边形ABCD=S△ADE+S△DFC+S四边形BEFG+S△BCGS△ADE=×2×4=4 S△DFC=×2×5=5 S四边形BEFG=2×3=6 S△BCG=×2×2=2 ∴S四边形ABCD=4+5+6+2=17 即:四边形ABCD的面积为1724.解:_(2,2) (2,-1)(3)15.5.25.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2).∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.。
人教版初中七年级数学下册全册单元综合测试卷汇总一、第五章《相交线与平行线》单元综合测试卷(附详细参考答案)二、第六章《实数》单元综合测试卷(附详细参考答案)三、第七章《平面直角坐标系》单元综合测试卷(附详细参考答案)四、七年级下学期期中数学综合测试卷(附详细参考答案)五、第八章《二元一次方程组》单元综合测试卷(附详细参考答案)六、第九章《不等式与不等式组》单元综合测卷(附详细参考答案)七、第十章《数据的收集、整理与描述》单元综合测试卷(附详细参考答案)八、七年级下学期期末数学综合测试卷(附详细参考答案)七年级数学下册第五章《相交线与平行线》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )(A)75° (B)115° (C)65° (D)105°2.如图,a∥b,∠1=65°,∠2=140°,则∠3=( )(A)100° (B) 105° (C) 110° (D) 115°3.下列图形中,只要用其中一部分平移一次就可以得到的有 ( )4.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( )(A)20° (B)25° (C)30° (D)35°5.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是( )(A)2 (B)4 (C)5 (D)66.某人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,则∠ABC 等于( )(A)75° (B)105° (C)45° (D)135°7.如图,已知AB∥CD,∠1 =∠2,∠E=n°,则∠F=( )(A)n° (B)2n° (C)90°-n° (D)40°二、填空题(每小题5分,共25分)8.“如果n是整数,那么2n是偶数”其中题设是_______,结论是_______,这是_______命题(填“真”或“假”).9.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=_______度.10.有一条直的等宽纸带,按图折叠时,纸带重叠部分中的∠α=_______度.11.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=_______.12.如图,在宽为30 m,长为40 m的矩形地面上修建两条宽都是1 m的道路,余下部分种植花草.那么,种植花草的面积为_______m2.三、解答题(共47分)13.(11分)如图,∠1=30°,AB⊥CD,垂足为O, EF经过点O.求∠2,∠3的度数.14.(12分)如图,a∥b,c∥d,∠1=113°,求∠2,∠3的度数.15.(12分)已知,如图,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.16.(12分)已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.七年级数学下册第五章《相交线与平行线》单元综合测试卷详细参考答案1.【解析】选D.如图,根据上下的两边平行可知∠1=∠3=75°,根据左右的平行可知∠2+∠3=180°,进而求得∠2=105°.2.【解析】选B.把图中的线适当延长,如下图因为∠1=65°,∠2=140°,所以∠4=75°.又因为a∥b,所以∠3=180°-∠4=180°-75°=105°.3.【解析】选B.判断一个图形是否由平移得到,要从两方面入手:①找到“基本图形”;②分析平移的方向和距离.其中第2个图形和第4个图形平移一次均能得到.4.【解析】选A.由图形可得,∠B=∠1+∠2=45°,∵∠1=25°,∴∠2=45°-25°=20°.5.【解析】选C.由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH,除∠1共5个.6.【解析】选C.按要求画出图形再计算.∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.7.【解析】选A.因为AB∥CD,知∠ABC =∠DCB,再由∠1=∠2,得∠EBC=∠FCB,由此得到EB∥FC,所以∠F=∠E=n°.8.【解析】“如果”开始的部分是题设,“那么”后面的部分是结论.答案:n是整数 2n是偶数真9.【解析】∵AB∥CD,∴∠B=∠2=40°,∵∠BED=∠1+∠B,∴∠BED=70°,∵EF平分∠BED,∴∠BEF=35°.答案:3510.【解析】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得展开图.由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴∠α=75°.答案:7511.【解析】由AB∥EF∥CD,可知∠BED=∠B+∠D.∵∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∵∠B-∠D=24°,所以∠D=∠B-24°.即∠B+∠B-24°=96°,解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.答案:30°12.【解析】利用平移,将两道路向上、向右平移(如图). 因此,种植花草的面积为:39×29=1 131(m2).答案:1 13113.【解析】由对顶角相等得∠3=∠1=30°,由AB⊥CD得∠BOD=90°,所以∠2=90°-∠3=90°-30°=60°. 所以∠2=60°,∠3=30°.14.【解析】∵a∥b(已知),∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知),∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).15.【解析】平行.由折叠可知,∠1=∠2,∠3=∠4,因为O′C∥BD,所以∠2=∠3,即∠1=∠4,所以O′D∥ AC.16.【证明】∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠BCA,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).七年级数学下册第六章《实数》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.49 2.下列判断中,你认为正确的是( ) (A)0的倒数是0 (B)2π是分数2 3.下列说法正确的是( ) (A)a 一定是正数 (B)2 0113是有理数(C)(D)平方等于自身的数只有14.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )(A)a+b >0 (B)a-b >0 (C)ab >0 (D)ab>0 5.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③a a 的立方根;④.( ) (A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A表示的可能是( )(A)4的算术平方根(B)4的立方根(C)8的算术平方根(D)8的立方根7.如果m是2 012的算术平方根,那么2 012100的平方根为( )(A)m100± (B)m10(C)m10-(D)m±10二、填空题(每小题5分,共25分)8..9.3m-,则m的取值范围为___________.10.比较大小:用“<”或“>”号填空).11.若x,y y20-=,则x+y=_______.12.对于两个不相等的实数a、b,定义一种新的运算如下,>0),如:6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A,B,点B到点A的距离与点C到点O 的距离相等,设点C所表示的数为x,(1)请你写出数x的值;(2)求2(x的立方根.14.(12分)计算. (1)2121(2)-+--||;(2)15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d ≈r 为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)若a,b 为实数,且b 7=,求a+b 的平方根.七年级数学下册第六章《实数》 单元综合测试卷详细参考答案1.【解析】选B.∵(-0.7)2=0.49, 又∵(±0.7)2=0.49, ∴0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A 错误;2π是一个无理数,故B 错误4的算术平方根,结果为2,故D 错误.3.【解析】选B.a 有可能是小于等于0的数,即不一定是正数;2 0113是分数,即也是有理数;显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有2 0113是有理数正确.4.【解析】选A.∵由数轴上a 、b 两点的位置可知,a <0,b >0,|a|<b , ∴ a+b >0,a-b <0,ab <0,ab<0, 故选项A 正确;选项B ,C ,D 错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确; ②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为,故说法④错误.故选A .6.【解析】选C.由数轴知,点A 表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】8==. 答案:89.【解析】3m -,∴3-m ≥0,∴m ≤3. 答案:m ≤310.【解析】将2.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1. 答案:-112.【解析】5*43==,所以6*31==. 答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22(x 11==,即2(x =1,1的立方根为1.14.【解析】(1)原式=1121144-+-=; (2)原式=3243655--+=-.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d ≈16.【解析】由题意得a 2-4=0,且a+2≠0, 所以a=2,所以b=7, 所以a+b 的平方根为±3.七年级数学下册第七章《平面直角坐标系》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.点P在第二象限内,点P到x轴的距离为4,到y轴的距离为3,那么P点的坐标为( )(A)(4,3) (B)(3,4)(C)(-3,4) (D)(-4,3)2.若点P(x,y)的坐标满足xy=0,则点P 的位置是( )(A)在x轴上(B)在y轴上(C)是坐标原点(D)在x轴上或在y轴上或在原点3.点M(2,-1)向上平移2个单位长度得到的点的坐标是( )(A)(2,0) (B)(2,1) (C)(2,2) (D)(2,-3)4.正方形网格中的每个小正方形边长都为1,每个小方格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.如图所示,B,C两点的位置分别记为(2,0),(4,0),若格点三角形ABC是锐角三角形且面积为4,则满足条件的A点的位置是( )(A)(0,4) (B)(1,4)(C)(2,4) (D)(3,4)5.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为( )(A)(-5,4) (B)(4,3)(C)(-1,-2) (D)(-2,-1)6.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是( )(A)(4,2)或(-4,2) (B)(4,-2)或(-4,-2)(C)(4,-2)或(-5,-2) (D)(4,-2)或(-1,-2)7.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2 012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在的位置的点的坐标是( )(A)(1,1) (B)(-1,1) (C)(-1,-2) (D)(1,-2)二、填空题(每小题5分,共25分)8.如果点P(a,a-b)在第二象限,则点P′(-a,b-a)在第_______象限.9.如图所示,人头图形左边的嘴角的坐标是_________.10.在平面直角坐标系中,将点P(-1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为___________.11.若点P(x,y)的坐标满足x+y=xy,则称点P为和谐点,请写出一个和谐点的坐标.答:_________________________.12.如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,该点A记作(30°,50),北偏西45°记作-45°,沿着此方向的反方向走20米记作-20,该点B记作(-45°,-20). 则(-75°,-15)表示的意义是____________,南偏西10°,沿着此方向走25米处的点C可记作___________.三、解答题(共47分)13.(10分)如图是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.(图中每个小正方形的边长均为1个单位长度)(1)请以国家AAAA级(最高级)旅游景点瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:荷花池_________、平山堂__________、汪氏小苑_________;(2)如果建立适当的直角坐标系(不以瘦西湖为坐标原点),例如:以______为原点,以水平向右为x 轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:平山堂___________、竹西公园__________.14.(12分)如图,用点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,问走哪条路吃到的胡萝卜最多? 走哪条路吃到的青菜最多?15.(12分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.16.(13分)类比学习:一动点沿着数轴向右平移3个单位长度,再向左平移2个单位长度,相当于向右平移1个单位长度.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.七年级数学下册第七章《平面直角坐标系》单元综合测试卷详细参考答案1.【解析】选C.点P在第二象限内,横坐标为负数,纵坐标为正数,又“点P到x轴的距离为4,到y轴的距离为3”,所以点P的坐标为(-3,4).2.【解析】选D.由xy=0得,x=0或y=0或x=y=0,则点P在x轴上或在y轴上或在原点.3.【解析】选B.因为点M向上平移2个单位长度,横坐标不变,纵坐标加2,所以平移后得到的点的坐标是(2,1).4.【解析】选D.B,C两点与点(0,4)或(1,4)构成的格点三角形的面积为4,但不是锐角三角形;B,C两点与点(2,4)构成的格点三角形的面积为4,它是直角三角形.5.【解析】选A.A点平移到A′,是将A点向左平移6个单位,向上平移3个单位;B点按照同样的方法平移得到的点为(-5,4).6.【解析】选B.点M(3,-2)与点M′在同一条平行于x轴的直线上,所以y=-2,M′到y轴的距离等于4,所以|x|=4,所以x=±4.7.【解析】选B.长方形ABCD的周长为10,2 012÷10=201……2,说明细线绕了201圈,回到A点后又继续绕了2个单位,故到达B点,故选B.8.【解析】由题意知a<0,a-b>0,所以-a>0,b-a<0,所以点P′(-a,b-a)在第四象限.答案:四9.【解析】由图中所建立的坐标系可知,人头图形左边的嘴角的坐标是(-3,-1).答案:(-3,-1)10.【解析】点P(-1,4)向右平移2个单位长度后坐标为(1,4),再向下平移3个单位长度,则点P1的坐标为(1,1).答案:(1,1)11.【解析】答案不唯一,如(2,2),(0,0).答案:(2,2)(答案不唯一)12.【解析】由题意知,(-75°,-15)表示沿南偏东75°方向走15米;南偏西10°,沿着此方向走25米处的点C可记作(10°,-25).答案:南偏东75°,15米处 (10°,-25)13.【解析】(1)以瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置分别是:荷花池(-2,-3);平山堂(-1,3);汪氏小苑(2,-2);(2)以竹西公园为原点,以水平向右为x 轴的正方向,以竖直向上为y 轴的正方向.用坐标表示下列景点的位置分别是:平山堂(-4,0);竹西公园(0,0).(本题答案不唯一)14.【解析】(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜,所以可以类比点C 的坐标是(2,1),它表示的意义是放置2个胡萝卜、1棵青菜;点D 的坐标是(2,2),它表示的意义是放置2个胡萝卜、2棵青菜;点E 的坐标是(3,3),它表示的意义是放置3个胡萝卜、3棵青菜;点F 的坐标是(3,2),它表示的意义是放置3个胡萝卜、2棵青菜. (2)若兔子走①A →C →D →B ,则可以吃到的胡萝卜数量是:3+2+2+2=9(个),吃到的青菜数量是:1+1+2+3=7(棵);走②A →F →D →B ,则可以吃到的胡萝卜数量是:3+3+2+2=10(个),吃到的青菜数量是:1+2+2+3=8(棵);走③A →F →E →B ,则可以吃到的胡萝卜数量是:3+3+3+2=11(个),吃到的青菜数量是:1+2+3+3=9(棵);由此可知,走第③条路吃到的胡萝卜、青菜都最多. 15.【解析】(1)图中格点△A ′B ′C ′是由格点△ABC 向右平移7个单位长度得到的;(2)如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),则格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =115151522⨯⨯+⨯⨯=, 或S △DEF =11172427131222⨯-⨯⨯-⨯⨯-⨯⨯=73144522---=.16.【解析】(1){3,1}+{1,2}={4,3}, {1,2}+{3,1}={4,3}.(2)如图所示:最后的位置仍是点B.(3){2,3}+{3,2}+{-5,-5}={0,0}.七年级下学期期中数学综合测试卷班级:___________ 姓名:_____________ 成绩:___________(120分钟120分)一、选择题(每小题3分,共30分)1.下面四个图形中,∠1=∠2一定成立的是( )2. 4的算术平方根是( )(A)2 (B)-2 (C)±3.如图,∠ADE和∠CED是( )(A)同位角 (B)内错角(C)同旁内角 (D)互为补角4.课间操时,小华、小军、小刚的位置如图,小华对小刚说:如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )(A)(5,4) (B)(4,5) (C)(3,4) (D)(4,3) 5.下列实数中,无理数是( )(A)52-(B)π6.在平面直角坐标系中,点(-1,m 2+1)一定在( ) (A)第一象限 (B)第二象限(C)第三象限 (D)第四象限7.如图,把图①中的△ABC 经过一定的变换得到图②中的△A ′B ′C ′,如果图①中△ABC 上点P 的坐标为(a ,b ),那么这个点在图②中的对应点P ′的坐标为( )(A)(a-2,b-3) (B)(a-3,b-2) (C)(a+3,b+2)(D)(a+2,b+3)8.计算( )(A)9.如图所示,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB 等于( )(A)40° (B)75° (C)85° (D)140°10.有个数值转换器,原理如下:当输入x为64时,输出y的值是( )(A) 4 (B)二、填空题(每小题3分,共24分)11.在伦敦奥运会主体育场“伦敦碗”一侧的座位席上,5排2号记为(5,2),则3排5号记为__________.12.计算: =__________.13.12_______12.(填“>”“<”或“=”)14.已知点A(-3+a,2a+9)在第二象限的角平分线上,则a的值是______.15.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=________°.5的相反数是________,绝对值是________.17.如图所示,直线l1∥l2,且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=________.18.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来:_________.三、解答题(共66分)19.(8分) 求下列各式中的x 的值. (1)(3x+2)2=16;(2)12(2x-1)3=-4. 20.(6分)如图为一辆公交车的行驶路线,“○”表示该公交车的中途停车点,现在请你帮助小明完成对该公交车行驶路线的描述:起点站→(1,1)→…→终点站.21.(8分)已知:如图,AB ∥CD ,EF 交AB 于点G ,交CD 于点F ,FH 平分∠EFD ,交AB 于点H ,∠AGE=50°. 求∠BHF 的度数.=+,求a+b的平方根.22.(8分)已知a,b b423.(8分)如图是某体育场看台台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标相比较有什么变化?(3)如果台阶有10级,你能求出该台阶的长度和高度吗?24.(8分)证明:两条平行线的同旁内角的角平分线互相垂直.25.(10分)中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在C点,为了到达D点,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,-2)上,试写出A,B,C,D四点的坐标.26.(10分)平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD.如图a,点P在AB,CD外部时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图b,将点P移到AB,CD内部,以上结论是否成立?若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.七年级下学期期中数学综合测试卷详细参考答案1.【解析】选B.选项A中,∠1与∠2是邻补角,∠1+∠2=180°;选项B中,∠1与∠2是对顶角,∠1=∠2;选项C中,根据平行线的性质及邻补角的定义可知∠1+∠2=180°;选项D中,根据三角形的内、外角之间的关系可知∠2>∠1.2.【解析】选A.因为22=4故选A.3.【解析】选B.∠ADE和∠CED在被截直线内部,在截线的两侧,是内错角.4.【解析】选D.以小华的位置为坐标原点建立平面直角坐标系,可知小刚的位置为(4,3).5.【解析】选B.选项A,C,D都是有理数;选项B是无理数.6.【解析】选B.由于一个数的平方具有非负性,所以(-1,m2+1)的纵坐标一定大于0,所以点在第二象限.7.【解析】选C.观察图形可知,△ABC经过向右平移3个单位长度,再向上平移2个单位长度得到△A′B′C′,所以点P′的坐标为(a+3,b+2).8.【解析】选D.=9.【解析】选C.∵AE,DB是正南正北方向,∴BD∥AE,∵∠EAB=45°,∴∠DBA=∠EAB=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-35°-60°=85°.10.【解析】选B.由题意知,64的立方根是4,4为有理数,需再取立方根,则输出的是11.【解析】由题意知,3排5号记为(3,5).答案:(3,5)12.【解析】-8的立方根是-2.答案:-213.【解析】2=,>1,所以11 22>.答案:>14.【解析】第二象限内点的横坐标为负,纵坐标为正;由角平分线的性质可知:角平分线上的一点到角的两边距离相等,故第二象限的角平分线上的点的横、纵坐标互为相反数,且横坐标为负,纵坐标为正.由此可得:(-3+a)+(2a+9)=0,即a=-2.答案:-215.【解析】因为∠1=∠2=70°,所以a∥b,因为∠3=60°,所以∠4=∠3=60°.答案:6016.的相反数是答案:5517.【解析】如图所示,∠4=90°-∠2=90°-35°=55°.由l1∥l2得∠3=180°-∠1-∠2-∠4=180°-35°-35°-55°=55°.答案:55°18.【解析】由题意可知(5,3),(6,3),(7,3)(4,1),(4,4)对应的字母分别是S,T,U,D,Y,这个英文单词是STUDY.答案:STUDY19.【解析】(1)由平方根的意义得,3x+2=±4,解得x=-2或x=23.(2)原方程变为:(2x-1)3=-8,由立方根的意义得,2x-1=-2,解得x=12 .20.【解析】起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→终点站.21.【解析】因为AB∥CD,∠AGE=50°.所以∠EFC=50°,所以∠EFD=130°,因为FH平分∠EFD,所以∠HFD=12∠EFD=65°,所以∠BHF=180°-65°=115°.22.【解析】由于a-5≥0,∴a≥5,同理10-2a≥0,∴a≤5,∴a=5.当a=5时,b+4=0,∴b=-4,∴a+b=5-4=1.∴a+b的平方根为±1.23.【解析】(1)以A点为原点,水平向右为x轴正方向,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.24.【解析】如图所示,直线a,b被直线c所截,且a∥b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:因为a∥b,所以∠CAE+∠ACF=180°.因为直线AB平分∠CAE,直线CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.∠1+∠2=12∠CAE+12∠ACF=90°,所以AB⊥CD.25.【解析】(1)如图(2)A(3,-1),B(2,0),C(6,2),D(7,-1)26.【解析】(1)不成立,结论是∠BPD=∠B+∠D. 延长BP交CD于点E,因为AB∥CD,所以∠B=∠BED.又∠BPD=∠BED+∠D,所以∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.又因为∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°. 所以∠A+∠B+∠C+∠D+∠E+∠F=360°.七年级数学下册第八章《二元一次方程组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.二元一次方程组x y 4x y 2,-=⎧⎨+=⎩的解是( ) x 3(A)y 7=⎧⎨=-⎩ x 1(B)y 1=⎧⎨=⎩ x 7(C)y 3=⎧⎨=⎩ x 3(D)y 1=⎧⎨=-⎩2.方程ax-y=3的解是x 1y 2,,=⎧⎨=⎩则a 的取值是( ) (A)5 (B)-5 (C)2 (D)13.解方程组3x y z 42x 3y z 12x y 2z 3,①,②③-+=⎧⎪+-=⎨⎪+-=⎩以下解法中不正确的是( )(A)由①、②消去z,再由①、③消去z(B)由①、②消去z,再由②、③消去z(C)由①、③消去y,再由①、②消去y(D)由①、②消去z,再由①、③消去y4.由方程组2x m 1y 3m,+=⎧⎨-=⎩可得出x 与y 的关系是( )(A)2x+y=4(B)2x-y=4 (C)2x+y=-4 (D)2x-y=-4 5.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )x y 50(A)6(x y)320,+=⎧⎨+=⎩ x y 50(B)6x 10y 320,+=⎧⎨+=⎩ x y 50(C)6x y 320,+=⎧⎨+=⎩ x y 50(D)10x 6y 320,+=⎧⎨+=⎩6.我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”.正确答案是( )(A)鸡24只,兔11只(B)鸡23只,兔12只 (C)鸡11只,兔24只 (D)鸡12只,兔23只7.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( )(A)6种 (B)5种 (C)4种 (D)3种二、填空题(每小题5分,共25分)8.方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为_____________.9.已知x 1y 2,=⎧⎨=⎩是关于x,y 的二元一次方程组2ax by 3ax by 6,-=⎧⎨+=⎩的解,则a+b=_________. 10.已知-2x m-1y 3和12x n y m+n 是同类项,则(n-m)2 012=________. 11.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需________元.12.三轮摩托车的轮胎安装在前轮上行驶12 000千米后报废,安装在左后轮和右后轮则分别只能行驶7 500千米和5 000千米.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3个轮胎最多可行驶_________千米.三、解答题(共47分)13.(12分)(1)解方程组:3x2y5,x3y9;-=⎧⎨+=⎩(2)解方程组x y8,3x y12.-=⎧⎨+=⎩14.(10分)若方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩求(a+b)2-(a-b)(a+b).15.(12分)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳:75分小明:?分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少?16.(13分)某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A ,B 两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A 型盒子?多少个B 型盒子?(1)根据题意,甲和乙两同学分别列出的方程组如下:甲:x 2y 140,4x 3y 360;+=⎧⎨+=⎩乙x y 140,34x y 3602+=⎧⎪⎨+=⎪⎩:, 根据两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义:甲:x 表示_________,y 表示;__________乙:x 表示_________,y 表示____________;(2)求出做成的A 型盒子和B 型盒子分别有多少个(写出完整的解答过程)?七年级数学下册第八章《二元一次方程组》单元综合测试卷详细参考答案1.【解析】选D.x y 4,(1)x y 2,(2)-=⎧⎨+=⎩ (1)+(2)得,2x=6, 解得,x=3,代入(1)得,3-y=4,y=-1,故原方程组的解是x 3,y 1.=⎧⎨=-⎩2.【解析】选A.把x 1,y 2=⎧⎨=⎩代入方程ax-y=3,得a-2=3,解得a=5.3.【解析】选D.因为每个方程中均含有三个未知数,所以两次所消去的未知数必须相同,才能得到二元一次方程组,而选项D 中两次所消去的未知数不同,不能得到二元一次方程组,是错误的.4.【解析】选A.由2x+m=1,得m=1-2x ;由y-3=m ,得m=y-3,∴1-2x=y-3,即2x+y=4.5.【解析】选B.由题意得,x y 50,6x 10y 320.+=⎧⎨+=⎩6.【解析】选B.设鸡有x 只,兔有y 只,根据题意得x y 35,2x 4y 94,+=⎧⎨+=⎩解得x 23,y 12,=⎧⎨=⎩即有鸡23只,兔12只. 7.【解析】选B.设第一小组有x 人,第二小组有y 人,则第三小组有(20-x-y)人, 则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意.故学生分组方案有5种.故选B.8.【解析】两方程相加得5x=5,解得x=1,把x=1代入3x+y=3得3×1+y=3,解得y=0,所以方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为x 1,y 0.=⎧⎨=⎩答案:x 1y 0=⎧⎨=⎩9.【解析】把x 1y 2,=⎧⎨=⎩代入方程组2ax by 3ax by 6,-=⎧⎨+=⎩得2a 2b 3a 2b 6,,-=⎧⎨+=⎩解方程组得a 33b ,2,=⎧⎪⎨=⎪⎩代入a+b=92. 答案:9210.【解析】由同类项的概念得m 1n,m n 3.-=⎧⎨+=⎩解得m 2,n 1.=⎧⎨=⎩把m 2,n 1=⎧⎨=⎩代入(n-m)2 012得(1-2)2 012=1.答案:111.【解析】设一个单人间需要x 元,一个双人间需要y 元.根据题意得3x 6y 1 020,x 5y 700,①②+=⎧⎨+=⎩化简①得:x+2y=340③,②-③得:3y=360,y=120,把y=120代入③得:x=100,所以5(x+y)=1 100.答案:1 10012.【解析】三轮摩托车每行驶1千米,前胎、左后胎和右后胎分别损耗112 000,17 500和15 000,所以3个轮胎最多行驶3÷111()12 0007 500 5 000++=7 200千米. 设行驶x 千米时,把前胎和右后胎对换,再走y 千米,把左右后胎对换,再走z 千米,报废.x y z 1,12 000 5 0007 500x y z 1,7 5007 500 5 000x y z 1.5 00012 00012 000⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩解得4x 3 428,73y 3 171,7z 600.⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩x+y+z=7 200. ∴行驶43 4287千米时,把前胎和右后胎对换,再走33 1717千米,把左右后胎对换,再走600千米,报废.答案:7 20013.【解析】(1)3x2y5, x3y9,①②-=⎧⎨+=⎩②×3-①,得11y=22,y=2;将y=2代入②,得x+6=9,x=3.∴方程组的解为x3, y 2.=⎧⎨=⎩(2)x y8, 3x y12,①②-=⎧⎨+=⎩①+②得,4x=20,解得x=5,把x=5代入①得,5-y=8, 解得y=-3,所以方程组的解是x5, y 3.=⎧⎨=-⎩14.【解析】∵方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩∴a1b,1b a,+=⎧⎨-=⎩解得a0,b1,=⎧⎨=⎩所以(a+b)2-(a-b)(a+b)=(0+1)2-(0-1)(0+1)=1+1=2.15.【解析】(1)设掷到A区和B区的得分分别为x分,y分.根据题意,得5x3y77,3x5y75.+=⎧⎨+=⎩解得x10,y9.=⎧⎨=⎩答:掷中A区一次得10分,掷中B区一次得9分.(2)由(1)可知,4x+4y=76(分).答:小明的得分是76分.16.【解析】(1)甲:x表示能做成A型盒子的个数,y表示能做成B型盒子的个数.乙:x表示做一个A型盒子用正方形纸板的张数,y表示做一个B型盒子用正方形纸板的张数.(2)解方程组x2y140,4x3y360+=⎧⎨+=⎩得x60,y40.=⎧⎨=⎩答:做成的A型盒子有60个,做成的B型盒子有40个.七年级数学下册第九章《不等式与不等式组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.下列各数中,是不等式2x-3>0的解是( )(A)-1 (B)0 (C)-2 (D)22.如果a >b ,那么下列不等式不成立的是( )(A)a-5>b-5 (B)-5a >-5b (C)a b55> (D)-5a <-5b3.不等式-2x <4的解集是( )(A)x >-2 (B)x <-2(C)x >2 (D)x <24.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )x 2(A)x 1>⎧⎨≤-⎩x 2(B)x 1<>⎧⎨-⎩x 2(C)x 1<⎧⎨≥-⎩x 2(D)x 1<⎧⎨≤-⎩5.不等式组2x 4x, x 24x 1 ≤+⎧⎨+-⎩①<②的正整数解有( )(A)1个 (B)2个 (C)3个 (D)4个6.下列说法中,错误的是( )(A)不等式x <2的正整数解有一个(B)-2是不等式2x-1<0的一个解(C)不等式-3x >9的解集是x >-3。
人教版数学七年级下册全册单元、期中、期末测试题第五章单元测试题一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.人教版数学七年级下册第六章单元测试题一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣162.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.14.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.75.若,则2a+b﹣c等于()A.0 B.1 C.2 D.36.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.18.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题11.的相反数是,的绝对值是,的倒数是.12.已知:,则x+17的算术平方根为.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?21.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个,(1)当2m﹣6=m﹣2,解得m=4.(2)所以这个数为(2m﹣6)=(2×4﹣6)=2.(3)当2m﹣6=﹣(m﹣2)时,解得m=.(4)所以这个数为(2m﹣6)=(2×﹣6)=﹣.(5)综上可得,这个数为2或﹣.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.22.已知:=0,求实数a,b的值,并求出的整数部分和小数部分.23.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.已知实数a、b与c的大小关系如图,化简:﹣+.25.先阅读然后解答提出的问题:设a、b是有理数,且满足,求b a的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x、y都是有理数,且满足,求x+y的值.参考答案与试题解析一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣16【考点】22:算术平方根.【专题】1 :常规题型.【分析】先求出被开方数,再根据算术平方根的定义进行解答.【解答】解:=﹣=﹣4.故选B.【点评】本题主要考查了算术平方根的计算,先求出被开方数是解题的关键.2.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【专题】1 :常规题型.【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.1【考点】21:平方根.【分析】根据1的平方根是±1确定出b=1,然后根据有理数的乘方进行计算即可得解.【解答】解:∵±1是b的平方根,∴b=1,∴b2013=12013=1.故选D.【点评】本题考查了平方根的定义,有理数的乘方,是基础题,确定出b的值是解题的关键.4.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.7【考点】24:立方根.【分析】根据被开方数小数点移动3位,立方根的小数点移动1位解答.【解答】解:==1.147×10=11.47.故选C.【点评】本题考查了立方根的应用,要注意被开方数与立方根的小数点的移动变化规律.5.若,则2a+b﹣c等于()A.0 B.1 C.2 D.3【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出a、b、c的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则2a+b﹣c=﹣4+1+3=0.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲【考点】2A:实数大小比较.【分析】由4<<5<<<6,可得10<6+<11,7<2+<8,则可求得答案.【解答】解:∵4<<5<<<6,∴10<6+<11,7<2+<8,∴丙<乙<甲.故选D.【点评】此题考查了实数的大小比较.此题难度不大,解题的关键是确定各数在哪两个整数之间.7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.1【考点】24:立方根;22:算术平方根.【分析】如果一个数的立方等于a,那么这个数叫做a的立方根,如果一个数的平方等于a,那么这个数叫做a的平方根.【解答】解:=,故①正确.=4,故⑥正确.其他②③④⑤是正确的.故选A.【点评】本题考查立方根和平方根的概念,然后根据概念求解.8.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个【考点】27:实数.【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【解答】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故判断错误;②实数包括无理数和有理数,故判断正确;③是3的立方根,故判断正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故判断错误;⑤2的算术平方根是,故判断正确.故选B.【点评】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c【考点】29:实数与数轴.【专题】21 :阅读型.【分析】首先从数轴上a、b、c的位置关系可知:a<b,则b﹣a>0,c>b,则b﹣c<0.【解答】解:根据题意可知:a<b,则b﹣a>0,c>b,则b﹣c<0,原式=a+(b﹣c)+(c﹣b)=a+b﹣a+c﹣b=c.故选A.【点评】本题考查了实数与数轴的对应关系和利用绝对值的性质化简.10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.【考点】29:实数与数轴.【分析】点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,即可求得c 的值.【解答】解:点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,解得:c=6﹣.故选C.【点评】本题考查了实数与数轴的对应关系,正确理解c与3和之间的关系是关键.二、填空题11.的相反数是﹣1,的绝对值是3,的倒数是﹣.【考点】28:实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答;根据立方根的定义和绝对值的性质解答;根据立方根的定义和倒数的定义解答.【解答】解:1﹣的相反数是﹣1;∵=﹣3,∴的绝对值是3;∵=﹣4,∴的倒数是﹣.故答案为:﹣1,3,﹣.【点评】本题考查了实数的性质,主要利用了相反数的定义,立方根的定义,绝对值的性质和倒数的定义,熟记概念和性质是解题的关键.12.已知:,则x+17的算术平方根为3.【考点】24:立方根;22:算术平方根.【分析】首先利用求得x的值,然后在求x+17的算术平方根即可.【解答】解:∵,∴5x+32=﹣8,解得:x=﹣8,∴x+17=﹣8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为3.【点评】本题考查了立方根及算术平方根的意义,解题的关键是首先求得x的值,然后求x+17的算术平方根.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是4或100.【考点】21:平方根.【分析】2a﹣4、3a﹣1是同一个正数的平方根,则它们互为相反数或相等,即可列出关于a的方程,解方程即可解决问题.【解答】解:∵2a﹣4、3a﹣1是同一个正数的平方根,则这两个式子一定互为相反数或相等.即:(2a﹣4)+(3a﹣1)=0或2a﹣4=3a﹣1,解得:a=1或a=﹣3,则这个数是:(2a﹣4)2=4或(2a﹣4)2=100故答案为:4或100.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.14.一个负数a的倒数等于它本身,则=1;若一个数a的相反数等于它本身,则﹣5+2=﹣9.【考点】2C:实数的运算.【分析】因为一个负数a的倒数等于它本身,所以a=﹣1,由此即可求出的值;因为一个数a的相反数等于它本身,所以a=0,由此即可求出﹣5+2的值.【解答】解:∵一个负数a的倒数等于它本身,∴a=﹣1,∴==1;∵一个数a的相反数等于它本身,∴a=0,∴﹣5+2=0﹣5﹣4=﹣9.故答案为:1,﹣9.【点评】此题主要考查了实数的运算和学生的分析能力,解题的关键是根据已知条件找到a的值.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=1或3.【考点】2C:实数的运算.【分析】先根据平方根、立方根的定义解已知的两个方程求出x、y的值,然后再代值求解.【解答】解:方程(x﹣15)2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,方程(y﹣1)3=﹣0.125两边开立方得y﹣1=﹣0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.【点评】本题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是3﹣2.【考点】29:实数与数轴.【分析】根据数轴的特点表示出AB的长,在表示出BC的长,然后用点B表示的数加上BC的长度计算即可.【解答】解:∵点A,B对应的实数分别为1,,∴AB=﹣1,∴BC=2AB=2(﹣1)=2﹣2,∴点C对应的数是+2﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了实数与数轴,主要利用了数轴上两点间的距离的表示,是基础题.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.【考点】2C:实数的运算.【专题】11 :计算题.【分析】①原式利用绝对值的代数意义化简,计算即可得到结果;②原式利用乘方的意义,平方根及立方根定义计算即可得到结果;③原式利用平方根,立方根,以及绝对值的代数意义化简,计算即可得到结果;④原式利用平方根,绝对值,以及乘方的意义计算即可得到结果.【解答】解:①原式=﹣1+﹣+2﹣+﹣2=﹣1;②原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36;③原式=﹣+2.5﹣﹣1=;④原式=﹣1+﹣5+﹣=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.【考点】24:立方根.【分析】(1)先移项,然后将三次项的系数化为1,开立方即可得出x的值;(2)先开立方、开平方,然后移项合并,再开立方,可得出x的值;(3)直接开立方得出(x﹣2)的值,继而可得出x的值.【解答】解:(1):移项得:27x3=125,系数化为1得:x3=,开立方得:;(2)原方程可化为:x3=﹣8,开立方得:x=﹣2;(3)开立方得:x﹣2=﹣0.5,移项得:x=1.5.【点评】本题考查了立方根的知识,解答本题的关键是掌握开立方的运算,属于基础题.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.【考点】2C:实数的运算.【专题】11 :计算题.【分析】根据题意填写表格即可.【解答】解:根据题意得:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?。
人教版七年级数学下册各单元测试卷及答案人教版七年级数学下册单元测试卷第一章整式的乘除单元测试卷(一)班级:__________ 姓名:__________ 学号:__________ 得分:__________一、精心选一选(每小题3分,共21分)1.多项式xy+2xy-9xy+8的次数是()。
A。
3 B。
4 C。
5 D。
62.下列计算正确的是()。
A。
2x×6x=12x B。
y^4248/ y^433=m^2/3m C。
(x+y)^2=x^2+y^2 D。
4a^2-a^2=3a^23.计算(a+b)(-a+b)的结果是()。
A。
b-a B。
a-b C。
-a-2ab+b D。
-a+2ab+b4.3a-5a+1与-2a-3a-4的和为()。
A。
5a-2a-3 B。
a-8a-3 C。
-a-3a-5 D。
a-8a+55.下列结果正确的是()。
A。
(1/3)^2=1/9 B。
9×5=45 C。
(-5)^2=25 D。
2^-3=-1/86.若am/bn=(-2)^11.a^8b^6=2,那么m^2-2n的值是()。
A。
10 B。
52 C。
20 D。
327.要使式子9x+25y成为一个完全平方式,则需加上()。
A。
15xy B。
±15xy C。
30xy D。
±30xy二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式3xy,m,6a-a+3,12,-1/2xy中,单项式有5个,多项式有4个。
的系数是-5,次数是3.3.多项式3ab-ab+25/4有3项,分别是3ab,-ab,25/4.4.⑴x×x=x^2.⑵y^3/y^2=y。
⑶2a^2b^9/8=1/4a。
⑷-x^5y^2/2=-x^5y^2/2.⑸a/a=1.⑹10×5=50.5.⑴(mn)^-2=9/4mn^2.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷-12xy^2/2=-6xy^2.⑸(53/22)÷a=5/11m。
123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七年级下册数学单元检测卷:第五章相交线与平行线一.填空题(共6小题)1.如图,直线DE经过三角形ABC的顶点A,则∠DAC与∠C的关系是.(填“内错角”或“同旁内角”)2.如图,AB∥CD,CF交AB于点E,∠AEC与∠C互余,则∠CEB是度.3.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD= °.4.把命题“等角的余角相等”写成“如果……,那么……”的形式为.5.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段PC的长,理由是.6.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).二.选择题(共10小题)7.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°15′.则∠AOD的度数为()A.55°15′B.65°15′C.125°15′D.165°15′8.图中∠1和∠2是对顶角的是()A.B.C.D.9.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A.B.C.D.10.下列命题中是假命题的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行11.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D12.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°13.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠E=45°,∠B=60°,若AE∥BC,则∠AFD=()A.75°B.85°C.90°D.65°14.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.下列现象是平移的是()A.电梯从底楼升到顶楼B.卫星绕地球运动C.碟片在光驱中运行D.树叶从树上落下16.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48三.解答题(共6小题)17.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.18.如图,已知直线AB,CD,EF相交于点O.(1)若∠COF=120°,∠AOD=100°,求∠AOF的度数;(2)若∠BOC-∠BOD=20°,求∠AOC的度数.19.填空或批注理由:如图,已知∠1=∠2,∠A=∠D,试说明:AE∥BD证明:∵∠1=∠2(已知)∴AB∥CD ( )∴∠A=()( )∵∠A=∠D(已知)∴=∠D ( )∴AE∥BD ( )20.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?21.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是.22.如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE交于点A,DF 平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.23.问题情境:(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答;问题迁移:如图3,点A、B在射线OM上,点C、D在射线ON上,AD∥BC,点P在射线OM上运动(点P与A、B、O三点不重合).(2)当点P在线段AB上运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由;(3)当点P在线段AB外运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由.参考答案1. 同旁内角2.1353.154. 如果两个角相等,那么这两个角的余角相等5. 垂线段最短6. ⑤⑥7-11 CADDD12-16 CACAD17. 解:(1)∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°;(2)∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=∠BOC,∵∠COD=21°,∴21°+∠BOC=∠BOC,∴∠BOC=42°,∴∠AOB=3∠BOC=126°.18.解:(1)∵∠COF=120°,∴∠2=180°-120°=60°,∴∠DOF=∠2=60°,∵∠AOD=100°,∴∠AOF=100°-60°=40°;(2)∵∠BOC+∠BOD=180°,∠BOC-∠BOD=20°,∴∠BOC=100°,∠BOD=80°,∴∠AOC=∠BOD=80°.19. 内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.20. 解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).21. 解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5,22.解:∵m∥n,∠ACB=80°∴∠AED=∠ACB=80°,∵∠A=40°,∴△ADE中,∠ADE=180°-(∠A+∠AED)=180°-(40°+80°)=60°,又∵DF平分∠ADE,∴∠EDF=∠ADE=30°,∴△DEF中,∠DFE=180°-∠EDF-∠DEF=180°-30°-80°=70°.23.解:(1)∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°-∠A=50°,∠CPE=180°-∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠ADP +∠BCP,理由如下:如图3,过P作PE∥AD交CD于点E,图3∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠ADP,∠CPE=∠BCP,∴∠CPD=∠DPE+∠CPE=∠ADP +∠BCP;(3)①当点P在射线AM上时,∠CPD=∠BCP-∠ADP;理由:如图4,过点P作PE∥AD交ON于点E,∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠人教版七年级数学下册单元测试卷第五章相交线与平行线综合能力提升测试卷一、选择题(每小题4分,共24分)1.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 153°.2.“直角都相等”的题设是两个角是直角,结论是这两个角相等.3.如图,点A在直线DE上,当∠BAC=___57_____°时,DE∥BC.4. 如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是内错角 .5.互为邻补角的两个角相加等于180°.6.如图,AB∥CD,则∠1+∠3—∠2的度数等于 ___180° _____.二、选择题(每小题4分,共40分)7.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°8.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为( C )A. ①②③B. ①②④C. ①③④D. ②③④10.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°11 .经过直线外一点画直线,下列说法错误的是( B )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直12.下列叙述中,正确的是( C )A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角13. 如图,点O为直线AB上一点,CO⊥AB于点O, OD在∠COB内,若∠COD=50°,则∠AOD的度数是( D )A.100°B.110°C.120°D.140°14. 下列图形中,周长最长的是( C )15. 如图,已知OA⊥OC,OB⊥OD, ∠BOC=50°,则∠AOD的度数为( C )A.100°B.120°C.130°D.140°16 .a、b、c是平面上的任意三条直线,它们的交点可以有( B )A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确三、解答题(共36分)17.(共7分)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____是内错角;(3)∠1和∠3是直线AB,AF被直线_____所截构成的_____角;(4)∠2和∠4是直线____,______被直线BC所截构成的_____角.17.(1) ∠2(2) ∠4(3) ED内错(4) AB, AF同位18. (共4分)如图,直线AB、CD是一条河的两岸,并且AB∥CD,E为直线AB、CD 外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.图略理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (共4分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).20. (共6分)根据下列要求画图.(1)如图1,过点P画AB的垂线;(2)如图2,过点P画OA,OB的垂线;(3)如图3,过点A画BC的垂线.答案:(1)如图1所示.(2)如图2所示.(3)如图3所示.21. (共7分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE 与DF的位置关系?试说明理由。
人教版七年级数学下册单元测试题:第9章 不等式与不等式组一、填空题1. “x 的4倍与2的和是负数”用不等式表示为 .2.若23x m-1-2>19是关于x 的一元一次不等式,则 . 3.不等式4+3x≥x -1的所有负整数解的和为 . 4.若不等式无解,则实数a 的取值范围是 .5.已知关于x ,y 的方程组的解满足不等式x +y >3,则a 的取值范围是 .6.已知关于x 的不等式组有且只有三个整数解,则a 的取值范围是 .二、选择题7.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b8.如图是关于x 的不等式2x -a≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 9.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( )①去分母,得5(x +2)>3(2x -1);②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 10.不等式组的解集表示在数轴上正确的是( )11.对于实数x,我们规定:[x]表示不小于x 的最小整数,例如:[1.4]=2,[4]=4,[-3.2]=-3,若=6,则x 的取值可以是( )A.41B.47C.50D.5812.张老师带领全班学生到植物园参观,门票每张10元,购票时才发现所带的钱不够,售票员告诉他:如果参观人数50人以上( 含50人 )可以按团体票八折优惠,于是张老师购买了50张票,结果发现所带的钱还有剩余.那么张老师和他的学生至少有( ) A.40人 B.41人 C.42人 D.43人 13.已知4<m<5,则关于x 的不等式组的整数解共有( )A.1个B.2个C.3个D.4个14.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些图书有( ) A.23本 B.24本 C.25本 D.26本 15.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A. 60B. 70C. 80D. 9016.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 三、解答题17.解下列不等式和不等式组: (1)2x -13-9x +26≤1;(2)18.已知不等式-1<6的负整数解是方程2x-3=ax 的解,试求出不等式组的解集.19.若不等式组的解集为-2<x<3,求a+b 的值.20.已知二元一次方程组其中x<0,y>0,求a 的取值范围,并把解集在数轴上表示出来.21.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.22.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?23.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式. 24.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.( 1 )求每辆大客车和每辆小客车的乘客座位数;( 2 )由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.参考答案1.4x+2<02.m=23.-34.a≤-15.a>16.-2<a≤-17-16:CCDCC BBDCB17.解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:解:解不等式①,得x>-2.解不等式②,得x≤4.则不等式组的解集为-2<x≤4.将解集表示在数轴上如下:18.解:∵-1<6,4-5x-2<12,-5x<10,x>-2,∴不等式的负人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
第六章达标测试卷一、选择题(每题3分,共30分) 1.下列各数中为无理数的是( )A.9B .3.14C .πD .02.在实数-13,-1,0,3中,最小的实数是( )A .-1B .0C .-13D. 33.116的平方根是( ) A .±12 B .±14C.14 D.12 4.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间6.下列等式正确的是( )A.22=2B.33=3C.44=4D.55=57.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 8.制作一个表面积为30 cm 2的无盖正方体纸盒,则这个正方体纸盒的棱长是( ) A. 6 cmB. 5 cmC.30 cmD .±5 cm9.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是( )A .9B .±9C .±3D .310.已知实数a ,b 在数轴上对应的点的位置如图所示,则下列式子正确的是( )(第10题)A.ab>0 B.a+b<0 C.|a|<|b| D.a-b>0二、填空题(每题3分,共24分)11.4的算术平方根是________,9的平方根是________,-8的立方根是________.12.已知a为实数,若-a2有意义,则-a2=________.13.计算:|2-3|+2=________.14.一个正数的平方根分别是x+1和x-5,则x=________.15.实数28-2的整数部分是________.16.如图,数轴上A,B两点之间表示整数的点有________个.(第16题)17.已知 2 021≈44.96,202.1≈14.22,那么20.21≈__________(结果精确到0.01).18.一个数值转换器,原理如图所示.当输入x为512时,输出y的值是________.(第18题)三、解答题(19题16分,20,22题每题8分,21,23题每题10分,24题14分,共66分)19.计算:(1)0.09+38-14;(2) 33-2(3-1);(3)|3-32|-32-(-5)2;(4)214-(-2)4+31-1927-(-1)2 023.20.求下列各式中x的值:(1)(x+2)3+1=7 8;(2)25(x2-1)=24.21.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.22.座钟的钟摆摆动一个来回所需的时间称为一个周期,其计算公式为T=2πlg,其中T表示周期(单位:s),l表示摆长(单位:m),g≈9.8 m/s2.已知某座钟的摆长为0.5 m,它每摆动一个来回发出一次滴答声,那么在一分钟内,该座钟大约发出多少次滴答声(可利用计算器计算,其中π≈3.14)?23.如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2)2的值.(第23题)24.你能找出规律吗?(1)计算:9×16=________,9×16=________;25×36=________,25×36=________.(2)请按找到的规律计算:①5×125;②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.答案一、1.C 2.A 3.A 4.D 5.C 6.A7.A8.A9.C10.D点拨:根据a,b在数轴上对应的点的位置可知1<a<2,-1<b<0,∴ab<0,a+b>0,|a|>|b|,a-b>0.故选D.二、11.2;±3;-212.013. 314.215.316.417.4.5018.3 2三、19.解:(1)原式=0.3+2-12=1.8;(2)原式=33-23+2=3+2;(3)原式=32-3-32-5=-8;(4)原式=94-16+3827-(-1)=32-4+23+1=-56.20.解:(1)(x+2)3=-18,x+2=-12,x=-52;(2)x2-1=2425,x2=4925,x=±75.21.解:由题意,得2a+b=0,3b+12=0,解得b=-4,a=2.(1)2a-3b=2×2-3×(-4)=16,所以2a-3b的平方根为±4.(2)把b=-4,a=2代入方程,得2x2+4×(-4)-2=0,即x2=9,解得x=±3.22.解:由题意知l=0.5 m,g≈9.8 m/s2,∴T=2πlg≈2×3.14×0.59.8≈1.42(s).∴在一分钟内,该座钟大约发出601.42≈42(次)滴答声.23.解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,∴点B所表示的数比点A所表示的数大2.∵点A表示-2,点B表示m,∴m=-2+2.(2)|m-1|+(m+2)2=|-2+2-1|+(-2+2+2)2=|-2+1|+4=2-1+4=2+3.24.解:(1)12;12;30;30(2)①原式=5×125=625=25;②原式=53×485=16=4.(3)40=2×2×10=2×2×10=a2b.人教版数学七年级下册第六章单元测试卷一、选择题1.(3分)4的平方根是()A.2 B.16 C.±2 D.±162.(3分)下列实数中是无理数的是()A.B. C.π0D.3.(3分)下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.4.(3分)下列说法不下确的是()A.6是36的平方根B.(﹣6)2的平方根是6C.(﹣6)2的平方根是±6 D.﹣6是36的平方根5.(3分)一个数的立方根等于这个数的算术平方根,则此数是()A.0或1 B.0,﹣1和1 C.0或﹣1 D.﹣1和16.(3分)下列命题中正确的是()A.有限小数不是有理数B.无限小数是无理数有限小数不是有理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应8.(3分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N9.(3分)数字中无理数的个数为()A.1 B.2 C.3 D.410.(3分)设,a在两个相邻整数之间,则这两个整数之和是()A.6 B.7 C.8 D.911.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.2712.(3分)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号二、填空题13.(3分)写一个比﹣小的整数.14.(3分)2﹣的相反数是,绝对值是.15.(3分)在数轴上表示﹣的点到原点的距离为.16.(3分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为.17.(3分)王老师在讲实数时,画了图(如图所示).即“以数轴的单位长线段为边作一个正方形,然后以点O为圆心,以正方形的对角线长为半径画弧交数轴上一点A”,则点A表示的数是,作这样的图是说明,因此,实数与数轴上的点.18.(3分)数轴上A、B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C所对应的实数为.19.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.20.(3分)若(x1,y1)•(x2,y2)=x1x2+y1y2,则=.21.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.22.(3分)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有个.23.(3分)已知a、b为两个连续的整数,且,则a+b=.24.(3分)计算:﹣|2﹣π|=.三、计算题25.计算:(1)(2)(3)(4);(5);(6).26.求下列各式中的x的值:(1);(2)27x2=12;(3)(x﹣1)3=5.四、解答题27.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?28.若a、b互为相反数,c、d互为倒数,m的绝对值是2,求.29.已知a,b,c在数轴上如图所示,化简:.30.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案与试题解析一、选择题1.(3分)4的平方根是()A.2 B.16 C.±2 D.±16【考点】21:平方根.【分析】根据正数的平方根的求解方法求解即可求得答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选C.【点评】此题考查了平方根的意义.题目比较简单,解题的关键是熟记定义.2.(3分)下列实数中是无理数的是()A.B. C.π0D.【考点】26:无理数;6E:零指数幂.【专题】11 :计算题.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【解答】解:A、=2,是有理数,故本选项错误;B、=2,是有理数,故本选项错误;C、π0=1,是有理数,故本选项错误;D、是无理数,故本选项正确.故选D.【点评】此题考查了无理数的定义,属于基础题,熟练掌握无理数的三种形式是解答本题的关键.3.(3分)下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.【考点】2C:实数的运算;11:正数和负数.【专题】11 :计算题.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.4.(3分)下列说法不下确的是()A.6是36的平方根B.(﹣6)2的平方根是6C.(﹣6)2的平方根是±6 D.﹣6是36的平方根【考点】21:平方根.【分析】根据平方根的定义直接解答即可.【解答】解:A、6和﹣6都是36的平方根,故本选项正确;B、(﹣6)2的平方根是±6,故本选项错误;C、(﹣6)2的平方根是±6,故本选项正确;D、6和﹣6都是36的平方根,故本选项正确;故选B.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(3分)一个数的立方根等于这个数的算术平方根,则此数是()A.0或1 B.0,﹣1和1 C.0或﹣1 D.﹣1和1【考点】24:立方根;22:算术平方根.【分析】根据立方根的定义和算术平方根的定义得到0和1的立方根等于它们的算术平方根.【解答】解:一个数的立方根等于这个数的算术平方根,则这个数为0或1.故选A.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了算术平方根.6.(3分)下列命题中正确的是()A.有限小数不是有理数B.无限小数是无理数有限小数不是有理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应【考点】29:实数与数轴.【分析】A、根据有理数的定义即可判定;B、根据无理数的定义即可判定;C、D、根据数轴与实数的对应关系即可判定.【解答】解:由有理数的定义:正整数、0、负整数、正分数、负分数通称有理数.A、有限小数是有理数,故选项错误;B、无限不循环小数是无理数有限小数是有理数,故选项错误;C、根据数轴的性质:数轴上的点与实数一一对应,故选项错误;D、数轴上的点与实数一一对应,故选项正确.故选D.【点评】本题主要考查了实数与数轴之间的对应关系,解题的关键利用有理数、无理数的定义及实数与数轴的关系.8.(3分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【考点】2B:估算无理数的大小;29:实数与数轴.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.9.(3分)数字中无理数的个数为()A.1 B.2 C.3 D.4【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,π,共有2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.(3分)设,a在两个相邻整数之间,则这两个整数之和是()A.6 B.7 C.8 D.9【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】由于16<19<25,根据算术平方根得到4<<5,则3<a<4.【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,即3<a<4.∴3+4=7.故选B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.11.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据互为相反数的和等于0列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y的值,然后代入进行计算即可得解.【解答】解:∵与|x﹣y﹣3|互为相反数,∴+|x﹣y﹣3|=0,∴,②﹣①得,y=12,把y=12代入②得,x﹣12﹣3=0,解得x=15,∴x+y=12+15=27.故选D.【点评】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.12.(3分)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【考点】2C:实数的运算;2A:实数大小比较.【专题】11 :计算题.【分析】分别把加、减、乘、除四个符号填入括号,计算出结果即可.【解答】解:当填入加号时:()+()=﹣;当填入减号时:()﹣()=0;当填入乘号时:()×()=;当填入除号时:()÷()=1.∵1>>0>﹣,∴这个运算符号是除号.故选D.【点评】本题考查的是实数的运算及实数的大小比较,根据题意得出填入加、减、乘、除四个符号的得数是解答此题的关键.二、填空题13.(3分)写一个比﹣小的整数﹣2(答案不唯一).【考点】2A:实数大小比较;2B:估算无理数的大小.【专题】26 :开放型.【分析】先估算出﹣的大小,再找出符合条件的整数即可.【解答】解:∵1<3<4,∴﹣2<﹣<﹣1,∴符合条件的数可以是:﹣2(答案不唯一).故答案为:﹣2(答案不唯一).【点评】本题考查的是实数的大小比较,根据题意估算出﹣的大小是解答此题的关键.14.(3分)2﹣的相反数是﹣2,绝对值是2﹣.【考点】28:实数的性质.【分析】一个数a的相反数是﹣a,而正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解.【解答】解:﹣(2﹣)=﹣2∵2﹣>0∴2﹣的绝对值是2﹣.故答案是:﹣2和2﹣.【点评】本题主要考查了相反数与绝对值的性质,都是需要熟练掌握的内容.15.(3分)在数轴上表示﹣的点到原点的距离为.【考点】29:实数与数轴.【专题】12 :应用题.【分析】由于数轴上的点到原点的单位长度即为它到原点的距离,由此即可解决问题.【解答】解:∵表示﹣的点距离原点有个单位长度,∴它到原点的距离为.【点评】此题主要考查了实数和数轴是一一对应的关系以及点在数轴上的几何意义.16.(3分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为40.【考点】25:计算器—数的开方.【专题】11 :计算题;2A :规律型.【分析】根据被开方数扩大100倍,算术平方根扩大10倍,直接解答即可.【解答】解:∵=4,∴==40.故答案为:40.【点评】本题主要考查数的开方,根据题意找出规律是解答本题的关键.17.(3分)王老师在讲实数时,画了图(如图所示).即“以数轴的单位长线段为边作一个正方形,然后以点O为圆心,以正方形的对角线长为半径画弧交数轴上一点A”,则点A表示的数是,作这样的图是说明无理数可以用数轴上的点表示出来,因此,实数与数轴上的点一一对应.【考点】29:实数与数轴.【分析】根据勾股定理求出正方形的对角线长,再根据圆的特点得出点A的数,从而得出无理数可以用数轴上的点表示出来,实数与数轴上的点是意义对应的.【解答】解:数轴上正方形的对角线长为:=,由图中可得:点A表示的数是;作这样的图是说明:无理数可以用数轴上的点表示出来,因此,实数与数轴上的点一一对应;故答案为:,无理数可以用数轴上的点表示出来,一一对应.【点评】本题考查了实数和数轴,根据勾股定理求出A点所表示的数,从而得出无理数与数轴的关系.18.(3分)数轴上A、B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C所对应的实数为4﹣.【考点】29:实数与数轴.【专题】2B :探究型.【分析】设点A关于点B的对称点为点C为x,再根据A、C两点到B点的距离相等即可求解.【解答】解:设点A关于点B的对称点为点C为x,则=2,解得x=4﹣.故答案为:4﹣.【点评】本题考查的是实数与数轴,即任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.19.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】21:平方根.【专题】11 :计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.(3分)若(x1,y1)•(x2,y2)=x1x2+y1y2,则=﹣2.【考点】2C:实数的运算.【专题】23 :新定义.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:原式=×(﹣)+(﹣)×=﹣1﹣1=﹣2.故答案为:﹣2.【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.21.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.【考点】22:算术平方根;21:平方根;I7:展开图折叠成几何体.【分析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.【解答】解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.【点评】此题主要考查了平方根、算术平方根的定义,解题关键是找出这个正方体的相对面,要求学生自己动手,慢慢体会哪二个面是相对面.22.(3分)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有186个.【考点】26:无理数.【分析】分别找出1,2,3…,100这100个自然数的算术平方根和立方根中,有理数的个数,然后即可得出无理数的个数.【解答】解:∵12=1,22=4,32=9,…,102=100,∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个;∵13=1,23=8,33=27,43=64<100,53=125>100,∴1,2,3…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个;∴1,2,3…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186个.故答案为:186.【点评】本题结合算术平方根与立方根的定义考查了无理数的定义,有一定的难度.23.(3分)已知a、b为两个连续的整数,且,则a+b=11.【考点】2B:估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.24.(3分)计算:﹣|2﹣π|=﹣1.14.【考点】2C:实数的运算.【分析】先判断3.14﹣π和2﹣π的符号,然后再进行化简,计算即可.【解答】解:﹣|2﹣π|=π﹣3.14+2﹣π=﹣1.14.故答案为:﹣1.14.【点评】此题主要考查实数的运算,其中有二次根式的性质和化简,绝对值的性质,是一道基础题.三、计算题25.计算:(1)(2)(3)(4);(5);(6).【考点】2C:实数的运算.【专题】11 :计算题.【分析】(1)原式利用平方根定义化简得到结果;(2)原式变形后利用平方根定义化简即可得到结果;(3)原式利用平方根的定义化简即可得到结果;(4)原式利用立方根的定义化简即可得到结果;(5)原式利用平方根及立方根的定义化简,计算即可得到结果;(6)原式第二项利用乘法分配律计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解(1)==9;(2)原式==;(3)原式=±;(4)原式=﹣(﹣3)=3;(5)原式=+0.5﹣10+π=π﹣5;(6)原式=2﹣3﹣1+5=6﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.求下列各式中的x的值:(1);(2)27x2=12;(3)(x﹣1)3=5.【考点】24:立方根;21:平方根;22:算术平方根.【专题】11 :计算题.【分析】(1)根据算术平方根得到|x|=2,然后根据绝对值的意义求解;(2)先变形得到x2=,然后根据平方根定义求解;(3)根据立方根的定义得到x﹣1=,然后解方程.【解答】解:(1)|x|=2,x=±2;(2)x2=,x=±;(3)x﹣1=,x=1+.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了平方根和算术平方根.四、解答题27.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?【考点】E5:函数值.【分析】(1)把h=20代入函数解析式分别计算即可得解;(2)根据速度=路程÷时间分别求出速度,然后比较大小即可.【解答】解:(1)h=20米时,地球上,4.9t2=20,解得t=,月球上,0.8t2=20,解得t=5;(2)在地球上的速度==7m/s,在月球上的速度==4m/s,所以,在地球上物体下落的快.【点评】本题考查了函数值的求解,准确计算是解题的关键.28.若a、b互为相反数,c、d互为倒数,m的绝对值是2,求.【考点】2C:实数的运算;14:相反数;15:绝对值;17:倒数.【专题】11 :计算题.【分析】根据互为相反数两数之和为0得到a+b=0,根据互为倒数两数之积为1得到cd=1,利用绝对值的代数意义求出m的值,分别代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=0+=;当m=﹣2时,原式=0+=.【点评】此题考查了实数的运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.29.已知a,b,c在数轴上如图所示,化简:.【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】根据数轴abc的位置推出a+b<0,c﹣a>0,b+c<0,根据二次根式的性质和绝对值进行化简得出﹣a+a+b+c﹣a﹣b﹣c,再合并即可.【解答】解:∵从数轴可知:a<b<0<c,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出﹣a+a+b+c ﹣a﹣b﹣c.30.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【考点】2B:估算无理数的大小.【专题】21 :阅读型.【分析】根据题意的方法,估计的大小,易得10+的范围,进而可得x﹣y 的值;再由相反数的求法,易得答案.【解答】解:∵1<<2,∴1+10<10+<2+10,∴11<10+<12,∴x=11,y=10+﹣11=﹣1,x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数﹣12.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.人教版数学七年级下册第六章单元测试卷一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣162.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.14.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.75.若,则2a+b﹣c等于()A.0 B.1 C.2 D.36.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙 C.甲<丙<乙 D.丙<乙<甲7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.18.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题11.的相反数是,的绝对值是,的倒数是.12.已知:,则x+17的算术平方根为.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?21.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m ﹣2或者是﹣(m﹣2)两数中的一个,(1)当2m﹣6=m﹣2,解得m=4.(2)所以这个数为(2m﹣6)=(2×4﹣6)=2.(3)当2m﹣6=﹣(m﹣2)时,解得m=.(4)所以这个数为(2m﹣6)=(2×﹣6)=﹣.(5)综上可得,这个数为2或﹣.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.22.已知:=0,求实数a,b的值,并求出的整数部分和小数部分.23.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.已知实数a、b与c的大小关系如图,化简:﹣+.25.先阅读然后解答提出的问题:设a、b是有理数,且满足,求b a的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x、y都是有理数,且满足,求x+y的值.参考答案与试题解析一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣16【考点】22:算术平方根.【专题】1 :常规题型.【分析】先求出被开方数,再根据算术平方根的定义进行解答.【解答】解:=﹣=﹣4.故选B.【点评】本题主要考查了算术平方根的计算,先求出被开方数是解题的关键.2.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【专题】1 :常规题型.【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.1【考点】21:平方根.【分析】根据1的平方根是±1确定出b=1,然后根据有理数的乘方进行计算即【解答】解:∵±1是b的平方根,∴b=1,∴b2013=12013=1.故选D.【点评】本题考查了平方根的定义,有理数的乘方,是基础题,确定出b的值是解题的关键.4.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.7【考点】24:立方根.【分析】根据被开方数小数点移动3位,立方根的小数点移动1位解答.【解答】解:==1.147×10=11.47.故选C.【点评】本题考查了立方根的应用,要注意被开方数与立方根的小数点的移动变化规律.5.若,则2a+b﹣c等于()A.0 B.1 C.2 D.3【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出a、b、c的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则2a+b﹣c=﹣4+1+3=0.。
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第6题图第8题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.第22题图23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第24题图第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.4. A 解析:∵a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵EA⊥BA,∴∠EAD=90°.∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC =60°. ∵ PQ ∥CD ,∴ ∠DCB +∠PQC =180°. ∵ ∠DCB =120°,∴ ∠PQC =180°120°=60°. 20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD . ∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2. 即∠EAP =∠APF . ∴ AEF ∥P . ∴ ∠E =∠F . 22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1, ∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°, ∴ ∠ACB =∠AED =80°. ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°, ∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行同旁内角互补). ∵ ∠B =65°,∴ ∠BCE =115°. ∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.第六章《实数》水平测试题班级 学号 姓名 成绩一、选择题 (每题3分,共30分。
七年级数学(下)第三单元自主学习达标检测A卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有______性.2.在△ABC中,AD是中线,则△ABD的面积______△ACD的面积.(填“>”,“<”或“=”)3.在△ABC中,若∠A=30°,∠B=60°,则这个三角形为三角形;若∠A:∠B:∠C=1:3:5,这个三角形为三角形.(按角的分类填写)4.一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有3cm、10cm、20cm三根木条,他可以选择长为cm的木条.5.如图所示的图形中x的值是__ ____.6.过n边形的一个顶点的对角线可以把n边形分成______个三角形.(用含n的式子表示)7边上的高是;(2)在△AEC中,AE边上的高是.8.如图,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= .9.如图,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是(填一个即可).10.若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是____ _ cm.11.图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= .第5题第14题A.B.C.D.12.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是 .13.如图所示,A 、B 在一水池的两侧,若BE =DE ,∠B =∠D =90°,CD =8 m ,则水池宽AB =m .14.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,若∠CBA =320,则∠FED = ,∠EFD = . 二、选择题(共4题,每题3分,共12分) 15.如图所示,其中三角形的个数是( )A.2个B.3个C.4个D.5个16.下列各组中的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10D.4,4,817.下列图形不具有稳定性的是( )18.一个三角形中直角的个数最多有( )A.3 B.1 C.2 D.0 三、解答题(共60分) 19.(5分)如图,(1)过点A 画高AD ; (2)过点B 画中线BE ;(3)过点C 画角平分线CF .第13题第11题第15题20.(5分)若四边形的两个内角是直角,另外两个内角中一个角比另一个角的2倍少30°,求这两个内角的度数.21.(5分)小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?22.(6分)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB.求∠ACD的度数.23.(6分)如图所示,∠BAC=90°,BF平分∠ABC交AC于点F,∠BFC=100°,求∠C的度数.24.(6分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.25(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.26.(7分)如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.27.(7分)已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,问AE与CF是否平行?为什么?28.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.七年级数学(下)第三单元自主学习达标检测B卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 .2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米. 7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 . 9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: .10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第6题30°30°30°A 第8题GEDCBA第5题DCBA第2题 第3题 第4题第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9 三、解答题(共60分) 19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?第9题 第12题 第13题EDC BA20.(4分)如图,已知四边形ABCD 中,∠A =∠D ,∠B =∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?C B A C B A25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A→C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A +∠B +∠C +∠D +∠E =180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.D C B A28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.。
人教版七年级下册第七章平面直角坐标系单元测试卷一、选择题:1.若点 P(x , y) 在第三象限,且点 P 到 x 轴的距离为 3,到 y 轴的距离为 2,则点 P 的坐标是( )A.(-2 ,-3)B.(-2, 3)C.(2, -3)D.(2, 3)2.若点 A(2 , m)在 x 轴上,则点 B(m﹣ 1, m+1)在 ()A. 第一象限B.第二象限C.第三象限D. 第四象限3.点 A(5,– 7) 对于 x轴对称的点 A 的坐标为 ().12A.( – 5,–7)B.( –7 , –5)C.(5, 7)D.(7,– 5)4.一个长方形在平面直角坐标系中,三个极点的坐标分别是(-1 ,-1) 、 (-1,2) 、(3 ,-1) ,则第四个极点的坐标是()A.(2 , 2)B.(3, 2)C.(3 , 3)D.(2 , 3)5.若点 A(m,n) 在第二象限 , 那么点 B(-m,│ n│ ) 在 ()A. 第一象限B. 第二象限 ;C. 第三象限D. 第四象限6.若点 P 对于 x 轴的对称点为 P (2a+b , 3) ,对于 y 轴的对称点为P (9 , b+2) ,则点 P的坐12标为()A.(9 , 3)B.(﹣9, 3)C.(9,﹣ 3)D.( ﹣ 9,﹣ 3)7.已知点 P(x , y) ,且,则点 P 在()A. 第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,若点P(m- 3, m+ 1) 在第二象限,则 m的取值范围为 ()A. - 1< m<3B.m> 3C.m<- 1D.m >- 19.坐标平面上有一点 A,且 A 点到 x 轴的距离为3, A 点到 y 轴的距离恰为到 x 轴距离的 3倍. 若 A 点在第二象限,则A点坐标为 ()A.(-9 , 3)B.(-3, 1)C.(-3, 9)D.(-1, 3)10. 在平面直角坐标系中,线段BC∥轴,则 ()A. 点 B 与 C的横坐标相等B. 点 B 与 C的纵坐标相等C. 点 B 与 C的横坐标与纵坐标分别相等D. 点 B 与 C的横坐标、纵坐标都不相等11. 如图,在 5× 4 的方格纸中,每个小正方形边长为1,点 O,A,B 在方格纸的交点 ( 格点 )上,在第四象限内的格点上找点C,使△ ABC的面积为3,则这样的点C共有()A.2 个B.3 个C.4个D.5个12.如图,一个质点在第一象限及 x 轴、y 轴上运动,在第一秒钟,它从原点 (0,0) 运动到 (0,1) ,而后接着按图中箭头所示方向运动,即(0,0)→ (0,1)→ (1,1)→ (1,0),?且每秒挪动一个单位,那么第80 秒时质点所在地点的坐标是()A.(0 , 9)B.(9 , 0)C.(0,8)D.(8 , 0)二、填空题:13.若点 A在第二象限,且到 x 轴的距离为 3,到 y 轴的距离为 2,则点 A 的坐标为 __________.14.在平面直角坐标系中,点C(3 , 5) ,先向右平移了 5 个单位,再向下平移了 3 个单位到达 D 点,则 D 点的坐标是.15.若 A(a,b) 在第二、四象限的角均分线上,a 与 b 的关系是 _________.16.已知点 A(0, 1) , B(0, 2) ,点 C 在 x 轴上,且,则点 C的坐标.17.在平面直角坐标系中,对于平面内随意一点 (x ,y) ,若规定以下两种变换:① f(x,y)=(x+2,y).② g(x,y)=(- x, - y),比如依据以上变换有:f(1,1)=(3,1); g(f(1,1)) =g(3,1)=(-3, -1).假如有数a、 b, 使得f(g(a,b)) = (b,a),则g(f(a+b,a- b))=.18. 将自然数按以下规律摆列:表中数 2 在第二行,第一列,与有序数对(2,1) 对应;数 5 与 (1,3)对应;数14 与(3,4)对应;依据这一规律,数2014 对应的有序数对为.三、解答题:19. 如图,在单位正方形网格中,成立了平面直角坐标系xOy,试解答以下问题:(1)写出△ ABC三个极点的坐标;(2)画出△ ABC向右平移 6 个单位,再向下平移 2 个单位后的图形△A1B1C1;(3)求△ ABC的面积 .20.如图,方格纸中的每个小方格都是边长为1 个单位的正方形,在成立平面直角坐标系后,点 A, B, C均在格点上 .(1)请值接写出点 A, B,C 的坐标 .(2)若平移线段 AB,使 B 挪动到 C的地点,请在图中画出A 挪动后的地点 D,挨次连结 B,C,D,A,并求出四边形ABCD的面积 .21.如图,已知 A(-2 , 3) 、 B(4, 3) 、 C(-1 , -3)(1) 求点 C到 x 轴的距离;(2)求△ ABC的面积;(3)点 P 在 y 轴上,当△ ABP的面积为 6 时,请直接写出点 P 的坐标 .22. 如图,直角坐标系中,△ABC的顶点都在网格点上,此中, C 点坐标为 (1 ,2).(1)写出点 A、 B 的坐标: A(________ , ________) 、B(________ , ________)(2)将△ ABC先向左平移 2 个单位长度,再向上平移 1 个单位长度,获得△ A′ B′ C′,则 A′B′ C′的三个极点坐标分别是A′ (_______ , _______) 、 B′ (_______ , _______) 、 C′(________ , ________).(3) △ ABC的面积为.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、仔细填一填:(本大题共有8 小题,每题 3 分,共 24 分.请把结果直接填在题中的横线上.只需你理解观点,认真运算,踊跃思虑,相信你必定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,假如我用 (0,2)表示左眼,用 (2,2) 表示右眼,那么嘴的地点能够表示成 __________.2.如图,△ ABC 向右平移 4 个单位后获得△A′B′C′,则 A′点的坐标是 __________ .3.如图,中国象棋中的“象”,在图中的坐标为( 1,0),?若“象”再走一步,试写出下一步它可能走到的地点的坐标 ________.4.点 P(- 3,- 5)到 x 距离 ______,到 y 距离 _______.5.如,正方形ABCD的4,点 A 的坐 (- 1,1),平行于X,点C的坐___.6.已知点( a+1,a-1)在 x 上, a 的是。
人教版七年级数学下册单元测试卷第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
2020年人教版数学七年级下册第8章二元一次方程组单元测试卷(四)一.选择题(共10小题)1.下列方程中,是二元一次方程的是()A.B.C.3x﹣y2=0D.4xy=32.下列是二元一次方程2x+y=8的解的是()A.B.C.D.3.下列方程组中是二元一次方程组的是()A.B.C.D.4.解方程组时,①﹣②,得()A.﹣3t=1B.﹣3t=3C.9t=3D.9t=15.三元一次方程组的解是()A.B.C.D.6.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=4的解,则k的值为()A.B.C.2D.﹣27.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v 千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4B.x=v+4C.2x﹣u=4D.x﹣v=48.把一根11cm长的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费,则有几种不同的截法()A.3种B.4种C.5种D.6种9.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.10.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道二.填空题(共8小题)11.若(a﹣2)+3y b﹣2=2是关于x,y的二元一次方程,则a﹣b=.12.如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于.13.二元一次方程组的解是,则b﹣a=.14.将方程x+4y=2改写成用含y的式子表示x的形式.15.若,则(a2﹣2b2+c2)÷ac=.16.已知(x﹣y+3)2+=0,则x+y=.17.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是18.某地突发地震,为了紧急安置30名地震灾民,需要搭建可容纳3人或2人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这30名灾民,则不同的搭建方案有种.三.解答题(共8小题)19.解方程组:(1)(2)20.解三元一次方程组:21.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.22.如果关于x、y的二元一次方程组的解是,求关于x,y的方程组的解.23.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A 型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?24.现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.25.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周562310第二周893540(1)求A、B两种型号的电风扇的销售单价(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案:若不能,请说明理由.26.蚌埠云轨测试线自开工以来备受关注,据了解我市首期工程云轨线路约12千米,若该任务由甲、乙两工程队先后接力完成,甲工程队每天修建0.04千米,乙工程队每天修建0.02千米,两工程队共需修建500天,求甲、乙两工程队分别修建云轨多少千米?根据题意,小刚同学列出了一个尚不完整的方程(1)根据小刚同学所列的方程组,请你分别指出未知数x,y表示的意义.x表示;y表示;(2)小红同学“设甲工程队修建云轨x千米,乙工程队修建云轨y千米”,请你利用小红同学设的未知数解决问题.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、﹣y=6是二元一次方程,符合题意;B、+=1不是整式方程,不符合题意;C、3x﹣y2=0是二元二次方程,不符合题意;D、4xy=3是二元二次方程,不符合题意,故选:A.2.【解答】解:A、把x=1,y=5入方程,左边=7≠右边,所以不是方程的解;B、把x=2,y=3代入方程,左边=7≠右边,所以不是方程的解;C、把x=2,y=4代入方程,左边=8=右边,所以是方程的解;D、把x=4,y=2代入方程,左边=10≠右边,所以不是方程的解.故选:C.3.【解答】解:A、该方程组中含有3个未知数,属于三元一次方程组,故本选项不符合题意.B、该方程组符合二元一次方程组的定义,故本选项符合题意.C、该方程组属于二元二次方程组,故本选项不符合题意.D、该方程组中含有分式方程,故本选项不符合题意.故选:B.4.【解答】解:解方程组时,①﹣②,得:9t=3.故选:C.5.【解答】解:,①+②得:x﹣z=2④,③+④得:2x=8,解得:x=4,把x=4代入④得:z=2,把x=4代入①得:y=3,则方程组的解为,故选:D.6.【解答】解:由方程组,得,把x、y的值代入2x+3y=4中,得14k﹣6k=4,解得k=.故选:B.7.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.8.【解答】解:截下来的符合条件的绳子长度之和刚好等于总长11cm时,不造成浪费,设截成1cm长的绳子x根,3cm长的y根,由题意得,x+3y=11,因为x,y都是正整数,所以符合条件的解为:,则有3种不同的截法.故选:A.9.【解答】解:设每一个小长方形的长为x,宽为y,依题意,得:.故选:A.10.【解答】解:设容易题有a题,中档题有b题,难题有c题,依题意,得:,①×2﹣②,得:c﹣a=20,∴难题比容易题多20题.故选:B.二.填空题(共8小题)11.【解答】解:依题意得且a﹣2≠0,解得,则a﹣b=﹣2﹣3=﹣5.故答案为:﹣5.12.【解答】解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=4×2=8.故答案为:8.13.【解答】解:∵二元一次方程组的解是,∴,①+②,可得:2b﹣2a=4,∴b﹣a=4÷2=2.故答案为:2.14.【解答】解:方程x+4y=2,解得:x=﹣4y+2,故答案为:x=﹣4y+215.【解答】解:①﹣②得,2a+3c=0,即c=﹣a,①×2+②得,7a+6b=0,即b=﹣a,则(a2﹣2b2+c2)÷ac=[a2﹣2×(﹣a)2+(﹣a)2]÷a•(﹣a)=﹣a2÷(﹣a2)=.故答案为.16.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:117.【解答】解:根据题意,得.故答案为:.18.【解答】解:设3人的帐篷有x顶,2人的帐篷有y顶,依题意,有:3x+2y=30,整理得y=15﹣1.5x,因为x、y均为非负整数,所以15﹣1.5x≥0,解得:0≤x≤10,从0到10的偶数共有6个,所以x的取值共有6种可能.故答案是:6.三.解答题(共8小题)19.【解答】解:(1)原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,则方程组的解为;(2)方程组,①×2+②,得5x=10,即x=2,将x=2代入①,得2+2y=3,即y=,则方程组的解为20.【解答】解:①+②得:2y=﹣4,解得:y=﹣2,②+③得:2x=12,解得:x=6,把x=6,y=﹣2代入①得:﹣2+z﹣6=﹣3,解得:z=5,方程组的解为:.21.【解答】解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.22.【解答】解:由题意得,30﹣4a=6,20+4b=8.解得a=6,b=﹣3,代入第二个方程组得,整理得:,①﹣②×3得,﹣y=﹣12,解得y=12,把y=12代入①得,x=44,∴方程组的解为.23.【解答】解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.24.【解答】解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.25.【解答】解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y元/台,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元/台,B种型号的电风扇的销售单价为260元/台.(2)设再购进A种型号的电风扇m台,则购进B种型号的电风扇(120﹣m)台,依题意,得:2310+3540+150m+260(120﹣m)﹣120(5+8+m)﹣190[6+9+(120﹣m)]=8240,解得:m=40,∴120﹣m=80.答:再购进A种型号的电风扇40台,B种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标.26.【解答】解:(1)x表示甲工程队工作的时间,y表示乙工程队工作的时间.故答案为:甲工程队工作的时间;乙工程队工作的时间.(2)依题意,得:,解得:.答:甲工程队修建云轨4千米,乙工程队修建云轨8千米.。
(含期中期末试题,共8套)第五章达标检测卷(100分 60分钟)一、选择题(每小题5分,共35分)1.过点P作线段AB的垂线段的画法正确的是( )2.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°3.直线l上有A、B、C三点,直线l外有一点P,若PA=5cm,PB=3cm,PC=2cm,那么点P到直线l 的距离( )A.等于2cm B.小于2cmC.小于或等于2cm D.在于或等于2cm,而小于3cm4.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.小于或等于4cm5.如图,a∥b,下列线段中是a、b之间的距离的是( )A.AB B.AE C.EF D.BC6.如图,a∥b,若要使△ABC的面积与△DEF的面积相等,需增加条件( )A.AB=DE B.AC=DFC.BC=EF D.BE=AD7.如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包含△ABD)有( ) A.1个B.2个C.3个D.4个二、填空题(每小题5分,共35分)8.如图,直线AB与CD相交于点O,若∠AOC+∠BOD=180°,则∠AOC=,AB与CD的位置关系是.9.如图,直线AD与直线BD相交于点,BE⊥.垂足为,点B到直线AD的距离是的长度,线段AC的长度是点到的距离.10.如图,直线AB、CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足.在不添加辅助线的情况下,请写出图中一对相等的锐角:.12.如图,点O是直线AB上的一点,OC⊥OD,∠AOC-∠BOD=20°,则∠AOC=.13.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是.14.(1)在图①中以P为顶点画∠P,使∠P的两边分别和∠1的两边垂直;(2)量一量∠P和∠1的度数,它们之间的数量关系是________;(3)同样在图②和图③中以P为顶点作∠P,使∠P的两边分别和∠1的两边垂直,分别写出图②和图③中∠P和∠1之间的数量关系.(不要求写出理由)图②:________,图③:________;(4)由上述三种情形可以得到一个结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角________(不要求写出理由).三、解答题(共30分)15.(14分)如图,已知AB∥CD,AD∥BC,AC=15cm,BC=12cm,BE⊥AC于点E,BE=10cm.求AD和BC之间的距离.16.(16分)如图,直线EF、CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOE的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系参考答案1-7 DCCDC CB8. 90°互相垂直 9. D AD 点E 线段BE A 直线CD 10. 70° 11. ∠A =∠2(或∠1=∠B ,答案不唯一) 12. 145° 13. △ADC 和△BDC ,△ADO 和△BCO ,△DAB 和△CAB14. (1)如图① (2)∠P +∠1=180° (3)如图,∠P =∠1,∠P +∠1=180° (4)相等或互补15. 解:过点A 作BC 的垂线,交BC 于P 点,三角形ABC 的面积为12×AC×BE =12×15×10=75(cm 2),又因为三角形ABC 的面积为12×BC×AP =12×12×AP =75,所以AP =.因此AD 和BC 之间的距离为.16. (1) 解:∵∠AOE +∠AOF =180°(互为补角),∠AOE =40°,∴∠AOF =140°;又∵OC 平分∠AOF ,∴∠FOC =12∠AOF =70°,∴∠EOD =∠FOC =70°.而∠BOE =∠AOB -∠AOE =50°,∴∠BOD =∠EOD -∠BOE =20°; (2) 解:∵∠AOE +∠AOF =180°(互为补角),∠AOE =α,∴∠AOF =180°-α;又∵OC 平分∠AOF ,∴∠FOC =90°-12α,∴∠EOD =∠FOC =90°-12α(对顶角相等);而∠BOE =∠AOB -∠AOE =90°-α,∴∠BOD =∠EOD -∠BOE =12α;(3) 解:从(1)(2)的结果中能看出∠AOE =2∠BOD.第六章达标检测卷(100分 90分钟)一、选择题(第小题3分,共30分)1.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( )A .0个B .1个C .2个D .3个 2.下列四个数中的负数是( )A .﹣22B .2)1(C .(﹣2)2D . |﹣2| 3.下列各组数中互为相反数的是( )A.-2与()22- B.-2与38- 与()22-D. 2-与24.数是( )A.有限小数B.有理数C.无理数D.不能确定 5.在下列各数:0.…,10049,,π1,7,11131,327,中,无理数的个数是( ) 6.立方根等于3的数是( ) B. ±9 C. 27 D.±277.在数轴上表示5和-3的两点间的距离是( ) A.5+3 B. 5-3 C.-(5+3) D. 3-58.满足-3<x <5的整数是( )A.-2,-1,0,1,2,3B.-1,0,1,2,3C.-2,-1,0,1,2,D.-1,0,1,2 9.当14+a 的值为最小时,a 的取值为( ) A.-1 B. 0 C. 41-D. 1 10. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为( ) 或7 或7二、填空题(每小题3分,共30分) 11.算术平方根等于本身的实数是 . 12.化简:()23π-= .13.94的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.15.估计60的大小约等于 或 .(误差小于1) 16.若()03212=-+-+-z y x ,则x +y +z = .17.我们知道53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +(2001个3,2001个4)= .18.比较下列实数的大小(填上>、<或=). ①;②215- 21;③53. 19.若实数a 、b 满足0=+b b a a ,则abab = . 20.实a 、b 在数轴上的位置如图,则化简()2a b b a -++= .三、解答题(共40分)21.(4分)求下列各数的平方根和算术平方根: (1)1; (2)410-.22.(4分)求下列各数的立方根: (1)21627 ; (2)610--.23.(8分)化简:(1)5312-⨯; (2)8145032--.24.(8分) 解方程:(1)42x =25 ; (2)()027.07.03=-x .25.(8分)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.26.(8分)已知:字母a 、b 满足021=-+-b a .求()()()()()()2001201112211111++++++++++b a b a b a ab 的值.参考答案1. A 12. π-3 13. ±32 5 14. 2m 3n 或8 个5 18. < > < 19.-1 20.a 2-21.(1) ±1,1 (2)±210-,210- 22. (1)21 (2)210-- 23.(1)1 (2)22- 24.(1)±25(2)1 26.解:当a =1,b =2时,原式=20132012143132121⨯++⨯+⨯+xo y1313(1)xo y13(2)-2(第5题)=1-21+21-31+31-41+…+2013120121 =1-20131=20132012.第七章达标检测卷(100分 90分钟)一、选择题(每小题3分,共 30 分)1、已知点P (2a ﹣5,a+2)在第二象限,则符合条件的a 的所有整数的和的立方根是( )A .1B .﹣1C .0D .2、周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M 超市走到游乐园门口的路线是( ) A .向北直走700米,再向西直走300米 B .向北直走300米,再向西直走700米 C .向北直走500米,再向西直走200米 D .向南直走500米,再向西直走200米3、一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(2,-3)D .(2,3) 4、点P (x ,y ),且xy <0,则点P 在( )A 、第一象限或第二象限B 、第一象限或第三象限C 、第一象限或第四象限D 、第二象限或第四象限 5、如图(1),与图(1)中的三角形相比,图(2)中的三角形发生 的变化是( )A 、向左平移3个单位长度B 、向左平移1个单位长度C 、向上平移3个单位长度D 、向下平移1个单位长度 6、如图3所示的象棋盘上,若○帅位于点(1,-2)上 ,○相位ABCD 于点(3,-2)上,则○炮位于点( ) A 、(1,-2) B 、(-2,1) C 、(-2,2) D 、(2,-2) 7、若点M (x ,y )的坐标满足x +y =0,则点M 位于( ) A 、第二象限 B 、第一、三象限的夹角平分线上 C 、第四象限 D 、第二、四象限的夹角平分线上8、将△ABC 的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( ) A 、将原图形向x 轴的正方向平移了1个单位; B 、将原图形向x 轴的负方向平移了1个单位 C 、将原图形向y 轴的正方向平移了1个单位 D 、将原图形向y 轴的负方向平移了1个单位9、在坐标系中,已知A (2,0),B (-3,-4),C (0,0),则△ABC 的面积为( ) A 、4 B 、6 C 、8 D 、3 10、点P (x -1,x +1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 二、填空题(每小题3分,共18分)11、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________。
人教版数学7年级下册第8单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知x=―2y=1是关于x,y的方程组ax+by=1bx+ay=7的解,则(a+b)(a﹣b)的值为( )A.―356B.356C.16D.﹣162.(3分)已知二元一次方程组|x|+x+y=10x+|y|―y=12,则x+y的值等于( )A.﹣2B.185C.9D.223.(3分)有m只鸽子和n个鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.下列四个等式:①6n+3=8n﹣5;②6n+3=8n+5;③m36=m58;④m36=m58.其中正确的有( )个.A.1B.2C.3D.44.(3分)《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为( )A.y=8x―3y=7x+4B.x=8y+3 x=7y―4C.y=8x+3y=7x―4D.x=8y―3 x=7y+45.(3分)爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换是一个三位数,它比9:00时看到的两位数中间多了个0了则10:00时看到里程碑上的数是( )A.15B.24C.42D.516.(3分)如图,8块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的周长为( )A.2cm B.6cm C.12cm D.16cm7.(3分)我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中,正确的有( )y=100x+3y=100;②x+y=1003x+13y=100;③3x+13(100﹣x)=100;④13y+3(100﹣y)=100.A.0个B.1个C.2个D.3个8.(3分)小刚解出了方程组3x―y=32x+y=△的解为x=4y=□,因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A.17,9B.16,8C.23,15D.15,239.(3分)已知关于x,y的方程组x+y=―a+1x―y=3a+5,给出下列说法:①当a=0时,方程组的解也是方程2x+y=4的一个解;②当x﹣2y>7时,a>0;③不论a取什么实数,2x+y的值始终不变;④若a=1,则x2+4y=0.以上四种说法中正确的有( )个.A.1B.2C.3D.410.(3分)如图,长为y,宽为x的大长方形被分割为5小块,除阴影D,E外,其余3块都是正方形,若阴影E周长为8,下列说法中正确的是( )①x的值为4;②若阴影D的周长为6,则正方形A的面积为1;③若大长方形的面积为24,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知关于x,y的二元一次方程(3x﹣2y+9)+m(2x+y﹣1)=0,不论m取何值,方程总有一个固定不变的解,这个解是 .12.(3分)根据图中给出的信息,求出当水位上升到50cm,应放入 个大球.13.(3分)中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史,可见其根源的渊远流长.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的15,卖出腊香肠的数量是前两天腊香肠数量和的43,卖出腊肉的数量是第二天腊肉数量的12.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为 元.14.(3分)定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且3*2=6,4*1=7,则5*3= .15.(3分)若x=3y=2是关于x,y的二元一次方程ax﹣by=1的解,则6a﹣4b+3= .三.解答题(共10小题,满分75分)16.(6分)根据小头爸爸与大头儿子的对话,求出大头儿子现在的年龄.小头爸爸:儿子,现在我的年龄比你大23岁.大头儿子:5年后,您的年龄比我的年龄的2倍还多8岁.17.(6分)解方程(组):(1)3m12―1=2m23;(2+m n3=3―m n3=―1.18.(6分)已知关于x,y的方程组x―y=2a+12x+3y=9a―8,其中a是常数.(1)若a=2时,求这方程组的解;(2)若x=y,求这方程组的解;(3)若方程组的解也是方程x﹣6y=2的一个解,求α的值.19.(6分)已知y=ax2+bx+c,当x=1时,y=8;当x=0时,y=2;当x=﹣2时,y=4.(1)求a,b,c的值;(2)当x=﹣3时,求y的值.20.(6分)为了推动我市消费市场快速回暖,加快消费水平复苏和振兴,市人民政府决定,举办“春暖瓯越•温享生活”消费券多次投放活动,每期消费券共可减68元,共5张,其中A型1张,B型2张,C型2张,如下表:A型B型C型满168元减38元满50元减10元满20元减5元在此次活动中,小明父母领到多期消费券.(1)若小明妈妈用三种不同类型的消费券共减了199元,已知她用了3张A型消费券,5张B型的消费券,则用了 张C型的消费券.(2)若小明父母使用消费券共减了230元.①若他们用12张三种不同类型的消费券消费,已知C型比A型的消费券多1张,请求出他们用这三种不同类型的消费券各多少张?②若他们共领到6期消费券(部分未使用),用A,B,C型中的两种不同类型的消费券消费,直接写出他们使用哪两种消费券各多少张.21.(6分)某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)22.(6分)某文具店销售A、B两款文具盒,其中A款文具盒的定价为15元/个,B款文具盒的定价为23元/个,A款文具盒的成本为7元/个,B款文具盒的成本为10元/个.(1)开业当月,该文具店按照定价售出A、B两款文具盒共180个,销售总额为3340元,则A款文具盒和B款文具盒分别销售了多少个?(2)根据开业当月试销售的情况,商家决定第二月将A款文具盒的售价在定价的基础上提高a元,第二月A款文具盒的销量比开业当月降低了2a个,同时商家推出买一个B款文具盒赠送一块成本为1元的橡皮擦的活动,第二月B款文具盒的销量比开业当月提高了a个,结果第二月销售A、B两款文具盒的总利润比开业当月获得的总利润多(76a﹣30)元,求a的值.23.(10分)疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:鼻梁条耳带成本90元/箱230元/箱制作配件数目25000只/卷100000只/卷(1)生产110万片口罩需要鼻梁条 卷,耳带 箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,方案一:全部大包销售;方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务.请你通过计算,为口罩厂做出决策.24.(11分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组2x+y=7x+2y=8,则x﹣y= ,x+y= ;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.25.(12分)阅读探索(1)知识积累解方程组(a―1)+2(b+2)=6 2(a―1)+(b+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为x+2y=62x+y=6,解这个方程组得x=2y=2,即a―1=2b+2=2,所以a=3b=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m3―1)+2(n5+2)=43(m3―1)―(n5+2)=5.(3)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=3y=4,请直接写出关于m、n的方程组a1(m+2)―b1n=c1a2(m+2)―b2n=c2的解是 .参考答案1.D;2.B;3.B;4.A;5.D;6.D;7.D;8.A;9.D;10.B;11.x=―1,y=3;12.4;13.4300;14.13;15.5;16.解:设大头儿子现在的年龄是x岁,爸爸的年龄是y岁,由题意得:y=x+23y+5=2(x+5)+8,解得:x=10 y=33,答:大头儿子现在的年龄为10岁.17.解:(1)3m12―1=2m23,去分母,得3(3m﹣1)﹣6=2(2m+2),去括号,得9m﹣3﹣6=4m+4,移项,得9m﹣4m=3+6+4,合并同类项,得5m=13,系数化为1,得m=13 5;(2+m n3=3―m n3=―1,设m n2=x,m n3=y,则原方程组化为x+y=3①x―y=―1②,①+②,得2x=2,解得x=1,把x=1代入①,得y=2,∴m n2=1,m n3=2,故m+n=2 m―n=6,解得m=4n=―2.18.解:(1)当a=2时,原方程组变为:x―y=5①2x+3y=10②①×3+②得5x=25∴x=5将x=5代入①得y=0∴这个方程组的解为x=5 y=0(2)当x=y时,2a+1=0,得a=―1 2;把a=―12代入②得x=―52,∴方程组的解为x=―52 y=―52(3)①×3﹣②得x﹣6y=﹣3a+11又∵x﹣6y=2∴﹣3a+11=2∴a=319.解:(1)根据题意得:a+b+c=8①c=2②4a―2b+c=4③,把②代入①,得a+b+2=8④,把②代入③,得4a﹣2b+2=4⑤,由④和⑤组成方程组a+b+2=84a―2b+2=4,解得:a=73,b=113,所以a=73,b=113,c=2;(2)由(1)得:y=73x2+113x+2,当x=﹣3时,y=73×(﹣3)2+113×(﹣3)+2=12.20.解:(1)(199﹣38×3﹣5×10)÷5=7(张).故用了7张C型的消费券.故答案为:7;(2)①设A型消费券x张,B型消费券y张,C型消费券z张,依题意有x+y+z=12z―x=138x+10y+5z=230,解得x=5 y=1 z=6.故A型消费券5张,B型消费券1张,C型消费券6张;②6期消费券有A型6张,B型12张,C型12张,∵38×5+10×4=230(元),38×5+5×8=230(元),∴A型消费券5张,B型消费券4张或A型消费券5张,C型消费券8张.21.解:∵3.75和7.1都不是0.45 0.8 1.5的整数倍,∴甲乙丙3人的用水正好在0﹣10,10﹣20,20以上这3段中,且甲>乙>丙.设丙户用水xt(0≤x≤10),乙户用水(10+y)t(0<y≤10).则有0.45x+3.75=0.8y+0.45×10,即9x﹣16y=15.∵3能够整除9和15,而不能整除16,∴3整除y.∴y=3或6或9.经检验,只有y=3符合题意,则x=7.同理,设甲户用水(20+z)t,则有0.8y+0.45×10+7.10=1.50z+0.45×10+0.8×10,解,得z=1.所以甲户交水费14元,乙户交水费6.9元,丙户交水费3.15元.22.解:(1)设A款文具盒销售了x个,B款文具盒销售了y个,由题意得:x+y=18015x+23y=3340,解得:x=100 y=80,答:A款文具盒销售了100个,B款文具盒销售了80个;(2)由(1)可知,开业当月的利润=(15﹣7)×100+(23﹣10)×80=1840(元),由题意得:(15+a﹣7)(100﹣2a)+(23﹣10﹣1)(80+a)=1840+76a﹣30,解得:a1=a2=5,即a的值为5.23.解:(1)∵每片口罩需要一只鼻梁条、两条耳带,∴1100000÷25000=44(卷),1100000×2÷100000=22(箱).(2)110万片口罩的成本:13000×2+14700+44×90+22×230=49720(元),1片口罩的成本:49720÷1100000=0.0452(元),∵每片口罩还需支出费用大约0.1548元,∴每片口罩的成本:0.0452+0.1548=0.2(元).(3)方案一:全部大包销售:440000100÷800=5.5(天).∴440000100×45.8―6×2000―0.2×440000=201520﹣12000﹣88000=101520(元).方案二:全部小包销售:44000010÷2000=22(天)>7(天)(舍去).方案三:设包装小包的天数为x,由题意得:10×2000x+100×800×(7﹣x)=440000.解得:x=2.∴440000﹣10×2000×2=400000(片).∴2×2000×5.8+400000÷100×45.8﹣7×2000﹣0.2×440000=206400﹣14000﹣88000=104400(元).∵104400>101520,∴选择方案三.24.解:(1)2x+y=7①x+2y=8②,由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:20m+3n+2p=32①39m+5n+3p=58②,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:3a+5b+c=15①4a+7b+c=28②,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.25.解:(2)设m3―1=x,n5+2=y,∴原方程组可变为:x+2y=43x―y=5,解这个方程组得:x=2 y=1,―1=2 2=1,所以:m=9n=―5;(3)设m+2=x ―n=y,可得:m+2=3―n=4,解得:m=1n=―4.。
123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)人教版七年级下册数学全套单元测试卷 第五章《相交线与平行线》测试卷一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D 、在平面内过一点有且只有一条直线与已知直线垂直。
10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( )1A B OF DE C (第18题)A BD GE H C(第18题)(第14题)第17题A B C D MN 12ABCD EFG H第13题A 、23°B 、42°C 、65°D 、19°二、填空题(本大题共6小题,每小题3分,共18分)11、直线AB 、CD 相交于点O ,若∠AOC =100°,则 ∠AOD =___________。
12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由 是_______________________。
13、如图,在正方体中,与线段AB 平行的线段有______ ____________________。
14、奥运会上,跳水运动员入水时,形成的水花是评委 评分的一个标准,如图所示为一跳水运动员的入水前的 路线示意图。
按这样的路线入水时,形成的水花很大, 请你画图示意运动员如何入水才能减小水花?15、把命题“等角的补角相等”写成“如果……那么……” 的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的 度数之比是2:7,那么这两个角分别是_______。
三 、(每题5分,共15分)17、如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数。
18、如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数。
19、如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,若此长方形以2cm/S 的速度沿着A →B 方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24?四、(每题6分,共18分)20、△ABC 在网格中如图所示,请根据下列提示作图 (1)向上平移2个单位长度。
A B C A B C D EF 1423第19题)(2)再向右移3个单位长度。
21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。
此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?22、把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。
五、(第23题9分,第24题10分,共19分)23、如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D ,那么DF ∥AC ,请完成它成立的理由∵∠1=∠2,∠2=∠3 ,∠1=∠4( )∴∠3=∠4( )∴________∥_______ ( )∴∠C =∠ABD ( ) ∵∠C =∠D ( )∴∠D =∠ABD ( ) ∴DF ∥AC ( )B AC D E F G MN 12AO DB EC图3相帅炮24、如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,(1)当∠BOC=30°,∠DOE=_______________当∠BOC=60°,∠DOE=_______________(2)通过上面的计算,猜想∠DOE的度数与∠AOB有什么关系,并说明理由。
第六章《平面直角坐标系》测试卷一、选择题(每小题3分,共30 分)1、根据下列表述,能确定位置的是()A、红星电影院2排B、北京市四环路C、北偏东30°D、东经118°,北纬40°2、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A、(3,3)B、(-3,3)C、(-3,-3)D、(3,-3)4、点P(x,y),且xy<0,则点P在()A、第一象限或第二象限B、第一象限或第三象限C、第一象限或第四象限D、第二象限或第四象限5、如图1,与图1中的三角形相比,图2中的三角形发生的变化是()A、向左平移3个单位长度B、向左平移1个单位长度C、向上平移3个单位长度D、向下平移1个单位长度6、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点()A、(1,-2)B、(-2,1)C、(-2,2)D、(2,-2)7、若点M(x,y)的坐标满足x+y=0,则点M位于()A、第二象限B、第一、三象限的夹角平分线上C、第四象限D、第二、四象限的夹角平分线上8、将△ABC的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是()A、将原图形向x轴的正方向平移了1个单位B、将原图形向x轴的负方向平移了1个单位C、将原图形向y轴的正方向平移了1个单位D、将原图形向y轴的负方向平移了1个单位9、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为()A、4B、6C、8D、310、点P(x-1,x+1)不可能在()A BC D(第17题)(第19题)A 、第一象限B 、第二象限C 、第三象限D 、第四象限二、填空题(每小题3分,共18分)11、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________。
12、已知点A (-1,b +2)在坐标轴上,则b =________。
13、如果点M (a +b ,ab )在第二象限,那么点N (a ,b )在第________象限。
14、已知点P (x ,y )在第四象限,且|x |=3,|y |=5,则点P 15、已知点A (-4,a ),B (-2,b )都在第三象限的角平分线上,则a +b +ab 的值等于________。
16、已知矩形ABCD 在平面直角坐标系中的位置如图所示,将矩形ABCD 沿x 轴向左平移到使点C 与坐标原点重合后, 再沿y 轴向下平移到使点D 与坐标原点重合,此时点B 的 坐标是________。
三、(每题5分,共15分)17、如图,正方形ABCD 的边长为3,以顶点A 为原点,且有一组邻边与坐标轴重合,求出正方形ABCD 各个顶点的坐标。
18、若点P (x ,y )的坐标x ,y 满足xy =0,试判定点P 在坐标平面上的位置。
19、已知,如图在平面直角坐标系中,S △ABC =24,OA =OB ,BC =12,求△ABC 三个顶点的坐标。
四、(每题6分,共18分)20、在平面直角坐标系中描出下列各点A (5,1),B (5,0),C (2,1),D (2,3),并顺次连接,且将所得图形向下平移4个单位,写出对应点A '、B '、C '、D '的坐标。
21C 点的位置,使S △ABC =2,这样的点C23456723456789101122、如图,点A 用(3,3)表示,点B 用(7,5)表示,若用(3,3)→(5,3)→(5,4)→(7,4)→(7,5)表示由A 到B 的一种走法,并规定从A 到B 只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等。
五、(第23题9分,第24题10分,共19分)23、图中显示了10名同学平均每周用于阅读课外书的时间和用于看电视的时间(单位:小时)。
(1)用有序实数对表示图中各点。
(2)图中有一个点位于方格的对角线上,这表示什么意思?(3)图中方格纸的对角线的左上方的点有什么共同的特点?它右下方的点呢?(4)估计一下你每周用于阅读课外书的时间和用于看电视的时间,在图上描出来,这个点位于什么位置?24、如图,△ABC 在直角坐标系中, (1)请写出△ABC 各点的坐标。
(2)求出S △ABC (3)若把△ABC 向上平移2个单位,再向右平移2个单位得△A ′B ′C ′,在图中画出△ABC 变化位置,并写出A ′、B ′、C ′的坐标。
12(第6题)第八章《二元一次方程组》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共24分)1、下列各组数是二元一次方程⎩⎨⎧=-=+173x y y x 的解是( )A 、⎩⎨⎧==21y x B 、⎩⎨⎧==10y x C 、⎩⎨⎧==07y x D 、⎩⎨⎧-==21y x2、方程⎩⎨⎧=+=+10by x y ax 的解是⎩⎨⎧-==11y x ,则a ,b 为( ) A 、⎩⎨⎧==10b a B 、⎩⎨⎧==01b a C 、⎩⎨⎧==11b a D 、⎩⎨⎧==00b a3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( )A 、14B 、2C 、-2D 、-4 4、解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A 、代入法B 、加减法C 、试值法D 、无法确定5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元 6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( ) A 、⎩⎨⎧=+-=18050y x y x B 、⎩⎨⎧=++=18050y x y xC 、⎩⎨⎧=+-=9050y x y xD 、⎩⎨⎧=++=9050y x y x7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A 、6,10B 、7,9C 、8,8D 、9,7 8、两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩⎨⎧-==23y x ,乙同学因把C 写错了解得⎩⎨⎧=-=22y x ,那么a 、b 、c 的正确的值应为( ) A 、a =4,b =5,c =-1 B 、a =4,b =5,c =-2C 、a =-4,b =-5,c =0D 、a =-4,b =-5,c =2二、填空(每小题3分,共18分)9、如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________。