(2)×.函数的奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数.
(3)×.奇函数的图象不一定过原点,例如函数y= 1 .
x
2.下列图象表示的函数具有奇偶性的是 ( ) 【解析】选B.B选项的图象关于y轴对称,是偶函数,其余选项都不具有奇偶性.
3.(教材二次开发:例题改编)下列函数为奇函数的是
C.非奇非偶函数
D.既奇又偶函数
x 1, x<0,
2.函数f(x)= 0, x 0, 的奇偶性是 ( ) A.奇函数 x 1, x>0 B.偶函数
C.非奇非偶函数
D.既奇又偶函数
3.判断函数f(x)=2x3-x是否具有奇偶性.
【解析】1.选D.由
1 x2
x
2
1
0,得x2=1,即x=±1.因此函数的定义域为{-1,1},因为
【基础小测】 1.辨析记忆(对的打“√”,错的打“×”) (1) 对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.
() (2) 若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数. ( ) (3)奇函数的图象一定过(0,0). ( )
提示:(1)×.奇函数、偶函数的定义都要求对于定义域内的任意x.
【题组训练】
1.(2020·南通高一检测)已知函数f(x)=
ax2 2x, x 0
x
2
bx,
x
0
为奇函数,则f(a+b)=
()
A.-2 B.-1 C.1 D.2
【解析】选C.根据题意,函数f(x)=
ax2 2x, x 0
x
2
bx, x
0
设x>0,则-x<0,
为奇函数,其定义域为R,