伺服电机的选型计算方法
- 格式:docx
- 大小:14.79 KB
- 文档页数:2
伺服电机的选型计算方法伺服电机是一种应用于自动控制系统中的电动机,它具有高精度、高速度、高可靠性和高动态性等特点,广泛应用于工业自动化领域。
在进行伺服电机选型计算时,需要考虑以下几个方面:1.负载特性分析:首先需要对负载进行特性分析,包括负载的惯性矩、负载力矩和负载转矩等参数的测量和计算。
负载特性分析是伺服电机选型计算的基础,它直接影响到电机输出的动力和转速。
2.动力需求计算:在进行伺服电机选型计算时,需要考虑到所需的动力大小。
动力大小与负载的力矩和转速有关,可以通过下式计算:动力大小=负载力矩×负载转速动力大小的计算可以参考负载特性分析中得到的参数。
3.转矩需求计算:转矩需求是指伺服电机在运行过程中所需的最大转矩。
转矩需求可以通过下式计算:转矩需求=负载转矩+惯性转矩负载转矩和惯性转矩可以通过负载特性分析中得到的参数进行计算。
4.速度需求计算:速度需求是指伺服电机在运行过程中所需的最大转速。
速度需求可以通过下式计算:速度需求=负载转速+加速度×加速时间负载转速是伺服电机在运行过程中所需的最大转速,加速度是伺服电机在加速阶段的加速度大小,加速时间是加速阶段的时间。
5.动态性能计算:伺服电机的动态性能是指其快速响应的能力,包括动态转矩响应和动态速度响应。
动态性能的计算需要考虑到转矩和速度的波动范围,以及加速度和减速度的大小。
6.选型参数计算:在进行伺服电机选型计算时,还需要考虑到电机的额定功率、额定转矩、额定转速、额定电压和额定电流等参数。
这些参数可以通过上述计算得到,也可以通过伺服电机的性能曲线和规格表进行查询。
总之,伺服电机的选型计算方法需要综合考虑负载特性、动力需求、转矩需求、速度需求和动态性能等方面的因素。
同时,还需要根据具体的应用场景和要求进行合理的选型。
电机的选择:(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2式中 M-----电动机轴转距;F------使机械部件沿直线方向移动所需的力;L------电动机转一圈(2πrad )时,机械移动的距离2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。
实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:z z M h h F M B spSPao P K 211122⎪⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩(N.mm)π2hF spao K---双螺母滚珠丝杠的预紧力矩(N.mm) Fao------预紧力(N),通常预紧力取最大轴向工作载荷Fm ax的1/3,即F ao =31F m ax当F m ax 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查:hsp-----丝杠导程(mm);K--------滚珠丝杠预紧力矩系数,取0.1~0.2;P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;W 1-----移动部件重力(N),包括最大承载重力;P 1-------有夹板夹持时(如主轴箱)的夹板夹持力;μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;η1-------滚珠丝杠的效率,取0.90~0.95;MB----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)z 1--------齿轮1的齿数 z2--------齿轮2的齿数最后按满足下式的条件选择伺服电机M M s ≤1Ms-----伺服电机的额定转距(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。
伺服电机和丝杆选型计算1.伺服电机选型计算:伺服电机是一种将电能转化为机械能的装置,它通过电机驱动系统的精确控制,实现对机械位置、转速和力矩的精确控制。
在选型时,需要考虑以下几个方面:1.1额定输出功率:根据机械系统的工作要求和负载要求,确定伺服电机的额定输出功率。
通常,额定输出功率应略大于所需的最大功率。
1.2额定转速:根据工作要求和负载要求,确定伺服电机的额定转速。
通常,额定转速应略大于所需的最大转速。
1.3额定转矩:根据负载的特性和工作要求,确定伺服电机的额定转矩。
通常,额定转矩应略大于所需的最大转矩。
1.4动态响应速度:根据控制系统的要求,确定伺服电机的动态响应速度。
通常,要求动态响应速度能够满足系统的响应时间要求。
1.5额定电压:根据工作环境和电源供应的要求,确定伺服电机的额定电压。
通常,额定电压应与电源供应的电压相匹配。
2.丝杆选型计算:丝杆是一种将旋转运动转化为直线运动的装置,它通常由丝杆和螺母组成。
在选型时,需要考虑以下几个方面:2.1螺距:根据工作要求,确定丝杆的螺距。
螺距是丝杆每转一周所移动的距离,通常用毫米/转表示。
2.2进给速度:根据机械系统的工作要求,确定丝杆的进给速度。
进给速度是丝杆上点的线速度,通常用毫米/秒表示。
2.3进给力:根据工作负载和系统要求,确定丝杆的进给力。
进给力是丝杆在工作过程中所受的力,通常用牛顿表示。
2.4精度等级:根据工作要求,确定丝杆的精度等级。
精度等级决定了丝杆的运动精度,通常用C级、T级等表示。
2.5长度:根据机械系统的工作空间和要求,确定丝杆的长度。
丝杆的长度应能够满足系统的工作范围要求。
伺服电机选型计算实例伺服电机是一种控制器控制的电机,具有高精度和高速度的特点,广泛应用于机械设备中。
在选型伺服电机时,需要考虑多个参数来满足具体的应用要求。
下面以一个选型计算实例来详细介绍伺服电机的选型过程。
假设我们需要选型一台伺服电机用于驱动一个线传动机构,具体要求如下:1.最大负载力为2000N,工作速度范围为0-10m/s。
2. 线传动机构的负载惯量为500kg·m²。
3. 需要保证驱动精度在±0.2mm范围内。
4.工作环境温度范围为0-40℃。
首先,我们需要计算所需的转矩。
根据公式:转矩=负载力×工作半径,其中工作半径等于线传动机构的负载惯量÷2、由于我们没有具体的线传动机构参数,假设负载惯量为500kg·m²,即工作半径为0.25m。
则最大转矩=2000N×0.25m=500N·m。
考虑到一般情况下,峰值转矩为最大转矩的2倍,即1000N·m。
接下来,我们需要计算伺服电机的速度要求。
根据给定的工作速度范围0-10m/s,我们可以选择合适的额定转速。
假设我们选择的额定转速为2000rpm,则转速范围为0-2000rpm。
考虑到加速度和减速度的要求,一般额定转速的选择会略高于平均线速度,假设为2200rpm。
接下来,我们需要选择合适的伺服电机型号。
在选型之前,我们还需要考虑工作环境的温度范围。
根据给定的工作环境温度范围为0-40℃,我们需要选择具备合适温度范围的伺服电机。
一般伺服电机的温度范围为0-50℃,因此我们可以选择标准型号的伺服电机。
在选择伺服电机型号时,我们需要参考厂家提供的电机性能参数。
主要包括额定转矩、额定转速、额定电压、额定电流、额定功率等。
根据我们的要求,我们可以对比不同型号的伺服电机并选择合适的型号。
最后,我们需要根据具体应用需求考虑伺服电机的控制方式、接口类型以及其他附件等。
伺服电机的选型计算办法一、确定负载惯量:负载惯量是指伺服电机需要驱动的负载系统的惯性矩阵。
负载的形状、质量、分布和转动部件的位置等都会影响到负载的惯性矩阵。
1.如果负载是刚体,惯性矩阵可以通过测量负载的质量和尺寸,并进行计算得到。
2.如果负载是连续变形的物体,可以通过将其分为多个刚体部分,分别计算惯性矩阵,再进行合成得到整个负载的惯性矩阵。
二、计算定格转矩和定格转速:1.根据应用的工作周期,计算出所需的平均定格转矩。
定格转矩是指电机在长时间运行情况下,能够稳定输出的转矩。
2.根据应用的工作周期和速度要求,计算出所需的平均定格转速。
定格转速是指电机能够稳定运行的最大转速。
三、选择电机型号:1.根据定格转矩和定格转速的要求,查找电机制造商提供的电机规格表,找到满足要求的电机型号。
2.选择电机型号时还需要考虑其他因素,如电机的功率、最大转矩、过载能力、加速度能力等。
根据具体应用的需求进行综合考虑,选取合适的电机型号。
四、校核选型:1.根据选择的电机型号,计算电机的部分负载转矩和转矩脉冲响应时间。
与应用要求进行比较,确保选型的合理性。
2.根据负载惯量和转矩要求,计算伺服电机的加速时间。
与应用的加速要求进行比较,确保选型的合理性。
3.根据电机的定格转矩和转速,计算电机的输出功率。
与应用的功率需求进行比较,确保选型的合理性。
五、其他因素考虑:除了上述的基本选型计算办法外,还需考虑其他因素,例如电机的可靠性、寿命、环境适应性、维护和保养成本等。
总结:伺服电机的选型计算是一个综合考虑电机的转矩、转速、功率和其他性能指标的过程。
根据负载的惯性矩阵、应用的工作周期和速度要求,选择合适的电机型号,并进行校核以确保选型的合理性。
同时,还需要考虑其他因素,如电机的可靠性、寿命和维护成本等。
以上是伺服电机选型计算的一般步骤,具体要根据具体的应用需求来选择,需要结合实际情况进行综合决策。
伺服电机选型计算
1.负载惯量计算
负载惯量是指负载的转动惯量,计算方式为质量乘以质心距离平方。
负载惯性大会对电机的加速度和精度要求产生一定的影响。
伺服电机需要
具备足够的能力来加速和控制负载。
负载惯量的计算公式为:
J=m*r^2
其中,J表示负载的转动惯量,m表示负载的质量,r表示负载的质
心距离。
根据实际情况确定负载的质量和质心距离,可以估算负载的转动惯量。
2.加速度计算
加速度是指负载达到一定速度所需的时间。
加速度较大可以提高生产
效率,但可能会引起震动和噪音。
确定合适的加速度需要根据应用需要进
行权衡。
加速度的计算公式为:
a=(ωf-ωi)/t
其中,a表示加速度,ωf表示最终速度,ωi表示初始速度,t表示
加速时间。
3.扭矩计算
扭矩是伺服电机提供的力矩,其大小决定了电机的最大负载能力。
根据应用需求可以计算出负载所需的最大扭矩。
扭矩的计算公式为:
T=J*α
其中,T表示所需的最大扭矩,J表示负载的转动惯量,α表示加速度。
4.功率计算
功率是指电机输出的机械功率,也是伺服电机选型的一个重要参数。
根据应用需求可以计算出对应负载的最大功率。
功率的计算公式为:
P=M*ω
其中,P表示功率,M表示扭矩,ω表示角速度。
5.速度计算
速度是指电机的转速,根据应用需求可以计算出所需的最大速度。
速度的计算公式为:
V=ω*r
其中,V表示速度,ω表示角速度,r表示负载的质心距离。
伺服电机选型计算公式伺服电机选型计算公式是指通过一系列的计算公式来确定伺服电机的合适参数,以满足特定需求。
伺服电机选型的主要目标是确定伺服电机的额定转矩、额定电流、额定功率等参数,以及选择合适的伺服驱动器。
下面将介绍一些常用的伺服电机选型计算公式。
1.负载的转矩计算公式:负载的转矩是伺服电机选型的基础,通过计算负载的转矩,可以确定伺服电机的额定转矩。
负载的转矩可以通过以下公式计算:负载转矩=(负载力*负载半径)/(传动效率*减速比)2.伺服电机的额定转矩计算公式:伺服电机的额定转矩是指在额定转速下,电机能够提供的最大转矩。
额定转矩可以通过以下公式计算:额定转矩=(负载转矩+加速扭矩)/传动效率3.伺服电机的额定电流计算公式:伺服电机的额定电流是指在额定转矩下,电机所需的额定电流。
额定电流可以通过以下公式计算:额定电流=额定转矩*电流系数/额定转速4.伺服电机的额定功率计算公式:伺服电机的额定功率是指在额定转矩和额定转速下,电机所提供的对外功率。
额定功率可以通过以下公式计算:额定功率=额定转矩*额定转速/9.555.伺服驱动器的额定功率计算公式:伺服驱动器的额定功率是指驱动器所能提供的最大功率。
额定功率可以通过以下公式计算:额定功率=伺服电机的额定功率/驱动器的效率除了上述几个常用的伺服电机选型计算公式外,还需要考虑一些其他因素,例如:负载的加速时间、负载的惯性矩、伺服系统的控制精度等,这些因素都会对伺服电机的选型产生影响,需要综合考虑。
同时,还需要根据具体的应用环境和需求,选择合适的伺服电机和驱动器型号,以确保系统的性能和可靠性。
需要注意的是,伺服电机选型计算公式只是一个参考,实际选型过程中还需要考虑一系列的工程参数和实际情况,同时也需要借助一些专业的伺服电机选型软件,以更准确地确定伺服电机的参数。
伺服电机及减速机选型计算1)关于负载条件①基本负载2000kg(⼯件+夹具+回转变位器+配重)②负载重⼼位置0.1m(假定为0.1m,设计时务必⼩于这个值)③负载系数×1.2Motor减速机 减速⽐=1712)电机规格(a12/3000i)项⽬额定输出额定转数最⾼转数3)减速机RV320E-1714) 【关于电机扭矩】负载扭矩[N?m] ……⽤于回转的扭矩选择电机规格时,乘以负载系数。
T L=∑mgr×Z TL=∑mgr×Z=2000×1.2×9.8×0.1×1/342≒6.877 <12 电机的额定扭矩(Z:确认减速⽐、输出轴的转数有⽆问题。
)(重⼒平均负载扭矩=最⼤负载扭矩/2^0.5/综合减速⽐=2000×1.2×9.8×0.1/2^0.5/342=4.86) ?慣性⼒矩[kg?m2] :向电机轴(输⼊轴)的换算。
I=∑mr2×Z2I=mr2×Z 2=2000×1.2×0.12×(1/342)2≒0.36×10-4I=m(D 2+d 2)÷8×Z 2=I=∑mr2×Z 2⾓加速度 [rad/s^2] :最⼤加速时的负载 dω/dt=(2π/60) N/⊿tdω/dt=(2π/60) N/⊿t=(2π/60)×3000/0.2≒1570.8(N:电机额定转数rpm、⊿t:加速时间sec) ?加速扭矩[kg ?m^2/s^2=N ?m] ……⽤于加速的扭矩 Ta=I ?dω/dt Ta=I ?dω/dt=74×10-4×1570.8≒11.62瞬时最⼤扭矩[kg ?m^2/s^2=N ?m] Tmax=TL+ Ta <电机的最⼤扭矩Tmax=TL+ Ta=6.877+11.62=18.5 <35 电机的最⼤扭矩 变位器最⾼⾓速度ωpmax=额定转数÷综合减速⽐×360°÷60sec=3000÷342×360÷60 ≒52.63°/sec 加減速时间tA=t1=设计值=0.2sec⾓加速度dωp/dt=ωpmax/tA =263.15°/sec2停⽌时间t4=1.0sec以内。
伺服电机选型设计计算一、引言伺服电机是一种能够进行位置、速度和力控制的电机,广泛应用于机械设备、自动化设备、机器人等领域。
在进行伺服电机选型设计时,需要考虑的参数包括负载惯量、所需转矩、速度要求等。
本文将以其中一种机械设备为例,介绍伺服电机选型设计的计算方法。
二、负载惯量计算负载惯量是指转动物体的重心与转动轴心之间的惯量,可以通过以下公式计算:J=m*r²其中,J为负载惯量,m为负载的质量,r为负载的半径。
在计算时需要考虑到实际系统中传动装置的参数。
三、转矩计算转矩是指伺服电机输出的力矩,可以通过以下公式计算:T=J*α其中,T为转矩,J为负载惯量,α为加速度。
在计算转矩时,需要根据具体应用的加速度要求进行确定。
四、最大转矩计算为了保证正常运行,伺服电机的转矩应大于或等于最大转矩,可以通过以下公式计算:T_max = T + F * r其中,T_max为最大转矩,T为转矩,F为负载的水平力,r为负载的半径。
五、速度计算速度是指伺服电机的转动速度,可以通过以下公式计算:ω=2*π*n/60其中,ω为速度,n为转速。
在计算速度时,需要根据具体应用的速度要求进行确定。
六、转动惯量计算转动惯量是指伺服电机本身的惯量,可以通过以下公式计算:J_m=m_m*r_m²+J_r其中,J_m为转动惯量,m_m为伺服电机本身的质量,r_m为伺服电机本身的半径,J_r为转动装置的惯量。
根据具体应用的转动装置进行确定。
七、功率计算功率是伺服电机输出的功率,可以通过以下公式计算:P=T*ω/1000其中,P为功率,T为转矩,ω为速度。
在计算功率时,需要考虑到实际应用中的效率,通常取效率值为0.8左右。
八、综合考虑在进行伺服电机选型设计时,需要综合考虑转矩、速度和功率等参数。
一般来说,转矩需大于或等于最大转矩,速度需大于或等于所需速度,功率需大于或等于所需功率。
同时,还需要考虑价格、体积和可靠性等因素。
伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。
伺服驱 动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。
首先要选出满足给 定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。
述度自廿比 ioa% 各种电机的T-3曲线 (1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表 示,对于旋转运动用角速度3 (t),角加速度a (t)和所需扭矩T(t)表示,它们均可以表示为时 间的函数,与其他因素无关。
很显然。
电机的最大功被电机最大应大于工作负载所需的峰值 功率P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的 传动机构中它们是受限制的。
用3峰值,T 峰值表示最大值或者峰值。
电机的最大速度决定了 减速器减速比的上限,n 上限二3峰值最大/3峰值,同样,电机的最大扭矩决定了减速比的下限, n 下P 「T 峰值/T 电机,最大,如果n 下限大于n 上限,选择的电机是不合适的。
反之,则可以通过对每 种电机的广泛类比来确定上下限之间可行的传动比范围。
只用峰值功率作为选择电机的原则 是不充分的,而且传动比的准确计算非常繁琐。
(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方 法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可 能范围。
这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的 各个参数均可用图解的形式表示并且适用于各种电机。
因此,不再需要用大量的类比来检查 电机是否能够驱动某个特定的负载。
在电机和负载之间的传动比会改变电机提供的动力荷载参数。
比如,一个大的传动比会 减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转, 产生较大的加速度,因此电机需要较大的惯量扭矩。
伺服电机选型及负载转矩计算伺服电机是一种能够根据输入信号控制输出轴运动的电机。
它具有灵敏度高、响应速度快、精确度高等优点,广泛应用于工业生产线、机械设备、机器人等领域。
伺服电机的选型主要包括以下几个方面:1.转矩要求:伺服电机的转矩要求主要由负载的转矩决定。
在选型时需要确定负载的最大转矩和平均转矩,以确定伺服电机的额定转矩和峰值转矩。
2.转速要求:伺服电机的转速要求主要由负载的旋转速度决定。
在选型时需要确定负载的最大转速和平均转速,以确定伺服电机的额定转速和峰值转速。
3.加速度要求:伺服电机的加速度要求主要由负载的加速度决定。
在选型时需要确定负载的最大加速度和平均加速度,以确定伺服电机的额定加速度和峰值加速度。
4.精度要求:对于需要高精度运动的负载,伺服电机的精度要求较高。
在选型时需要考虑伺服电机的控制精度和重复定位精度等参数。
在实际选型时,可以根据负载和运动要求确定伺服电机的型号,并通过数据手册来验证选型是否符合要求。
一般来说,伺服电机的型号包括转矩、功率、转速和结构等参数。
负载转矩的计算是伺服电机选型的重要步骤之一、下面介绍一种常用的负载转矩计算方法。
1.静态负载转矩的计算:静态负载转矩是指在静止状态下所受到的负载力矩。
一般可以通过以下公式计算:M=F*R其中,M表示静态负载转矩,F表示负载力,R表示力臂的长度。
如果负载力可以被等效为多个力的叠加,则可以分别计算每个力的负载转矩,并将其叠加得到总的静态负载转矩。
2.动态负载转矩的计算:动态负载转矩是指在运动状态下所受到的惯性力矩和摩擦力矩的叠加。
动态负载转矩的计算可以通过以下公式进行:M=J*α+Ff*R其中,M表示动态负载转矩,J表示负载的转动惯量,α表示负载的角加速度,Ff表示负载所受到的摩擦力,R表示力臂的长度。
在实际计算中,需要考虑负载的惯性矩、摩擦力以及运动过程中可能产生的冲击力矩等因素,并将其叠加计算得到总的动态负载转矩。
负载转矩的计算是伺服电机选型的重要环节,它能够明确负载的要求,并为选型提供基础数据。
伺服电机如何选型?怎么计算?
每种型号电机的规格项内均有额定转矩、最大转矩及电机惯量等参数,各参数与负载转矩及负载惯量间必定有相关联系存在,选用电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量、机构的运动方式(水平、垂直、旋转)等;运动条件与电机输出功率无直接关系,但是一般电机输出功率越高,相对输出转矩也会越高。
因此,不但机构重量会影响电机的选用,运动条件也会改变电机的选用。
惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的电机输出转矩。
选用伺服电机规格时,依下列步骤进行。
(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。
(2)依据运行条件要求选用合适的负载惯最计算公式,计算出机构的负载惯量。
(3)依据负载惯量与电机惯量选出适当的假选定电机规格。
(4)结合初选的电机惯量与负载惯量,计算出加速转矩及减速转矩。
(5)依据负载重量、配置方式、摩擦系数、运行效率计算出负载转矩。
(6)初选电机的最大输出转矩必须大于加速转矩加负载转矩;如果不符合条件,必须选用其他型号计算验证直至符合要求。
(7)依据负载转矩、加速转矩、减速转矩及保持转矩,计算出连续瞬时转矩。
(8)初选电机的额定转矩必须大于连续瞬时转矩,如果不符合条件,必须选用其他型号计算验证直至符合要求。
(9)完成选定。
伺服电机的选型计算方法
伺服电机是一种高性能电机,广泛应用于工业自动化、机器人、数控机床等领域。
选择适合的伺服电机是保证系统性能和稳定性的关键。
下面介绍一些伺服电机的选型计算方法。
1. 计算负载惯量
首先需要计算负载的惯量,即负载在运动时所表现出的惯性。
负载的惯量大小决定了所需的转矩和速度。
计算负载惯量需要考虑负载的形状、质量、尺寸等因素。
2. 计算所需的转矩
根据负载惯量和所需的加速度,可以计算出所需的转矩。
同时还需要考虑负载的摩擦力和惯性力对转矩的影响。
3. 确定电机的额定转矩和额定速度
根据所需的转矩和速度,可以选择合适的电机。
需要注意的是,电机的额定转矩和额定速度不能小于计算出的所需值。
4. 计算负载的惯量比
负载的惯量比是负载惯量与电机转子惯量之比。
当负载的惯量比较大时,电机需要更大的转矩来控制负载的运动。
因此,需要选择转矩充足的电机。
5. 确定控制器的带宽
控制器的带宽决定了系统的控制精度和稳定性。
带宽越大,系统响应速度越快,但也越容易产生震荡。
因此,在选择控制器时需要考虑系统的实际需求和稳定性。
以上是伺服电机的选型计算方法的一些基本步骤和注意事项。
在进行选型时需要综合考虑负载特性、系统控制性能和稳定性等因素,以选择合适的伺服电机。
伺服电机的选型计算方法
2012-4-17 10:51:00 来源:kingservo
1、 伺服电机和步进电机的性能比较 步进电机作为一种开环控制的系统, 和现代数字控制技术有着本质的联系。
在目前国 内的数字控制系统中,步进电机的应用十分广泛。
随着全数字式交流伺服系统的出现,交 流伺服电机也越来越多地应用于数字控制系统中。
为了适应数字控制的发展趋势, 运动控 制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。
虽然两者在控制方 式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。
现就二 者的使用性能作一比较。
一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般 为 0.72 °、0.36°。
也有一些高性能的步进电机通过细分后步距角更小。
如山洋公司 (SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为 1.8°、 0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合 式步进电机的步距角。
交流伺服电机的控制精度由电机轴后端的旋转编码器保证。
以京伺服(KINGSERVO) 全数字式交流伺服电机为例,对于带标准 2500 线编码器的电机而言,由于驱动器内部采 用了四倍频技术,其脉冲当量为 360°/10000=0.036°。
对于带 17 位编码器的电机而言, 驱动器每接收 131072 个脉冲电机转一圈,即其脉冲当量为 360°/131072=0.0027466°, 是步距角为 1.8°的步进电机的脉冲当量的 1/655。
二、低频特性不同 步进电机在低速时易出现低频振动现象。
振动频率与负载情况和驱动器性能有关, 一 般认为振动频率为电机空载起跳频率的一半。
这种由步进电机的工作原理所决定的低频振 动现象对于机器的正常运转非常不利。
当步进电机工作在低速时, 一般应采用阻尼技术来 克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。
交流伺服电机运转非常平稳, 即使在低速时也不会出现振动现象。
交流伺服系统具有 共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检 测出机械的共振点,便于系统调整。
三、矩频特性不同 步进电机的输出力矩随转速升高而下降, 且在较高转速时会急剧下降, 所以其最高工 作转速一般在 300~600RPM。
交流伺服电机为恒力矩输出,即在其额定转速(一般为 2000RPM 或 3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
四、过载能力不同 步进电机一般不具有过载能力。
交流伺服电机具有较强的过载能力。
以京伺服 (KINGSERVO)交流伺服系统为例, 它具有速度过载和转矩过载能力。
其最大转矩为额定转 矩的三倍, 可用于克服惯性负载在启动瞬间的惯性力矩。
步进电机因为没有这种过载能力, 在选型时为了克服这种惯性力矩, 往往需要选取较大转矩的电机, 而机器在正常工作期间 又不需要那么大的转矩,便出现了力矩浪费的现象。
五、运行性能不同
步进电机的控制为开环控制, 启动频率过高或负载过大易出现丢步或堵转的现象, 停 止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。
交流 伺服驱动系统为闭环控制, 驱动器可直接对电机编码器反馈信号进行采样, 内部构成位置 环和速度环,不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
六、速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要 200~400 毫秒。
交流 伺服系统的加速性能较好,以京伺服(KINGSERVO)400W 交流伺服电机为例,从静止加速 到其额定转速 3000RPM 仅需几毫秒,可用于要求快速启停的控制场合。
综上所述, 交流伺服系统在许多性能方面都优于步进电机。
但在一些要求不高的场合 也经常用步进电机来做执行电动机。
所以, 在控制系统的设计过程中要综合考虑控制要求、 成本等多方面的因素,选用适当的控制电机。
2、伺服电机的选型计算方法 注意三点:转数 扭矩 惯量
。