二次函数的图像与性质
- 格式:doc
- 大小:152.00 KB
- 文档页数:13
九年级数学竞赛专题 ---二次函数的图像与性质一、内容概述二次函数有丰富的内容,下面从四个方面加以总结1.定义: 形如函数2(0)y ax bx c a =++≠称为二次函数,对实际问题二次函数也有定义域.2.图像二次函数的图像为抛物线,一般作二次函数图像,取五个点,先确定顶点的横坐标,再以它为中心向左、向右对称取点.3.性质 对2(0)y ax bx c a =++≠的图像来讲,(1)开口方向:当0a >时,抛物线开口向上;当0a <时,抛物线开口向下。
(2)对称轴方程:2bx a=-(3)顶点坐标:24,24b ac b a a ⎛⎫-- ⎪⎝⎭(4)抛物线与坐标轴的交点情况: 若240bac -<,则抛物线与x 轴没有交点;若240b ac -=,则抛物线与x 轴有一个交点;若240b ac ->,则抛物线与x 轴有两个交点,分别为,;另外,抛物线与y 轴的交点为()0,c .(5)抛物线在x a=(6)y 与x 的增减关系:当0a >,2b x a >-时,y 随x 的增大而增大,2bx a <-时,y 随x 的增大而减小;当0a <,2b x a >-时,y 随x 的增大而减小,2bx a<-时,y 随x 的增大而增大.(7)最值:当0a >时,y 有最小值,当2b x a =-时,244ac b y a -最小值=;当0a <时,y 有最大值,当2b x a =-时,244ac b y a-最大值=(8)若抛物线与x 轴两交点的横坐标为1x 、2x (12x x <),则:当0a >时,12x x x <<时,0y <;12x x x x <>或时,0y >;当0a<时,12x x x <<时,0y >;12x x x x <>或时,0y <.4.求解析式抛物线的解析式常用的有三种形式:(1)一般式:2(0)y ax bx c a =++≠(2)顶点式:2()(0)y a x h k a =-+≠,其中(,)h k 是抛物线的顶点坐标。
二次函数的图像与性质一、二次函数的根本形式1. 二次函数根本形式:2=的性质:y ax2. 2=+的性质:y ax c上加下减。
3. ()2=-的性质:y a x h左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕三、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。
二次函数的图像与性质二次函数的性质二次函数()02≠++=a c bx ax y 的顶点坐标是(-a b 2,a b ac 442-),对称轴直线x=-a b 2,二次函数y=ax 2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax 2+bx+c(a≠0)的开口向上,x<-a b 2时,y 随x 的增大而减小;x>-a b 2时,y 随x 的增大而增大;x=-a b 2时,y 取得最小值a b ac 442-,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax 2+bx+c(a≠0)的开口向下,x<-a b 2时,y 随x 的增大而增大;x>-a b 2时,y 随x 的增大而减小;x=-a b 2时,y 取得最大值a b ac 442-,即顶点是抛物线的最高点.③抛物线y=ax 2+bx+c(a≠0)的图象可由抛物线y=ax 2的图象向右或向左平移a b 2个单位,再向上或向下平移ab ac 442-个单位得到的.二次函数上点坐标的特征二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-a b 2,ab ac 442-).①抛物线是关于对称轴x=-a b 2成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +【例1】已知()()212232m x m x m m y m m +-+-=--是关于x 的二次函数,求出它的解析式,并写出其二次项系数、一次项系数及常数项.【例2】下列各式中,一定是二次函数的有()①y=2x 2﹣4xz +3;②y=4﹣3x +7x 2;③y=(2x ﹣3)(3x ﹣2)﹣6x 2;④y=21x﹣3x +5;⑤y=ax 2+bx +c (a ,b ,c 为常数);⑥y=(m 2+1)x 2﹣2x ﹣3(m 为常数);⑦y=m 2x 2+4x ﹣3(m 为常数).A .1个B .2个C .3个D .4个【例3】(2017•东莞市一模)在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是()A.B.C.D.【例4】(2017•辽阳)如图,抛物线y=x 2﹣2x﹣3与y 轴交于点C,点D 的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD 是以CD 为底边的等腰三角形,则点P 的横坐标为()A.1+2B.1﹣2C.2﹣1D.1﹣2或1+2【例5】(2017•唐河县三模)如图,在平面直角坐标系中,抛物线y=31x 2经过平移得到抛物线y=ax 2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为38,则a、b 的值分别为()A.31,34B.31,﹣38C.31,﹣34D.﹣31,34【例6】(2016•北仑区一模)如图,抛物线y=﹣x 2+5x﹣4,点D 是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD 的面积的最大值是多少?1、(2011秋•无锡期末)下列函数中,(1)y ﹣x 2=0,(2)y=(x +2)(x ﹣2)﹣(x ﹣1)2,(3)x x y 12+=,(4)322-+=x x y ,其中是二次函数的有()A .4个B .3个C .2个D .1个2、(2015秋•五指山校级月考)函数y=(m ﹣n )x 2+mx +n 是二次函数的条件是()A .m 、n 是常数,且m ≠0B .m 、n 是常数,且m ≠nC .m 、n 是常数,且n ≠0D .m 、n 可以为任何常数3、(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx +m 和函数y=mx 2+2x +2(m 是常数,且m ≠0)的图象可能是()A .B .CD .4、(2017•扬州)如图,已知△ABC 的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x 2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣25、(2012秋•高安市期末)把抛物线y=﹣2x 2﹣4x﹣6经过平移得到y=﹣2x 2﹣1,平移方法是()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6、(2017•泸州)已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是()A .3B .4C .5D .67、(2016•陕西校级模拟)如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于()A.5B.358C.10D.528、(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.9、(2017•孝感模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).10、(2016•黄冈校级自主招生)方程2x﹣x 2=x 2的正实数根有个.11、(2011•路南区一模)已知二次函数y=(x﹣3a)2﹣(3a+2)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.图中分别是当a=﹣1,a=﹣31,a=1时二次函数的图象.则它们的顶点所满足的函数关系式为.12、(2015•泗洪县校级模拟)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是.13、(2017春•昌江区校级期中)记实数x 1,x 2中的最小值为min{x 1,x 2},例如min{0,﹣1}=﹣1,当x 取任意实数时,则min{﹣x 2+4,3x}的最大值为.14、(2016•锡山区一模)二次函数y=﹣x 2﹣2x 图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M”形状的新图象,若直线y=21x+b 与该新图象有两个公共点,则b 的取值范围为.15、(2017春•平南县月考)抛物线238942++-=x x y 与y 轴交于点A,顶点为B.点P 是x 轴上的一个动点,当点P 的坐标是时,|PA﹣PB|取得最小值.16、(2014•上城区二模)已知当x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x 2+4x+6的值等于.17、(2017•港南区二模)二次函数y=(a﹣1)x 2﹣x+a 2﹣1的图象经过原点,则a 的值为.18、(2017•西华县二模)已知y=﹣41x 2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.19、(2017•鄂州)已知正方形ABCD 中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是.20、作出下列函数的图象:(1)y=x 2﹣4x +3;(2)y=x 2﹣4|x |+3;(3)y=|x 2﹣4|x |+3|.21、(2017•海安县一模)在平面直角坐标系xOy 中,直线y=﹣41x+n 经过点A(﹣4,2),分别与x,y 轴交于点B,C,抛物线y=x 2﹣2mx+m 2﹣n 的顶点为D.(1)求点B,C 的坐标;(2)①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y=x 2﹣2mx+m 2﹣n 与线段BC 有公共点,求m 的取值范围.22、(2011•泰州)已知二次函数y=x 2+bx ﹣3的图象经过点P (﹣2,5)(1)求b 的值并写出当1<x ≤3时y 的取值范围;(2)设P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图象上,①当m=4时,y 1、y 2、y 3能否作为同一个三角形三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.23、(2017•邵阳县模拟)(1)已知函数y=2x+1,﹣1≤x≤1,求函数值的最大值.(2)已知关于x的函数y=(m≠0),试求1≤x≤10时函数值的最小值.(3)己知直线m:y=2kx﹣2和抛物线y=(k2﹣1)x2﹣1在y轴左边交于A、B两点,直线l 过点P(﹣2、0)和线段AB的中点M,求直线1与y轴的交点纵坐标b的取值范围.24、(2015秋•长兴县月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,点E在CB边上,以每秒1个单位的速度从点C向点B运动,运动时间为t(s),过点E作AB的平行线,交AC边于点D,以DE为边向上作等边△DEF,设△ABC与△DEF重叠部分的面积为S.(1)当点F恰好落在AB边上时,求t的值;(2)当t为何值时,S有最大值?最大值是多少?。
二次函数的图像与性质二次函数在数学中占有重要的地位,它的图像和性质可以帮助我们更好地理解和应用数学知识。
本文将从图像和性质两个方面来探讨二次函数的特点。
一、二次函数的图像二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
我们先来讨论a的取值对图像的影响。
1. 当a大于0时,二次函数的图像开口向上。
这表明两侧的函数值随着自变量的增大而增大,函数的最低点为最值点。
2. 当a小于0时,二次函数的图像开口向下。
这表明两侧的函数值随着自变量的增大而减小,函数的最高点为最值点。
接下来,我们来探讨二次函数图像的平移和缩放效果。
1. 平移:对于二次函数y = ax^2 + bx + c,向右平移h个单位,可以得到y = a(x - h)^2 + b(x - h) + c。
向左平移h个单位,则为y = a(x +h)^2 + b(x + h) + c。
这里h为实数。
2. 缩放:对于二次函数y = ax^2 + bx + c,通过改变a的绝对值可以得到不同的缩放效果。
当|a|大于1时,图像会被纵向拉伸;当0<|a|<1时,图像会被纵向压缩。
二、二次函数的性质除了图像外,二次函数还有许多重要的性质,我们将逐一介绍。
1. 零点:零点是指二次函数的图像与x轴的交点。
二次函数的零点可以通过求解方程ax^2 + bx + c = 0得到。
当判别式b^2 - 4ac大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根。
2. 对称轴:对称轴是指二次函数图像的中心对称线。
对称轴的方程可以通过求解方程x = -b/2a得到,即二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 首项系数a的正负性:首项系数a的正负性决定了二次函数的开口方向。
当a大于0时,函数图像开口向上,最值点为最低点;当a小于0时,函数图像开口向下,最值点为最高点。
二次函数的图像性质及应用二次函数是一种代数函数,由形如f(x) = ax^2 + bx + c 的方程定义,其中a、b、c为实数且a不等于0,x为自变量,f(x)为因变量的值。
在二次函数的图像性质及应用方面,可以从以下几个角度来进行解析。
一、图像性质1. 平移性质:二次函数的图像可以根据a、b、c的值进行平移。
当c不为0时,图像沿y轴平移c个单位;当b不为0时,图像沿x轴平移-b/2a个单位;当a 不为0时,图像的开口方向取决于a的正负性,开口向上(a>0)或者开口向下(a<0)。
2. 对称性质:二次函数的图像关于y轴对称。
这是因为二次函数的方程中只有x 的二次项没有一次项,故图像关于y轴对称。
3. 零点性质:二次函数的零点是指函数值为0的x值。
对于一般的二次函数,它将有两个零点,除非它开口向上或开口向下且顶点位于x轴上,此时则只有一个零点。
4. 首项分类:当a>0时,二次函数的图像开口向上,称为正二次函数;当a<0时,二次函数的图像开口向下,称为负二次函数。
首项a的正负性决定了二次函数的凹凸性。
二、应用1. 自然科学中的运动学问题:二次函数可以用来描述自然界中物体的运动状态。
例如,自由落体运动中物体的下落高度与时间的关系可以用二次函数来表示。
2. 经济学中的成本与收益问题:在经济学中,很多问题可以用二次函数来建模。
例如,成本与产量之间的关系、价格与需求之间的关系等。
3. 地理学中的地形分析:地理学中,二次函数可以用来描述地形的变化。
例如,山谷河流的横断面、地势的坡度等。
4. 工程学中的建模问题:在工程学中,二次函数可以应用于许多建模问题,如桥梁设计、弹道分析等。
总结起来,二次函数的图像性质包括平移性质、对称性质、零点性质和首项分类。
而其应用领域广泛,包括自然科学中的运动学问题、经济学中的成本与收益问题、地理学中的地形分析以及工程学中的建模问题等。
通过对二次函数的图像性质及应用的深入理解,可以更好地应用于实际问题的建模与求解。
2-4二次函数的图像与性质 基 础 巩 固 一、选择题 1.已知二次函数y=x2-2ax+1在区间(2,3)内是单调函数,则实数a的取值范围是( ) A.a≤2或a≥3 B.2≤a≤3 C.a≤-3或a≥-2 D.-3≤a≤-2 [答案] A [解析] 由于二次函数的开口向上,对称轴为x=a,若使其在区间(2,3)上是单调函数,则需所给区间在对称轴的同一侧,即a≤2或a≥3. 2.(文)若函数f(x)=ax2+bx+c满足f(4)=f(1),那么( ) A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 [答案] C
[解析] 因为f(x)满足f(4)=f(1),所以二次函数对称轴为x=4+12
=52,又3-52=52-2,即x=3与x=2离对称轴的距离相等,所以f(3)=f(2). (理)若f(x)=x2-x+a,f(-m)<0,则f(m+1)的值为( ) A.正数 B.负数 C.非负数 D.与m有关 [答案] B [解析] ∵f(x)=x2-x+a的对称轴为x=12, 而-m,m+1关于12对称, ∴f(m+1)=f(-m)<0,故选B. 3.(2012·长沙调研)已知函数f(x)=2ax2-ax+1(a<0),若x1x1+x2=0,则f(x1)与f(x2)的大小关系是( ) A.f(x1)=f(x2) B.f(x1)>f(x2) C.f(x1)[答案] C
[解析] 根据函数的图像开口向下,对称轴为x=14,又依题意得
x1<0,x2>0,且x1与x2关于y轴对称,则x1到x=14的距离大于x2到x=14的距离,即14-x1>x2-14,故f(x1)4.设abc>0,二次函数f(x)=ax2+bx+c的图像可能是( )
[答案] D [解析] 若a<0,则只能是A或B选项,A中-b2a<0,∴b<0,从而c>0,与A图不符;B中-b2a>0,∴b>0,∴c<0,与B图不符.若a>0,则抛物线开口向上,只能是C或D选项,当b>0时,有c>0与C、D图不符,当b<0时,有c<0,此时-b2a>0,f(0)=c<0,故选D. 5.(文)“a<0”是“方程ax2+1=0有一个负数根”的( ) A.必要不充分条件 B.充分必要条件 C.充分不必要条件 D.既不充分也不必要条件 [答案] B
[解析] ①∵a<0,ax2+1=0,∴x2=-1a>0, ∴ax2+1=0有一个负根,∴充分性成立. ②若ax2+1=0有一个负根,那么x2=-1a>0,可得a<0,∴必要性成立. (理)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图像大致是( )
[答案] C [解析] 选项A中,一次函数的斜率a>0,而二次函数的开口向下,相矛盾,排除A,同理排除D.
y=ax2+bx+c的对称轴为x=-b2a,当a>0,b>0时,x=-b2a<0,
∴排除B.当a<0,b<0时,x=-b2a<0,∴C符合. 6.(2012·合肥质检)若f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是( )
A.(-12,14) B.(-14,12) C.(14,12) D.[14,12] [答案] C
[解析] 由题意,得 f-1·f0<0,f1·f2<0, 解得14二、填空题 7.(2012·上海文,6)方程4x-2x+1-3=0的解是________. [答案] log23 [解析] 本题考查了指数方程的解法,4x-2x+1-3=0. (2x)2-2×2x-3=0,令t=2x,则t2-2t-3=0,解得t=3或t=-1(舍去),则2x=3,所以x=log23. 8.(文)若函数y=x2+(a+2)x+3,x∈[a,b]的图像关于直线x=1对称,则b=________. [答案] 6 [解析] 二次函数y=x2+(a+2)x+3的图像关于直线x=1对称,
说明二次函数的对称轴为x=1,即-a+22=1,所以a=-4.而f(x)是定义在[a,b]上的,即a,b关于x=1也是对称的,所以a+b2=1,∴b=6. (理)(2012·厦门质检)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是________. [答案] [0,2] [解析] 依题意知,函数f(x)的图像关于直线x=1对称,且开口方向向上,f(0)=f(2),结合图像可知,不等式f(m)≤f(0)的解集是[0,2]. 三、解答题 9.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数. [分析] 由题目条件知二次函数过(2,-1),(-1,-1)两点,且知其最大值,所以可应用一般式、顶点式或两根式解题. [解析] 解法1:利用二次函数一般式. 设f(x)=ax2+bx+c(a≠0).
由题意得 4a+2b+c=-1,a-b+c=-1,4ac-b24a=8,解得 a=-4,b=4,c=7, ∴所求二次函数为f(x)=-4x2+4x+7. 解法2:利用二次函数的顶点式. 设f(x)=a(x-m)2+n(a≠0). ∵f(2)=f(-1),
∴抛物线对称轴为x=2+-12=12,∴m=12. 又根据题意函数有最大值y=8,∴y=f(x)=ax-122+8. ∵f(2)=-1,∴a2-122+8=-1,解得a=-4. ∴f(x)=-4x-122+8=-4x2+4x+7. 解法3:利用二次函数的两根式. 由已知f(x)+1=0的两根为x1=2,x2=-1, 故可设f(x)+1=a(x-2)(x+1)(a≠0), 即f(x)=ax2-ax-2a-1.
又函数有最大值ymax=8,即4a-2a-1-a24a=8, 解得a=-4或a=0(舍去). ∴所求函数解析式为f(x)=-4x2+4x-7. 能 力 提 升 一、选择题 1.(文)已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( ) A.-1 B.0 C.1 D.2 [答案] C [解析] f(x)=-(x-2)2+4+a.由x∈[0,1]可知当x=0时,f(x)取得最小值-2,即a=-2,所以f(x)=-(x-2)2+2,当x=1时,f(x)取得最大值1.
(理)若函数y=x2-3x-4的定义域为[0,m],值域为-254,-4,则m的取值范围是( ) A.32,3 B.32,3 C.[0,3] D.32,3 [答案] B [解析] f(x)=x2-3x-4=x-322-254, ∴f32=-254,又f(0)=-4. 由题意结合函数的图像可得 32≤mm-32≤32-0, 解得32≤m≤3. 2.(文)函数y=(cosx-a)2+1,当cosx=a时有最小值,当cosx=-1时有最大值,则a的取值范围是( ) A.[-1,0] B.[-1,1] C.(-∞,0] D.[0,1] [答案] D [解析] ∵函数y=(cosx-a)2+1, 当cosx=a时有最小值,∴-1≤a≤1, ∵当cosx=-1时有最大值,∴a≥0,∴0≤a≤1. (理)对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是( ) A.(1,3) B.(-∞,1)∪(3,+∞) C.(1,2) D.(3,+∞) [答案] B [解析] 令g(a)=f(x)=x2+(a-4)x+4-2a=(x-2)a+x2-4x+4,a∈[-1,1],
依题设得 g-1>0g1>0,∴ x2-5x+6>0x2-3x+2>0. 解得x>3或x<1,故选B. 二、填空题 3.(文)已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b=________. [答案] 2 [解析] ∵f(x)=(x-1)2+1, ∴f(x)在[1,b]上是增函数, f(x)max=f(b),∴f(b)=b,∴b2-2b+2=b, ∴b2-3b+2=0,∴b=2或1(舍). (理)(2012·广东深圳一模)已知定义在区间[0,3]上的函数f(x)=kx2-2kx的最大值为3,那么实数k的取值范围为________. [答案] {1,-3} [解析] ∵f(x)=kx2-2kx=k(x-1)2-k, (1)当k>0时,二次函数开口向上, 当x=3时,f(x)有最大值, f(3)=k·32-2k×3=3k=3⇒k=1; (2)当k<0时,二次函数开口向下, 当x=1时,f(x)有最大值, f(1)=k-2k=-k=3⇒k=-3.故k的取值集合为{1,-3}. 4.方程x2-mx+1=0的两根为α、β,且α>0,1的取值范围是________.
[答案] (2,52)
[解析] ∵ α+β=m,α·β=1,∴m=β+1β, ∵β∈(1,2)且函数m=β+1β在(1,2)上是增函数, ∴1+1三、解答题 5.已知函数f(x)=x2-4ax+2a+6(a∈R).