2FSK--FSK 通信系统调制解调综合实验电路设计要点
- 格式:doc
- 大小:998.07 KB
- 文档页数:14
实验四2FSK调制与解调一. 实验目的1.掌握2FSK调制与解调原理;2.进一步熟悉SystemView的使用;3.进一步掌握滤波器的用法;4.进一步掌握抽样判决的实现方法。
二.实验要求1. 使用SystemView设计一个2FSK调制与解调系统,要求键控法调制(此部分图幅可以选自专业库),包络法解调;2. 基带调制信号是振幅为1V,频率10Hz,初相0的二进制NRZ双极性方波序列;3. 载波1是振幅为1V,频率65Hz,初相0的正弦波;载波2是振幅为1V,频率95Hz,初相0的正弦波;4. 不考虑信道噪声;5. 安装下列步骤环节来完成实验并书写实验报告。
三.设计方案由于FSK信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0/1状态而变化,我们可以把FSK信号看成两个不同载频2ASK信号的叠加,所以2FSK接收机由两个并联的2ASK接收机组成。
从原理上讲,数字调频可用模拟调频法来实现,也可以用键控法实现。
本次实验采用键控法实现,键控法产生2FSK信号,原理示意图如图1所示;2FSK信号的解调可采用包络检波和相干解调法,本次实验采用包络检波法实现,原理方框图如图2所示;图2四.系统实现系统模块大致可分为调制部分与解调部分,调制部分仿真图在System View 上的仿真图如图3所示:图3本模块由两个不同频率的输入载波(载波1是振幅为1V,频率65Hz,初相0的正弦波;载波2是振幅为1V,频率95Hz,初相0的正弦波;)通过单刀双掷开关控制基带模拟信号(振幅为1V,频率10Hz,初相0的二进制NRZ双极性方波序列)的输出,从而得到2FSK信号,即为调制信号。
解调模块在System View上的仿真图如图4所示:图4Token 5、7,即带通滤波器,滤出2FSK两路信号的包络,其设置参数如图5、6所示:图5图6将从带通滤波器出来的信号通过全波整流器,使信号的下半部分翻转到上半部分,具体设置如图7:图7将从全波整流器出来的信号通过低通滤波器,滤出两路调制信号包络,低通滤波器的设置如图8所示:图8从低通滤波器出来的是基带信号包络,要经抽样、判决后将码元再生,方可恢复出数字序列。
一.2FSK 调制原理:1、2FSK 信号的产生:2FSK 是利用数字基带信号控制在波的频率来传送信息。
例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。
故其表示式为{)cos()cos(21122)(θωθωϕ++=t A t A FSK t 时发送时发送"1""0"式中,假设码元的初始相位分别为1θ和2θ;112f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。
2FSK 信号的产生方法有两种:(1)模拟法,即用数字基带信号作为调制信号进行调频。
如图1-1(a )所示。
(2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。
如图1-1(b )所示。
这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。
(a) (b)2FSK 信号产生原理图由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即)cos(])([)cos(])([)cos(·)()cos()()(221122112θωθωθωθωϕ+-++-=+++=∑∑∞-∞=∞-∞=t nT t g a t nT t g a t t g t t g t n s n n s n FSK其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。
{P,0P 11概率,概率-=n a {P 1,0P 1-=概率,概率n a其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。
2、2FSK 信号的频谱特性:由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即)]()()()([]|)(||)(||)(||)([|)()()(2211161222221211622221f f f f f f f f T f f Sa T f f Sa T f f Sa T f f Sa f S f S f S S S S S T ASK ASK FSK S ++-+++-+++-+++-=+=δδδδππππ2FSK 信号带宽为 s s FSK R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。
*******************实践教学*******************兰州理工大学计算机与通信学院2011年秋季学期高频电子线路课程设计题目:2FSK调制解调电路的设计专业班级:姓名:学号:指导教师:成绩:摘要在现代数字通信系统中,频带传输系统的应用最为突出。
用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程称为数字调制,已调信号通过信道传输到接收端,在接收端通过解调器把频带数字信号还原成基带数字信号,这种数字信号的反变换称为数字解调,把包含调制和解调过程的传输系统叫做数字信号的频带传输系统。
以数字信号作为调制信号的调制技术。
一般采用正弦波作为载波,这种数字调制又称为载波键控。
用电键进行控制,这是借用了电报传输中的术语。
载波键控是以数字信号作为电码,用它对正弦载波进行控制,使载波的某个参数随电码变化。
根据正弦波受控参数的不同,载波键控可以分为三大类:移幅键控(ASK)、移频键控(FSK)、移相键控(PSK)。
它们分别是正弦波的幅度、频率、相位随着数字信号而变化,图为三种键控相应的波形和功率谱密度。
FSK信号的产生可利用一个矩形脉冲序列对一个载波进行调频而获得。
这正是频率键控通信方式早期采用的实现方法,也是利用模拟调频法实现数字调频的方法。
2FSK信号的另一产生方法便是采用键控发法,即利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选择。
2FSK它是利用载频频率变化来传输数字信息。
数字载频信号又可分为相位离散和相位连续两种情形。
若两个振荡频率分别由不同的独立振荡器提供,它们之间的相位互不相关,这就叫相位离散的数字调频信号;若两个振荡频率由同一振荡信号源提供,是对其中一个载频进行分频,这样产生的两个载波就是相位连续的数字调频信号。
本实验电路利用移频键控法,由振荡器产生不同的载频频率作为两个不同频率的载频信号,即为相位不同的数字调频信号,由基带信号对不同频率的载波信号进行选择。
2FSK调制解调原理及设计2FSK调制解调技术通常用于调制两个离散频率(频移)来表示二进制数据流中的0和1、其中一个频率用于表示0,另一个频率用于表示1、在调制过程中,将基带数字信号转换为模拟信号,并将其移频到所需的频率。
解调过程则通过检测输入信号的频率来还原原始的二进制数据流。
1.调制器设计:调制器将二进制数据流转换为模拟信号,并在不同的频率上调制这些信号。
常见的调制器设计包括频率锁相环(PLL)和直接数字频率合成(DDS)。
PLL使用反馈回路来产生一个输出信号,其频率与输入信号的相位差很小。
DDS则使用数字信号直接合成所需的频率。
2.频率选择器:频率选择器用于选择调制信号的频率。
通过控制频率选择器的开关或滤波器,可以选择不同的频率来代表0和1、频率选择器可以是可编程的,以便在需要时切换不同的调制频率。
3.解调器设计:解调器将传输信号转换为数字信号,使数据能够被读取和处理。
解调器通常包括一个带通滤波器和一个判决器。
带通滤波器用于滤除不需要的频率成分,使解调信号只包含所需的频率分量。
判决器则用于将接收到的信号映射到二进制数据流中的0和14.错误检测和纠正:在接收端,通常还需要实施错误检测和纠正机制来提高数据传输的可靠性。
常见的错误检测和纠正方法包括奇偶校验、循环冗余检测(CRC)和海明码。
2FSK调制解调技术在数字通信系统中得到了广泛的应用,特别是在无线通信领域。
它具有简单可靠的特点,适用于低复杂度的通信系统。
同时,2FSK调制解调技术也可以扩展为多级FSK调制解调技术,以提高数据传输速率和信号带宽利用率。
总之,2FSK调制解调是一种常见且有效的数字调制解调技术,其原理和设计涉及调制器设计、频率选择器、解调器设计以及错误检测和纠正等关键步骤。
这种技术在数字通信系统中具有广泛的应用,并且可以根据需要进行扩展和优化。
学生学号实验课成绩学生实验报告书实验课程名称开课学院指导教师姓名学生姓名学生专业班级200 -- 200 学年第学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
实验课程名称:__通信原理_____________图3-1数字键控法实现2FSK 信号的原理图图中两个振荡器的载波输出受输入的二进制基带信号s(t)控制。
由图3-1 可知,s(t)为“1”时,正脉冲使门电路1接通,门2断开,输出频率为f1;数字信号为“0”时,门1断开,门2接通,输出频率为f2。
在一个码元Tb 期间输出ω1或ω2两个载波之一。
由于两个频率的振荡器是独立的,故输出的2FSK 信号:在码元“0”“1”转换时刻,相邻码元的相位有可能是不连续的。
2FSK调制解调电路的设计(校内设计)摘要本文介绍了2FSK调制解调电路的设计过程,它是一种广泛应用的调制和解调技术。
主要特征是它可以实现低功耗、低噪声抗干扰能力、宽带容量及通信效率提高等优点,可以大大提高数字信号处理速度和传输的可靠性。
本文的目的是尝试解调电路的性能设计,最新的电路元件和软件工具等,以使解调电路实现较好的性能。
关键词:2FSK调制,解调电路,性能设计,元件,软件工具1 引言自从商业通信发明以来,对信号传输的调制解调技术不断地进行创新与改进,以满足不断提高的信号传输效率和降低信号误码率的要求 [1] 。
2FSK调制解调技术,也称作双频移相键控调制技术,得到了广泛的应用。
2FSK是指信号的调制,使用指定的双偶数码或移相码变换频率,具有较高的抗干扰能力和低功耗优势,既可以在较低噪声环境中获得高数据传输能力,又能在较高噪声环境中进行宽带数据传输。
2 2FSK 调制解调电路的设计2FSK调制解调电路主要包括调制编码器,载波展频收发器,解调滤波器和调制解码器。
2.1 调制编码器调制编码器是2FSK调制系统中的关键部件之一,主要的工作是根据输入的比特序列,通过脉冲宽度调制方式将信号映射到相应的频率。
调制编码器设计的基本要求是有足够的灵活性,使它能够有效地与系统总体架构相结合,提供[2]。
通过对调制编码器的软/硬件设计,可以使2FSK技术在低功耗和低噪声环境中高效运行。
2.2 载波展频收发器载波展频收发器包括调制传输子系统和解调接收子系统,是调制解调电路的重要组成部分 [3]。
调制部分是射频信号源的补充,需要具备良好的稳定性和低噪声。
解调部分需要在有限的功耗条件下,对信号进行放大、截止和滤波,实现信号的检测和可靠传输。
2.3 解调滤波器解调滤波器是用于把解调放大器输出的多类型抗干扰脉冲数据进行滤波。
主要要求是保证正确输出脉冲信号及抑制多类器件对系统性能的影响 [4]。
因此,设计解调滤波器时应考虑信号的传输线阻抗匹配的影响,做好因多类型器件的噪声耦合所造成的影响和特性分析,保证系统数字信号的高速传输并符合有效的抗干扰能力要求。
2FSK调制解调电路设计引言:频移键控调制(Frequency Shift Keying, FSK)是一种数字调制方式,通过改变载波频率的方式来传输信号。
2FSK(2 Frequency Shift Keying)是一种常见的FSK调制方式,其基本原理是通过输入的数字信号决定载波频率的两个离散状态,从而实现数字信息的传输。
在本文中,我们将介绍2FSK调制解调电路的设计。
一、2FSK调制电路设计:1.信号波形产生器:首先,我们需要设计一个信号波形产生器来生成数字信号。
该数字信号表示要传输的信息,通常是基带信号。
可以使用微处理器、FPGA或其他数字电路来实现波形产生器。
2.带通滤波器:接下来,我们需要设计一个带通滤波器来选择一个特定频率范围内的频率。
2FSK调制需要选择两个离散频率用于传输数据,所以我们需要设计一个可以在这两个频率范围内切换的带通滤波器。
3.频率切换电路:在2FSK调制中,我们需要能够在两种不同的频率之间切换的载波信号。
为了实现这一点,我们可以使用一个开关电路,根据输入的数字信号来选择不同的频率。
4.调制电路:最后,我们将基带信号和切换后的载波信号相乘,利用频谱合并来实现2FSK调制。
这个乘法操作可以通过模拟乘法器或数字乘法器来实现。
二、2FSK解调电路设计:1.频谱分离电路:为了将调制信号中的两个频率分离开来,我们需要设计一个频谱分离电路。
这个电路可以通过使用带通滤波器和差分器来实现,带通滤波器选择一个频率范围内的信号,差分器可以根据输入信号的相位差来判断频率是高频还是低频。
2. 相位检测电路:在2FSK解调中,我们需要检测信号的相位来确定接收到的信号是1还是0。
相位检测电路可以使用锁相环(Phase Locked Loop, PLL)或其他相位检测技术来实现。
3.信号解码器:最后,我们需要设计一个信号解码器来将解调得到的数字信号转化为原始信息。
这个解码器可以通过使用微处理器或其他数字电路来实现。
信息科学与工程学院课程设计报告课程名称:通信原理专业:班级:学号:姓名:指导老师:二进制频移监控(2FSK )的仿真与分析一) 设计内容利用matlab 编程或simulink 对2FSK 的调制和解调整个流程进行仿真。
二) 设计要求A)要求分析2FSK 的调制解调过程及其理论原理;B)利用matlab 编程或simulink 实现2FSK 整个系统的仿真; C)能够以图形化方式呈现对仿真过程中的重要接点处的波形; D)选用不同的调制频率验证课程中关于2FSK 的最小频率间隔的讨论。
一、2FSK 的调制解调过程及其理论原理1、表示式:⎩⎨⎧++=”时当发送“”时当发送“0)cos(1)cos()(0011ϕωϕωt A t A t s“1“1“0T2、产生方法:调频法:相位连续开关法:相位不连续3、接收方法:相干接收:非相干接收:(1)包络检波法:(2)过零点检测法二、最小频率间隔在原理上,若两个信号互相正交,就可以把它完全分离。
对于非相干接收:设: 2FSK 信号为⎩⎨⎧++=”时当发送“”时当发送“0)cos(1)cos()(0011ϕωϕωt A t A t s为了满足正交条件,要求 :⎰=+⋅+Tdt t t 000110)]cos()[cos(ϕωϕω即要求:上式积分结果为:假设ω1+ω0>>1,上式左端第1和3项近似等于零,则它可以化简为由于ϕ1和ϕ0是任意常数,故必须同时有0)sin(01=-T ωω和 上式才等于0。
即要求:πωωn T =-)(01和πωωm T 2)(01=-式中,n 和m 均为整数。
为了同时满足这两个要求,应当令πωωm T 2)(01=-即令Tm f f /01=-所以,当取m =1时是最小频率间隔,它等于1 /T 对于相干接收:可以令01=-ϕϕ于是,式 0]1))[cos(sin()sin()cos(01010101=---+--T T ωωϕϕωωϕϕ化简为:)sin(01=-T ωω因此,要求满足:T n f f 2/01=-即,最小频率间隔等于1 / 2T 。
2FSK调制解调电路的设计引言:调频键控(Frequency Shift Keying, FSK)是一种常见的数字调制解调技术,其原理是通过改变载波频率来传输数字信号。
二进制FSK(2FSK)是最基本的FSK调制方式,其中两个不同的频率代表了二进制中的0和1、本文将介绍2FSK调制解调电路的设计。
一、2FSK调制电路1.频率可调的带通滤波器频率可调的带通滤波器用于接收输入信号,并将频率转换为两个不同的预设频率。
该滤波器通常由一个带可调中心频率的VoltageControlled Oscillator (VCO)和一个窄带滤波器组成。
输入信号经过一级放大后进入VCO,VCO将输入信号频率转换为预设频率。
滤波器用于滤除不需要的频率成分,只保留希望传输的频率分量。
2.相位锁定环路(PLL)相位锁定环路是2FSK调制电路的核心。
它由一个相频比较器(Phase-Frequency Detector, PFD)、一个环路滤波器(Loop Filter)、一个VCO和一个除频器(Divider)组成。
相频比较器用于比较参考信号和VCO输出信号的相位差,产生一个频率和相位误差的输出。
这个输出信号经过环路滤波器后,将调整VCO的输出频率,使其与参考信号的相位差最小化。
除频器将VCO输出的频率除以一个预设的常数,得到一个比输入信号低的频率,在输入信号的两种频率之间切换。
二、2FSK解调电路2FSK解调电路主要由一个鉴频器和一个比较器组成。
1.鉴频器鉴频器用于提取输入信号中的频率信息,并将其转换为与输入信号频率相同的模拟信号。
鉴频器通常由一个窄带滤波器和一个包络检波器组成。
窄带滤波器用于滤除不需要的频率成分,只保留输入信号中的目标频率分量。
包络检波器将滤波后的信号变为其包络信号,将其转换为模拟信号。
2.比较器比较器用于将模拟信号转换为数字信号,实现2FSK信号的解调。
比较器通常由一个阈值电路和一个数字信号输出端口组成。
2FSK调制解调系统设计2FSK(2 Frequency Shift Keying)调制解调系统是一种常见的数字调制技术,用于将数字信号转换为模拟信号进行传输和解调。
本文将重点介绍2FSK调制解调系统的设计,包括系统框图、原理以及实现过程。
一、2FSK调制解调系统框图1.调制部分:调制部分的主要功能是将数字信号转换为模拟信号。
常见的2FSK调制方法是通过选择两个不同频率的正弦波信号,分别对应数字信号的0和1、将数字信号经过调制电路进行调制后,输出模拟信号。
2.解调部分:解调部分的主要功能是将模拟信号转换为数字信号。
解调部分通常需要实现两个不同的带通滤波器,分别对应调制信号的两个频率。
对接收到的模拟信号进行滤波后,判断输出信号对应的频率,得到数字信号的0和1二、2FSK调制解调系统原理1.调制原理:2.解调原理:2FSK解调是通过判断接收到的模拟信号的频率来确定数字信号的0和1、解调时需要接收到的模拟信号经过一个带通滤波器,分别与f1和f2对应的滤波器进行滤波,得到两个对应的滤波输出信号。
根据输出信号的幅度比较,判断数字信号是0还是1三、2FSK调制解调系统设计实现过程1.调制部分设计:(1)选择载波频率:确定两个载波频率,分别对应数字信号的0和1(2)数字信号转换:将数字信号进行编码,将0对应的频率设为f1,1对应的频率设为f2(3)调制电路设计:设计调制电路将数字信号转换为模拟信号。
常见的调制电路包括震荡电路、混频电路等。
2.解调部分设计:(1)带通滤波器设计:设计两个带通滤波器,分别对应f1和f2的频率范围。
滤波器的设计可以采用数字滤波器或者模拟滤波器。
(2)滤波输出比较:将接收到的模拟信号依次通过两个滤波器进行滤波,得到两个滤波输出信号。
比较两个输出信号的幅度大小,判断数字信号是0还是13.系统参数调整和优化:对于2FSK调制解调系统,可以根据具体的要求进行参数调整和系统优化。
例如,调制信号的频率范围选择、滤波器的带宽设计等。
2FSK调制与解调系统设计引言:频移键控(FSK)是一种基于频率变化来传输信息的调制技术,它在很多应用中被广泛使用,如无线通信、数据传输等。
本文将介绍2FSK调制与解调系统设计的原理和实现。
1.系统设计要求:设计一个2FSK调制解调系统,满足以下要求:-使用两个信号频率(f1和f2)进行二进制调制,其中f1表示二进制‘0’,f2表示二进制‘1’。
-采用正弦波作为调制波形,调制指数保持为1-采用相干解调方式进行解调。
2.系统设计步骤:(1)调制设计:然后,使用正弦波产生器生成对应信号频率的正弦波。
将正弦波与二进制码序列进行调制,可以通过调制电路(如倍频器,可变频率的振荡器等)完成。
最后,得到调制信号。
(2)解调设计:采用相干解调方式进行解调。
相干解调是通过与已知频率的正弦波进行相乘,在经过低通滤波器之后,得到原始信号的解调结果。
首先,设计一个频率锁定环路(PLL),用于锁定接收信号的频率,确定解调时所采用的解调频率。
然后,通过解调电路对接收的信号进行解调。
解调电路的关键在于使用与PLL锁定频率相同的正弦波对接收信号进行相乘。
相乘之后,经过低通滤波器,得到解调信号。
最后,通过解调信号恢复原始的二进制码序列。
3.系统实现:(1)调制实现:根据系统设计要求,选择两个信号频率(f1和f2)。
通过正弦波产生器生成这两个频率的正弦波。
将正弦波与二进制码序列进行调制,采用合适的调制电路完成调制。
根据调制原理,可以得到调制信号。
(2)解调实现:设计一个频率锁定环路(PLL),用于锁定接收信号的频率。
频率锁定环路通常包括相位锁定环和频率鉴别器。
通过解调电路对接收的信号进行解调。
解调电路采用与PLL锁定频率相同的正弦波进行相乘,经过低通滤波器得到解调信号。
通过解调信号恢复原始的二进制码序列。
4.总结:本文介绍了2FSK调制解调系统的设计原理和实现步骤。
调制部分使用两个信号频率对应二进制码,采用正弦波进行调制;解调部分采用相干解调方式,通过与PLL锁定频率相同的正弦波进行相乘,经过低通滤波器得到解调信号。
学生学号实验课成绩学生实验报告书实验课程名称开课学院指导教师姓名学生姓名学生专业班级2 00--200学年第学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
实验课程名称:__通信原理_____________一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的通过2 FSK 通信系统综合设计实验,加强对2 FSK 调制器与解调器通信技术电路理解,学会查寻资料、方案比较,以及设计计算环节。
学会对所学基本理论知识的综合运用;进一步提高分析解决实际问题的能力,创造一个动脑动手、独立开展电路实验的机会,锻炼分析、解决通信技术电路问题的本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,初步体验从事通信产品研发的过程;增强学生的实际能力;掌握使用Multisim软件的操作方法。
设计性实验2FSK调制、解调实验一、实验目的1.掌握用移频键控法产生2FSK信号的原理及硬件实现方法;2.掌握用过零点检测法解调2FSK信号的原理及硬件实现方法;3.加深对位同步信号提取原理的理解,了解其硬件实现方法;4.了解锁相环对消除相位抖动的原理及作用。
二、实验内容1.2FSK调制(发送)实验。
2.2FSK解调(接收)实验。
3.位同步提取实验。
4.眼图、奈奎斯特准则实验。
5.归零码与位定时实验。
6.眼图与判决时间选取实验。
三、实验仪器及设备1.20MHZ双踪示波器 GOS-6021 1台2.函数信号发生器/计数器 SP1641bB 1台3.直流稳压电源 GPS-X303/C 1台4.万用表 1块5.2FSK调制解调实验箱 1个四、实验原理及电路(一)实验原理实现数字频率调制的方法很多,总括起来有两类:直接调频法和移频键控法。
本实验使用的是移频键控法,它便于用数字集成电路来实现。
移频键控,或称数字频率调制,是数字通信中使用较早的一种调制方式。
数字频率调制的基本原理是利用载波的频率变化来传递数字信息。
在数字通信系统中,这种频率的变化不是连续的,而是离散的。
比如,在二进制的数字频率调制系统中,可用两个不同的载频来传递数字信息,故移频键控常写作2FSK(Frequency Shift Keying)。
2FSK广泛应用于低速数据传输设备中,根据国际电报和电话咨询委员会(CCITT)的建议,传输速率为1200波特以下设备一般采用2FSK。
2FSK方法简单、易于实现,解调不需要恢复本地载波,可以异步传输,抗噪声和抗衰落性能也较强。
因此,2FSK已成为在模拟电话网上利用调制解调制器来传输数据的低速、低成本的一种主要调制方式。
在一个2FSK系统中,发端把基带信号的变化规则转换成对应的载频变化,而在收端则完成与发端相反的转换。
由于2FSK信号的信道中传输的是两个载频的切换,那么其频谱是否就是这两个载频的线谱呢?或者说信道的频带只是这两个载频之差呢?答案是否定的。
2FSKFSK通信系统调制解调综合实验电路设计以下是一个关于2FSK/FSK通信系统调制解调综合实验电路设计的文本,并附有示意图,共计1200字以上:引言:2FSK(双频调制)和FSK(频移键控)是一种常用的数字调制技术,广泛应用于通信系统中。
本实验旨在设计一个基于2FSK/FSK调制解调的通信系统电路。
1.系统概述本系统由两部分组成:调制器和解调器。
调制器负责将数字信号转换为2FSK/FSK信号,解调器负责将接收到的2FSK/FSK信号转换为数字信号。
2.调制器设计调制器的设计包括以下步骤:-数字信号生成:生成一个长度为N的数字信号序列,表示待传输的信息。
-符号映射:将数字信号映射为对应的2FSK/FSK调制信号。
例如,可以将“0”映射为低频信号,将“1”映射为高频信号。
-调制信号生成:使用相应的调制技术,将映射后的2FSK/FSK信号生成为模拟信号。
例如,对于2FSK调制,可以使用两个不同的频率来表示“0”和“1”;对于FSK调制,可以使用频率的变化来表示“0”和“1”。
-输出:将调制后的信号输出至发送端。
3.解调器设计解调器的设计包括以下步骤:-信号接收:接收从发送端发送的调制信号。
-频率检测:检测接收到的信号的频率变化,判断其对应的数字信号。
-符号还原:根据频率的变化,将接收到的频率信号还原为对应的数字信号。
-输出:将还原后的数字信号输出至接收端。
4.电路设计根据调制器和解调器的设计要求,可以设计以下电路模块:-时钟模块:用于生成系统所需的时钟信号。
-数字信号生成模块:负责生成数字信号序列。
-符号映射模块:根据数字信号将其映射为2FSK/FSK信号。
-调制信号生成模块:根据2FSK/FSK信号生成调制信号。
-信号接收模块:接收从发送端发送的调制信号。
-频率检测模块:检测接收到的信号的频率变化。
-符号还原模块:根据频率变化将接收到的信号还原为数字信号。
-输出模块:负责将数字信号输出至接收端。
学生实验报告书
实验课程名称
开课学院
指导教师姓名
学生姓名
学生专业班级
200-- 200学年第学期
实验教学管理基本规范
实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参
照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验
报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一
定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,
在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有
实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
实验课程名称:__通信原理_____________
图3-2 2FSK调制器各点的时间波形
本次综合设计实验调制部分正是采用此方法设计的。
整个调制系统包括:载波振荡器、反相器、调制器与加法器等单元电路组成。
)信号常用解调方法有很多种,在设计中利用过零检测法。
过零检测法是利用信号波形在单位时间内与零电平轴交叉的次数来测定信号频率。
解调系
所示电路:
图4-3 分频器电原理图分频电路输出信号波形如图4-4 所示:
图4-4 分频器仿真波形序列发生器电路设计与工作原理
图4-7 M序列发生器电原理图
从图中可知,这是由4 级D 触发器和异或门组成的4
位寄存器。
本电路是利用带有两个反馈抽头的4 级反馈移位寄存器,
态转移图见表1,该电路输出的信码序列为: 111101*********
信号波形如图4-8 所示:
1
1
图4-8 基带信号波形图
④调制器电路设计与工作原理
2FSK信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。
由于频率选择法
图4-9 门电路与电子开关构成的调制器电原理图
由图可知,若用门电路构成调制器,其工作过程是:从“信码\IN”输入的基带信号分成1路经(74LS00)反相后接至OOK2(74LS00)的控制端,另1路直接接至OOK1
图4-10 2FSK信号波形
过零检测2 FSK 信号解调电路设计与工作原理
从前面原理的介绍中,我们知道2FSK调制信号的解调若用非相干过零检测法,由图可见,必须有七个单元模块来完成。
考虑到2FSK信号的产生和解调集于同一仿真电路中,已调信号
图4-12 限幅、微分、整流、展宽电路输出信号波形
低通滤波器电路设计与工作原理
为了获得良好的幅频特性,脉冲展宽电路输出端所接的低通滤波器的带外衰减应很快,
图4-13 低通滤波器输出信号波形图
图4-14 低通滤波器电原理图
电压比较器电路组成与工作原理
电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,所谓电压比较器就是将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产1212
21
R R C C ω=
图4-16 电压比较器电路输出信号波形图⑧抽样判决器电路组成与工作原理
图4-18 抽样判决电路输出信号波形图调制与解调系统整体电路原理图与所用器材表
根据以上各单元电路的设计,得总体电路如图5-1 所示。
元件清单
六、实验体会与建议
通过这次实验,我学习了解了 FS K 调制与解调系统的结构与特性,并掌握2 FS K。