大学物理一练习册参考解答(供参考)
- 格式:doc
- 大小:582.00 KB
- 文档页数:6
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理练习册参考答案大学物理练习册是大学物理的重要教材之一,它的主要作用是为大学物理课程提供题目和习题,使学生能够更好地掌握和理解物理知识。
本文将为大家提供几个大学物理练习册的参考答案,供大家参考。
第一题:有一块长度为20cm,宽度为10cm,厚度为2cm的矩形金属板,重量为3N。
请问这块金属板的密度是多少?答案:首先我们需要知道密度的定义,密度是单位体积内物质的质量。
因此,我们可以根据这个公式计算出这块金属板的密度:密度=质量/体积其中,这块金属板的质量为3N,体积为20cm × 10cm × 2cm = 400cm³。
把质量和体积带入公式中,可以得到这块金属板的密度为:密度=3N/400cm³=0.0075N/cm³因此,这块金属板的密度为0.0075N/cm³。
第二题:有一个长度为4m的绳子,一个人沿着绳子向上爬,绳子的质量是忽略不计的。
如果人的体重为600N,他在绳子上爬行的过程中,绳子的张力是多少?答案:在求解这个问题之前,我们需要知道牛顿第二定律的公式:力=质量× 加速度根据牛顿第二定律,可以得到人在绳子上爬行时绳子所受的力等于绳子的张力减去重力。
因此,我们可以得到以下公式:绳子的张力=人的重力+绳子的重力其中,人的重力为600N,绳子的重力可以根据绳子的长度和重力加速度计算得出。
在地球上,物体的重力加速度大约为9.8m/s²。
因此,绳子的重力可以用下面的公式计算:绳子的重力=绳子的质量× 重力加速度因为绳子的质量可以根据绳子的长度和线密度计算得出,我们可以得到以下公式:绳子的质量=绳子的长度× 线密度假设绳子的线密度为ρ,绳子的质量可以表示为:绳子的质量=ρ × 面积× 长度根据绳子的面积和长度,可以得到:面积=长度× 直径/4因此,绳子的质量可以通过以下公式计算得出:绳子的质量=ρ × 直径² × 长度/16把绳子的质量和重力加速度带入公式中,可以得到绳子的重力为:绳子的重力=ρ × 直径² × 长度/16 × 重力加速度把人的重力和绳子的重力带入公式中,可以得到绳子的张力为:绳子的张力=人的重力+绳子的重力=600N+ρ × 直径² × 长度/16 × 重力加速度因此,如果已知绳子的线密度、直径、长度和重力加速度,就可以计算出绳子在负责人上爬行时所受的张力。
大学物理I练习册参考答案第一篇:大学物理I练习册参考答案大学物理I练习册参考答案力学部分:010004:(1)010011:(2)010014:(2)010016:(3)010044: B010057: D010095: B010098: C011002: 3t011009:011030:011039: 5m/s;17m/s011061: 4.8m/s;3.15rad22011012:ϖϖϖdv=ωRcosωtj-ωRsinωti;o011067: dt020003:(1)020012: C020015: B, D021002: 2g,0021016:(μcosθ-sinθ)g030023: B030028: D030038: D030061: D030069:(3)031005:031054: k/(mr);-k/(2r)2v0031062: 12J032046: h==4.25m;v=[2gh(1-μctgα)]1/2=8.16m/s 2g(1+μctgα)040001: A040011: B040020: C040030: B040032: C040054: A040064: D040070: C040076: C040090: C222040097: D040099: D041019: R1v1/R2;mvR/R112-1/2041043: Ma/2 ()041078: M/9042031: 156N;118N042005:电磁学部分1.B2.A3.C4.C5.2ε0A6.–2Ax,-2Byqd7.rλλ,ln02πε0r2πε0rUR1lnR2R1(2)Ek=4.8⨯10J , v=1.03⨯10m/s -778.(1)F=9.EP=0;UPC=⎰CPEdr=⎰rCRrλλdr=lnC 2πε0r2πε0R10.B11.B12.B13.C14.A15.D16.D17.q4πε0r2, 水平向左18.A19.εrC0,σ0,U0E0W0,εrεrεr20.看书P6721.看书P6722.C23.A24.D25.C27.μ0Iμ0IμI+=1.08⨯10-3T,垂直纸面向外28,0,垂直纸面向里2πR4R4πa29.μ0I, -2μ0I, ±2μ0I, ±2μ0I30, 2BIR,π/42;水平向右IaB,Ia2B34.πmga+b2μ0Ilna-b31,35.I1的磁场B=μ0I1,方向垂直向里,因此由安培定律(1)AD受I1的磁力FAD=I2aB 2πr=μ0I1I2a,方向向左。
练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。
2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。
3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。
参 考 答 案练习一1-2、DD 3、i ct v v)31(30+=,400121ct t v x x ++=4、 j 8,j i 4+-,4412arctg arctg -+ππ或5解:(1)j t t i t r)4321()53(2-+++=;(2))/(73;)3(34s m j i v j t i dt rd v s t +=++===;(3))/(12s m j dtvd a ==6 解: ∵ xvv t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v练习二:1-2、CB 3、32ct ,ct 2,R t c 42,R ct 2; 4、212t t +,212t+5、解:(1)由23Rbt dt d R dt ds v -===θ得:Rbt dtdv a 6-==τ,4229t Rb R v a n == n n n e t Rb e Rbt e a e a a4296+-=+=τττ6、当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为jgh i gh u v u v AA )sin 2()cos 2('αα++=+=地练习三:1-3、BCB 4、3s ; 5、ωωωωR j t i t R v R y x )cos sin (222+-==+6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v s lv s v v s t s l t l s t v a =+-=+-=-==船船 7、解: kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0 t k e v dtdxv -==0dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=练习四:1-2 AC3、解: 2s m 83166-⋅===m f a x x 2s m 167-⋅-==mf a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=4、解:小球的受力分析如下图,有牛顿第二定律可知:dtdvm F kv mg =--分离变量及积分得:⎰⎰----=-v tFkv mg F kv mg d dt m k00)(解得:))(1(1F mg e kv t m k--=-5、解:取弹簧原长时m 2所在处为坐标原点,竖直向下为x 轴,m 1,m 2的受力分析如上图所示。
练习一 运动的描述 (一)1.(D )2.(D ) 3.217,5s m sm 4.mmπ5,105.(1)s m t x V 5.0-=∆∆= (2)()s m v t t dt dx v 62,692-=-==(3)()()()()质点反向运动时,,05.125.25.1215.1===⨯-⨯+⨯-⨯=v s t m S6.答:矢径是从坐标原点至质点所在位置的有向线段。
位移是由前一时刻质点所在位置引向后一时刻质点所在位置的有向线段,它们的一般关系为0r r r -=∆ 若把坐标原点选在质点的初始位置,则00=r,任意时刻质点对此位置的位移为r r =∆,即此时r既是矢径也是位移。
练习二 运动的描述 (一)1.()()s m t t s radtt 612,34223-- 2.(c ) 3.三 , 三至六 4.s m s m s m 20,3103.17=5.1032,224,432102+===∴===⎰⎰⎰⎰t x dt t dx tv tdt dv t dt dv a txvt6.根据已知条件确定常量K 222224,4,4RtR v t s d ra Rtv tk ======ωωω22222228.3532168841sm a a a sm R v a s m Rt dt v d a sm Rtv s t n n =+=========ττ时,练习三 运动定律与力学中的守恒定律(一)1.(D ) 2. (C )3.4.5.因绳子质量不计,所以环受到的摩擦力在数值上等于张力T ,设2m 对地加速度为/2a ,取向上为正;1m 对地加速度为1a (亦即绳子的加速度)向下为正,⎪⎩⎪⎨⎧-==-=-21/2/222111aa a a m g m T a m T g m()()()212121/22121221222112m m a m g m m a m m m m a g T m m a m g m m a +--=+-=++-=解得:6.(1)子弹进入沙土后受力为-kv,由牛顿定律有mt k vv tev v v dv dt mk vdv dt mk dtdv mkv -=∴=-=-∴=-⎰⎰00,,(2)求最大深度()()kv mv x ev k m x dtev dx dt dx v mkt mkt 00max 00,1,=-=∴=∴=--练习四 运动定律与力学中的守恒定律(二)1.(C )2.(B ) 3.s m S N 24,140⋅()()sm m mv I v mv mv I sN dtt dt F I t t 24,14040301212221=+=∴-=⋅=+==⎰⎰4.2221221,m t F m m t F m m t F ∆++∆+∆5.(1)系统在水平方向动量守恒。
物理学练习§1-1(总1)一、进择题:1. ( D ) 解答:)S I (3723+-=t t x t -t x 2212 d d ==∴v ,t ta 21 d d -==v 2. ( C ) 解答: 积分 3. (D ) 解答:a 为矢量,a 保持不变说明a 的大小和方向都不变 (A )a 的大小和方向都变 (B )a 的大小不变,方向变 (C )a 的大小和方向都变 (D )a 的大小和方向都不变 (E )a 的大小不变,方向变 4. (B ) 解答:根据t n a a a +=(A )0≠t a 说明物体作曲线运动时速度的大小改变,但是匀速率圆周运动的速度大小不变,因此该说法错误。
(B )题目给出物体作曲线运动,说明速度的方向是变化的即0≠n a ,因此该说法正确。
(C )物体作曲线运动,速度的方向是变化的, 0≠n a ,错误。
(D )物体作曲线运动,速度的方向改变0≠n a ,所以虽然速度的大小不变,即 0=t a ,仍有0≠+=t n a a a ,该说法错误。
(E )该说法错误,例如斜抛运动,a 是恒量,但做变速率运动。
5. ( B )解答:j v i v B A 3,3==根据题意 i v u A3==由相对运动公式 u v v B B +='i j v v u v v A B B B 33'-=-=-=∴二、填空题,1. )SI (24t a += dtdv a = t a v d d ⋅=∴ 两边同时积分,⎰⎰⋅=t v v t a v 0d d 0 204t t v v ++=∴,s m v s t /394==时,2.根据运动方程得,4362+==t y t x ,消去时间t 得 426+=x y 3.如图所示,n t a a g a +== d d 2t Av t v -= d d 2t At v v -=∴⎰⎰=-t v v t At v v 02 d d 0202111At v v +=a230sin g g a t -=-=∴ ,g g a n 2330cos == , ρ2v a n = 又,g v a v n 3222==∴ρ4.根据题意n t a a a +=,2d d ==t v a t , t t a v v tt 2d 00=⋅+=∴⎰。
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B), 二、填空题(1). sin 2t A ωω,()π+1221n (n = 0,1,… ),(2). 8 m ,10 m. (3). 23 m/s.(4). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R .(7). 2.24 m/s 2,104o(8). )5c o s 5s i n (50j t i t+-m/s ,0,圆. (9). h 1v /(h 1-h 2) (10). 0321=++v v v三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;(3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt t v = 2t 2v d =x /d t 2=t 2t t x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI)3. 质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v() 2 213 x x +=v4. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt yy t a d d d d d d d d vvv v===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C kyy ky 222121, d d vv v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cb cR t -=6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//sRttk ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=n t a a a m/s 27. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i、j 表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2)由(1)导出速度 v与加速度 a的矢量表示式; (3)试证加速度指向圆心.解:(1) j t r i t r j y i x rs i n c o s ωω+=+=(2) j t r i t r t rc o s s i nd d ωωωω+-==v j t r i t r tas i n c o s d d 22ωωωω--==v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r 方向相反,即a指向圆心8. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v v +=AE v 、 AF v 、EE v 构成直角三角形,可得 ()()k m /h 17022v v v =-=FEAFAE() 4.19/tg1==-AEFEv v θ(飞机应取向北偏东19.4︒的航向).西北θFEv vAF v vAEvv四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答:(1)、(3)、(4)是不可能的.(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心; (4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x =,)(t y y =在计算质点的速度和加速度时: 第一种方法是,先求出22yx r +=,然后根据 td d r =v 及 22d d tr a =而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即 22)d d ()d d (ty t x +=v 和 222222)d d ()d d (ty tx a +=.你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
图3 4图第一章 力与运动练 习 一一. 选择题1. 一物体在1秒内沿半径m R 1=的圆周上从A 点运动到B 点,如图1所示,则物体的平均速度是( A )(A ) 大小为2m/s ,方向由A 指向B ; (B ) 大小为2m/s ,方向由B 指向A ; (C ) 大小为3.14m/s ,方向为A 点切线方向; (D ) 大小为3.14m/s ,方向为B 点切线方向。
2. 某质点的运动方程为6532+-=t t x (SI), 则该质点作 ( B )(A ) 匀加速直线运动,加速度沿X 轴正方向; (B ) 匀加速直线运动,加速度沿X 轴负方向; (C ) 变加速直线运动,加速度沿X 轴正方向; (D ) 变加速直线运动,加速度沿X 轴负方向。
3. 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速率2/2s m a =,则一秒钟 后质点的速度为( D )(A ) 零; (B ) s m /2-; (C ) s m /4; (D ) 不能确定。
4. 一质点作半径为R 的圆周运动,转动一周所用时间为T ,在2T 的时间间隔内,其平均速度的大小和平均速率分别是( C )(A ) T R /2π,T R /2π; (B ) T R /2π,0; (C ) 0,T R /2π; (D ) 0,0。
二. 填空题1. 悬挂在弹簧上的物体在竖直方向上振动,振动方程为t A y ωsin =,其中A 、ω为常量,则(1) 物体的速度与时间的函数关系为cos dyv A t dtωω==;(2) 物体的速度与坐标的函数关系为222()vy A ω+=。
2. 一质点从P 点出发以匀速率1cm/s 作顺时针转向的圆周运动,圆半径为1m ,如图3。
当它走过2/3圆周时,走过的路程是m 34π; 这段时间平均速度大小为s /m 40033π;方向是与X 正方向夹角3πα=。
3. 一质点作直线运动,其坐标x 与时间t 的函数曲线如图4所示,则该质点在第 3 秒瞬时速度为零;在第 3 秒至第 6 秒间速度与加速度同方向。
练习一 质点运动学一、选择题1.【 A 】2. 【 D 】3. 【 D 】4.【 C 】 二、填空题1. (1) 物体的速度与时间的函数关系为cos dyv A t dt ωω==; (2) 物体的速度与坐标的函数关系为222()vy A ω+=.2. 走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3.在第3秒至第6秒间速度与加速度同方向。
4.则其速度与时间的关系v=32031Ct dt Ct v v t==-⎰, 运动方程为x=400121Ct t v x x +=-. 三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==∆✉ (1)轨迹方程:08y 4x 2=-+; (2) j 2r 0=,j 2i 4r 2-=(3) j 4i 4r r r 02-=-=∆,j 2i 2tr v -==∆∆ 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。
如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。
✉ 选取如图5所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分 dt dx x dt dl l=,dt dl V 0-=,dtdx V = 022V xh x V +-=方向沿着X 轴的负方向。
方程两边对时间微分:xa V V 220+=,xV V a 220-=5图3220xh V a -=,方向沿着X 轴的负方向。
3. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。
如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。
✉ 由速度和加速度的关系式:dt dv a =,dxdvv dt dx dx dv a ==vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=练习二 曲线运动和相对运动一、 选择题1. 【 B 】2.【 D 】3. 【 C 】4.【 B 】 二、填空题其速度j t 5c o s 50i t 5sin 50v+-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。
大学物理习题集加答案大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10 练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14 练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量 G=6.67×10?11N·m2·kg?2 重力加速度 g=9.8m/s2阿伏伽德罗常量 NA=6.02×1023mol?1 摩尔气体常量 R=8.31J·mol?1·K?1 玻耳兹曼常量 k=1.38×10?23J·K?1斯特藩?玻尔兹曼常量 ? = 5.67×10-8 W·m?2·K?4 标准大气压 1atm=1.013×105Pa 真空中光速 c=3.00×108m/s 基本电荷 e=1.60×10?19C 电子静质量me=9.11×10?31kg 质子静质量 mn=1.67×10?27kg中子静质量 mp=1.67×10?27kg 真空介电常量 ?0= 8.85×10?12 F/m 真空磁导率 ?0=4?×10?7H/m=1.26×10?6H/m 普朗克常量 h = 6.63×10?34 J·s?3维恩常量 b=2.897×10m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是 (A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 ? ? 0 r3),以下说法正确的是 (A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用; (C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场. 3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统; (B) 一个正点电荷和一个负点电荷组成的系统; (C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统. (E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是 (A) E正比于f ; (B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定. 5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 二.填空题1.如图1.1所示,一电荷线密度为? 的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a 的等边三角形,为了使P点处场强方向垂直于OP, 则?和Q的数量关系式为 ,且?与Q为号电荷 (填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1 ;将其撤走,改放一个等量的点电荷?q ,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为 .3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d。
《大学物理I 》作业 No.10 变化的电场和磁场 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题:1.在法拉第电磁感应定律公式tφε=-d d 中,符号φ的含义是:【 】 (A) SE S φ=⋅⎰d (B) SD S φ=⋅⎰d(C) S B S φ=⋅⎰d(D) SH S φ=⋅⎰d解:由法拉第电磁感应定律定义内容知:符号φ的含义是穿过回路为曲面边界的曲面的磁感应强度B矢量的通量。
故选填:C2.一段导线被弯成圆心都在O 点,半径均为R 的三段圆弧⋂ab ,⋂bc ,⋂ca ,它们构成一个闭合回路。
圆弧⋂ab ,⋂bc ,⋂ca 分别位于三个坐标平面内,如图所示。
均匀磁场B沿 x 轴正向穿过圆弧⋂bc与坐标轴oc ob 、所围成的平面。
设磁感应强度的变化率为常数 k (k >0 ),则【 】(A) 闭合回路中感应电动势的大小为22kπR ,圆弧中电流由c b →(B) 闭合回路中感应电动势的大小为22kπR ,圆弧中电流由b c → (C) 闭合回路中感应电动势的大小为42kπR ,圆弧中电流由c b → (D) 闭合回路中感应电动势的大小为42kπR ,圆弧中电流由b c →解:因穿过闭合回路abca 为边界的曲面和回路ObcO 为边界的曲面的磁通量相等,所以闭合回路的感应电动势大小为:4d d 4d d d d 22i k πR t B πR t Φt ΦObcO abca =⋅===ε又因常数k >0,回路磁通量随时间增加,则由愣次定律知圆弧⋂bc 的感应电流方向由b c →。
故选填:D选择题2图y3.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。
当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点的电势差c a U U -分别为:【 】(A) 221,0l B U U c a ωε=-= (B) 2221,l B U U l B c a ωωε-=-= (C) 221,0l B U U c a ωε-=-= (D) 2221,l B U U l B c a ωωε=-= 解:直角三角形金属框架abc 绕直线ab 轴旋转时,回路中磁通量随时间的变化率0d d =tΦ,所以abca 回路中感应电动势 0=ε, 而感应电动势又为:0=++=ca bc ab εεεε总 因为ab 边始终没运动,其感应电动势0=abε则有:bc ac ca ca bc εεεεε--0==⇒=+ 再由动生电动势计算式有直线bc 动生电动势为:()c b l B l B l l B v lcb bc →==⋅⨯=⎰⎰,21d d 20ωωε即知c 端电势高,所以221l B U U U c b bc ω-=-=故有:221l B U U U U U U c b bc c a ac ω-=-==-= 故选填:C4.半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角α=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是【 】(A) 与线圈面积成正比,与时间无关 (B) 与线圈面积成正比,与时间成正比 (C) 与线圈面积成反比,与时间成正比(D) 与线圈面积成反比,与时间无关解: 根据电流强度的定义有线圈中通过的电荷为:BSRBS BS R ΦΦRR Φt t R Φt R t I q 21cos cos6011d d d d d d 12=︒-︒-=--=-=-===⎰⎰⎰⎰)()(0ε故选填:A︒60选择题3图5.若产生如图所示的自感电动势方向,则通过线圈的电流是:【 】(A) 恒定向右 (B) 恒定向左 (C) 增大向左 (D) 增大向右解:根据楞次定律:感应电流产生的磁场将阻碍原磁场(原磁通)的变化,而本题自感电动势方向向右,则感应电流产生的磁场向右,因此原磁向左,原电流也向左。
大物练习册参考答案二、判断题01. × 02. × 03. × 04. √ 05. √ 06. × 07. × 08. √ 09. √ 10. √ 11. √ 12. √ 13. √ 14. × 15. √三、计算题1. 解:根据连续性原理可知,出口处流速为:112221120.16)010.0()020.0(0.4--•=•⨯==s m s m S S v v 选流入处为参考平面,即令01=h ,根据伯努利方程可求的高处的压强为:22222112121gh v p v p ρρρ++=+ Pa gh v v p p 52222112103.22121⨯=--+=ρρρ2. 解:以油滴为研究对象, 设油滴的半径为r ,不存在竖直向下的匀强电场时,其受力情况为:竖直向下的重力:g r mg G ρπ334== 竖直向上的浮力:g r F 0334ρπ=竖直向上的黏滞阻力:rv f πη6= 三力达到平衡时,即:G=F+f,油滴以最大速度0v 下降。
由受力平衡:003363434rv g r g r πηρπρπ+=(1) 当存在竖直向下的匀强电场时,仍然以油滴为研究对象, 其受力情况为:竖直向下的重力:g r mg G ρπ334== 竖直向上的浮力:g r F 0334ρπ=竖直向上的黏滞阻力:rv f πη6= 竖直向上的电场力:qE F =1四力达到平衡时,即:f F F G ++=1时,油滴以最大速度v 下降。
由受力平衡:rv qE g r g r πηρπρπ63434033++=(2) 由方程(1)和(2)可以求出q 为:E v v v g q 210021023)((1)29(34-⎥⎦⎤⎢⎣⎡-=ρρηπ 3. 解:设总的水滴数目为N 个,根据融合前后水的体积不变,可得: 6333420105010(1.010)3N π--⨯⨯⨯=⨯g(1) 则融合前后水的表面积改变量为:3264(1.010)2010S N π-∆=⨯-⨯g (2) 释放出的能量为E S α∆=∆ (3) 根据(1),(2),(3)方程可得 82.1810E J ∆=⨯4. 解:将虹吸管取为一流管。
第一页一、1、(2),(22)/,2/,(23),(23)/i j m i j m s j m s i j m i j m s +----2、0 m/s二、1、D 2、C三、1、(1)0.5,0.5/y j m v j m s ∆=-=- (因为只沿y 方向,以下符号j均可省去)(3) (2)123/,6/v j m s v j m s ==-2.25S m =(4)222129/,3/,15/a j m s a j m s a j m s =-=-=-第二页一、1、2322/,103t m s t m +23、222002sin 22cos sin cos cos v v g g θθααα+ 二、1、B 2、D三、1、(1)224.8/,230.4/n a m s a m s τ==(2)2 3.1553Rad θ=+≈ (3)1/312060.55t s t s -==≈, 第三页1、(1)2,0,0,2/S m r v v m s ππ=∆===29(2)2/,/,arctan 2v m s v v a m s ππτθ==== ,2、(1) 8.5s m =(2)22223/28.5/,/(8.5)v m s a m s t ==+ 3、2(1)192x y =-12(2)217,411,26r i j r i j v i j =+=+=-12(3)24,28,4v i j v i j a j =-=-≡-111222(4)0,3,6,212;0,19,2r v t s r i j v i j t s r j v i===+=-===min (5)3,t s r m ==4、00tan tan v R v R v tθθ=-第四页一、1、B 2、C 3、D 4、C二、1、(1)位于[-A,A]之间的线段 (2)2cos A t ωω- (3)(0,1,2...)n n πω=2、(1)2(),b ct c R -- (23、(1(2)()12arccos /t t三、1、22216v x += 第五页一、1、(1)0,0 (2)23.33,1.67/N m s2、02sin mv α,竖直向下二、1、C 2、B三、1、,367.5I N s F N θ==≈(忽略重力冲量)2、2mRS M m=+,向左第六页1、()12122112121212122()(),,m m g a m m g m a m a m m ga a T f m m m m m m '-''-+--====+++ 2、12,33g a N == 3、000(1)(2)ln(1)v R v t Rv S v t R Rμμμ==++4、0MV S K= 第七页一、1、2ln 2,mk x k二、1、C 2、B 3、B三、1、(1)摩擦力为122,7.5f N f N ==,如果考虑弹力,则112220.1,arctan1030.9,arctan 4F N F N θθ=≈==≈=(2)16.5F N >第八页 一、1、C2、C二、1、1111,,0;,,0mvd mvd mgd mgd 2、4022.66410/kg m s ⨯3、125.2610m ⨯三、1、(1)0(2)M L mab k ω==第九页一、1、23mg R μ2、544300,54at bt at bt t ωω+-+-3、()()()2122121261,1243m m g L mL m m mL m m L-++++ 二、1、(1)300n rev = (2)22230/,3/,0.3/,90/n s v m s a m s a m s τωππππ====2、2126.25/,17.5,21.25rad s T N T N α===第十页一、1、P 不守恒,L守恒2、210,2mr ω 3、22211,28mR mgh mR ωω+ 4、2234,2m R ωω二、1、(1)0111((02626M MV V m m =+=- (2)I = 第11页 1、()22mgSa M m L=+2、27g a =3、v =4、ln 2J t k=第12页一、1、232,,423L gmL mg L2、B3、B二、23gt Rθ=第13页1、()0F L L - d2、/4mgL3、合外力为0,只有保守力做功4、23GMmR-5、67 J6、-8 J7、12(1)v Mv ==向右(2)2m gRW M m=+(3)223m gN mg M=+第14页1)0X X -2、2/3k E3、23aL bL -4、01cos 3θ=+5、101(1)(2)2v X X ==6、略7、(1)12()F m m g =+ (2)不变 第15页 1、()()221 1.33/,20.67MV V m s t s mgμ==== 2、(1)00/,22V m s F mg N ====(2)()sin 2cos 1,3cos 1v a g g n F θτθθ==+-=-3、(1)0.06x m =(2)0.651e =<,所以是非弹性的(3)0.038,0x m e '==,所以是完全非弹性的4、1221E k E k = 第16页 1、D 2、A3、B4、B5、c6、收缩,在相对物体静止的参照系中,L 7c8、()()10.623v c L c ==9、0.12v c = 第17页 1、C2、B3、A4、2E mc =,200.25M c56、16:9, 8:37、0.6c8、略9、180.9999089, 1.4948610/V c P kg m s -=≈=⨯第18页1、()14Q -2、各个点电荷单独存在时在该点产生场强的矢量和3、C4、C5、C6、D7、222q E R πε=,水平向右8、00(1)(2)02x E E σε⎛⎫==第19页1、22,2q R E R E ππε+2、0ie sq E dS φε∑==⎰ ;在静电场中,通过任意闭合曲面的E 通量,等于该曲面内电荷量的代数和除以0ε。
普通物理A (2)练习册 参考解答第12章 真空中的静电场一、选择题1(C),2(A),3(C),4(D),5(B), 二、填空题 (1). 0, / (2) ; (2). 0 ; (3). -2×103V ; (4).⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε; (5). 0,pE sin ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示.半无限长直线A ∞在O 点产生的场强: ()j i RE-π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理,O 点合场强为:()j i RE E E E+π=++=03214ελBA∞O B A∞∞2. 一“无限长”圆柱面,其电荷面密度为: = 0cos ,式中为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为: φφεσελd s co 22d 000π=π=RE 它沿x 、y 轴上的二个分量为:d E x =-d E cos =φφεσd s co 2200π-d E y =-d E sin =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =002εσ 0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==3. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度;(3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.WORD 格式.整理版按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (40) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()02002εεkSbxdx kS S E E x==+'⎰得到 ⎪⎪⎭⎫⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =4. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为的大平面和面密度为-的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ5.一真空二极管,其主要构件是一个半径R 1=5×10-4m 的圆柱形阴极A和一个套在阴极外的半径R 2=4.5×10-3m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19C)WORD 格式.整理版解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为.按高斯定理有 rE = λ/ 0得到 E = λ/ (20r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R BA B A r rr E U U ελ 120ln 2R R ελπ-=得到 ()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场. 参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l EWORD 格式.整理版按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
普通物理A (2)练习册 参考解答第12章 真空中的静电场一、选择题1(C),2(A),3(C),4(D),5(B),二、填空题(1). 0,λ / (2ε0) ; (2). 0 ; (3). -2×103 V ; (4).⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε; (5). 0,pE sin α ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示.半无限长直线A ∞在O 点产生的场强:()j i RE -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理,O 点合场强为:()j i RE E E E +π=++=03214ελBA∞O BA ∞∞2. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为: φφεσελd s co 22d 000π=π=R E 它沿x 、y 轴上的二个分量为:d E x =-d E cos φ =φφεσd s co 2200π-d E y =-d E sin φ =φφφεσd s co sin 200π 积分:⎰ππ-=2020d s co 2φφεσx E =002εσ 0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==3. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度;(3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.WORD 格式.整理版按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()02002εεkSbxdx kS S E E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =4. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ∴ i x R x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ5.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差 ⎰⎰π-=⋅=-21d 2d 0R R BAB A rrr E U U ελ 120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
普通物理A (2)练习册 参考解答第12章 真空中的静电场一、选择题1(C),2(A),3(C),4(D),5(B),二、填空题(1). 0,λ / (2ε0) ; (2). 0 ; (3). -2×103 V ; (4).⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε; (5). 0,pE sin α ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示.半无限长直线A ∞在O 点产生的场强:()j i RE-π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理,O 点合场强为:()j i RE E E E +π=++=03214ελO BA∞∞yx3E 2E 1EO BA ∞∞2. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为: φφεσελd s co 22d 000π=π=RE 它沿x 、y 轴上的二个分量为:d E x =-d E cos φ =φφεσd s co 2200π-d E y =-d E sin φ =φφφεσd s co sin 200π 积分:⎰ππ-=2020d s co 2φφεσx E =002εσ 0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==3. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度;(3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.百度文库 - 让每个人平等地提升自我按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεkSbxdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =4. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i x R x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ5.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C) xS P SEESSE d x b E 'σOR OxPAB R 2R 1解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差 ⎰⎰π-=⋅=-21d 2d 0R R BAB A rrr E U U ελ 120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-= 在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
由场强与电势的关系: U E grad -=场中某点的电场强度是该点电势梯度的负值。
如果只知道电场中某点的电势值,而不知道其表达式,就无法求出电势的空间变化率,也就不能求出该点的场强。
4. 从工厂的烟囱中冒出的滚滚浓烟中含有大量颗粒状粉尘,它们严重污染了环境,影响到作物的生长和人类的健康。
静电除尘是被人们公认的高效可靠的除尘技术。
先在实验室内模拟一下管式静电除尘器除尘的全过程,在模拟烟囱内,可以看到,有烟尘从“烟囱”上飘出。
加上电源,烟囱上面的烟尘不见了。
如果撤去电源,烟尘又出现在我们眼前。
请考虑如何计算出实验室管式静电除尘器的工作电压,即当工作电压达到什么数量级时,可以实现良好的静电除尘效果。
参考解答:先来看看静电除尘装置的结构:在烟囱的轴线上,悬置了一根导线,称之谓电晕线;在烟囱的四周设置了一个金属线圈,我们称它为集电极。
直流高压电源的正极接在线圈上,负极接在电晕线上,如右上图所示。
可以看出,接通电源以后,集电极与电晕线之间就建立了一个非均匀电场,电晕线周围电场最大。
改变直流高压电源的电压值,就可以改变电晕线周围的电场强度。
当实际电场强度与空气的击穿电场13Vmm 103-⨯相近时空气发生电离,形成大量的正离子和自由电子。
自由电子随电场向正极飘移,在飘移的过程中和尘埃中的中性分子或颗粒发生碰撞,这些粉尘颗粒吸附电子以后就成了荷电粒子,这样就使原来中性的尘埃带上了负电。
在电场的作用下,这些带负电的尘埃颗粒继续向正极运动,并最后附着在集电极上。
(集电极可以是金属线圈,也可以是金属圆桶壁)当尘埃积聚到一定程度时,通过振动装置,尘埃颗粒就落入灰斗中。
这种结构也称管式静电除尘器。
如右中图所示。
对管式静电除尘器中的电压设置,我们可以等价于同轴电缆来计算。
如右下图所示,r a 与r b 分别表示电晕极与集电极的半径,L 及D 分别表示圆筒高度及直径。
一般L 为3-5m ,D 为200-300mm ,故L >>D ,此时电晕线外的电场可以认为是无限长带电圆柱面的电场。
设单位长度的圆柱面带电荷为λ。
用静电场高斯定理求出距轴线任意距离r 处点P 的场强为:)1(ˆ20-----=r rE πελ式中r ˆ为沿径矢的单位矢量。
内外两极间电压U 与电场强度E 之关系为⎰----⋅=b ar r l E U )2(d ,将式(1)代入式(2),积分后得: abr r U ln20πελ-=, 故 a b r r r UE ln =.场强度mE 由于电晕线附近的电场强度最大,使它达到空气电离的最大电时,就可获得高压电源必须具备的电压ab a m r rr E U ln ⋅=代入空气的击穿电场,并取一组实测参数如下:m 15.0m,105.0,m V 103216=⨯==⋅⨯=--b a m r r r E ,计算结果V 101.54⨯=U .若施加电压U 低于临界值,则没有击穿电流,实现不了除尘的目的。
也就是说,在这样尺寸的除尘器中,通常当电压达到105V 的数量级时,就可以实现良好的静电除尘效果。
静电除尘器除了上述的管式结构外还有其它的结构形式,如板式结构等。
可以参阅有关资料,仿上计算,也可以自行独立设计一种新型结构的静电除尘器。