0821高二数学基本不等式及其应用-张心刚(答案)
- 格式:pdf
- 大小:373.50 KB
- 文档页数:2
基本不等式习题及答案基本不等式习题及答案不等式是数学中重要的概念之一,它描述了数值之间的大小关系。
在初等数学中,我们学习了许多基本的不等式,它们在解决实际问题和推导其他数学知识时起着重要的作用。
在本文中,我们将探讨一些基本的不等式习题,并给出相应的答案。
1. 习题一:证明对于任意的正实数a和b,有(a+b)² ≥ 4ab。
解答:我们可以使用平方差公式来证明这个不等式。
根据平方差公式,我们有(a+b)² = a² + 2ab + b²。
由于a和b都是正实数,所以a²和b²都大于等于0。
因此,我们只需要证明2ab大于等于0即可。
由于a和b都是正实数,所以它们的乘积ab也是正实数。
根据乘法的性质,正实数的乘积仍然是正实数,因此2ab大于等于0。
所以,我们证明了(a+b)²≥ 4ab。
2. 习题二:证明对于任意的正实数a,b和c,有(a+b)(b+c)(c+a) ≥ 8abc。
解答:我们可以使用AM-GM不等式来证明这个不等式。
根据AM-GM不等式,对于任意的正实数x和y,有(x+y)/2 ≥ √(xy)。
将x替换为a+b,y替换为b+c,我们有(a+b+b+c)/2 ≥ √((a+b)(b+c))。
进一步简化得到(a+2b+c)/2 ≥ √((a+b)(b+c))。
同样地,将x替换为b+c,y替换为c+a,我们有(b+c+c+a)/2 ≥ √((b+c)(c+a))。
进一步简化得到(2b+2c+a)/2 ≥ √((b+c)(c+a))。
将x替换为c+a,y替换为a+b,我们有(c+a+a+b)/2 ≥ √((c+a)(a+b))。
进一步简化得到(2c+2a+b)/2 ≥ √((c+a)(a+b))。
将上述三个不等式相乘,我们得到((a+2b+c)/2)((2b+2c+a)/2)((2c+2a+b)/2) ≥ (√((a+b)(b+c)))(√((b+c)(c+a)))(√((c+a)(a+b)))。
基本不等式及其应用[考点梳理]1.如果a >0,b >0,那么________叫做这两个正数的算术平均数. 2.如果a >0,b >0,那么________叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥________ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则________,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有________,即a +b ≥________,a 2+b 2≥________.简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即________,亦即________;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即_____.简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤________≤a +b 2≤________,当且仅当a =b 时等号成立.自查自纠: 1.a +b 2 2.ab 3.2ab 4.a +b 2≥ab 5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 22 7.ab a 2+b 22[基础自测]设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( )A .6B .4 2C .2 2D .2 6解:因为2a >0,2b >0,由基本不等式得2a +2b ≥22a ·2b =22a +b =42,当且仅当a =b =32时取等号,故选B.已知向量m =(2,1),n =(2-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为( ) A.12B .1C .2D .4 解:依题意得2a =2-b ,即2a +b =2(a >0,b >0),∴2=2a +b ≥22ab ,∴ab ≤12,当且仅当2a =b =1时取等号,∴ab 的最大值是12.故选A.设f (x )=lnx ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q 解:p =f (ab )=ln ab ,q =f ⎝ ⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x 在(0,+∞)上单调递增,∵a +b 2>ab ,∴f ⎝⎛⎭⎪⎫a +b 2>f (ab ).∴q >p =r.故选C. 若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x2≥22,当且仅当x =±42时等号成立.故填22.已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则实数a =________. 解:f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,∴a2=3,∴a =36.故填36. [典例解析]类型一 利用基本不等式求最值(1)函数y =(x +5)(x +2)x +1(x >-1)的值域为________.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y =(m +4)(m +1)m =m +4m +5≥2m ·4m +5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).故填[9,+∞).(2)若a >b >0,则代数式a 2+1b (a -b )的最小值为( )A .2B .3C .4D .5解:∵b (a -b )≤⎝ ⎛⎭⎪⎫b +(a -b )22=a 24,∴a 2+1b (a -b )≥a 2+1a 24=a 2+4a 2≥4,当且仅当b=a -b 且a 2=4a 2,即a =2,b =22时等号成立.故选C.小结:基本不等式的应用在于“定和求积,定积求和”,必要时可以通过变形(拆补)、配凑,常数代换、构造“和”或者“积”,使之为定值.(1)已知t >0,则函数f (t )=t 2-4t +1t的最小值为________.解:∵t >0,∴f (t )=t 2-4t +1t =t +1t -4≥-2,当且仅当t =1时,f (t )min =-2,故填-2.(2)已知x >0,y >0,且2x +8y -xy =0,求: (Ⅰ)xy 的最小值; (Ⅱ)x +y 的最小值.解:(Ⅰ)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy,得xy ≥64,当且仅当x =4y ,即x =16,y =4时等号成立.(Ⅱ)解法一:由2x +8y -xy =0,得x =8yy -2,∵x >0,∴y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.解法二:由2x +8y -xy =0,得8x +2y =1, 则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18,当且仅当y =6,x =12时等号成立.类型二 利用基本不等式求参数范围已知a >0,b >0,若不等式m 3a +b-3a -1b ≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3解:∵a >0,b >0,∴由m 3a +b -3a -1b ≤0恒成立得m ≤⎝ ⎛⎭⎪⎫3a +1b (3a +b )=10+3b a +3a b 恒成立.∵3b a +3ab ≥23b a ·3a b =6,当且仅当a =b 时等号成立,故10+3b a +3a b ≥16,∴m ≤16,即m 的最大值为16.故选B.小结:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式的等价命题:(1)a >f (x )恒成立⇔a >f (x )max ;(2)a <f (x )恒成立⇔a <f (x )min ;(3)a >f (x )有解⇔a >f (x )min ;(4)a <f (x )有解⇔a <f (x )max .已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.若关于x 的不等式mf (x )≤e-x+m -1在(0,+∞)上恒成立,则实数m 的取值范围为________.解:由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令t =e x (x >0),则t >1,且m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.∵t -1+1t -1+1≥2(t -1)·1t -1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.故填⎝ ⎛⎦⎥⎤-∞,-13.类型三 利用基本不等式解决实际问题某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD =60 m ,AB =40 m ,且△EFG 中,∠EGF =90°,经测量得到AE =10 m ,EF =20 m ,为保证安全同时考虑美观,健身广场周围准备加设一个保护栏,设计时经过点G 作一直线分别交AB ,DF 于M ,N ,从而得到五边形MBCDN 的市民健身广场,设DN =x (m).(1)将五边形MBCDN 的面积y 表示为x 的函数;(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.解:(1)作GH ⊥EF ,垂足为H. ∵DN =x ,∴NH =40-x ,NA =60-x ,∵NH HG =NAAM ,∴40-x 10=60-x AM ,∴AM =600-10x 40-x.S 五边形MBCDN =S 矩形ABCD -S △AMN =40×60-12·AM ·AN =2 400-5(60-x )240-x .∵N 与F 重合时,AM =AF =30适合条件,∴x∈(0,30].(2)y =2 400-5(60-x )240-x =2 400-5[(40-x )+40040-x +40],当且仅当40-x =40040-x ,即x =20∈(0,30]时,y 取得最大值2 000, ∴当DN =20 m 时,得到的市民健身广场面积最大,最大面积为 2 000 m 2.小结:建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A 孔流入,经沉淀后从B 孔排出,设箱体的长度为a m ,高度为b m ,已知排出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问a ,b 各为多少m 时,经沉淀后排出的水中该杂质的质量分数最小(A ,B 孔面积忽略不计).解法一:设y 为排出的水中杂质的质量分数,根据题意可知:y =kab ,其中k 是比例系数且k >0.依题意要使y 最小,只需ab 最大.由题设得:4b +2ab +2a ≤60(a >0,b >0),即a +2b ≤30-ab (a >0,b >0).∵a +2b ≥22ab , ∴22·ab +ab ≤30,得0<ab ≤32.当且仅当a =2b 时取“=”号,ab 最大值为18,此时得a =6,b =3. 故当a =6 m ,b =3 m 时经沉淀后排出的水中杂质最少. 解法二:同解法一得b ≤30-a a +2,代入y =kab 求解.[归纳小结]1.要熟悉基本不等式的变式和推广,这对提高解题能力是有帮助的,常见的基本不等式的变式和推广有:①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22;③ab ≤ 14(a +b )2;④⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c 3≥3abc ;⑧abc ≤a 3+b 3+c 33等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正,二定,三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b 型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决.5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点. [课后作业]1.若a >1,则a +1a -1的最小值是( )A .2B .aC .3 D.2aa -1解:∵a >1,∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=2+1=3,当且仅当a =2时等号成立.故选C.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为( ) A.14 B .4 C.12D .2 解:∵a >0,b >0,∴4=2a +b ≥22ab ,得ab ≤2,∴1ab ≥12,当且仅当a =1,b =2时等号成立.故选C.3.函数f (x )=5-4x +x 22-x在(-∞,2)上的最小值是( )A .0B .1C .2D .3解:当x <2时,2-x >0,因此f (x )=1+(4-4x +x 2)2-x =12-x +(2-x )≥2·12-x·(2-x )=2,当且仅当12-x =2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b2解:设甲、乙两地之间的距离为s.∵a <b ,∴v =2s s a +s b=2ab a +b<2ab2ab =ab.又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A.5.已知a >0,b >0,a +b =2,则1a +4b 的最小值是( ) A.72 B .4 C.92D .5解:依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+⎝ ⎛⎭⎪⎫b a +4a b ]≥12⎝⎛⎭⎪⎫5+2b a ·4a b =92, 当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0, 即⎩⎪⎨⎪⎧a =23,b =43时取等号,即1a +4b 的最小值是92.故选C.6.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解:因为log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b =1(a >0,b >0),a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab 时取等号.故选D.7.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,∴mn ≤⎝⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2.故填-2.8.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解:易知定点A (0,0),B (1,3).且无论m 取何值,两直线垂直.所以无论P 与A ,B 重合与否,均有|PA |2+|PB |2=|AB |2=10(P 在以AB 为直径的圆上).所以|PA |·|PB |≤12(|PA |2+|PB |2)=5.当且仅当|PA |=|PB |=5时,等号成立.故填5.9.(1)已知0<x <43,求x (4-3x )的最大值;(2)点(x ,y )在直线x +2y =3上移动,求2x +4y 的最小值.解:(1)已知0<x <43,∴0<3x <4.∴x (4-3x )=13(3x )(4-3x )≤13⎝⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时“=”成立.∴当x =23时,x (4-3x )取最大值为43.(2)已知点(x ,y )在直线x +2y =3上移动,所以x +2y =3. ∴2x +4y ≥22x ·4y =22x +2y =223=42. 当且仅当⎩⎪⎨⎪⎧2x =4y ,x +2y =3, 即⎩⎪⎨⎪⎧x =32,y =34时“=”成立.∴当⎩⎪⎨⎪⎧x =32,y =34时,2x +4y 取最小值为42.10.已知a>0,b>0,且2a+b=1,求S=2ab-4a2-b 2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥22ab,即ab≤24,ab≤18,∴S=2ab-4a2-b2=2ab-(1-4ab)=2ab+4ab-1≤2-12.当且仅当a=14,b=12时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥22x×3y=26xy,∴26xy≤18,得xy≤272,即S≤272.当且仅当2x=3y时等号成立.由⎩⎪⎨⎪⎧2x=3y,2x+3y=18,解得⎩⎪⎨⎪⎧x=4.5,y=3.故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-32y.∵x>0,∴0<y<6.S=xy=⎝⎛⎭⎪⎫9-32y y=32(6-y)y.∵0<y<6,∴6-y>0.∴S≤32⎣⎢⎡⎦⎥⎤(6-y)+y22=272.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥22x·3y=26xy=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由⎩⎪⎨⎪⎧2x=3y,xy=24,解得⎩⎪⎨⎪⎧x=6,y=4.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=24y.∴l=4x+6y=96y+6y=6⎝⎛⎭⎪⎫16y+y≥6×216y×y=48,当且仅当16y=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.如图所示,已知树顶A离地面212米,树上另一点B离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A,B的视角最大.解:问题转化为求△ABC中∠BCA的取值范围.过点C作CD⊥AB交AB的延长线于点D.设该人距离此树的距离CD=x米,看A,B的视角最大,即∠BCA最大.不妨设∠BCD=α,∠ACD=β,则∠BCA=β-α,且tanα=4x ,tanβ=9x,所以tan(β-α)=9x-4x1+9x×4x=5xx2+36=5 x+36x≤52x×36x=512,当且仅当x=36x,即x=6时取等号,此时∠BCA最大.故填6.不等式检测1.已知集合A ={x |y =x 2-2x -3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x -2≤0,则A ∩B =( )A .[-1,1]B .[-1,2)C .[1,2)D .[-2,-1]解:依题意,集合A ={x |x ≤-1或x ≥3},B ={x |-2≤x <2},A ∩B ={x |-2≤x ≤-1}.故选D.2.不等式x +5()x -12≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 解:x +5(x -1)2≥2⇔(x +5)-2(x -1)2(x -1)2≥0⇔-2x 2+5x +3(x -1)2≥0⇔-2x 2+5x +3≥0(x ≠1)⇔2x 2-5x -3≤0(x ≠1)⇔-12≤x ≤3且x ≠1.故选D.3.若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则不等式f (x 2-1)<0的解集为( ) A .(-1,0) B .(-2,0)∪(0,2) C .(0,2) D .(1,2)解:∵f (x )是偶函数,∴f (x )=f (|x |)=|x |-1.∴f (x 2-1)=|x 2-1|-1.解不等式|x 2-1|-1<0,得0<x 2<2,∴x ∈(-2,0)∪(0,2).故选B.4.若一个矩形的对角线长为常数a ,则其面积的最大值为( )A .a 2 B.12a 2 C .a D.12a解:如图,设矩形的长和宽分别为x ,y ,则x 2+y 2=a 2,其面积S =xy ,由基本不等式得S ≤12(x 2+y 2)=12a 2,当且仅当x =y 时取等号,此时为正方形.故选B.5.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23 B .223 C.33 D.233解:∵x 2+3xy -1=0,∴y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x ≥229=223(当且仅当x =22时等号成立).故选B.6.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3解:由程序框图知,当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,目标函数S =2x +y ∈[0,2],否则,S =1.因此,输出的S的最大值为2.故选C.7.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D.⎝ ⎛⎦⎥⎤-∞,-235 解法一:∵x ∈[1,5],∴不等式变形为a >-x +2x ,∵x ∈[1,5]时,y =-x +2x 单调递减,∴y ∈⎣⎢⎡⎦⎥⎤-235,1,∴要使不等式在[1,5]上有解,应有a >-235.解法二:一元二次方程x 2+ax -2=0的两根之积为-2,两根一正一负.对于二次函数y =f (x )=x 2+ax -2,开口向上.与x 轴交点一正一负,y >0,在区间[1,5]上有解,只需y =f (5)>0即可.52+5a -2>0,∴a >-235.故选A.8.已知实数x ,y 满足⎩⎨⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =()A .2B .3C .4D .5解:显然m >2,作出⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m 的可行域,当⎩⎨⎧x =m +13,y =2m -13 时z =x -y 的最小值为-1,解得m =5.故选D.9.若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值为( )A.14B. 2C.32+ 2 D.32+2 2解:圆的直径是4,说明直线过圆心(-1,2),故12a +b =1,1a +1b =⎝ ⎛⎭⎪⎫12a +b ⎝ ⎛⎭⎪⎫1a +1b =32+b a +a2b ≥32+2(当且仅当a =22-2,b =2-2时等号成立),故选C. 10.设函数f (x )=3sin πx m ,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解:函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝ ⎛⎭⎪⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝ ⎛⎭⎪⎫k 0+122+3<m 2,即⎝ ⎛⎭⎪⎫k 0+122<m 2-3m 2,因为⎝ ⎛⎭⎪⎫k +122的最小值为14,∴只要m 2-3m 2>14即可,得m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).故选C.11.已知O 是坐标原点,点A (-1,0),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则|OA→+OM →|的取值范围是( ) A .[1,5] B .[2,5] C .[1,2] D .[0,5]解:OA →+OM →=(-1,0)+(x ,y )=(x -1,y ),设z =|OA →+OM →|=(x -1)2+y 2,则z 2的几何意义为M 到定点E (1,0)的距离,由约束条件作出平面区域如图,由图象可知当M 位于点D (0,2)时,z 取得最大值z max =1+4=5,易知最小值z min =1,∴1≤z ≤5,即|OA→+OM →|的取值范围是[1,5].故选A. 12.设M 是△ABC 内一点,且AB →·AC →=23,∠BAC =30°.定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积.若f (Q )=⎝ ⎛⎭⎪⎫12,x ,y ,则log 2x +log 2y 的最大值是( )A .-5B .-4C .-3D .-2解:∵AB→·AC →=|AB →||AC →|cos ∠BAC =32|AB →||AC →|=23,∴|AB →||AC →|=4,∴S △ABC =12AB ·AC ·sin ∠BAC =12×4×12=1,∵f (Q )=⎝ ⎛⎭⎪⎫12,x ,y ,∴12+x +y =1,∴x +y =12,∵x >0,y >0,∴log 2x +log 2y =log 2(xy )≤log 2⎝⎛⎭⎪⎫x +y 22=log 2⎝ ⎛⎭⎪⎫142=-4.故选B.13.已知集合A ={x ∈R|||x +2<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =__________.解:∵A ={x ∈R|||x +2<3}={x |-5<x <1},又∵A ∩B =(-1,n ),画数轴可知m =-1,n =1.故填-1;1.14.设x ,y 满足约束条件⎩⎨⎧x -y ≤0,x +y -1≥0,x -2y +2≥0,若z =x +3y +m 的最小值为4,则实数m =________.解:画出可行域如图所示,设z ′=x +3y ,当平行直线系z ′=x +3y 过点C ⎝ ⎛⎭⎪⎫12,12时取最小值,有z ′min =12+3×12=2,此时,目标函数z =x +3y +m 取最小值,有z min =z ′min +m =2+m =4,m =2.故填2.15.从等腰直角三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC =2,∠A =90°,则这两个正方形的面积之和的最小值为________.解:设两个正方形边长分别为a ,b (a ≤b ), 则由题可得2a +2b =2,即a +b =1,S =a 2+b 2≥2×⎝⎛⎭⎪⎫a +b 22=12,当且仅当a =b =12时取等号.故填12. 16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时.解:(1)F =76 000v +20×6.05v+18≤76 00022+18=1 900,当且仅当v =11时等号成立.(2)F =76 000v +20×5v +18≤76 00020+18=2 000,当且仅当v =10时等号成立,2 000-1 900=100.故填(1)1 900;(2)100.17.已知不等式kx 2-x +4k <0(k ≠0).(1)若不等式的解集为{x |x <-4或x >-1},求实数k 的值; (2)若不等式的解集为∅,求实数k 的取值范围.解:(1)因为不等式的解集为{x |x <-4或x >-1},所以-1和-4是方程kx 2-x +4k =0的两个实根,由韦达定理得x 1+x 2=1k ,解得k =-15.(2)不等式的解集为∅,则kx 2-x +4k ≥0恒成立,所以k >0且Δ=1-16k 2≤0,解得k ≥14.18.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0,则提价多的方案是哪一种?解:设原价为a ,则提价后的价格为方案甲:(1+p %)(1+q %)a ,方案乙:⎝ ⎛⎭⎪⎫1+p +q 2%2a ,∵1+p %·1+q %≤1+p %2+1+q %2=1+p +q2%(当且仅当p =q 时取等号),∵p >q >0,∴1+p %·1+q %<1+p +q2%,即(1+p %)(1+q %)a <⎝ ⎛⎭⎪⎫1+p +q 2%2a ,∴提价多的方案是方案乙.答:提价多的方案是方案乙.19.(1)解不等式4x -1≤x -1;(2)求函数y =2x +91-2x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫0,12的最小值. 解:(1)4x -1≤x -1⇔4-(x -1)2x -1≤0⇔(x -3)(x +1)x -1≥0⇔⎩⎪⎨⎪⎧(x +1)(x -1)(x -3)≥0,x ≠1⇔ x ≥3或-1≤x <1. ∴此不等式的解集为{x |x ≥3或-1≤x <1}.(2)∵x ∈⎝ ⎛⎭⎪⎫0,12,∴2x >0,1-2x >0,∴y =42x +91-2x =⎝ ⎛⎭⎪⎫42x +91-2x [2x +(1-2x )]=13+9×2x 1-2x +4×(1-2x )2x ≥25,当且仅当x =15时,等号成立,即函数的最小值为25.20.已知x ,y 满足约束条件⎩⎨⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,求a 2+b 2的最小值.解法一:不等式组表示的平面区域如图所示,由于-ab <0,所以目标函数在点A (2,1)处取得最小值,故2a +b =25,两端平方得4a 2+b 2+4ab =20,又4ab =2×a ×2b ≤a 2+4b 2,所以20≤4a 2+b 2+a 2+4b 2=5(a 2+b 2),所以a 2+b 2≥4,当且仅当a =2b ,即a =45,b =25时等号成立.解法二:同解法一得2a +b =25.把2a +b =25看作平面直角坐标系aOb 中的直线,则a 2+b 2的几何意义是直线上的点与坐标原点距离的平方,显然a 2+b 2的最小值是坐标原点到直线2a +b =25距离的平方,即⎝⎛⎭⎪⎫|-25|52=4. 21.某工厂生产甲、乙两种产品.已知生产甲种产品1 t 需耗A 种矿石10 t ,B 种矿石5 t ,煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t ,B 种矿石4 t ,煤9 t .每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t ,B 种矿石不超过200 t ,煤不超过360 t .甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t ,y t ,利润总额为z 元,那么⎩⎪⎨⎪⎧10x +4y ≤300,5x +4y ≤200,4x +9y ≤360,x ≥0,y ≥0;z =600x +1 000y.作出以上不等式组所表示的平面区域(如图),即可行域. 作直线l :600x +1 000y =0,即直线l :3x +5y =0, 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大.此时z =600x +1 000y 取最大值.解方程组⎩⎪⎨⎪⎧5x +4y =200,4x +9y =360,得M 的坐标为x =36029≈12.4,y =1 00029≈34.4.故应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.22.已知函数f (x )=x 3+2bx 2+cx +1的两个极值点为x 1和x 2,x 1∈[-2,-1],x 2∈[1,2],求f (-1)的取值范围.解:f ′(x )=3x 2+4bx +c , 由题可得⎩⎪⎨⎪⎧f ′(-2)=12-8b +c ≥0,f ′(-1)=3-4b +c ≤0,f ′(1)=3+4b +c ≤0,f ′(2)=12+8b +c ≥0.在平面直角坐标系bOc 中作图,图中阴影部分所示为可行域,易知f (-1)=2b -c 在点(0,-3)取得最小值3,在点(0,-12)取得最大值12.∴3≤f (-1)≤12.故f (-1)的取值范围为[3,12].。
高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。
高二数学基本不等式试题答案及解析1.已知正数,满足,,则的最小值为_________.【答案】9【解析】【考点】基本不等式的应用.2.已知且满足,则的最小值为【答案】18【解析】.【考点】基本不等式的应用.3.下列各式中,最小值是2的是()A.B.C.D.【答案】C【解析】,当且仅当,即,取得最小值,故选择C,不选择A的原因是不满足是正数的条件,不选择B的原因是中的等号不成立,不选择D的原因是该式没有最小值,所以运用均值不等式求最值,一定要注意“一正、二定、三相等”是否都具备,缺一不可.【考点】利用均值不等式求最值.4.(1)已知,,求证:;(2)已知,,求证:;并类比上面的结论写出推广后的一般性结论(不需证明).【答案】(1)证明书详见解析;(2)证明详见解析;(3)结论推广为:,则.【解析】(1)由均值不等式即可证明;(2)注意到:,故可考虑用柯西不等式得到,进而得出所要证明的不等式;(3)观察(1)(2)所给条件,,可想到任意个正数的条件为,而(1)(2)的结论都是对应数的倒数之和大于等于1,所以结论为:.(1)因为且所以由基本不等式可得,再根据倒数法则可得;(2)因为,所以由柯西不等式可得即,所以(3)一般性结论为:,则.【考点】1.基本不等式;2.柯西不等式;3.归纳推理.5.下列结论中①函数有最大值②函数()有最大值③若,则正确的序号是_____________.【答案】①③【解析】①②因为,所以③因为,所以【考点】基本不等式应用6.设(R,且),则大小关系为()A.B.C.D.【答案】D【解析】由基本不等式可知因为所以等号不成立.【考点】基本不等式.7.设正实数满足,则当取得最大值时,的最大值为 ( ) A.0B.1C.D.3【答案】D【解析】根据题意,由于正实数满足,当取得最大值时,x=2y,,故可知答案为D.【考点】不等式的运用点评:主要是考查了均值不等式的运用,属于基础题。
8.已知,且,则的最小值是()A.B.C.D.【答案】C【解析】,当且仅当时等号成立取得最小值【考点】均值不等式点评:利用均值不等式求最值时要注意其成立的条件:都是正数,当和为定值时,乘积取最值,当乘积为定值时,和取最值,最后验证等号成立的条件是否满足9.若且满足,则的最小值是()A.B.C.7D.6【答案】C【解析】将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解:由x+3y-2=0得x=2-3y,代入3x+27y+1=32-3y+27y+1=+27y+1,∵>0,27y>0,∴+27y+1≥7,当=27y时,即y=,x=1时等号成立,故3x+27y+1的最小值为7,故选C.【考点】基本不等式点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.10.如果,那么的最小值是()A.2B.3C.4D.5【答案】B【解析】根据题意,由于,那么可知,当a=1时等号成立,故答案为3.【考点】均值不等式的运用点评:主要是考查了运用均值不等式来求解函数的最值的运用属于基础题。
基本不等式(一)考向一 基本不等式的理解1、《几何原本》卷 2 的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .(0,0)2a bab a b +≥>> B .222(0,0)a b ab a b +≥>>C .2(0,0)abab a b a b ≤>>+ D .22(0,0)22a b a b a b ++≤>>【答案】D 【解析】令,AC a BC b ==,可得圆O 的半径2a br +=,又22a b a bOC OB BC b +-=-=-=,则()2222222()442a b a b a b FC OC OF -++=+=+=,再根据题图知FO FC ≤,即2222a b a b ++≤.故本题答案选D. 2、若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a +b ≥2ab B. 1a +1b >1abC. b a +ab ≥2 D .a 2+b 2>2ab答案:C3.若R b a ∈,,且0>ab ,则下列不等式中,恒成立的是( ) A .ab b a 222>+ B .ab b a 2≥+ C .abba 211>+ D .2≥+baa b 【答案】D4.已知)1,0(,∈b a 且b a ≠,则下列四个数中最大的数是( )A.22b a +B.ab 2C.b a +D.ab 2 【答案】C5.已知b a ,为互不相等的正实数,则下列四个数中最大的数是( ) A .ba +4 B .ba 11+C .ab2 D .228ba + 【答案】B6.设b a <<0,则下列不等式中正确的是( )A .2ab ab b a <<< B .b ba ab a <+<<2 C .2ba b ab a +<<<D .b ba a ab <+<<2【答案】B7.若200=+>>b a b a ,,,则下列不等式对一切满足条件的b a ,恒成立的是 ①1≤ab ;②2≤+b a ;③222≥+b a ;④333≥+b a ;⑤211≥+ba. 【答案】①③⑤考向二 运用基本不等式求最值 1、已知0x >.则9x x+的最小值为( ) A .6B .5C .4D .3【答案】A【解析】0x >,则A .2、若0>ab ,则baa b +4的最小值为【答案】43、若实数y x ,满足1=xy ,则222y x +的最小值为4、已知,x y R +∈,且满足134x y+=,则xy 的最大值为 .234x y +≥5、已知0>a ,0>b ,若4=+b a ,则( )A.22b a +有最小值B.ab 有最小值C.ba11+有最大值 D.ba +1有最大值【答案】A6、已知0>a ,0>b ,若1=+b a ,则ab 的最大值是7、已知422=+b a ,则ab 的最大值为( )A .2B .22C .4D .24【答案】A8、已知非负实数b a ,满足1032=+b a ,则b a 32+最大值是( ) A .10 B .52 C .5 D .10【答案】B9、已知,x y 均为正实数,且3xy x y =++,则xy 的最小值为_________ 答案910、若x ,y ÎR +,且2x +y +6=xy 则xy 的最小值是________ 【答案】1811、已知正数b a ,满足62=++ab b a ,则b a 2+的最小值为 【答案】412、已知0>x ,0>y ,1642++=y x xy .则xy 的最小值为 【答案】1613()63a -≤≤的最大值为( )A.9B.92C.3D.3()(3a a -构造条件应用基本不等式求最值考向一 拼凑系数法1、若函数()()122f x x x x =+>-在x a =处取最小值,则a =( )A . 1+B .1C . 3D .42,22(2)x f x >∴-等号当且仅当2x -=2、求3(2)(23)(2)2y x x x =-+-<< 的最大值为__________.3、(1)若2735x <<,则代数式()()3275x x --的最大值为________.(2)设00x y ≥,≥,221y x +=,则_________.4、已知5x <,求函数14245y x x =-+-的最大值. .54x <,∴145x =--14x -=5、(1)求函数2241y x x =++的最小值,并求出取得最小值时的x 值. (2)已知x >3,则y =2x +8x -3的最小值5、设230<<x ,求函数)23(4x x y -=的最大值。
基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。
(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。
2.4.1基本不等式及其应⽤(含答案)【课堂例题】例1.利⽤基本不等式证明:(1)212x x +≥;(2)若0ab >,则2a b b a+≥.例2.利⽤基本不等式证明:(1)22222a b a b ++≥+;(2)222a b c ab bc ac ++≥++;(3),,,()()()8a b c R a b b c c a abc +∈+++≥.例3.(1),a b R +∈,且1a b +=,求证:14ab ≤. (2)0x <,求证:12x x+≤-.例4.⽤,,,>≥<≤填空:(1)22a b + 2||ab ; (2)0,a b ab b a<+ 2-;.【知识再现】1.基本不等式I :对于,成⽴222a b ab +≥,当且仅当时,等号成⽴;基本不等式II :对于,成⽴,当且仅当时,等号成⽴.2.两个正实数,a b 的算术平均数是;⼏何平均数是;基本不等式II ⽤⽂字可以描述为 .【基础训练】1.计算下列两个数的算术平均数A 与⼏何平均数G (0)p >:(1)2,8 ;(2)3,12 ;(3),9p p ;(4)22,2p .2.如果,a b R ∈,且0ab >,那么下列不等式恒成⽴的是( )(A)222a b ab +>; (B)a b +≥ (C)11a b +> (D)2b a a b +≥. 3.已知0,a >利⽤基本不等式证明:322a a a +≥.4.利⽤基本不等式证明:2222()()a b a b +≥+.5.我们知道:当0x >时,12x x +≥=,那么下列命题中正确的命题是 (写出所有正确命题的序号).①若0x >,则212x x+≥;②若0x ≠,则2212x x+≥;③若0x <,则1()2x x-+≥;④若0ab ≠,则||2b a a b+≥;⑤若0ab ≠,则2222b a a b ab a b ab ab++=≥=.6.已知,a b R +∈,利⽤基本不等式,⽐较:(1)2ba +(2)11()()a b a b ++与4的⼤⼩.7.已知,,a b c R +∈,利⽤基本不等式证明:a b c ++≥【巩固提⾼】8.已知0x y >>,试把,,2x y x y +.9.(1)已知,,,a b c d R +∈,利⽤基本不等式证明:44444a b c d abcd +++≥.(2)已知,,a b c R +∈,利⽤基本不等式证明:3333a b c abc ++≥提⽰:(2)左右两边各加上abc 后,左边仿照(1)处理.(选做)10.已知正实数,a b ,作以O 为圆⼼,a b +为直径的圆.,AB a AC b ==,,,OR BC DA BC AE DO ⊥⊥⊥,我们已经知道,2a bOR AD +==,a b 的“算术平均数”和“⼏何平均数”,现在我们把线段DE 的长度称为,a b 的“调和平均数”注,线段AR 的长度称为,a b 的“平⽅平均数”.(1)求,a b 的“调和平均数”和“平⽅平均数”;(2)当D 在圆周上运动时(除去,B C ),根据图像可知这四个平均数的⼤⼩关系是什么?何时它们相等?【温故知新】11.多项式变形:221x x x ++=1x x ++ ; 131x x +=-13(1)1x x -++- ;21x x =- 121x ++-.注:正实数,a b 的“算术平均数”,“⼏何平均数”,“调和平均数”,“平⽅平均数” 就是分别满⾜四个⽅程:2222,,,axa xax a b x x a b x x b x b b --=-==-=--的正数根,从⽅程的结构也可看出这四个平均数的名称由来.B【课堂例题答案】例1.(1)证:根据基本不等式I:2212x x +≥ 证毕. (2)证:0,0a b b a >>,根据基本不等式II: 2a b b a +≥= 证毕. 例2.(1)证:222212,12222a a b b a b a b +≥+≥?++≥+ 证毕. (2)证:222222222222222()2()2a b ab b c bc a b c ab bc ac a b c ab bc ac c a ca ?+≥?+≥?++≥++?++≥++??+≥?证毕.(3)证: ,,a b c R +∈,00()()()80a b b c a b b c c a abc c a ?+≥>??∴+≥?+++>??+≥>??证毕.例3.(1)证:21()24a b ab +≤= 证毕. (2)证:110()()22x x x x x->?-+-≥?+≤- 证毕. 例4.(1)≥;(2)≤;(3)>.【知识再现答案】1.任意实数,a b ;a b =;任意正数,a b ;a b =.2.2a b +两个正数的算术平均数不⼩于⼏何平均数. 【习题答案】1.(1)5,4A G ==;(2)7.5,6A G ==;(3)5,3A p G p ==;(4)21,2A p G p =+=. 2.D3.证:332,0,2a a a a a >∴+≥ 证毕.4.证:22222222222222()()a b ab a b a b ab a b a b a b +≥?+++≥++?+≥+ 证毕.5.①②③④6.(1)当2b a =时,2b a +=2b a ≠时,2b a +>. (2)当1a b ==时,11()()4a b a b ++=;当1a ≠或1b ≠时,11()()4a b a b++>. 7.证:,,a b c R +∈,2()a b b c a b c c a +≥∴+≥?++>?+≥a b c ?++>证毕.8.2x y y x +<<<<. 9.(1)证:,,,a b c d R +∈。
基本不等式及其应用一.选择题(共15小题)1.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A.35 B.105 C.140 D.2102.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为()A.2 B.4 C.8 D.163.已知a>0,b>0,则的最小值为()A.B.1 C.2 D.44.已知x、y都是非负实数,且x+y=2,则的最小值为()A.B.C.1 D.25.已知x,y,z为正实数,则的最大值为()A.B.C.D.6.若a,b∈R,ab≠0,且a+b=1,则下列不等式中,恒成立的是()A.a2b2≤ B.a2+b2≥ C.(1+)(1+)≥9 D.+≥47.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中 O 为坐标原点,a>0,b >0,若 A,B,C 三点共线,则+的最小值为()A.4 B.6 C.8 D.98.若x>0,y>0,x+y=1,则的最小值为()A.B.C.D.9.在下列函数中,最小值是2的是()A.y=+B.y=(x>0)C.y=sinx+,x∈(0,)D.y=7x+7﹣x10.已知a+2b=2,且a>1,b>0,则的最小值为()A.4 B.5 C.6 D.811.函数f(x)=3x+(x>0)取得最小值时x为()A.8 B.9 C.2 D.612.已知a,b∈R+,且,则a+b的取值范围是()A.[1,4] B.[2,+∞)C.(2,4)D.(4,+∞)13.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D.14.已知正项等比数列{a n}满足a9=a8+2a7,若存在两项a m,a n使得=4a1,则的最小值为()A.B.C.D.不存在15.已知函数f(x)=,若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值为()A.2 B.3 C.5 D.8二.填空题(共10小题)16.若a,b∈R,ab>0,则的最小值为.17.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是.18.若log4(3a+4b)=log2,则a+b的最小值是.19.设a>0,b>1,若a+b=2,则+的最小值为.20.若正实数x,y满足x+y=1,则的最小值是.21.已知正实数x,y满足xy+2x+3y=42,则xy+5x+4y的最小值为.22.已知x,y为正实数,则的最小值为.23.若a,b均为非负实数,且a+b=1,则+的最小值为.24.已知a>0,b>0,且满足3a+b=a2+ab,则2a+b的最小值为.25.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是.三.解答题(共5小题)26.已知关于x的不等式kx2﹣2x+6k<0(k≠0)(1)若不等式的解集是{x|x<﹣3或x>﹣2},求k的值;(2)若不等式的解集是R,求k的取值范围;(3)若不等式的解集为∅,求k的取值范围.27.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)(1)当点F与点C重合时,试确定点E的位置;(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.28.已知a>b>0,求a2+的最小值.29.已知不等式>1.(1)若不等式对于任意x∈R恒成立,求实数k的取值范围;(2)若不等式对于任意x∈(0,1]恒成立,求实数k的取值范围.30.解下列不等式.(1)6x2﹣x﹣1≥0;(2)﹣x2+2x﹣>0;(3)≥3;(4)≥1.基本不等式及其应用0617参考答案与试题解析一.选择题(共15小题)1.(2017•乌鲁木齐模拟)已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A.35 B.105 C.140 D.210【分析】x,y∈R,x2+y2+xy=315,可得x2+y2=315﹣xy≥2xy,因此xy≤105.即可得出.【解答】解:∵x,y∈R,x2+y2+xy=315,∴x2+y2=315﹣xy,315﹣xy≥2xy,当且仅当x=y=±时取等号.∴xy≤105.∴x2+y2﹣xy=315﹣2xy≥315﹣210=105.故选:B.【点评】本题考查了重要不等式的性质,考查了推理能力与计算能力,属于中档题.2.(2017•和平区校级二模)设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为()A.2 B.4 C.8 D.16【分析】不等式+≥m恒成立,转化为求+的最小值,可得m的最大值.将分母转化为整数,设y﹣1=b,则y=b+1,令2y﹣1=a,y=(a+1),利用基本不等式的性质即可得出.【解答】解:设y﹣1=b,则y=b+1,令2y﹣1=a,y=(a+1),a>0,b>0.那么:+==(当且仅当a=b=1即x=2,y=1时取等号.∴+的最小值为8,则m的最大值为8.故选:C.【点评】本题考查了基本不等式的性质的运用解决恒成立的问题,利用了换元法转化求解,多次使用基本不等式式解决问题的关键,属于中档题.3.(2017•全国一模)已知a>0,b>0,则的最小值为()A.B.1 C.2 D.4【分析】构造基本不等式的性质即可求解.【解答】解:由=∵a>0,b>0,∴=4,当且仅当a+2b=2时取等号.则的最小值为4.故选D【点评】本题考查了“构造思想”与基本不等式的性质运用,属于基础题.4.(2017•南平一模)已知x、y都是非负实数,且x+y=2,则的最小值为()A.B.C.1 D.2【分析】变形利用基本不等式的性质即可得出.【解答】解:∵x、y都是非负实数,且x+y=2,∴x+2+y+4=8.∴8≥2,化为:≥,当且仅当x=2,y=0时取等号.则=.其最小值为.故选:B.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.5.(2017•和平区校级二模)已知x,y,z为正实数,则的最大值为()A.B.C.D.【分析】根据基本不等式可得x2+y2≥xy,z2+y2≥yz,问题得以解决.【解答】解:x2+y2≥xy,z2+y2≥yz,∴x2+y2+z2≥xy+yz=(xy+yz),∴≤,当且仅当x=z=y时取等号,故的最大值为,故选:B【点评】本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题6.(2017•岳麓区校级一模)若a,b∈R,ab≠0,且a+b=1,则下列不等式中,恒成立的是()A.a2b2≤ B.a2+b2≥ C.(1+)(1+)≥9 D.+≥4【分析】由a,b∈R,ab≠0,且a+b=1,恒大于0,两边平方,根据不等式的性质可得答案.【解答】解:由a+b=1,可得a2+b2+2ab=1,∵2ab≤a2+b2,当且仅当a=b时取等号.∴2a2+2b2≥1,则a2+b2≥.故选B.【点评】本题考查了基本不等式的性质,属于基础题.7.(2017•淄博一模)设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中 O 为坐标原点,a>0,b>0,若 A,B,C 三点共线,则+的最小值为()A.4 B.6 C.8 D.9【分析】利用向量共线定理可得:2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:=(a﹣1,1),=(﹣b﹣1,2),∵A,B,C 三点共线,∴2(a﹣1)﹣(﹣b﹣1)=0,化为:2a+b=1.又a>0,b>0,则+=(2a+b)=4++≥4+2=8,当且仅当b=2a=时取等号.故选:C.【点评】本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.8.(2017•武汉模拟)若x>0,y>0,x+y=1,则的最小值为()A.B.C.D.【分析】通过换元利用导数研究函数的单调性极值与最值即可得出.【解答】解:x>0,y>0,x+y=1,则y=1﹣x.∴=+=x﹣2++=x﹣2++2﹣x﹣2+=﹣2+=f(x),f′(x)=+==,0<x<1.可知:当x=,y=时,f(x)取得最小值为:﹣2+=.故选:A.【点评】本题考查了换元方法、利用导数研究函数的单调性极值与最值、不等式的性质,考查了推理能力与计算能力,属于中档题.9.(2017春•西城区校级期中)在下列函数中,最小值是2的是()A.y=+B.y=(x>0)C.y=sinx+,x∈(0,)D.y=7x+7﹣x【分析】由基本不等式成立的条件,逐个选项验证可得.【解答】解:选项A,x正负不定,不能满足最小值是2,故错误;选项B,y===+≥2,当且仅当=,即x=0时取等号,但x>0,故错误;选项C,∵x∈(0,),∴sinx∈(0,1),∴y=sinx+≥2,当且仅当sinx=,即sinx=1时取等号,但sinx∈(0,1),取不到1,故错误;选项D,y=7x+7﹣x=7x+≥2,当且仅当7x=即x=0时取等号,故正确.故选:D【点评】本题考查基本不等式,注意等好成立的条件是解决问题的关键,属基础题.10.(2017春•张家口期中)已知a+2b=2,且a>1,b>0,则的最小值为()A.4 B.5 C.6 D.8【分析】由题意可得:a﹣1+2b=1、a﹣1>0,利用“1的代换”化简所求的式子,由基本不等式求出答案.【解答】解:∵a>1,b>0,且a+2b=2,∴a﹣1+2b=1,a﹣1>0,∴=()(a﹣1+2b)=4+≥4+2=8,当且仅当时取等号,∴的最小值是8,故选D.【点评】本题考查了“1的代换”,以及基本不等式的应用,考查了化简、变形能力,属于基础题.11.(2017春•东湖区校级月考)函数f(x)=3x+(x>0)取得最小值时x为()A.8 B.9 C.2 D.6【分析】根据题意,函数f(x)变形可得:f(x)=++,由基本不等式的性质分析可得且仅当==时,f(x)取得最小值,计算可得答案.【解答】解:根据题意,f(x)=3x+=++,又由x>0,f(x)=++≥3=9,当且仅当==时等号成立,即x=2时等号成立,故选:C.【点评】本题考查基本不等式的性质,关键是对f(x)的形式变形,配凑基本不等式的应用条件.12.(2017春•江西月考)已知a,b∈R+,且,则a+b的取值范围是()A.[1,4] B.[2,+∞)C.(2,4)D.(4,+∞)【分析】a,b∈R+,由≥ab,可得≥.又,可得(a+b)=5≥(a+b),化简整理即可得出.【解答】解:∵a,b∈R+,∴≥ab,可得≥.∵,∴(a+b)=5≥(a+b),化为:(a+b)2﹣5(a+b)+4≤0,解得1≤a+b≤4,则a+b的取值范围是[1,4].故选:A.【点评】本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.13.(2017春•温江区校级月考)已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D.【分析】展开,并根据x+y=1可以得到,可令t=xy,并求出,而根据的单调性即可求出f(t)的最小值,进而求出z的最小值.【解答】解:z====;令t=xy,则;由在上单调递减,故当t=时有最小值,即:时z有最小值.故选B.【点评】考查基本不等式的应用,注意等号成立的条件,要熟悉函数的单调性.14.(2017春•南康区校级月考)已知正项等比数列{a n}满足a9=a8+2a7,若存在两项a m,a n 使得=4a 1,则的最小值为()A.B.C.D.不存在【分析】由a 9=a8+2a7,求出公比的值,利用存在两项a m,a n使得=4a1,写出m,n之间的关系,结合基本不等式得的最小值.【解答】解:设等比数列的公比为q(q>0),∵a9=a8+2a7,∴a7q2=a7q+2a7,∴q2﹣q﹣2=0,∴q=2,∵存在两项a m,a n使得=4a1,∴a m a n=16a12,∴a1q m+n﹣2=16a1,∴q m+n﹣2=16,∴2m+n﹣2=16,∴m+n=6,即+=1,则=()•(+)=++≥+=上式等号成立时,n2=4m2,即n=2m,而m+n=6,∴m=2,∴最小值为.故选:A.【点评】本题是等差数列和等比数列的综合题,考查等比数列的通项和基本不等式的性质,是中档题.15.(2016•潮南区模拟)已知函数f(x)=,若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值为()A.2 B.3 C.5 D.8【分析】画出函数f(x)的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【解答】解:函数f(x),如图所示,[f(x)]2+af(x)<0,当a>0时,﹣a<f(x)<0,由于关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,因此其整数解为3,又f(3)=﹣9+6=﹣3,∴﹣a<﹣3<0,﹣a≥f(4)=﹣8,则8≥a>3,a≤0不必考虑,故选:D.【点评】本题考查了一元二次不等式的解法、二次函数的图象,考查了分类讨论方法、数形结合方法与计算能力,属于中档题.二.填空题(共10小题)16.(2017•天津)若a,b∈R,ab>0,则的最小值为 4 .【分析】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【解答】解:a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.17.(2017•四模拟)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是 4 .【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用a+b≥2 代入已知条件,化简为函数求最值.【解答】解:考察基本不等式x+2y=8﹣x•(2y)≥8﹣()2(当且仅当x=2y时取等号)整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时取等号)则x+2y的最小值是 4故答案为:4.【点评】此题主要考查基本不等式的用法,对于不等式a+b≥2在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.18.(2017•河西区校级模拟)若log4(3a+4b)=log2,则a+b的最小值是7+4.【分析】log4(3a+4b)=log2,可得3a+4b=ab,a,b>0.>0,解得a>4.于是a+b=a+=+7,再利用基本不等式的性质即可得出.【解答】解:∵log4(3a+4b)=log2,∴=,∴,∴3a+4b=ab,a,b>0.∴>0,解得a>4.a+b=a+=+7≥7+=,当且仅当a=4+2时取等号.∴a+b的最小值是7+4.故答案为:7+4.【点评】本题考查了对数的运算性质、基本不等式的性质,考查了计算能力,属于基础题.19.(2017•道里区校级三模)设a>0,b>1,若a+b=2,则+的最小值为9 .【分析】由题意可得b﹣1>0且a+(b﹣1)=1,整体代入可得+=(+)[a+(b ﹣1)]=5++,由基本不等式可得.【解答】解:∵a>0,b>1,且a+b=2,∴b﹣1>0且a+(b﹣1)=1,∴+=(+)[a+(b﹣1)]=5++≥5+2=9,当且仅当=时取等号,结合a+(b﹣1)=1可解得a=且b=,故所求最小值为9故答案为:9【点评】本题考查基本不等式求最值,整体代入是解决问题的关键,属基础题.20.(2017•淮安四模)若正实数x,y满足x+y=1,则的最小值是8 .【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.【点评】本题考查基本不等式的应用,关键是将变形为(+)+4.21.(2017•绍兴一模)已知正实数x,y满足xy+2x+3y=42,则xy+5x+4y的最小值为55 .【分析】正实数x,y满足xy+2x+3y=42,可得y=>0,解得0<x<21.则xy+5x+4y=3x+y+42=3x++42=3+31,再利用基本不等式的性质即可得出.【解答】解:∵正实数x,y满足xy+2x+3y=42,∴y=>0,x>0,解得0<x<21.则xy+5x+4y=3x+y+42=3x++42=3+31≥3×+31=55,当且仅当x=1,y=10时取等号.∴xy+5x+4y的最小值为55.故答案为:55.【点评】本题考查了基本不等式的性质、不等式的解法,考查了推理能力与计算能力,属于中档题.22.(2017•天津一模)已知x,y为正实数,则的最小值为.【分析】由x,y为正实数,可得=++1,令=t>0,则f(t)=+t+1=+t++,利用基本不等式求出最小值即可.【解答】解:∵x,y为正实数,∴=++1,令=t>0,则f(t)=+t+1=+t++≥2+=可知:当=t+即t=时,函数f(t)取得最小值.故答案为:.【点评】本题考查了换元法和基本不等式求最小值,考查了推理能力与计算能力,属于中档题.23.(2017•盐城三模)若a,b均为非负实数,且a+b=1,则+的最小值为 3 .【分析】观察所求,利用换元变形为在m+n=3的前提下求的最小值.【解答】解:设a+2b=m,2a+b=n,则m+n=3,原式变形为:=(m+n)()=[5+](5+2)=3;当且仅当时等号成立;故答案为:3.【点评】本题考查了利用基本不等式求代数式的最小值;关键是正确变形为能够利用基本不等式的形式.24.(2017•嘉兴一模)已知a>0,b>0,且满足3a+b=a2+ab,则2a+b的最小值为3+2.【分析】由a>0,b>0,且满足3a+b=a2+ab,可得b=>0,解得1<a<3.则2a+b=2a+=a﹣1++3,利用基本不等式的性质即可得出.【解答】解:由a>0,b>0,且满足3a+b=a2+ab,∴b=>0,解得1<a<3.则2a+b=2a+=a﹣1++3≥2+3=2+3,当且仅当a=1+,b=1时取等号.故答案为:3+2.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.25.(2017•河东区一模)已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是.【分析】直接利用对数的运算法则化简表达式,然后利用基本不等式求解最值.【解答】解:x>0,y>0,lg2x+lg8y=lg2,可得x+3y=1.===≥=.当且仅当x=,x+3y=1,即y==,x==时取等号.的最小值是.故答案为:.【点评】本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.三.解答题(共5小题)26.(2017春•曹妃甸区校级期中)已知关于x的不等式kx2﹣2x+6k<0(k≠0)(1)若不等式的解集是{x|x<﹣3或x>﹣2},求k的值;(2)若不等式的解集是R,求k的取值范围;(3)若不等式的解集为∅,求k的取值范围.【分析】(1)根据一元二次方程与对应的不等式的关系,结合根与系数的关系,求出k的值;(2)跟你就题意△=4﹣24k2<0,且k<0,解得即可,(3)根据题意,得△≤0且k>0,由此求出k的取值范围【解答】解:(1)∵不等式kx2﹣2x+6k<0的解集是{x|x<﹣3或x>﹣2},∴k<0,且﹣3和﹣2是方程kx2﹣2x+6k=0的实数根,由根与系数的关系,得(﹣3)+(﹣2)=,∴k=﹣;(2)不等式的解集是R,∴△=4﹣24k2<0,且k<0,解得k<﹣,(3)不等式的解集为∅,得△=4﹣24k2≤0,且k>0,解得k≥.【点评】本题考查了一元二次不等式的解法与应用问题,也考查了利用基本不等式求函数最值的问题,是综合性题目.27.(2016•杨浦区三模)图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y (单位:米)(1)当点F与点C重合时,试确定点E的位置;(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.【分析】(1)当点F与点C重合时,S△BEC=S▱ABCD,即•EB•h=AB•h,从而确定点E的位置;(2)点E在线段AB上,分10≤x≤20与0≤x<10讨论以确定y关于x的函数关系式,从而利用分段函数解得,当0≤x<10时,y=2,由二次函数求最小值,当10≤x ≤20时,y=,由基本不等式求最值;从而可得.【解答】解:(1)当点F与点C重合时,S△BEC=S▱ABCD,即•EB•h=AB•h,其中h为平行四边形AB边上的高,得EB=AB,即点E是AB的中点.(2)∵点E在线段AB上,∴0≤x≤20,当10≤x≤20时,由(1)知,点F在线段BC上,∵AB=20m,BC=10m,∠ABC=120°,∴S▱ABCD=AB•BC•sin∠ABC=20×10×=100.由S△EBF=x•BF•sin120°=25,得BF=,∴由余弦定理得,y=EF==,当0≤x<10时,点F在线段CD上,由S四边形EBCF=(x+CF)×10×sin60°=25得CF=10﹣x,当BE≥CF时,EF=,当BE<CF时,EF=,化简均为y=EF=2,综上所述,y=;当0≤x<10时,y=2,当x=时,y有最小值y min=5,此时CF=;当10≤x≤20时,y=≥10>5,故当点E距点B2.5m,点F距点C7.5m时,EF最短,其长度为5.【点评】本题考查了函数在实际问题中的应用及基本不等式与二次函数的性质应用,属于中档题.28.(2016•沈阳模拟)已知a>b>0,求a2+的最小值.【分析】两次利用基本不等式即可得出.【解答】解:∵a>b>0,∴a﹣b>0.∴==4,当且仅当b=a﹣b,a2=2,a>b>0,即,b=时取等号.∴a2+的最小值是4.【点评】本题考查基本不等式的性质,利用条件进行构造是解决本题的关键.19.已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.【解答】解:由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,即(x+2)(x﹣4)<0,解得﹣2<x<4.所以不等式g(x)<0的解集为{x|﹣2<x<4};(2)因为f(x)=x2﹣2x﹣8,当x>2时,f(x)≥(m+2)x﹣m﹣15成立,则x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,即x2﹣4x+7≥m(x﹣1).所以对一切x>2,均有不等式成立.而(当x=3时等号成立).所以实数m的取值范围是(﹣∞,2].29.(2016春•临汾校级期末)已知不等式>1.(1)若不等式对于任意x∈R恒成立,求实数k的取值范围;(2)若不等式对于任意x∈(0,1]恒成立,求实数k的取值范围.【分析】(1)先利用配方法化简不等式分母,再等价转化为对应一元二次不等式,化简后对k分类讨论,由条件和一元二次不等式恒成立问题,列出不等式组求出实数k的取值范围;(2)由(1)化简不等式,由x∈(0,1]得x2+x>0,分离出k后再化简右边,由x∈(0,1]求出右边的范围,根据恒成立求出实数k的取值范围.【解答】解:(1)∵x2+x+1=>0,∴等价于kx2+kx+4>x2+x+1,则(k﹣1)x2+(k﹣1)x+3>0,由题意得,(k﹣1)x2+(k﹣1)x+3>0对于任意x∈R恒成立,当k﹣1=0即k=1时,不等式为3>0,成立;当k﹣1≠0即k≠1时,,解得1<k<13,综上所述:实数k的取值范围是[1,13);(2)由(1)可知,k(x2+x)>x2+x﹣3,由x∈(0,1]得,x2+x>0,∵不等式对于任意x∈(0,1]恒成立,∴=对于任意x∈(0,1]恒成立,设y=x2+x,由x∈(0,1]得y∈(0,2],∴,则,则k>,即实数k的取值范围是().【点评】本题考查了分式不等式的转化问题,一元二次不等式解法,以及恒成立的转化问题,考查转化思想,化简、变形能力.30.(2016春•红桥区期末)解下列不等式.(1)6x2﹣x﹣1≥0;(2)﹣x2+2x﹣>0;(3)≥3;(4)≥1.【分析】(1)由一元二次方程的解法求出对应方程的根,由一元二次不等式的解法求出不等式的解集;(2)先化简不等式,由一元二次方程的解法求出对应方程的根,由一元二次不等式的解法求出不等式的解集;(3)先化简分式不等式,再等价转化为一元二次不等式组,由一元二次不等式的解法求出不等式的解集;(4)先化简分式不等式,再等价转化为对应不等式组,由穿根法求出高次不等式的解集.【解答】解:(1)由6x2﹣x﹣1=0得(3x+1)(2x﹣1)=0,解得x=或x=, (2)所以不等式6x2﹣x﹣1≥0 的解集为{x|x或x} (4)(2)由﹣x2+2x﹣>0得3x2﹣6x+2<0,因为3>0,且方程3x2﹣6x+2=0的解是:x1=,x2=,所以原不等式的解集是 {x|} (8)(3)由得,则,即,所以,解得,则不等式的解集是{x|} (12)(4)原不等式化为:,整理得 0即,如图所以原不等式的解集为{x|x≤1或2<x≤3或x>4} (16)【点评】本题考查了分式不等式的化简以及等价转化,一元二次不等式的解法,以及穿根法求高次不等式的解集,考查转化思想,化简、变形能力.。
专题2.2 基本不等式及其应用1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=的( ) AB C D .最小值是3【答案】B 【解析】 由题意得32a cb +=,再代入所求式子利用基本不等式,即可得到答案; 【详解】因为320a b c -+=,所以32a cb +=, =≤3a c =. 故选:B.2.(2021·山东高三其他模拟)已知a b ,均为正实数,则“2aba b≤+”是“16ab ≤”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】取100,2a b ==可得由2ab a b ≤+推不出16ab ≤,反过来,由基本不等式可得由16ab ≤能推出2aba b≤+,然后可选出答案. 【详解】取100,2a b ==,则2002102ab a b =<+,但20016ab =>,所以由2ab a b≤+推不出16ab ≤, 练基础反过来,若16ab ≤,则2ab a b ≤=≤+,当且仅当4a b ==时取等号, 所以由16ab ≤能推出2ab a b ≤+,所以“2ab a b≤+”是“16ab ≤”的必要不充分条件, 故选:C3.(2021·吉林长春市·东北师大附中高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积是()2214S b c =+ ,则ABC 的三个内角大小为( ) A .60A B C === B .90,45A B C === C .120,30A B C === D .90,30,60A B C ===【答案】B 【解析】由ABC 的面积是()2214S b c =+,利用面积公式及基本不等式判断出90A =︒,由b=c 得45B C ==. 【详解】因为222b c bc +≥,所以()221142S b c bc =+≥(当且仅当b=c 时取等号). 而ABC 的面积是1sin 2S bc A =, 所以11sin 22S bc A bc =≥,即sin 1A ≥,所以sin =1A , 因为A 为三角形内角,所以90A =︒. 又因为b=c ,所以90,45A B C ===. 故选:B4.(2021·浙江高三月考)已知实数x ,y 满足2244x y +=,则xy 的最小值是( )A .2-B .C .D .1-【答案】D 【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值性质进行求解即可. 【详解】由22224414x x y y +=⇒+=,令2cos sin x y θθ=⎧⎨=⎩, 因此2cos sin sin 2xy θθθ==,因为1sin 21θ-≤≤,所以11xy -≤≤, 因此xy 的最小值是1-, 故选:D5.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为( ) A .5 B .6C .7D .8【答案】D 【解析】根据题意求出年平均利润函数。
基本不等式及其应用(分层练习)[基础训练]1.[2020晋冀鲁豫名校期末联考]已知函数f (x )=x 2e x ,若a >0,b >0,p =f ⎝⎛⎭⎪⎫a 2+b 22,q =f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫a +b 22,r =f (ab ),则( ) A .q ≤r ≤p B .q ≤p ≤r C .r ≤p ≤qD .r ≤q ≤p答案:D 解析:因为a 2+b 22-⎝ ⎛⎭⎪⎫a +b 22=2a 2+2b 24-a 2+b 2+2ab 4=(a -b )24≥0, 所以a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22, 又a +b2≥ab (a >0,b >0),所以⎝⎛⎭⎪⎫a +b 22≥ab ,易得函数f (x )=x 2e x 在区间(0,+∞)上单调递增, 所以f (ab )≤f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫a +b 22≤f ⎝ ⎛⎭⎪⎫a 2+b 22,即r ≤q ≤p . 2.[2020河北张家口模拟]已知a +2b =2,且a >1,b >0,则2a -1+1b 的最小值为( )A .4B .5C .6D .8答案:D 解析:因为a >1,b >0,且a +2b =2, 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =⎝ ⎛⎭⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b=8, 当且仅当4b a -1=a -1b 时等号成立,所以2a -1+1b的最小值是8,故选D.3.[2020广西玉林月考]若lg a +lg b =0,则2a +1b 的最小值为( ) A. 2 B .3 C .2 2 D.255答案:C 解析:∵lg a +lg b =lg ab =0,∴ab =1,且a >0,b >0.∴2a +1b ≥22ab =22,当且仅当⎩⎨⎧2a =1b,ab =1,即⎩⎨⎧a =2,b =22时等号成立.∴2a +1b 的最小值为2 2.故选C.4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22 B .2 2 C. 2 D .2答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy ≥2.5.用一段长为L 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积为( )A.L 28B.L 24C.L 22 D .L 2答案:A 解析:设菜园平行于墙的一边长为x ,其邻边长为y ,则x +2y =L ,面积S =xy ,因为x +2y ≥22xy , 所以xy ≤(x +2y )28=L 28,当且仅当x =2y =L 2,即x =L 2,y =L 4时,S max =L 28, 故选A.6.[2020安徽黄山第一次质量检测]已知f (x )=x 2+3x +6x +1(x >0),则f (x )的最小值是( )A .2B .3C .4D .5 答案:D 解析:f (x )=x 2+3x +6x +1=(x +1)2+x +1+4x +1=x +1+4x +1+1,因为x >0,所以x +1>0, 则x +1+4x +1+1≥24+1=5⎝ ⎛⎭⎪⎫当且仅当x +1=4x +1,即x =1时等号成立, 故f (x )的最小值是5.故选D.7.[2020天津和平区期末]已知a >0,则(a -1)(4a -1)a 的最小值为________. 答案:-1 解析:(a -1)(4a -1)a =4a 2-a -4a +1a =4a -5+1a . ∵a >0,∴4a -5+1a ≥24a ·1a -5=-1,当且仅当4a =1a ,即a =12时等号成立, ∴(a -1)(4a -1)a的最小值为-1. 8.[2020江苏苏北四市联考]若实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值为________.答案:8 解析:∵实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,∴x =3y +3∈⎝⎛⎭⎪⎫0,12,解得y >3,则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4⎝⎛⎭⎪⎫x =37时等号成立.9.[2020湖南永州模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =30°,C =45°,c =3,点P 是平面ABC 内的一个动点,若∠BPC =60°,则△PBC 面积的最大值是________.答案:938 解析:∵A =30°,∠ACB =45°,c =3,∴由正弦定理a sin A =c sin ∠ACB ,可得a =c ·sin A sin ∠ACB =3×1222=322.又∠BPC =60°,∴在△PBC 中,令PB =m ,PC =n , 由余弦定理可得cos ∠BPC =m 2+n 2-922mn =12,∴m 2+n 2-92=mn ≥2mn -92,当且仅当m =n =322时等号成立, ∴mn ≤92,∴S △PBC =12mn sin ∠BPC ≤938. ∴△PBC 面积的最大值为938.10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy,得xy ≥64, 当且仅当x =4y ,即x =16,y =4时等号成立. (2)解法一:由2x +8y -xy =0,得x =8yy -2,因为x >0,所以y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.解法二:由2x +8y -xy =0,得8x +2y =1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8yx≥10+22x y ·8yx =18,当且仅当y =6,x =12时等号成立.[强化训练]1.[2020福建龙岩教学质量检查]已知x >0,y >0,且1x +1+1y =12,则x +y的最小值为( )A .3B .5C .7D .9答案:C 解析:因为1x +1+1y =12,所以2x +1+2y =1, 因为x >0,所以x +1>0,又因为y >0, 所以x +y =[(x +1)+y ]-1=[(x +1)+y ]×⎝ ⎛⎭⎪⎫2x +1+2y -1 =⎣⎢⎡⎦⎥⎤2y x +1+2(x +1)y +3≥22y x +1·2(x +1)y +3=7, 当且仅当⎩⎨⎧1x +1+1y =12,2y x +1=2(x +1)y即x =3,y =4时等号成立,所以x +y 的最小值为7,故选C.2.[2020广东江门第一次模拟]实数x ,y 满足|x +y |+|x -y |=2,若z =4ax +by (a >0,b >0)的最大值为1,则1a +1b 有( )A .最大值9B .最大值18C .最小值9D .最小值18答案:C 解析:根据|x +y |+|x -y |=2,可得点(x ,y )满足的图形是以A (1,1),B (-1,1),C (-1,-1),D (1,-1)为顶点的正方形,可知x =1,y =1时,z =4ax +by 取得最大值,故4a +b =1,所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (4a +b )=5+4a b +ba ≥9,当且仅当a =16,b =13时取等号,所以1a +1b 有最小值9.故选C.3.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f (a )+f (b )],则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案:B 解析:因为b >a >0,故a +b2>ab . 又f (x )=ln x (x >0)为增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12[f (a )+f (b )]=12(ln a +ln b )=ln ab =p .4.[2020陕西西安模拟]设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8 D .9答案:D 解析:因为AB →=OB →-OA →=(a -1,1), AC→=OC →-OA →=(-b -1,2), 若A ,B ,C 三点共线,则有AB →∥AC →, 所以(a -1)×2-1×(-b -1)=0, 所以2a +b =1,又a >0,b >0, 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab ≥5+22b a ×2ab =9,当且仅当⎩⎨⎧2b a=2a b ,2a +b =1,即a =b =13时等号成立.5.[2020黑龙江哈尔滨六中期末]若函数f (x )=-1a e bx (a >0,b >0)的图象在x =0处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( )A .4 B. 2 C .2 D .22答案:B 解析:对f (x )求导得f ′(x )=-b a e bx, 则f (0)=-1a ,f ′(0)=-ba ,所以函数f (x )=-1a e bx (a >0,b >0)的图象在x =0处的切线方程为y +1a =-ba x ,即bx +ay +1=0,该直线与圆x 2+y 2=1相切,则有1b 2+a2=1,化简得a 2+b 2=1. 由基本不等式可得(a +b )2=a 2+b 2+2ab ≤2(a 2+b 2)=2,所以a +b ≤2,当且仅当a =b 时,等号成立,所以a +b 的最大值为 2.故选B.6.[2020湖北荆、荆、襄、宜四地七校考试联盟期末]在平面直角坐标系中,A (-4,0),B (-1,0),点P (a ,b )(ab ≠0)满足|AP |=2|BP |,则4a 2+1b 2的最小值为( )A .4B .3 C.32 D.94答案:D 解析:∵点P (a ,b )(ab ≠0)满足|AP |=2|BP |,∴|AP |2=4|BP |2,即(a +4)2+b 2=4[(a +1)2+b 2],化简得a 2+b 2=4,则⎝ ⎛⎭⎪⎫4a 2+1b 2(a 2+b 2)=4+1+4b 2a 2+a 2b 2≥5+24b 2a 2·a 2b 2=5+4=9⎝ ⎛⎭⎪⎫当且仅当a 2=2b 2=83时等号成立,∴4a 2+1b 2的最小值为94,故选D.7.[2020广东揭阳期末]当0<x <π2时,函数f (x )=1+cos 2x +8sin 2x sin 2x 的最小值为( )A .2B .2 3C .4D .43答案:C 解析:∵0<x <π2,∴tan x >0, ∴f (x )=1+cos 2x +8sin 2x sin 2x =2cos 2x +8sin 2x2sin x cos x =1+4tan 2x tan x =1tan x +4tan x ≥21tan x ·4tan x =4,当且仅当tan x =12时等号成立,∴函数f (x )=1+cos 2x +8sin 2xsin 2x 的最小值为4, 故选C.8.[2020四川成都月考]实数x ,y 满足2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1,则xy 的最小值为( )A .2B .1 C.12D.14答案:D 解析:因为2cos 2(x +y -1)∈[0,2], (x +1)2+(y -1)2-2xy x -y +1=x 2+y 2+1-2xy +2x -2y +1x -y +1=(x -y +1)2+1x -y +1=x -y +1+1x -y +1∈(-∞,-2]∪[2,+∞),又2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1,所以2cos 2(x +y -1)=2,所以x -y +1=1,x +y -1=k π(k ∈Z ),所以x =y =k π+12(k ∈Z ),所以xy =⎝⎛⎭⎪⎫k π+122≥14, 当且仅当k =0时等号成立,故选D.9.[2020江苏如皋质量调研]已知x ,y ,z 均为正数,2x +1y =2,x +2y +2z=xyz ,则xyz 的最小值为________.答案:16 解析:∵2x +1y =2y +xxy =2, ∴2y +x =2xy ,∴x +2y +2z =2xy +2z =xyz .∵x ,y ,z 均为正数,z =2xyxy -2>0,xy -2>0,∴xyz =2(xy )2xy -2=2(xy -2)+8xy -2+8≥22(xy -2)×8xy -2+8=16,当且仅当2(xy -2)=8xy -2,即xy =4时等号成立,∴xyz 的最小值为16.10.[2019江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.答案:4 解析:设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0,x 0>0,则点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=2⎝⎛⎭⎪⎫x 0+2x 0≥4,当且仅当x 0=2x 0,即x 0=2时等号成立.故点P到直线x +y =0的距离的最小值是4.11.[2019江西南昌模拟]网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案:37.5 解析:由题意知t =23-x-1(1<x <3),设该公司的月利润为y万元,则y =⎝ ⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x+12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时等号成立,即最大月利润为37.5万元.。
第五讲 基本不等式及其应用一、知识梳理:1、若,a b R ∈,则222a b ab +≥ ,当且仅当a b =时等号成立;2、若,a b R +∈, 则2a b ab +≥ , 当且仅当a b =时等号成立;3、若 ,a b R +∈, ,a b S ab P +==,则⑴如果P 是定值,那么当且仅当a b =时,S 的值最小;⑵如果S 是定值,那么当且仅当a b =时,P 的值最大4、若0ab >,则2b a a b+≥,当且仅当a b =时等号成立 二、知识回顾: 1、若0x >,则2x x +的最小值为 .答案22 解析:0x >222x x ⇒+≥22x x x =⇒=. 2、已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____.答案 116 3、已知R b a ∈,,则下列不等式不正确...的是( )答案 D A .222a b ab +≥B .222a b ab +≥-C .22a b ab +≥D .222()22a b a b +≥+ 4、已知0,0a b >>,则11ab a b ++ )答案 C A .2B .22C .4D .5 解析:因为11112222()4ab ab ab a b ab ab ++≥+≥ 当且仅当11a b =,且1ab ab=a b =时,取“=”号。
5、下列结论正确的是 ( ) 答案 BA .当0x >且1x ≠时,1lg lg x x +2≥ B.0x >当2x x ≥ C .当2x ≥时,1x x +的最小值为2 D.02x <≤时,1x x -无最大值 6、已知R b a ∈,,且ab >0,则下列不等式不正确...的是( )答案 B A .b a b a ->+||B .||||||b a b a +<+C .||2b a ab +≤D .2≥+b a a b三、典型例题例1、已知,,x y a R +∈,不等式(x+y)(1x + a y)≥9对任意x,y 恒成立,则a 的最小值为( )A.2B.4C.6D.8解:不等式(x +y )(1a x y+)≥9对任意正实数x ,y 恒成立,则:1y ax a x y+++≥1a +≥9,∴24(舍去), 所以正实数a 的最小值为4,选B .例2、三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 .解:由2x +25+|3x -52x |≥225,112|5|ax x a x x x x≤≤⇒≤++-,而 252510x x x x+≥=,等号当且仅当5[1,12]x =∈时成立; 且2|5|0x x -≥,等号当且仅当5[1,12]x =∈时成立;所以,2min 25[|5|]10a x x x x≤++-=,等号当且仅当5[1,12]x =∈时成立; 故(,10]a ∈-∞;例3、函数log (3)1,0,1a y x a a =+->≠的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,求nm 21+的最小值;解:(2,1)A --,则21m n +=,1⇒≥≥128m n ⇒+≥≥,当且仅当11,42m n ==时n m 21+取最小值8。
5.3 基本不等式及其应用一、解答题。
1. 基本不等式√ab≤a+b2(1)基本不等式成立的条件:________.(2)等号成立的条件:当且仅当________时取等号.2. 几个重要的不等式(1)a2+b2≥________(a,b∈R).(2)ba +ab≥________(a,b同号).(3)ab≤(a+b2)2(a,b∈R).(4)a 2+b22≥(a+b2)2(a,b∈R).3. 算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为________,几何平均数为________,基本不等式可叙述为:________.4. 利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当________时,x+y有最________值是________.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最________值是________.(简记:和定积最大)5. “a>b>0”是“ab<a2+b22”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6. 若实数a、b满足a+b=2,则3a+3b的最小值是()A.18B.6C.2√3D.2√347. 若a>b>1,P=√lg a⋅lg b,Q=12(lg a+lg b),R=lg a+b2,则()A.R<P<QB.P<Q<RC.Q<P<RD.P<R<Q8. 下列不等式一定成立的是()A.lg(x2+14)>lg x(x>0) B.sin x+1sin x≥2(x≠kπ,k∈Z)C.x2+1≥2|x|(x∈R)D.1x2+1<1(x∈R)9. 已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则(a+b)2cd的最小值为()A.0B.1C.2D.410. 若x>−1,则x=________时,f(x)=x+1x+1有最小值,最小值为________.11. 已知x>0,y>0,且2x+y=1,则1x +1y的最小值为________.12. 已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.13. 设正实数x,y,z满足x2−3xy+4y2−z=0.则当xyz 取得最大值时,2x+1y−2z的最大值为()A.0B.1C.94D.314. 已知a>0,b>0,且a+b=1.求证:(a+1a )(b+1b)≥254.15. 若实数x,y满足xy>0,则xx+y +2yx+2y的最大值为()A.2−√2B.2+√2C.4+2√2D.4−2√216. 若a<0,−1<b<0,则有()A.a>ab>ab2B.ab2>ab>aC.ab>a>ab2D.ab>ab2>a17. 已知x >1,y >1,且14ln x,14,ln y 成等比数列,则xy ( )A.有最大值eB.有最大值√eC.有最小值eD.有最小值√e18. 设M =2a (a −2),N =(a +1)(a −3),则( ) A.M >N B.M ≥N C.M <N D.M ≤N19. 当x >1时,不等式x +1x−1≥a 恒成立,则实数a 的取值范围是( ) A.(−∞,2] B.[2,+∞) C.[3,+∞) D.(−∞,3]20. 若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( ) A.1ab >12 B.1a +1b ≤1C.√ab ≥2D.1a 2+b 2≤1821. 设M =(1a −1)(1b −1)(1c −1),且a +b +c =1(其中a ,b ,c 为正实数),则M 的取值范围是( ) A.[0,18)B.[18,1)C.[1,8)D.[8,+∞)22. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.23. 对任意实数x ,不等式(a −2)x 2−2(a −2)x −4<0恒成立,则实数a 的取值范围是________.24. 函数f (x )=x 2−2x +1x 2−2x+1,x ∈(0,3),则f (x )有最小值________.25. 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a与a +b 的大小.26. 已知x >0,y >0,且2x +5y =20. 求u =lg x +lg y 的最大值;求1x +1y 的最小值.27. 运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.求这次行车总费用y关于x的表达式;当x为何值时,这次行车的总费用最低,并求出最低费用的值.参考答案与试题解析5.3 基本不等式及其应用一、解答题。
[基础巩固]1.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =0解析 当a 2+1=2a ,即(a -1)2=0,即a =1时,“=”成立.答案 B2.已知a ,b ∈(0,1),且a ≠b ,下列各式中最大的是( )A .a 2+b 2B .2abC .2abD .a +b 解析 ∵a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b ,又a 2+b 2>2ab (∵a ≠b ),∴2ab <a 2+b 2<a +b .又∵a +b >2ab (∵a ≠b ),∴a +b 最大.答案 D3.下列不等式中正确的是( )A .a +4a≥4 B .a 2+b 2≥4ab C.ab ≥a +b 2 D .x 2+3x 2≥2 3 解析 a <0,则a +4a≥4不成立,故A 错; a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错; 由基本不等式可知D 项正确.答案 D4.当a ,b ∈R 时,下列不等关系成立的是________.①a +b 2≥ab ;②a -b ≥2ab ; ③a 2+b 2≥2ab ;④a 2-b 2≥2ab .解析 根据x 2+y 22≥xy ,a +b 2≥ab 成立的条件判断,知①②④错,只有③正确. 答案 ③5.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b ,则这两年的平均增长率x 与增长率的平均值a +b 2的大小关系为________.解析 用两种方法求出第三年的产量分别为A (1+a )(1+b ),A (1+x )2,则有(1+x )2=(1+a )(1+b ).∴1+x = (1+a )(1+b )≤1+a +1+b 2=1+a +b 2,∴x ≤a +b 2.当且仅当a =b 时等号成立.答案 x ≤a +b 26.已知a ,b ,c 为正实数,且a +b =1.求证:1a +1b ≥4.证明 1a +1b =a +b a +a +b b =1+b a +a b +1=2+b a +a b ≥2+2 ba ·ab =4.当且仅当a =b 时“=”成立.[能力提升]7.(多选)有下列式子,正确的有( )A .a 2+1>2aB .⎪⎪⎪⎪x +1x ≥2 C.a +bab ≥2 D .x 2+1x 2+1≥1解析 ∵a 2-2a +1=(a -1)2≥0,∴a 2+1≥2a ,故A 不正确;对于B ,当x >0时,⎪⎪⎪⎪x +1x =x +1x ≥2(当且仅当x =1时取“=”);当x <0时,⎪⎪⎪⎪x +1x =-x -1x ≥2(当且仅当x =-1时取“=”),∴B 正确;对于C ,若a =b =-1,则a +bab =-2<2,故C 不正确;对于D ,x 2+1x 2+1=x 2+1+1x 2+1-1≥1(当且仅当x =0时取“=”),故D 正确.答案 BD8.(2022·佳木斯模拟)已知a >0,b >0,a 2+b 2-ab =4,下列不等式正确的个数有() ①1a +1b ≥1,②ab ≤4,③a +b ≤4,④a 2+b 2≤8.A .1B .2C .3D .4解析 因为a >0,b >0,a 2+b 2-ab =4,所以a 2+b 2=ab +4≥2ab ,得ab ≤4,当且仅当a =b 时取等号,②正确;由1a +1b ≥21ab ≥214=1,当且仅当a =b 时取等号,①正确; 由a 2+b 2-ab =4,得()a +b 2=3ab +4≤34()a +b 2+4,所以a +b ≤4,当且仅当a =b 时取等号,③正确;a 2+b 2=ab +4≤4+4=8,当且仅当a =b 时取等号,④正确.故选D.答案 D9.已知a >b >c ,则 (a -b )(b -c )与a -c 2的大小关系是________. 解析 ∵a >b >c ,∴a -b >0,b -c >0,∴(a -b )(b -c )≤(a -b )+(b -c )2=a -c 2. 答案 (a -b )(b -c )≤a -c 210.已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . 证明 ∵a >0,b >0,c >0,∴a +b 2≥ab ,b +c 2≥bc ,c +a 2≥ca , ∴a +b 2+b +c 2+c +a 2≥ab +bc +ca , 即a +b +c ≥ab +bc +ca .由于a ,b ,c 不全相等,∴等号不成立,∴a +b +c >ab +bc +ca .[探索创新]11.已知a ,b 都是正数,求证: 21a +1b ≤ab ≤a +b 2≤ a 2+b 22. 证明 ∵1a +1b≥21ab , ∴11a +1b ≤121ab ,即21a +1b ≤ab . 又∵⎝⎛⎭⎫a +b 22=a 2+2ab +b 24≤a 2+a 2+b 2+b 24=a 2+b 22, ∴a +b 2≤ a 2+b 22. 又由基本不等式得a +b 2≥ab , 故21a +1b ≤ab ≤a +b 2≤ a 2+b 22(当且仅当a =b 时,等号成立).。
基本不等式及其应用【考纲要求】1、能熟练运用基本不等式来比较两个实数的大小2、能初步运用基本不等式证明简单的不等式.3、熟练掌握基本不等式及其变形的应用,会用基本不等式解决简单的最大(小)值问题4、能够运用基本不等式解决生活中的应用问题. 【思维导图】【考点总结】 一、重要不等式及证明如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).请证明此结论. 证明 ∵a 2+b 2-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab ,当且仅当a =b 时取“=”. 二、基本不等式 1.内容:ab ≤a +b 2,其中a ≥0,b ≥0,当且仅当a =b 时,等号成立.2.证明:∵a +b -2ab =(a )2+(b )2-2a ·b =(a -b )2≥0. ∴a +b ≥2ab .∴ab ≤a +b2,当且仅当a =b 时,等号成立.三、基本不等式的常用推论 1.ab ≤⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R). 2.b a +ab≥2 (a ,b 同号). 3.当ab >0时,b a +ab ≥2;当ab <0时,b a +ab≤-2.4.a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R). 四、基本不等式求最值 1.理论依据:(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值,且这个值为s 24.(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值,且这个值为2p . 2.基本不等式求最值的条件: (1)x ,y 必须是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题: (1)各数(或式)均为正. (2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性. 【题型汇编】题型一:基本不等式及其应用 题型二:利用基本不等式求最值 题型三:利用基本不等式解决实际问题 【题型讲解】题型一:基本不等式及其应用一、单选题1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>2.(2022·江西赣州·二模(理))在等差数列{}n a 和等比数列{}n b 中,有110a b t ==>,且2121n n a b ++=,则下列关系式中正确的是( ) A .11n n a b ++<B .11n n a b ++≥C .11n n a b ++=D .11n n a b ++>3.(2022·宁夏·银川一中二模(理))下列不等式恒成立的是( ) A .12x x+≥ B .2a b ab +≥C .22222a b a b ++⎛⎫≥⎪⎝⎭D .222a b ab +≥4.(2022·四川攀枝花·三模(理))已知()ln 1f x x =+,0n m <<,设a f mn =,2m n b f +⎛⎫= ⎪⎝⎭,()()12c f m f n =+⎡⎤⎣⎦,则a ,b ,c 的大小关系正确的是( ). A .b c a => B .b c a =< C .a c b =>D .a c b =<5.(2022·黑龙江·哈九中三模(文))已知x ,y 都是正数,且x y ≠,则下列选项不恒成立的是( ) A .2x yxy +> B .2x yy x+> C .2xyxy x y<+D .12xy xy +>6.(2022·河北石家庄·二模)已知44354,log 5,log 43x y z ⎛⎫=== ⎪⎝⎭,则x 、y 、z 的大小关系为( ) A .y x z >> B .x y z >> C .z x y >> D .x z y >>7.(2022·江西新余·二模(文))设lg x a x =,lg y b y =,lg y c x =,其中x y >,则下列说法正确的是( ) A .a c b ≤≤ B .b c a ≤≤ C .2ab c < D .2c ab <二、多选题1.(2022·湖南衡阳·三模)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( ) A .2222a b +≥B 2a b ≤C .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222323a b a b b a ++≤++2.(2022·山东·烟台市教育科学研究院二模)已知a 、()0,1b ∈,且1a b +=,则( ) A .2212a b +≥B .ln ln 2ln 2a b +≤-C .2ln ln ln 2≥a bD .ln 0+<a b3(2022·河北邯郸·一模)下列大小关系正确的是( ) A .2 1.91.92< B . 2.922 2.9< C .ln 22ln 22222121<--D .712log 4log 7<4.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是( ) A .1ab a b +>+ B .()2log 1a b +> C .11a b a b+<+ D .11a b a b+>+ 三、填空题1.(2021·河南·模拟预测(文))已知关于x 的方程2log x t =()0t >有两个实根m ,n ()m n >,则下列不等式中正确的有______.(填写所有正确结论的序号)①)2222m n m n +≥-; ②)2222m n m n +≤-③)2222m n m n -≥-; ④)2222m n m n -≤-.2.(2021·全国·模拟预测)已知等比数列{}n a 的各项均为正数,5116a ≥,且存在*m ∈N ,使得221m m a a ++=,则1a 的最小值为________. 四、解答题1.(2022·江西南昌·三模(理))已知函数()24f x x x =-+-,已知不等式()()0f x kx k ≥>恒成立. (1)求k 的最大值0k ; (2)设0a >,0b >,求证:1223a b a b a b k +≥++. 2.(2022·四川·成都七中三模(文))设函数()23f x x x x m =-+---,x R ∀∈,()14f x m-≥恒成立. (1)求实数m 的取值范围;(2)求证:(1)(2)log (2)log (3)m m m m +++>+.3.(2022·宁夏·银川一中二模(理))已知函数()f x x =(1)若不等式()24f ax +≤的解集为[]3,1-,求实数a 的值. (2)若[]0,2m ∈,求证:(()22f x m f x m --≤. 题型二:利用基本不等式求最值 一、单选题1.(2022·上海黄浦·二模)若a 、b 均为非零实数,则不等式2b aa b+≥成立的一个充要条件为( ).A .0ab >B .0ab ≥C .0ab <D .0ab ≤2.(2022·广东茂名·二模)已知2232b a =-()a b ∈R , ,则|3|a b - 的最小值为( ) A .0B .1C .2D 23.(2022·山东·德州市教育科学研究院三模)已知函数()f x 是定义在R 上的奇函数,对于任意12x x ≠,必有()()12f x f x ≠,若函数()2()(32)F x f x m f x =-+-只有一个零点,则函数26()(2)2mx g x x x-=<-有( )A .最小值为4-B .最大值为4-C .最小值为4D .最大值为44.(2022·山东淄博·三模)已知正项等比数列{}n a 的前n 项和为n S ,且123,,a S S -成等差数列.若存在两项*,(,N )m n a a m n ∈18m n a a a ⋅,则19m n+的最小值是( ) A .16 B .2 C .103 D .835.(2022·江西萍乡·三模(文))已知正实数,x y 满足lg lg 2x y +=,则14x y+的最小值为( )A .15B .25C .45D .856.(2022·全国·二模(理))△ABC 中,2172cos cos 20224C C --=,若4AB =,则AB 边上的高的最大值为( ) A .2 B .3 C .3D .337.(2022·全国·二模(理))动圆M 经过坐标原点,且半径为1,则圆心M 的横纵坐标之和的最大值为( ) A .1 B .2C 2D .22二、多选题1.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤D .221x y +≥2.(2022·山东临沂·三模)下列命题正确的是( )A .正实数x ,y 满足1x y +=,则14x y+的最小值为4B .“1,1a b >>”是“1ab >”成立的充分条件C .若随机变量()~,X B n p ,且()()4,2E XD X ==,则12p = D .命题2:,0p x x ∀∈>R ,则p 的否定:2,0x x ∃∈<R3.(2022·湖南师大附中三模)若0a >,0b >,12b a +=,则11a a b++的可能取值有( ) A .65B .54C .43D .324.(2022·辽宁沈阳·三模)已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25x f x g x x x +=--,则下列说法正确的有( )A .()01g =B .()g x 在[]0,1上单调递减C .()1101g x -关于直线1101=x 对称D .()g x 的最小值为15.(2022·河北唐山·三模)下列命题正确的有( ) A .若,a b c d >>,则ac bd > B .若1x xe =,则ln 0x x +=C .若a b >,则11a b< D .326,log 6==xy ,则4xy >三、双空题1.(2022·天津·耀华中学二模)如图,在ABC 中,π3BAC ∠=,D 为AB 中点,P 为CD 上一点,且满足13AP t AC AB =+,ABC 33t =___________;||AP 的最小值为___________.2.(2022·天津·二模)如图直角梯形ABCD 中,//AB CD ,AB AD ⊥,222AB CD AD ===,在等腰直角三角形CDE 中,90C ∠=︒,则向量AE 在向量CB 上的投影向量的模为____________;若M ,N 分别为线段BC ,CE 上的动点,且52AM AN ⋅=,则MD DN ⋅的最小值为_______.3.(2022·辽宁·东北育才学校二模)已知函数()3ln kf x x kx x=-+,若()f x 在定义域内为单调递减函数,则实数k 的最小值为___________;若0k >,0[1,e]x ∃∈,使得()003e0f x x +<成立,则实数k 的取值范围为___________. 四、填空题1.(2022·上海虹口·二模)函数9()(0)=+>f x x x x的值域为_________.2.(2022·天津市滨海新区塘沽第一中学三模)已知0a b >>,当41422a a b a b+++-取到最小值时,=a ___________. 五、解答题1.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 2.(2022·上海·高考真题)在椭圆222:1x y aΓ+=中,直线:l x a =上有两点C 、D (C 点在第一象限),左顶点为A ,下顶点为B ,右焦点为F . (1)若∠AFB 6π=,求椭圆Γ的标准方程;(2)若点C 的纵坐标为2,点D 的纵坐标为1,则BC 与AD 的交点是否在椭圆上?请说明理由;(3)已知直线BC 与椭圆Γ相交于点P ,直线AD 与椭圆Γ相交于点Q ,若P 与Q 关于原点对称,求||CD 的最小值.题型三:利用基本不等式解决实际问题 一、单选题1.(2022·陕西西安·三模(文))已知0a >,0b >,1a b +=,则以下不等式正确的是( )A .114a b+≤B 2a b≥C .221a b +≥ D .2214ab a b +≥2.(2022·安徽省舒城中学一模(文))在三棱锥P ABC -中,PA ⊥平面ABC ,2AB =,ABC 与PAB △的外接圆圆心分别为1O ,2O ,若三棱锥P ABC -的外接球的表面积为16π,设1O A a =,2O A b =,则a b +的最大值是( ) A 5B 10C .3D .253.(2022·山西·怀仁市第一中学校一模(理))已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若ABC 的面积为,ABCSOBC 的面积为,OBCSPBC 的面积为PBCS,满足2ABC OBC PBC S S S ⋅=△△△,当,,PAB PBC PAC 的面积之和的最大值为8时,则三棱锥P ABC -外接球的体积为( ) A .43π B .83π C .163πD .323π4.(2022·四川·石室中学二模(理))设O 为坐标原点,P 是以F 为焦点的抛物线22y x =上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( ) A .1 B .12C 2D 5二、多选题1.(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是22C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为222+ D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7122.(2022·浙江·模拟预测)已知三棱锥A BCD -,过顶点B 的平面α交分别棱AC ,AD 于M ,N (均不与棱端点重合).设1AMr AC=,2AN r AD =,3A BNM A BCD V r V --=,其中A BNM V -和A BCD V -分别表示三棱锥A BNM -和三棱锥A BCD -的体积.下列不等式一定成立的是( )A .312r r r <+B .3121r r r +>+C .223122r r r <+D .2231212r r r +>+3.(2022·广东肇庆·二模)已知221x y +=,x ∈R ,y ∈R ,且0xy ≠,则( )A .2x y +B .12xy >C .22log log 1x y +≤-D .112x y+< 三、双空题1.(2022·浙江台州·二模)已知正实数,a b 满足22a b +=,则ab 的最大值为___________;22a ab a b ab+++-的最大值为___________. 四、填空题1.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.2.(2022·山东济南·三模)2022年3月,中共中央办公厅、国务院办公厅印发了《关于构建更高水平的全民健身公共服务体系的意见》,再次强调持续推进体育公园建设.如图,某市拟建造一个扇形体育公园,其中π3AOB ∠=,2OA OB ==千米.现需要在OA ,OB ,AB 上分别取一点D ,E ,F ,建造三条健走长廊DE ,DF ,EF ,若DF OA ⊥,EF OB ⊥,则DE EF FD ++的最大值为______千米.五、解答题27.(2022·上海松江·二模)如图,农户在100AB =米、80BC =米的长方形地块ABCD 上种植向日葵,并在A 处安装监控摄像头及时了解向日葵的生长情况.监控摄像头可捕捉到图像的角度范围为45PAQ ∠=︒,其中点P 、Q 分别在长方形的边BC 、CD 上,监控的区域为四边形APCQ .记(045)BAP θθ∠=︒≤≤︒.(1)当30θ=︒时,求P 、Q 两点间的距离;(结果保留整数)(2)问当θ取何值时,监控区域四边形APCQ 的面积S 最大?最大值为多少?(结果保留整数)35.(2022·上海宝山·一模)吴淞口灯塔AE 采用世界先进的北斗卫星导航遥测遥控系统,某校数学建模小组测量其高度H (单位:m),如示意图,垂直放置的标杆BC 的高度3m h =,使A ,B ,D 在同一直线上,也在同一水平面上,仰角ABE α∠=,ADE β∠=.(本题的距离精确到0.1m)(1)该小组测得α、β的一组值为51.83α=︒,47.33β=︒,请据此计算H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到灯塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若灯塔的实际高度为20.1m ,试问d 为多少时,αβ-最大?11。