数与式知识点总结
- 格式:doc
- 大小:135.00 KB
- 文档页数:4
数与式知识点归纳总结小学数与式是小学数学的重要内容,它涉及到数的认识、运算和运算法则等方面。
下面是对数与式知识点的归纳总结。
一、数的认识与运算1. 自然数:自然数是人们最早认识到的数,包括0和比0大的正整数。
在学习自然数时,需要掌握自然数的读法、书写等基本知识。
2. 整数:整数包括自然数、0和负整数。
在学习整数时,需要掌握整数的顺序关系、相反数等基本概念,以及整数的加减运算法则。
3. 分数:分数是整数的扩展,它表示一个数被等分成若干份中的一份。
在学习分数时,需要理解分数的基本概念,掌握分数的读法、书写和比较大小等方法。
4. 小数:小数是分数的另一种表示形式,它把一个数分成若干部分,其中一部分是整数,另一部分是小数部分。
在学习小数时,需要了解小数的基本概念,掌握小数的读法、书写和四则运算等方法。
5. 有理数:有理数包括整数、分数和小数。
在学习有理数时,需要掌握有理数的基本概念,理解有理数的大小关系,以及有理数的加减乘除运算等规则。
6. 数的运算:数的运算包括加法、减法、乘法和除法。
在进行数的运算时,需要熟练掌握运算法则,理解运算的意义,培养灵活运算的能力。
二、式的认识与运算1. 式的概念:式是由数和运算符号组成的,它表示数与数之间的关系。
在学习式时,需要了解式的构成要素和基本性质,掌握式的读法和书写格式。
2. 代数式:代数式是含有字母的式子,它表示数与未知数之间的关系。
在学习代数式时,需要理解字母的含义,掌握代数式的展开和化简等基本方法。
3. 算式:算式是由数和运算符号组成的式子,它表示数的运算。
在学习算式时,需要掌握算式的读法和书写格式,理解算式的运算过程和结果。
4. 等式:等式是指相等关系的式子,它由等号连接两个算式或代数式。
在学习等式时,需要理解等式的基本性质,熟练掌握等式的变形和解方程的方法。
5. 不等式:不等式是指不相等关系的式子,它由大于号或小于号连接两个算式或代数式。
在学习不等式时,需要掌握不等式的读法和书写格式,理解不等式的基本性质,解不等式的方法。
数与式知识点归纳总结小学一、数的认识1. 整数:自然数、0、负整数和自然数的合称。
2. 分数:一个整数除以另一个整数所得到的数。
3. 小数:整数后面的部分,用十分数表示小数。
4. 百分数:分母为100的分数。
5. 立方数、平方数:一个自然数的立方和平方。
二、数的运算1. 加法:求两个数的和的运算。
2. 减法:求一个数与另一个数的差的运算。
3. 乘法:求两个数的积的运算。
4. 除法:求一个数被另一个数的商的运算。
5. 括号法则:先乘除后加减的原则。
三、式的认识1. 代数式:用字母表示一个数的运算式。
2. 代数式的值:用具体数代替字母后算出的结果。
四、式的运算1. 合并同类项:将代数式中相同字母的项合并。
2. 展开式子:根据乘法分配律把式子中的括号去掉。
3. 因式分解:根据公式和运算规律将一个代数式化为乘积形式。
4. 求值:将字母代入代数式中,算出具体的值。
五、方程的认识1. 代数方程:含有未知数的等式。
2. 未知数:用字母表示不确定的数。
3. 方程的解:使方程成立的未知数的值。
六、方程的解法1. 移项法:将方程中未知数的系数移到一边,常数移到另一边。
2. 消元法:用两个方程相减或相加消去一个未知数。
3. 代入法:用已知的数代入方程中解出未知数的值。
七、不等式的认识1. 代数不等式:含有不等号的式子。
2. 不等式的解:使不等式成立的数的范围。
八、不等式的解法1. 移项法:将不等式中未知数的系数移到一边,常数移到另一边。
2. 代入法:用已知的数代入不等式中解出未知数的范围。
九、函数的认识1. 函数:自变量的值和因变量的值的对应关系。
2. 自变量:可以取值的变量。
3. 因变量:根据自变量的值而变化的变量。
十、函数图像1. 直线函数:函数图像是一条直线。
2. 抛物线函数:函数图像是一条开口向上或向下的抛物线。
十一、图形的性质1. 矩形的性质:四条边相等,对角线相等,4个直角。
2. 三角形的性质:三个角的度数相加为180度。
数与式知识点总结一、基本概念1. 数的分类数的分类主要包括自然数、整数、有理数、无理数和实数等。
自然数是最简单的数,包括0、1、2、3……即正整数和零。
整数包括正整数、负整数和零。
有理数是可以写成分数形式的数,无理数则不能用分数形式表示。
实数包括有理数和无理数。
2. 数轴及数的比较数轴是用来表示数的一条直线,通过数轴可以方便地对数进行比较。
在数轴上,数越往右越大,越往左越小,可以通过数轴方便地表示数的大小关系。
3. 数的运算数的运算包括加法、减法、乘法和除法。
加法和乘法满足交换律和结合律,减法和除法则不满足。
另外,零是加法和乘法的零元素,1是乘法的幺元素。
二、式的概念1. 代数式代数式是由常数、变量、运算符号和括号等符号组成的表达式,可以表示数或者表示一种计算关系。
代数式由于有变量的存在,所以具有一定的未知数的性质。
2. 方程与不等式方程是含有未知数的等式,可以通过求解来得到未知数的值。
不等式则是关于未知数的大小关系的式子,可以表示一种范围。
三、数与式的运算1. 加减法数的加减法是最基本的运算,可以通过列竖式进行计算。
代数式的加减法也是基本的运算操作,需要根据运算法则进行化简和计算。
2. 乘除法乘法和除法是数学中重要的运算,也是代数式合并、化简的重要手段。
3. 括号运算括号运算是代数式中优先级最高的运算,可以通过括号对式子进行分解、合并和化简。
4. 有理数的加减乘除运算有理数的加减乘除运算是数学中的重要内容,需要注意正负号的运算规则,以及除法中的零的性质等。
五、方程与不等式1. 一元一次方程一元一次方程是代数中的基础内容,通过解一元一次方程可以得到未知数的值,方程的解就是方程的根。
2. 一元一次不等式一元一次不等式是关于未知数的大小关系的式子,可以通过求解得到不等式的解集。
3. 二元一次方程二元一次方程是含有两个未知数的一次方程,通过解二元一次方程可以得到未知数的值。
4. 二元一次不等式二元一次不等式是含有两个未知数的不等式,通过求解可以得到不等式的解集。
初中数学知识归纳数与式的关系及应用数与式是初中数学中的重要知识点,它们的关系及其应用十分广泛。
本文将对初中数学中数与式的关系进行归纳整理,并介绍数与式在实际问题中的应用。
一、数与式的基本概念及关系1. 数的概念:数是用来表示事物的多少或者位置的概念。
它可以用自然数、整数、有理数、无理数和实数等形式来表示。
数可以进行加减乘除等基本运算。
2. 式的概念:式是用数和运算符号组成的数学表达式。
它可以包含数、变量、运算符号等,但没有等号。
式可以通过运算得到一个数值结果。
3. 数与式的关系:数和式是密切相关的,可以相互转化和应用。
例如,数可以通过运算得到式;而式可以通过求解得到数。
数与式是数学中两个重要的概念,它们之间的关系贯穿了数学的始终,是数学运算和问题求解的基础。
二、数与式的应用1. 运算律的应用:数与式的基本运算律包括交换律、结合律和分配律等。
这些运算律在数与式的应用中起着至关重要的作用。
通过灵活应用这些运算律,可以简化计算过程,提高计算效率。
2. 方程与不等式的建立与求解:方程是一个等式,表达了两个式子相等的关系;不等式则表达了式子的大小关系。
在实际问题中,通过建立方程或不等式,可以将问题转化为数学运算和求解问题,从而得到问题的解答。
3. 几何问题的解决:数与式在几何中也有着广泛的应用。
通过建立几何关系的数学模型,可以通过数与式的运算求解几何问题。
如利用解析几何中的坐标系和距离公式,可以求解线段长度、角度等问题。
4. 统计与概率问题的分析:统计与概率是数学中的重要分支,也离不开数与式的应用。
通过建立统计模型和概率模型,可以通过数与式的运算分析和预测各种统计和概率问题。
5. 实际问题的建模与求解:数与式在实际问题中的应用更为丰富。
通过数学建模的方法,将实际问题转化为数与式的关系,然后利用数与式的运算和求解方法,得到问题的解答。
例如,通过建立适当的函数关系,可以求解运动问题、经济问题等。
结语:数与式是初中数学知识中的重要内容,它们的关系及应用贯穿了数学的方方面面。
高一数学数与式知识点总结数与式是高一数学中的基础知识点,它们是我们学习数学的基础。
本文将对高一数学数与式的相关知识进行总结与归纳。
一、数的性质与运算1. 数的分类整数、有理数、无理数、实数等是我们常见的数的分类。
整数包括自然数、零、负整数,而有理数则指可以表示为两个整数的比值的数,无理数则无法表示为有理数的根号形式。
2. 数的绝对值与相反数绝对值是一个数到零的距离,用符号“|x|”表示。
相反数是指一个数与其绝对值相等且符号相反的数,如-5与5就是相反数。
3. 数的加减乘除运算数的加减乘除是我们常见的运算方式,加法是两个数的和,减法是两个数的差,乘法是两个数的积,除法则是两个数的商。
二、方程与不等式1. 方程的定义与解方程是等号连接的两个代数式构成的等式,包括一元一次方程、二元一次方程等。
解方程就是找出使得方程成立的未知数值。
2. 不等式的定义与解不等式是用不等号连接两个代数式构成的不等关系,解不等式就是找出使得不等式成立的解集。
三、一次函数与二次函数1. 一次函数的性质与表示一次函数又称为线性函数,其图像为一条直线。
一次函数可以表示为y = kx + b的形式,其中k是斜率,b是截距。
2. 二次函数的性质与表示二次函数的图像为抛物线,其一般形式为y = ax² + bx + c。
其中a决定了抛物线的开口方向,b决定了抛物线的位置,c决定了抛物线与y轴的位置。
四、等差数列与等比数列1. 等差数列的概念与性质等差数列是指数与数之间的差值保持恒定的数列。
等差数列的通项公式为an = a₁ + (n-1)d,其中a₁为第一项,d为公差,n为项数。
2. 等比数列的概念与性质等比数列是指数与数之间的比值保持恒定的数列。
等比数列的通项公式为an = a₁ * r^(n-1),其中a₁为第一项,r为公比,n为项数。
五、四边形与三角形1. 四边形的性质与分类四边形是指具有四条边的多边形,包括矩形、正方形、菱形、梯形等。
初中数学数与式知识点归纳数与式是初中数学的基础知识,它们在解决实际问题和推导逻辑关系中起着重要的作用。
本文将对初中数学中数与式的相关知识点进行归纳总结,包括数的类型、数的性质、数的运算规律以及代数式和方程等内容。
一、数的类型1. 自然数:自然数包括0和比零大的整数,表示为{0, 1, 2, 3, ...}。
2. 整数:整数包括零、正整数和负整数,表示为{..., -3, -2, -1, 0, 1, 2, 3, ...}。
3. 有理数:有理数包括整数和分数,可以表示为两个整数的比值。
例如,2/3、-5等都属于有理数。
4. 无理数:无理数是不能用两个整数的比值来表示的数,例如π、√2等。
二、数的性质1. 数的比较:对于任意两个数a和b,可以进行大小比较。
如果a > b,表示a大于b;如果a < b,表示a小于b;如果a = b,表示a等于b。
2. 数的相反数:对于任意一个数a,它的相反数是-b,满足a + (-a) = 0。
3. 数的绝对值:对于任意一个数a,它的绝对值表示为|a|,满足|a| = a(a ≥ 0),|a| = -a(a < 0)。
4. 数的倒数:对于任意一个非零数a,它的倒数表示为1/a,满足a ×(1/a) = 1。
5. 数的分数运算:对于两个分数a/b和c/d,可以进行加减乘除运算,并按照分数的运算规律进行化简和约分。
6. 数的幂运算:对于任意一个数a和正整数n,a的n次幂表示为an,满足an= a × a × ... × a(n个a相乘)。
三、数的运算规律1. 加法和减法的交换律:对于任意两个数a和b,有a + b = b + a,a - b ≠ b - a。
2. 加法和减法的结合律:对于任意三个数a、b和c,有(a + b) + c = a + (b + c),(a - b) - c ≠ a - (b - c)。
3. 乘法和除法的交换律:对于任意两个数a和b,有a × b = b × a,a ÷ b ≠ b ÷ a。
数与式知识点归纳总结数与式知识点归纳总结数与式是数学学科的重要部分,很多数学问题都和数与式有关,因此学习和掌握数与式知识对于成为一名合格的数学学习者至关重要。
在数与式的学习中,我们需要掌握一些基本概念和方法,本文将对这些知识点进行归纳总结。
一、基本概念1. 数:数是描述数量或度量的基本概念,例如自然数、整数、有理数、实数、小数等都是数的概念。
2. 运算符号:运算符号是表示数之间的关系以及运算规则的符号,例如加、减、乘、除、等于、大于等于、小于等于等符号都是运算符号。
3. 运算律:运算律是数学运算中的基本规则,它包括结合律、交换律、分配律、逆元等。
其中结合律表示运算的顺序可以改变,交换律表示数的顺序可以改变,而分配律则表示运算可以分开进行。
四则运算:四则运算是数学运算中的基本运算,包括加法、减法、乘法和除法,是数学中最常用的计算方法之一。
二、数的运算1. 加减法:加减法是最基本的运算方法,在数与式的运算中极为重要。
当我们进行加减法运算时需要根据运算法则确定计算顺序,这要求我们首先要掌握数与式的基本运算法则。
加法法则是:同号相加或合并同类项;减法法则是:加上相反数,变为加法运算。
2. 乘法:乘法是将数或者式子相乘的运算方法,同样在数与式的运算中也很常用。
乘法法则是:同号相乘,异号相乘,括号里的优先,同类项化为一项。
3. 除法:除法是将数或者式子相除的运算方法,在数与式的运算中也很常用。
除法法则是:几个同积数的商等于这些数的商的积,除数乘积为被除数,用竖式算可以更清楚地完成除法运算。
三、运算式的化简1. 同类项的合并:在数与式的运算中,同类项的合并常常是进行式子化简的基础。
同类项中有相同的字母和相同次幂的字母,例如 $2x+5x$ 即为同类项,可以化简为$(2+5)x=7x$。
2. 分配律的应用:在式子的化简中,分配律的应用也是不可缺少的,其中一种是乘法分配律,例如 $2(x-y)=2\cdot x-2\cdot y=2x-2y$,另一种是加法分配律,例如 $3(7+2x)-5(4-x)=21+6x-20+5x=-14+x$。
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
数与式知识点总结数与式是数学中重要的基础知识点,它们是关于数字和代数表达式的概念、性质和运算规则。
本文将从数与式的定义、分类、性质和运算规则等方面进行总结,以帮助读者理解和掌握这一知识点。
一、数的概念和性质1.数的定义:数是用来计数或度量的基本概念。
数可以分为自然数、整数、有理数和实数等几类。
2.自然数:自然数是用来计数的数,包括0和正整数,用符号N表示。
3.整数:整数是正整数、0和负整数组成的集合,用符号Z表示。
4.有理数:有理数是可以表示为两个整数之比的数,包括整数和分数,用符号Q表示。
5.实数:实数是可以用小数或无理数表示的数,包括有理数和无理数。
6.数的性质:数具有封闭性、比较性、传递性和稀疏性等性质。
二、式的概念和性质1.式的定义:式是由数和运算符号组成的代数表达式。
式可以分为算术式、代数式和方程等类型。
2.算术式:算术式是由数和四则运算符号组成的表达式,如2+3-4*5/63.代数式:代数式是由数、字母和运算符号组成的表达式,如2x+y-3z。
4.方程:方程是由等号连接的两个代数式构成的等式,如2x+y-3z=7三、数的运算规则1.加法和减法:加法具有交换律和结合律,减法是加法的逆运算。
2.乘法和除法:乘法具有交换律和结合律,除法是乘法的逆运算。
3.混合运算:混合运算时,先乘除后加减,可以使用分配律和结合律。
4.乘方和开方:乘方是数的自乘运算,开方是乘方的逆运算。
5.有理数的运算:有理数的运算可以转化为分数的运算,使用通分、约分和换位律等方法。
四、式的运算规则1.同类项的合并:同类项是指含有相同的字母和相同的次数的项,可以合并为一个项。
2.移项和整理:在代数式中,将含有未知数的项移到等式的同一边,并整理为一般形式。
3.因式分解:将代数式表示为不可再分解为更简单的乘积的形式,称为因式分解。
4.公因式提取:将代数式中的公因式提取出来,有利于后续的因式分解和计算。
5.计算器法则:使用计算器可以进行表达式的计算,包括代数式的运算、方程的求解等。
数与式2,)a a a 定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:有效数字、平方根与算术平方根、立方根、非负式子(,单项式:系数与次数分类多项式整式数与式01;;(),();();1;m m n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a :次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a mb b m b b m 平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值22(0).0.(0)();(0)a a a a a a a a a 的通分、符号变化)整体代换求值定义:式子≥叫二次根式二次根式的意义即被开方数大于等于二次根式的性质:最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222;()()2()()()()a aa b ab b b a b a b a ba ab b a b x a b x ab x a x b 根式乘除法:;(结果化简)定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)。
初中数与式知识点整理数与式是数学学科中的重要基础知识,它们是数学思维、逻辑思维和推理能力的锻炼对象。
在初中数学学习中,数与式是我们必须要掌握的知识点之一。
本文将围绕初中数与式知识点展开,为大家系统整理相关内容。
一、数与式的基本概念和表示方法1. 数的概念:数是对事物数量的概括和表示。
数可以是自然数、整数、有理数、无理数和实数。
2. 式的概念:式是数与运算符号所组成的代数表达式。
式的基本组成部分有数字、变量、运算符号和符号间的关系。
3. 表示方法:a) 数的表示方法:使用阿拉伯数字进行表示,如1、2、3等。
b) 式的表示方法:使用数、运算符号和等号组成的表达式,如3+4=7。
c) 变量的表示方法:使用字母表示,如x、y等。
二、数与式的运算1. 加法和减法a) 加法运算:将两个数相加得到的结果称为和,加法运算可满足交换律和结合律。
b) 减法运算:从一个数中减去另一个数得到的结果称为差,减法运算没有交换律。
2. 乘法和除法a) 乘法运算:将两个数相乘得到的结果称为积,乘法运算可满足交换律和结合律。
b) 除法运算:将一个数除以另一个数得到的结果称为商,除法运算没有交换律和结合律。
3. 数的乘方和开方a) 乘方运算:将一个数自身连乘若干次称为乘方,乘方运算可满足指数法则。
b) 开方运算:将一个数的平方根或立方根等找出来,称为开方运算。
三、数与式的性质和性质的运用1. 数与式的性质a) 交换律:数的加法和乘法满足交换律,即a+b=b+a,a×b=b×a。
b) 结合律:数的加法和乘法满足结合律,即(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)。
c) 分配律:乘法对加法满足分配律,即a×(b+c)=a×b+a×c。
2. 性质的运用a) 同底数的幂相乘:a^m × a^n = a^(m+n)。
b) 同底数的幂相除:a^m ÷ a^n = a^(m-n)。
数与式知识点总结数与代数A、数与式1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
实数无理数无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A 的立方根的运算叫开立方,其中A叫做被开方数。
一、实数、二次根式的有关概念1. 为了表示具有 的量我们引进负数。
2. 和分数统称为有理数, 叫无理数,有理数和无理数统称为 。
3. 整数可分为 和负整数。
分数可分为 。
有理数也可分为:正有理数、 和 。
0既不是 ,也不是 。
4. 规定了 、 和 的直线叫做数轴。
5. 只有 不同的两个数称为相反数。
绝对值最小的数是 ,互为相反数的两数的和为 ,在数轴上表示互为相反数的两个点位于原点的 ,且到 的距离 。
6. 在数轴上,表示数a 的点与 的距离叫做数a 的绝对值。
︱a ︱=_____________________________ 7. 等于a ,那么这个数叫做a 的平方根,记作 ,其中a 是 。
正数a 的正的平方根叫做a 的 ;一个正数的平方根有 个,它们是 ,0的平方根和算术平方根都是 ,负数 。
求的运算叫做开平方。
(a>0)。
8. 如果一个数的 等于a ,那么这个数叫做a 的立方根,求 的运算叫做开立方。
9、二次根式的概念:形如a (a ≥0)的式子,叫做二次根式。
10、二次根式的性质:(1)2)(a = (a 0) (2)2a =a =_____________________________ (3)ab = · (a ≥0,b ≥0); (4)b a = (a ≥0,b ≥0). 11、最简二次根式要满足以下两个条件:(1)被开方数的因数是 数,因式是 式;(2)被开方数中不含能开得尽方的 数或 式。
12、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数 ,这几个二次根式叫做同类二次根式。
二、实数、二次根式的运算1、有理数的加减乘除、乘方、开方的法则分别是什么?①有理数的加法:同号两数相加,取与 相同的符号,并把 相加;绝对值不相等的异号两数相加,取绝对值 的加法的符号,并用 的绝对值减去 的绝对值,互为相反数的两个数相加得 ;一个数同0相加,仍得 。
②有理数的减法:减去一个数等于加上这个数的 。
数与式知识点大全(可编辑一、整数1.整数的定义和性质2.整数的加法和减法运算规则3.整数的乘法和除法运算规则4.整数的乘方运算规则5.整数的比较和排序方法二、有理数1.有理数的定义和性质2.有理数的加法和减法运算规则3.有理数的乘法和除法运算规则4.有理数的比较和排序方法三、实数1.实数的定义和性质2.实数的加法和减法运算规则3.实数的乘法和除法运算规则4.实数的比较和排序方法四、指数与对数1.指数的定义和性质2.指数运算法则3.对数的定义和性质4.对数运算法则五、代数式与观察式1.代数式和观察式的定义和性质2.代数式的简化和展开方法3.代数式的合并和分解方法4.代数式的因式分解和整理方法六、一次方程与一次不等式1.一次方程的定义和性质2.一次方程的解法和应用3.一次不等式的定义和性质4.一次不等式的解法和应用七、二次方程与二次不等式1.二次方程的定义和性质2.二次方程的求根公式和解法3.二次方程的判别式和根的性质4.二次不等式的定义和性质5.二次不等式的解法和应用八、分式1.分式的定义和性质2.分式的加法和减法运算规则3.分式的乘法和除法运算规则4.分式的化简和展开方法九、根式1.根式的定义和性质2.根式的加法和减法运算规则3.根式的乘法和除法运算规则4.根式的化简和展开方法十、函数1.函数的定义和性质2.函数的图像和性质3.函数的四则运算规则4.函数的复合和反函数十一、二项式与多项式1.二项式和多项式的定义和性质2.二项式的展开和化简方法3.多项式的加法和减法运算规则4.多项式的乘法和除法运算规则以上是数与式的主要知识点,涵盖了整数、有理数、实数、指数与对数、代数式与观察式、方程与不等式、分式、根式、函数、二项式与多项式等方面的内容。
通过学习和掌握这些知识点,可以更好地理解和应用数与式的概念和运算规则,提高数学能力和解题能力。
千里之行,始于足下。
初三数学复习_数与式(知识点讲解)数与式是初中数学中的一个重要知识点,也是数学学习的基础。
数与式的学习内容包括数的分类和表示,式的概念及运算。
下面将详细介绍数与式的知识点。
一、数的分类和表示数的分类是指根据数的性质和特点将其划分为不同的类别。
常见的数的分类有:自然数、整数、有理数和无理数等。
其中,1. 自然数是指从1开始,没有上限的整数集合。
2. 整数是指自然数、0和自然数的相反数所组成的集合。
3. 有理数是指可以表示为两个整数之商的数。
数的表示有多种方式,常用的表示方法有阿拉伯数字表示法和汉字表示法。
在阿拉伯数字表示法中,数是由10个数字0、1、2、3、4、5、6、7、8、9组成,可以通过位权法进行表示。
在汉字表示法中,一般使用整数个位和数位进行表示。
二、式的概念及运算1. 式是指由数、变量和运算符号组成的一种数学表达式。
式是数与数之间的关系的代数表示,可以用来表示数的运算和关系。
2. 式的运算包括算术运算和代数运算两种。
a. 算术运算包括加法、减法、乘法和除法四种基本运算。
其中,加法和乘法具有交换律和结合律,减法和除法不具有交换律和结合律。
b. 代数运算包括整式的加减和乘除运算,以及方程的运算。
三、数与式的应用第1页/共2页锲而不舍,金石可镂。
数与式在数学学习中是非常重要的基础知识,它们在实际生活中也有广泛的应用。
1. 在数与式的学习中,可以通过数的分类和表示,帮助我们更好地理解数的性质和特点,从而提高解决实际问题的能力。
2. 在数与式的运算中,可以通过代数运算的知识,更好地理解和应用数字运算的规律和方法,例如简化运算、解方程等。
3. 数与式的应用也广泛存在于实际生活中的问题中,例如计算、测量、金融等领域,通过数与式的运算,能够更好地解决实际生活中的各种问题。
综上所述,数与式是初中数学的重要知识点,通过学习数的分类和表示,能够更好地理解数的性质和特点;通过学习式的概念和运算,能够更好地应用数学知识解决实际问题。
初中数与式的知识点初中数学中,数与式是非常重要的基础知识点。
它们是数学学习的基础,也是后续学习的桥梁。
本文将从不同的角度探讨数与式的相关知识。
一、数与式的基本概念数是用来计量事物数量的概念,可以是具体的或抽象的。
而式是由数及数的运算符号和代数字母组成的算式,是数的运算及表示的工具。
二、数与式的基本运算1. 加法运算:加法是数与式中最基本的运算之一,可以将两个数或式子相加得到和。
例如,2+3=5。
2. 减法运算:减法是数与式中常用的运算,它表示将一个数或式子减去另一个数或式子。
例如,7-4=3。
3. 乘法运算:乘法是数与式中的基本运算之一,可以将两个数或式子相乘得到积。
例如,3×4=12。
4. 除法运算:除法是数与式中常用的运算,它表示将一个数或式子除以另一个数或式子。
例如,8÷2=4。
三、数与式的应用数与式不仅仅用于数学运算中,还广泛应用于实际生活和其他学科中。
1. 代数方程式:代数方程式是数与式的重要应用之一。
它反映了数学与现实生活中的问题之间的关系。
通过解方程,可以求得未知数的值,解决实际问题。
例如,求解一元一次方程3x+1=7,可以得到x=2。
2. 几何问题:数与式在几何中也起到非常重要的作用。
例如,根据周长和面积的关系可以求解各种几何图形的特征。
3. 统计问题:数与式在统计学中有重要的应用。
通过统计数据,可以分析和描述事物的特征,得出相应的结论和推断。
四、数与式的拓展1. 立体几何:数与式也广泛应用于立体几何中。
通过数与式,可以计算立体图形的体积、表面积等。
2. 数据分析:数与式的应用还延伸到数据分析中。
通过统计学知识和数据处理技巧,可以分析和解释各种数据,进行有效的决策。
3. 函数关系:数与式还与函数关系密切相关。
通过数与式,可以建立复杂的函数关系,并进行各种数学操作和推算。
总结起来,数与式是初中数学中的基本概念和运算,不仅在数学中有广泛应用,还涉及到其他学科中的问题。
数与式知识点汇总若()2,0x a a=,则x是a的平方根,平方根为+x与-x两个互为相反数。
正的平方根为算术平方根。
若3,x a=(a为任何数),则x是a的立方根。
2.实数的计算:1] 实数的计算顺序:从左到右,先算特殊值(如乘方、开方、三角函数、绝对值等),再乘除,后加减;有括号从小、中、大顺序进行。
2]开方的计算:5加减:先每项化为最简二次根式(没得开方),再合并同类二次根式(根号内相同),如10---3==,3.几数:倒数、相反数,近似数,有效数字,绝对值:1]倒数:相乘为1;2]相反数:符号不同但数字相同,相加为0;3]近似数:四舍五入;4]有效数字:从非零数数起。
5]绝对值:,,aaaìïï=íï-ïîaa³pa2a=352-=22=-22=;科学记数法:()10110na a矗p,n为整数;4.比较大小:作差法:比较0,a b a ba ba b a bì-[ïïíï-ïîf f作商法:比较1,0,1a b a ba ba b a bì福郏ïïíï港ïîff f作平方法:比较22220,0,a b a ba ba b a bìï[ïïíïïÛïîf ff fab a b=a a a?()m mna a=()1m ma a-=;01a=()2222a b a ab b??;()()22a b a b a b+-=-;()m a b am bm+=+;()()a b m n am an bm bn++=+++;7.常用口诀:完全平方:()2222??尾尾尾头头头;平方差:()()22+-=-同反同反同反;完全平方的应用:()2222a ab b a b++=+()2222a b a b ab+=+-()()2222ab a b a b=+-+()()224ab a b a b?+--8.整式:加减:去括号(用分配律,注意符号),合并同类项(字母及指数都对应相同);乘除用幂公式;9.分式(与分数相同):乘除:约分(约去公因式);加减:通分(分母变为相同的最小公倍数,再分子加减)10.因式分解(结果为积的形式):先1、提公因式;再2、公式法(完全平方,平方差);后3、十字相乘11.式子是否有意义:分母不为00,0,a12.去括号:2(34)68x y x y-+=-+,2(34)68x y x y--=-+提括号:682(34)x y x y-=-,682(34)x y x y-+=--13.符号问题:同号得正,异号得负;负数中偶次方为正,奇次方为负。
九年级数学数与式知识点数与式是数学九年级的一个重要知识点,它涉及到数的基本运算和运算性质,以及常见的代数式的简化与运算。
本文将深入介绍九年级数学中数与式的相关知识,以帮助同学们更好地理解和掌握这一内容。
一、数的基本运算数的基本运算包括加法、减法、乘法和除法。
加法是将两个或多个数合并成一个数,减法是通过减去一个数来找到与其和相等的另一个数,乘法是将两个或多个数相乘得到一个数,除法是通过将一个数分成若干等份,每份的大小为另一个数来找到商。
在进行数的运算时,有一些基本运算性质需要牢记:1. 交换律:加法和乘法满足交换律,即a + b = b + a,a × b = b× a。
2. 结合律:加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c)。
3. 分配律:乘法对加法满足分配律,即a × (b + c) = a × b + a ×c。
二、代数式的定义与性质代数式是由数和运算符号构成的式子,其中可能包含变量。
代数式的求值是将变量用具体的数值代入,计算得到一个确定的数值结果。
代数式的一些重要性质如下:1. 对称性:代数式中的数和变量可以交换位置,结果不变。
例如,a + b = b + a。
2. 积的性质:两个数的积等于它们的乘积。
例如,a × b = b × a。
3. 幂的性质:乘积的幂等于各因子的幂的乘积。
例如,(a × b)²= a² × b²。
4. 分式的性质:除法可以转化为乘法,即a ÷ b = a × (1/b)。
三、代数式的简化与运算代数式的简化是将复杂的代数式通过各种运算性质化简成简单形式的过程。
代数式的运算包括整数指数幂的运算、代数式的加法、减法、乘法和除法运算等。
《数与式》知识点一、什么是数与式1.数的概念:数是人们为了反映事物的多少而引进的概念,是数量的概念。
2.数的分类:自然数、整数、有理数、无理数、实数等。
3.式的概念:将数或数与字母的组合称为式。
二、数的分类1.自然数:包括0及0之后的所有正整数,记作N。
2.整数:包括正整数、负整数和0,记作Z。
3.有理数:包括整数和可以表示为两个整数之比的数,记作Q。
4.无理数:不能表示为两个整数之比的数,记作I。
5.实数:整数、有理数、无理数的统称,记作R。
三、整数运算性质1.加法的封闭性:整数的加法结果仍为整数。
2.加法的交换律、结合律和消去律:整数的加法满足交换律、结合律和消去律。
3.乘法的封闭性:整数的乘法结果仍为整数。
4.乘法的交换律、结合律和消去律:整数的乘法满足交换律、结合律和消去律。
5.加法与乘法的分配率:加法与乘法满足分配率。
四、有理数的性质1.有理数的存在性:任何两个不相等的有理数之间都存在无限多个有理数。
2.有理数的比较性:对于任意两个有理数,可以进行大小比较。
3.有理数的相反数和绝对值:对于任意有理数a,存在唯一有理数-b,使得a+b=0,且有理数的绝对值为非负数。
4.有理数的加法和乘法:有理数的加法满足交换律、结合律和消去律,乘法满足交换律、结合律和分配率。
五、式的运算性质1.代数式:只含有字母、数及加减乘除运算符号的式。
2.同类项:含有相同字母因子的项。
3.同类项合并:将同类项的系数相加或相减。
4. 分配律:a(b+c)=ab+ac,(a+b)c=ac+bc。
5.括号的运算:可以将加法和减法与括号中的项逐项进行运算。
6.用文字表示公式:利用文字和符号表示一个运算法则。
以上就是《数与式》的一些重要知识点,涵盖了数与式的概念、运算性质和分类等内容。
通过学习这些知识点,可以帮助我们更好地理解和运用数与式,进一步提高数学水平。
希望对你的学习有所帮助。
数与式知识点总结1. 为了表示具有 的量我们引进负数。
2. 和分数统称为有理数, 数与式知识点总结 。
3. 整数可分为 和负整数。
分数可分为 数与式知识点总结 和 。
0既不是 ,也不是 。
4. 规定了 、 和 的直线叫做数轴。
5. 只有 不同的两个数称为相反数。
绝对值最小的数是 ,互为相反数的两数的和为 ,在数轴上表示互为相反数的两个点位于原点的 ,且到 的距离 。
6. 在数轴上,表示数a 的点与 的距离叫做数a 的绝对值。
︱a ︱=_____________________________ 7. 等于a,那么这个数叫做a 的平方根,记作 ,其中a 是 。
正数a 的正的平方根叫做a 的 ;一个正数的平方根有 个,它们是 ,0的平方根和算术平方根都是 ,负数 。
求的运算叫做开平方。
(a>0)。
8. 如果一个数的 等于a,那么这个数叫做a 的立方根,求 的运算叫做开立方。
9、二次根式的概念:形如a (a ≥0)的式子,叫做二次根式。
10、二次根式的性质:(1)2)(a = (a 0) (2)2a =a =_____________________________ (3)ab = · (a ≥0,b ≥0); (4)ba = (a ≥0,b ≥0). 11、最简二次根式要满足以下两个条件:(1)被开方数的因数是 数,因式是 式;(2)被开方数中不含能开得尽方的 数或 式。
12、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数 ,这几个二次根式叫做同类二次根式。
二、实数、二次根式的运算1、有理数的加减乘除、乘方、开方的法则分别是什么?①有理数的加法:同号两数相加,取与 相同的符号,并把 相加;绝对值不相等的异号两数相加,取绝对值 的加法的符号,并用 的绝对值减去 的绝对值,互为相反数的两个数相加得 ;一个数同0相加,仍得 。
②有理数的减法:减去一个数等于加上这个数的 。
③有理数的乘法:两数相乘,同号得 ,异号得 ,并把 相乘;任何数与0相乘都得 。
④有理数的除法:除以一个数等于乘以这个数的 ;注意: 不能做除法。
⑤有理数的乘方:求n 个 的因数的积的运算叫做乘方,即 个n a a a a =a n . 其中负数的 次方是负数,负数的 次方是正数;0a = (a ≠0);n a = (a ≠0,n 是正整数)。
⑥有理数的开方:如果一个数的n 次方(n 是大于1的整数)等于a,这个数叫做a 的 ;即若a x n ,则x 叫做a 的 。
求一个数的方根的运算叫做开方。
一般地,正数的二次方根有两个,它们互为 ,负数 二次方根,即:正数a 的n 次方根为±a ,其中,a 是正数a 的 ;正数的三次方根是一个 ,负数的三次方根是一个 ,即:a 的三次方根为3a ;0的n 次方根都是 。
2、实数的运算顺序:(1)按照第三级运算(乘方、开方),第二级运算(乘除),第一级运算(加减)的运算顺序进行计算。
(2)在同一级运算中应该从左到右依次计算。
(3)有括号时,应先算括号里面的,并按照小括号、中括号、大括号的顺序进行运算。
(4)如果符合运算定律和性质,可变更运算顺序。
3、近似数。
近似数的精确度:①0.1(十分位)、0.01(百分位)0.001(千分位)……②个位、十位、百位、千位……4、有效数字:从一个近似数的左边第一个不是 的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字。
5、科学记数法:若绝对值大于10的数可以记成a ×10n 的形式,其中a 的范围是 ,n 的取值是 ;绝对值小于1的数也可以记成a ×10n 的形式,其中a 和n 的条件分别是 , 。
6、实数的大小比较;①在数轴上表示的两个数,_______边的数比_______边的数大;②______大于0;______小于0;_______大于一切负数;两个负数,绝对值大的反而______。
7、运算律:(1)加法交换律:a+b=b+a; (2)加法结合律:(a+b )+c= ;(3)乘法交换律:a ·b= ; (4)乘法结合律:(a ·b )·c= ;(5)乘法分配律:(a+b )·c= .8、二次根式的加减:把各个二次根式化成 后,再分别合并同类二交根式。
9、二次根式的乘除:把被开方数相 ,根指数 。
10、分母有理化:把分母中的根号化去。
(注意:分子分母要同时乘以分母的有理化因式)代数式1.代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示数的 连结而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
2.代数式的书写格式:(1)数学与字母相乘, 应写在 的前面,且“×”、“·”一般都应省略;(2)除法一般写成分数形式;(3)系数为分数且不是真分数时与字母相乘时要写成假分数形式。
3.代数式的值:用 代替代数式中的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
通常在求代数式的值时,应先把代数式尽可能化简,再用数值代替字母求值。
4.代数式的分类:代数式分为有理式和 ,有理式分为整式和 ,分母中不含 的代数式称为整式,整式分为 和 ;一般地,用A 、B 表示两个整式,若B 中含有字母,且B ≠0,则式子BA 叫做 ; 整式(运算、公式)1、整式分式单项式和多项式; 叫做单项式,单项式的系数指的是 ,单项式的次数是 之和; 叫做多项式,组成多项式的每个 叫做多项的项,其中 叫做常数项,(注意多项式中的项包括前面所带的符号)多项式的次数指的是 ,所以多项式有几项几次式的说法。
2、合并同类项:所含字母 ,并且 字母的指数也分别 的单项式叫做同类项,几个常数项也是同类项;把多项式中的同类项 ,叫做合并同类项;合并同类项的法则是:各同类项的字母因式 ,把各个同类项的 作为 。
3、去括号与添括号:去括号时,若括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都 变号;若括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都 变号。
添括号时,若括号前面是“+”号,括到括号里的各项都 变号;若括号前面是“—”号,括到括号里的各项都 变号。
4、整式的加减法:即是合并 ,如有括号,应先去括号,再合并 。
5、同底数幂的乘法:底数 ,指数 。
即:a m ·a n = ______。
6、同底数幂的除法:底数 ,指数 。
即:a m ÷a n =_______(a≠0)。
7、幂的乘方:底数 ,指数 。
即:(a m )n =______。
8、积的乘方:先把积的各个因式分别 ,再把所得的结果 ,即:(ab )n =_______。
9、单项式乘以单项式:系数 ,同底数幂 ,再把所得结果相乘;10、单项式除以单项式:系数 ,同底数幂 ,再把所得结果相乘。
11、单项式与多项式的乘法: 把单项式同多项式的 相乘,再把所的结果 。
即:m(a+b+c)= ; )32()2(c y x a -+⋅-=________ _____。
12多项式除以单项式:把多项式的 都除以单项式,再把所得的结果相加。
13、多项式乘多项式: 把一个多项式的每一项都同另一个多项式的 相乘,再把所得的结果相加,即:(m+n )(a+b)= ; )9)(4(y x y x=_______________. 14、乘法公式:(1)平方差公式:(a+b )(a-b)= ;(2)完全平方公式:(a+b)2 = ;(a-b )2=_____ ___ __. 因式分解1、 因式分解的概念:把一个多项式化成几个整式的 的形式,叫做把这个多项式因式分解,也叫做分解因式。
分解因式要进行到每一个因式都不能再分解为止。
2、 因式分解的方法:(1) 提公因式法:;(2) 运用公式法:平方差公式:= 完全平方公式: =*(3)十字相乘法: 3、因式分解的一般步聚:(1)一“提”:先看多项式的各项是否有公因式,若有公因式必须先提出来;(2)二“套”:若多项式的各项无公因式(或已提出公因式)第二步则看能不能用公式法;(3)三“查”:可以用整式乘法检查因式分解的结果是否正确。
分式1、有理式: 式和 式统称有理式。
2、分式的概念:形如的式子(A,B 均为整式,且B 中含有字母,B 0)。
3、分式的基本性质:分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为=( )。
4、符号性质:分式的分子、分母与分式本身的符号,改变其中任意两个,分式的值不变。
5、分式的运算:公式 , = ,, = ,。
6、分式的混合运算,应先计算 ,再算 ,最后算;如果有括号,先算括号内的。
1、若分式有意义,则的取值范围是() A. B. C.﹥ D.﹤2、函数自变量的取值范围是() A. B. C. D.3、下列运算中,错误的是()A.(c≠0) B. C. D.4、若x<2,则的值是()A.-1 B.0 C.1 D.25、若,则的值是() A. B. C. D.6、计算:的值为() A、 B. C. D.1、若分式的值是0,则的值等于 .2、分式方程的解是 .3、若分式无意义,则的取值范围是 .4、函数中,自变量的取值范围是 .5、化简: .6、计算: .7、若,则的值为 .1、计算2、计算3、计算。