[推荐学习]2018年高考数学一轮复习第二章函数导数及其应用课时达标8指数与指数函数理
- 格式:doc
- 大小:35.37 KB
- 文档页数:5
课时达标 第15讲[解密考纲]本考点主要考查利用导数研究函数的单调性、极值、最值、或者已知最值求参数等问题.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( D ) A .⎣⎡⎭⎫32,+∞ B .⎝⎛⎭⎫32,+∞ C .⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞D .⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析:若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 2.函数f (x )=12x 2-ln x 的最小值为( A )A .12B .1C .0D .不存在解析:f ′(x )=x -1x =x 2-1x,且x >0,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1, ∴f (x )在x =1处取得极小值也是最小值, 且f (1)=12-ln 1=12,故选A .3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( D ) A .15 B .16 C .17D .18解析:x =2是函数f (x )=x 3-3ax +2的极小值点,即x =2是f ′(x )=3x 2-3a =0的根,将x =2代入得a =4,所以函数解析式为f (x )=x 3-12x +2.令f ′(x )=3x 2-12=0,得x =±2,故函数在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时函数f (x )取得极大值f (-2)=18,故选D .4.函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1,x ≤0,e ax ,x >0,在[-2,2]上的最大值为2,则实数a 的取值范围是( D )A .⎣⎡⎭⎫12ln 2,+∞ B .⎣⎡⎦⎤0,12ln 2 C .(-∞,0)D .⎝⎛⎦⎤-∞,12ln 2 解析:当x ∈[-2,0)时,因为f ′(x )=6x 2+6x =6x (x +1),所以在[-2,-1)上f ′(x )>0,在(-1,0]上,f ′(x )≤0,则当x ∈[-2,0]时函数有最大值,为f (-1)=2.当a ≤0时,若x >0,显然e ax ≤1,此时函数在[-2,2]上的最大值为2,符合题意;当a >0时,若函数在[-2,2]上的最大值为2,则e 2a ≤2,得a ≤12ln 2,综上可知a 的取值范围是⎝⎛⎦⎤-∞,12ln 2,故选D . 5.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( A )A .-37B .-29C .-5D .-11解析:f ′(x )=6x 2-12x =6x (x -2),由f ′(x )=0得x =0或x =2.∵f (0)=m ,f (2)=-8+m ,f (-2)=-40+m ,显然f (0)>f (2)>f (-2),∴m =3,最小值为f (-2)=-37,故选A .6.(2017·河北三市二联)若函数f (x )=13x 3-⎝⎛⎭⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则函数f (x )在R 上的极小值为( A )A .2b -43B .32b -23C .0D .b 2-16b 3解析:f ′(x )=x 2-(2+b )x +2b =(x -b )(x -2). ∵函数f (x )在区间[-3,1]上不是单调函数,∴-3<b <1, 则由f ′(x )>0,得x <b 或x >2.由f ′(x )<0,得b <x <2, ∴函数f (x )的极小值为f (2)=2b -43,故选A .二、填空题7.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =32.解析:f ′(x )=3x 2-12,令f ′(x )=0,则x =2和x =-2为其两个极值点,f (3)=-1,f (-3)=17,f (2)=-8,f (-2)=24,∴M =24,m =-8,M -m =32.8.(2017·东北八校月考)已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为4.解析:∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a ×1+3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.9.已知函数f (x )的定义域是[-1,5],部分对应值如下表:f (x )的导函数f ′(x )0.解析:由y =f ′(x )的图象知,f ′(x )与f (x )随x 的变化情况如下表:三、解答题10.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解析:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex .由曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.11.(2017·河北衡水中学调研)已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[t ,t +2](t >0)上的最小值. 解析:(1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e.又g ′(x )=(-x 2+3x +2)e x ,故切线的斜率为g ′(1)=4e. 所以切线方程为y -e =4e(x -1),即y =4e x -3e. (2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥1e时,在区间[t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎡⎭⎫t ,1e 上f (x )为减函数,在区间⎝⎛⎦⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝⎛⎭⎫1e =-1e. 12.已知函数f (x )=ax 2-e x (a ∈R ,e 为自然对数的底数),f ′(x )是f (x )的导函数. (1)解关于x 的不等式:f (x )>f ′(x );(2)若f (x )有两个极值点x 1,x 2,求实数a 的取值范围. 解析:(1)f ′(x )=2ax -e x ,f (x )-f ′(x )=ax (x -2)>0. 当a =0时,无解;当a >0时,解集为{x |x <0或x >2}; 当a <0时,解集为{x |0<x <2}.(2)设g (x )=f ′(x )=2ax -e x ,则x 1,x 2是方程g (x )=0的两个根.g ′(x )=2a -e x ,当a ≤0时,g ′(x )<0恒成立,g (x )单调递减,方程g (x )=0不可能有两个根;当a >0时,由g ′(x )=0,得x =ln 2a ,当x ∈(-∞,ln 2a )时,g ′(x )>0,g (x )单调递增, 当x ∈(ln 2a ,+∞)时,g ′(x )<0,g (x )单调递减. ∴当g (x )max >0时,方程g (x )=0有两个根, ∴g (x )max =g (ln 2a )=2a ln 2a -2a >0,得a >e2.故实数a 的取值范围是⎝⎛⎭⎫e 2,+∞.。
(浙江专版)2018高考数学一轮复习第2章函数、导数及其应用热点探究课1 导数应用中的高考热点问题教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018高考数学一轮复习第2章函数、导数及其应用热点探究课1 导数应用中的高考热点问题教师用书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018高考数学一轮复习第2章函数、导数及其应用热点探究课1 导数应用中的高考热点问题教师用书的全部内容。
热点探究课(一) 导数应用中的高考热点问题[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点1 利用导数研究函数的单调性、极值与最值(答题模板)函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.(本小题满分15分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.[思路点拨](1)求出导数后对a分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a的范围.[规范解答](1)f(x)的定义域为(0,+∞),f′(x)=错误!-a。
2018高考数学一轮复习第2章函数、导数及其应用重点强化训练1 函数的图像与性质教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第2章函数、导数及其应用重点强化训练1 函数的图像与性质教师用书文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第2章函数、导数及其应用重点强化训练1 函数的图像与性质教师用书文北师大版的全部内容。
重点强化训练(一)函数的图像与性质A组基础达标(建议用时:30分钟)一、选择题1.设函数f (x)为偶函数,当x∈(0,+∞)时,f (x)=log2x,则f (-错误!)=()【导学号:66482085】A.-错误!B.错误!C.2 D.-2B[因为函数f (x)是偶函数,所以f (-2)=f (错误!)=log2错误!=错误!。
]2.已知f (x),g(x)分别是定义在R上的偶函数和奇函数,且f (x)-g(x)=x3+x2+1,则f (1)+g(1)=()A.-3 B.-1C.1 D.3C[用“-x”代替“x”,得f (-x)-g(-x)=(-x)3+(-x)2+1,化简得f (x)+g(x)=-x3+x2+1,令x=1,得f (1)+g(1)=1,故选C。
]3.函数f (x)=3x+错误!x-2的零点所在的一个区间是( )A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)C[因为函数f (x)在定义域上递增,又f (-2)=3-2-1-2=-错误!<0,f (-1)=3-1-错误!-2=-错误!<0,f (0)=30+0-2=-1<0,f (1)=3+错误!-2=错误!>0,所以f (0)f (1)<0,所以函数f (x)的零点所在区间是(0,1).]4.已知函数f (x)是定义在R上的偶函数,且在区间[0,+∞)上递增.若实数a满足f (log2a)+f (log错误!a)≤2f (1),则a的取值范围是( )A.[1,2]B.错误!C.错误!D.(0,2]C[∵f (log错误!a)=f (-log2a)=f (log2a),∴原不等式可化为f (log2a)≤f (1).又∵f (x)在区间[0,+∞)上递增,∴0≤log2a≤1,即1≤a≤2.∵f (x)是偶函数,∴f (log2a)≤f (-1).又f (x)在区间(-∞,0]上单调递减,∴-1≤log2a≤0,∴错误!≤a≤1。
课时达标 第10讲[解密考纲]本考点考查函数与方程的关系、函数的零点.在近几年的高考卷中选择题、填空题、解答题都出现过.选择题、填空题通常排在中间位置,解答题往往与其他知识综合考查,题目难度中等.一、选择题1.函数f (x )=x 3+2x -1的零点所在的大致区间是( A ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:f (0)=-1<0,f (1)=2>0,则f (0)·f (1)=-2<0,且函数f (x )=x 3+2x -1的图象是连续曲线,所以f (x )在区间(0,1)内有零点.2.满足方程ln x +x -4=0的x 0属于区间( C ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:构造函数f (x )=ln x +x -4,因为f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,故零点一定在区间(2,3)内.3.f (x )=2sin πx -x +1的零点个数为( B ) A .4 B .5 C .6D .7解析:令f (x )=2sin πx -x +1=0,则2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,在同一坐标系中,画出两个函数的图象,如图所示,两个函数图象的交点一共有5个,所以f (x )=2sin πx -x +1的零点个数为5.4.已知方程|x 2-a |-x +2=0有两个不等的实数根,则实数a 的取值范围为( B ) A .(0,4) B .(4,+∞) C .(0,2)D .(2,+∞)解析:依题意,知方程|x 2-a |=x -2有两个不等的实数根,即函数y 1=|x 2-a |的图象与函数y 2=x -2的图象有两个不同的交点.如图,则a >2,即a >4,故选B .5.已知函数f (x )=e |x |+|x |,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( B )A .(0,1)B .(1,+∞)C .(-1,0)D .(-∞,-1)解析:因为f (-x )=e |-x |+|-x |=e |x |+|x |=f (x ),故f (x )是偶函数.当x ≥0时,f (x )=e x +x是增函数,故f (x )≥f (0)=1,由偶函数图象关于y 轴对称,知f (x )在(-∞,0)上是减函数,值域为[1,+∞),作出函数y =f (x )与y =k 的图象,如图所示,由图可知,实数k 的取值范围是(1,+∞),故选B .6.已知f (x +1)=f (x -1),f (x )=f (-x +2),方程f (x )=0在[0,1]内有且只有一个根x =12,则f (x )=0在区间[0,2 017]内根的个数为( C )A .2 015B .1 008C .2 017D .1 009解析:由f (x +1)=f (x -1),可知f (x +2)=f (x ),所以函数f (x )的周期是2.由f (x )=f (-x +2)可知函数f (x )的图象关于直线x =1对称.因为函数f (x )=0在[0,1]内有且只有一个根x =12,所以函数f (x )=0在区间[0,2 017]内根的个数为2 017,故选C . 二、填空题7.若二次函数f (x )=x 2-2ax +4在(1,+∞)内有两个零点,则实数a 的取值范围为⎝⎛⎭⎫2,25. 解析:依据二次函数的图象有⎩⎪⎨⎪⎧Δ>0,--2a2>1,f (1)>0,即⎩⎪⎨⎪⎧4a 2-16>0,a >1,a <52,解得2<a <52.8.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 017x +log 2 017x ,则在R 上,函数f (x )零点的个数为3.解析:函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 017x +log 2 017x 在区间⎝⎛⎭⎫0,12 017内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数f (x )在R 上的零点的个数为3.9.已知函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,x 2-3ax +a ,x >0,有3个不同的零点,则实数a 的取值范围是⎝⎛⎦⎤49,1.解析:依题意,要使函数f (x )有三个不同的零点,则当x ≤0时,方程2x -a =0,即2x=a 必有一个根,此时0<a ≤1;当x >0时,方程x 2-3ax +a =0有两个不等的实根,即方程x 2-3ax +a =0有两个不等的正实根,于是有⎩⎪⎨⎪⎧Δ=9a 2-4a >0,3a >0,a >0,解得a >49,因此,满足题意的实数a 需满足⎩⎪⎨⎪⎧0<a ≤1,a >49,即49<a ≤1.三、解答题10.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1.所以函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根, 所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立, 所以有(-4a )2-4×(4a )<0⇒a 2-a <0, 解得0<a <1,因此实数a 的取值范围是(0,1).11.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 解析:(1)当x ∈(-∞,0)时,-x ∈(0,+∞), 因为y =f (x )是奇函数,所以f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)当x ∈[0,+∞)时,f (x )=x 2-2x =(x -1)2-1,最小值为-1; 当x ∈(-∞,0)时,f (x )=-x 2-2x =1-(x +1)2,最大值为1.可作出函数y =f (x )的图象(如图所示),根据图象,若方程f (x )=a 恰有3个不同的解,则a 的取值范围是(-1,1).12.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解析:(1)∵x >0时,g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是[2e ,+∞),因而只需m ≥2e 时,y =g (x )-m 就有零点.所以m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).。
2018版高考数学一轮总复习 第2章 函数、导数及其应用 2.8 函数与方程模拟演练 文[A 级 基础达标](时间:40分钟)1.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2) 答案 C解析 由条件可知f (1)f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.2.函数y =log a (x +1)+x 2-2(0<a <1)的零点的个数为( ) A .0 B .1 C .2 D .无法确定 答案 C解析 令log a (x +1)+x 2-2=0,方程解的个数即为所求函数零点的个数,即为函数y =log a (x +1)(0<a <1)与函数y =-x 2+2(x >-1)的图象的交点个数,易知图象交点个数为2,故选C.3.[2017·湖南师大附中模拟]设f (x )=3x+3x -8,用二分法求方程3x+3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定答案 B解析 由f (1.25)<0,f (1.5)>0可得方程f (x )=0的根落在(1.25,1.5)上,故选B.4.[2017·广东七校联考]已知函数f (x )=⎝ ⎛⎭⎪⎫15x-log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零 答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎫15x-log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0,故选A.5.[2017·黑龙江哈师大附中月考]关于x 的方程⎝ ⎛⎭⎪⎫13|x |-a -1=0有解,则a 的取值范围是( )A .0<a ≤1B .-1<a ≤0C .a ≥1D .a >0答案 B解析 方程⎝ ⎛⎭⎪⎫13|x |-a -1=0有解等价于存在x ∈R 使得⎝ ⎛⎭⎪⎫13|x |-1=a 成立,设f (x )=⎝ ⎛⎭⎪⎫13|x |-1=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x -1,x ≥0,3x -1,x <0,易得函数f (x )的值域为(-1,0],所以a 的取值范围为-1<a ≤0,故选B.6.函数f (x )=e x+12x -2的零点有________个.答案 1解析 ∵f ′(x )=e x+12>0,∴f (x )在R 上单调递增,又f (0)=1-2<0,f (1)=e -32>0,∴函数在区间(0,1)上有零点且只有一个.7.[2015·安徽高考]在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.答案 -12解析 若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.8.[2017·嘉兴模拟]设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n+1),n ∈N ,则x 0所在的区间是________.答案 (1,2)解析 设f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2,则x 0是函数f (x )的零点,在同一坐标系下画出函数y =x3与y =⎝ ⎛⎭⎪⎫12x -2的图象如图所示.因为f (1)=1-⎝ ⎛⎭⎪⎫12-1=-1<0,f (2)=8-⎝ ⎛⎭⎪⎫120=7>0,所以f (1)f (2)<0,所以x 0∈(1,2). 9.[2017·唐山模拟]当x ∈[1,2]时,函数y =12x 2与y =a x(a >0)的图象有交点,求a 的取值范围________.答案 ⎣⎢⎡⎦⎥⎤12,2 解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12·22≥a2,即1<a≤2;当0<a<1时,如图②所示,需满足12·12≤a1,即12≤a<1,综上可知,a∈⎣⎢⎡⎦⎥⎤12,2. 10.[2017·江西模拟]已知函数f(x)=-x2+2e x+m-1,g(x)=x+e2x(x>0).(1)若g(x)=m有实数根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.解(1)∵x>0时,g(x)=x+e2x≥2x·e2x=2e,等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因而只需m≥2e,则y=g(x)-m就有零点.∴m的取值范围是[2e,+∞).(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+e2x(x>0)的大致图象.∵f(x)=-x2+2e x+m-1=-(x-e)2+m-1+e2,∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).[B级知能提升](时间:20分钟) 11.设a是方程2ln x-3=-x的解,则a在下列哪个区间内( ) A.(0,1) B.(3,4) C.(2,3) D.(1,2)答案 D解析 令f (x )=2ln x -3+x ,则函数f (x )在(0,+∞)上递增,且f (1)=-2<0,f (2)=2ln 2-1=ln 4-1>0,所以函数f (x )在(1,2)上有零点,即a 在区间(1,2)内.12.[2017·大连模拟]函数f (x )=(x +1)ln x -1的零点有( ) A .0个 B .1个 C .2个 D .3个 答案 B解析 由f (x )=(x +1)ln x -1=0,得ln x =1x +1,作出函数y =ln x ,y =1x +1的图象如图,由图象可知交点个数为1,即函数的零点个数为1,选B.13.g (x )=x +e2x-m (x >0,其中e 表示自然对数的底数).若g (x )在(0,+∞)上有零点,则m 的取值范围是________.答案 m ≥2e解析 由g (x )=0,得x 2-mx +e 2=0,x >0.由此方程有大于零的根,得⎩⎪⎨⎪⎧m 2>0,Δ=m 2-4e 2≥0,解得⎩⎪⎨⎪⎧m >0,m ≥2e或m ≤-2e ,故m ≥2e.14.已知函数f (x )=-x 2-2x , g (x )=⎩⎪⎨⎪⎧x +14x,x >0,x +1,x ≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解 (1)∵f (1)=-12-2×1=-3, ∴g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.。
第八节函数与方程1.函数的零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x ∈D)的零点.(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.( )(2)函数y=f(x),x∈D在区间(a,b)⊆D内有零点(函数图象连续不断),则f(a)·f(b)<0.( )(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.( )(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点.( )[答案](1)×(2)×(3)×(4)√2.(教材改编)函数f (x )=e x+3x 的零点个数是( ) A .0 B .1 C .2D .3B [∵f (-1)=1e -3<0,f (0)=1>0,∴f (x )在(-1,0)内有零点,又f (x )为增函数,∴函数f (x )有且只有一个零点.] 3.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln xD .y =x 2+1A [由于y =sin x 是奇函数;y =ln x 是非奇非偶函数,y =x 2+1是偶函数但没有零点,只有y =cos x 是偶函数又有零点.]4.(2017·浙江五校联考)函数f (x )=3x-x 2的零点所在区间是( ) A .(0,1) B .(1,2) C .(-2,-1)D .(-1,0)D [∵f (-2)=-359,f (-1)=-23,f (0)=1,f (1)=2,f (2)=5,∴f (0)f (1)>0,f (1)f (2)>0,f (-2)f (-1)>0,f (-1)f (0)<0,故选D.]5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________. 【导学号:51062055】⎝ ⎛⎭⎪⎫13,1 [∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.]A .(0,1)B .(1,2)C .(2,3)D .(3,4)(2)函数f (x )=x 2-3x -18在区间[1,8]上________(填“存在”或“不存在”)零点. (1)B (2)存在 [(1)函数f (x )的零点所在的区间可转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的取值范围.作图如下:可知f (x )的零点所在的区间为(1,2). (2)法一:∵f (1)=12-3×1-18=-20<0,f (8)=82-3×8-18=22>0,∴f (1)·f (8)<0,又f (x )=x 2-3x -18,x ∈[1,8]的图象是连续的, 故f (x )=x 2-3x -18在x ∈[1,8]上存在零点. 法二:令f (x )=0,得x 2-3x -18=0, ∴(x -6)(x +3)=0.∵x =6∈[1,8],x =-3∉[1,8],∴f (x )=x 2-3x -18在x ∈[1,8]上存在零点.] [规律方法] 判断函数零点所在区间的方法:判断函数在某个区间上是否存在零点,要根据具体题目灵活处理,当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时,可画出图象判断.[变式训练1] (1)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)(2)在用二分法求方程x 2-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.(1)C (2)⎝ ⎛⎭⎪⎫32,2 [(1)∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3),故选C. (2)在(1,2)内取中点x 0=32,令f (x )=x 3-2x -1.∵f ⎝ ⎛⎭⎪⎫32=278-4<0,f (2)=8-4-1>0,f (1)<0, ∴f (x )=0的根在⎝ ⎛⎭⎪⎫32,2内.]0.5A .1 B .2 C .3D .4(2)(2017·杭州学军中学模拟)函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.(1)B (2)3 [(1)令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点.(2)当x >0时,作函数y =ln x 和y =x 2-2x 的图象, 由图知,当x >0时,f (x )有2个零点; 当x ≤0时,由f (x )=0得x =-14,综上,f (x )有3个零点.][规律方法] 判断函数零点个数的方法:(1)解方程法:所对应方程f (x )=0有几个不同的实数解就有几个零点. (2)零点存在性定理法:利用零点存在性定理并结合函数的性质进行判断.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数.[变式训练2] 函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为________.2 [f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2=2sin x cos x -x 2=sin 2x -x 2,由f (x )=0,得sin2x =x 2.设y 1=sin 2x ,y 2=x 2,在同一平面直角坐标系中画出二者的图象,如图所示.由图象知,两个函数图象有两个交点,故函数f (x )有两个零点.](2017·宁波市模拟)已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的实根,求a 的取值范围.[思路点拨] 先作出函数f (x )的图象,根据方程有三个不同的根,确定应满足的条件. [解] 由f (x -4)=f (x )知,函数的周期为4,又函数为偶函数,所以f (x -4)=f (x )=f (4-x ),6分所以函数图象关于x =2对称,且f (2)=f (6)=f (10)=2,要使方程f (x )=log a x 有三个不同的根,则满足⎩⎪⎨⎪⎧ a >1,f 6<2,f 10>2,10分如图,即⎩⎪⎨⎪⎧a >1,log a 6<2,log a 10>2,解得6<a <10.故a 的取值范围是(6,10).15分[规律方法] 已知函数有零点求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.[变式训练3] (1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f (x )={ |x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.【导学号:51062056】(1)C (2)(3,+∞) [(1)∵函数f (x )=2x -2x-a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,∴(-a )(4-1-a )<0,即a (a-3)<0,∴0<a <3.(2)作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.][思想与方法]1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法 (1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.3.利用函数零点求参数范围的常用方法:直接法、分离参数法、数形结合法. [易错与防范]1.函数的零点不是点,是方程f (x )=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.课时分层训练(十) 函数与方程A 组 基础达标 (建议用时:30分钟)一、选择题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) 【导学号:51062057】A .0,2B .0,12C .0,-12D .2,-12C [由题意知2a +b =0,即b =-2a .令g (x )=bx 2-ax =0,得x =0或x =a b =-12.]2.(2017·台州模拟)已知实数a >1,0<b <1,则函数f (x )=a x+x -b 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)B [∵a >1,0<b <1,f (x )=a x+x -b , ∴f (-1)=1a-1-b <0,f (0)=1-b >0,由零点存在性定理可知f (x )在区间(-1,0)上存在零点.]3.函数f (x )=2x +x 3-2在区间(0,2)内的零点个数是( ) A .0 B .1 C .2D .3B [由指数函数、幂函数的性质可知,f (x )=2x+x 3-2在区间(0,2)内单调递增,且f (0)=-1<0,f (2)=10>0,所以f (0)·f (2)<0,即函数f (x )=2x +x 3-2在区间(0,2)内有唯一一个零点,故选B.]4.若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,参考数据如下:A .1.25B .1.375C .1.406 25D .1.5C [根据题意知函数的零点在1.406 25至1.437 5之间, 又|1.437 5-1.406 25|=0.031 25<0.1, 故方程的一个近似根可以是1.406 25.]5.(2017·浙江五校2月联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14 B.18 C .-78D .-38C [令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.]二、填空题6.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数m 的取值范围是________.(-∞,1) [设函数f (x )=x 2+mx -6,则根据条件有f (2)<0,即4+2m -6<0,解得m <1.]7.(2016·浙江高考)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.-2 1 [∵f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1,∴f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧2a +b =-3,①a 2+2ab =0,②a 3+3a 2=a 2b .③∵a ≠0,∴由②得a =-2b ,代入①式得b =1,a =-2.]8.若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是__________.【导学号:51062058】(0,2) [由f (x )=|2x-2|-b =0得|2x-2|=b .在同一平面直角坐标系中画出y =|2x-2|与y =b 的图象,如图所示,则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x-2|-b 有两个零点.]三、解答题9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.[证明] 令g (x )=f (x )-x .4分 ∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0.10分 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0, 即f (x 0)=x 0.15分10.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围. [解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根.4分因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.7分(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎨⎧f-1>0,f 0<0,f ⎝ ⎛⎭⎪⎫12>0,10分即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.12分故实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪12<a <34.15分 B 组 能力提升 (建议用时:15分钟)1.(2017·杭州二中模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1]D [因为当x >0时,f (x )=2x -1, 由f (x )=0得x =12.所以要使f (x )在R 上有两个零点,则必须2x-a =0在(-∞,0]上有唯一实数解. 又当x ∈(-∞,0]时,2x∈(0,1],且y =2x 在(-∞,0]上单调递增, 故所求a 的取值范围是(0,1].]2.(2017·浙江镇海中学测试卷一)已知函数f (x )=a x-x +b 的零点x 0∈(k ,k +1)(k ∈Z ),其中常数a ,b 满足3a =2,3b=94,则k =________. 【导学号:51062059】1 [依题意有a =log 32∈(0,1),b =log 394=2-2log 32=2-2a ,因为0<a <1,所以y =f (x )是R 上的减函数,而f (1)=a -1+b =1-a >0,f (2)=a 2-2+b =a 2-2a =a (a -2)<0,故x 0∈(1,2),故k =1.]3.若关于x 的方程22x+2xa +a +1=0有实根,求实数a 的取值范围.【导学号:51062060】[解] 法一(换元法):设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.4分生活的色彩就是学习K12的学习需要努力专业专心坚持 ①若方程(*)有两个正实根t 1,t 2,则⎩⎪⎨⎪⎧ Δ=a 2-a +,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;8分②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;10分③若方程(*)有一个正实根和一个零根,则f (0)=0且-a 2>0,解得a =-1. 综上,a 的取值范围是(-∞,2-22].15分法二(分离变量法):由方程,解得a =-22x +12x +1,4分 设t =2x (t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1 =2-⎣⎢⎡⎦⎥⎤t ++2t +1,其中t +1>1,10分 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.15分。
2018高考数学一轮复习第2章函数、导数及其应用重点强化课1 函数的图像与性质教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第2章函数、导数及其应用重点强化课1 函数的图像与性质教师用书文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第2章函数、导数及其应用重点强化课1 函数的图像与性质教师用书文北师大版的全部内容。
重点强化课(一)函数的图像与性质[复习导读]函数是中学数学的核心概念,函数的图像与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.重点1 函数图像的应用已知f (x)为偶函数,当x≥0时,f (x)=错误!则不等式f (x-1)≤错误!的解集为()A。
错误!∪错误!B.错误!∪错误!C.错误!∪错误!D.错误!∪错误!A[画出函数f (x)的图像,如图,当0≤x≤错误!时,令f (x)=cosπx≤错误!,解得错误!≤x≤错误!;当x>错误!时,令f (x)=2x-1≤错误!,解得错误!<x≤错误!,故有错误!≤x≤错误!。
因为f (x)是偶函数,所以f (x)≤错误!的解集为错误!∪错误!,故f (x-1)≤错误!的解集为错误!∪错误!.][迁移探究1]在本例条件下,若关于x的方程f (x)=k有2个不同的实数解,求实数k的取值范围.[解]由函数f (x)的图像(图略)可知,当k=0或k>1时,方程f (x)=k有2个不同的实数解,即实数k的取值范围是k=0或k>1. 12分[迁移探究2] 在本例条件下,若函数y=f (x)-k|x|恰有两个零点,求实数k的取值范围.[解]函数y=f (x)-k|x|恰有两个零点,即函数y=f (x)的图像与y=k|x|的图像恰有两个交点,借助函数图像(图略)可知k≥2或k=0,即实数k的取值范围为k=0或k≥2。
2018年高考数学一轮复习 第二章 函数、导数及其应用 第8讲 指数与指数函数实战演练 理1.(2016·全国卷Ⅲ)已知a =243 ,b =425 ,c =2513 ,则( A ) A .b <a <c B .a <b <c C .b <c <aD .c <b <a解析:因为a =243 =423 ,c =2513 =523 ,函数y =x 23 在(0,+∞)上单调递增,所以423 <523 ,即a <c ,又因为函数y =4x在R 上单调递增,所以425 <423 ,即b <a ,所以b <a <c ,故选A .2.(2015·天津卷)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a=f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( B )A .a <b <cB .c <a <bC .a <c <bD .c <b <a解析:∵f (x )是偶函数,∴m =0,∴f (x )=2|x |-1,且f (x )在[0,+∞)上为增函数,由题意得a =f (log 0.53)=f (-log 23)=f (log 23),∵log 25>log 23>0,∴f (log 25)>f (log 23)>f (0),即b >a >c .3.(2015·山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =-32.解析:①当a >1时,f (x )在[-1,0]上单调递增,则⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,∴a +b =-32.4.(2015·江苏卷)不等式2x 2-x<4的解集为{x |-1<x <2}.解析:不等式2x 2-x <4可化为2x 2-x<22,由指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标8指数与指数函数 理[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.一、选择题1.(2017·云南昆明模拟)设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎫12 2.5,则a ,b ,c 的大小关系是( C )A .a >c >bB .c >a >bC .a >b >cD .b >a >c解析:b =2.50=1,c =⎝ ⎛⎭⎪⎫12 2.5=2-2.5,则2-2.5<1<22.5,即c <b <a .2.(2017·河南洛阳模拟)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( B )解析:|f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32.又|f (x )|≥0,故选B . 3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析:由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9.可知C 正确,故选C .4.(2017·山西太原模拟)函数y =2x-2-x是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减解析:令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C ,D .又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数,故选A .5.(2017·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( C )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x .∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2,故选C .6.(2017·山东济宁模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2cD .2a+2c<2解析:作出函数f (x )=|2x-1|的图象,如图.∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a<1.∴f (a )=|2a-1|=1-2a<1, ∴f (c )<1,∴0<c <1, ∴1<2c<2,∴f (c )=|2c-1|=2c-1, 又∵f (a )>f (c ),∴1-2a>2c-1, ∴2a+2c<2,故选D . 二、填空题7.(2017·吉林长春模拟)已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是(0,1).解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增,所以1a>1,解得0<a <1.8.(2017·山东济南模拟)若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =14.解析:因为g (x )在[0,+∞)上为增函数, 则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上单调递增,最小值为1a=m ,最大值为a 2=4,解得a =2,m =12,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上单调递减,最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116,综上知a =14.9.(2017·山东济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f x 1-f x 2x 1-x 2>0,则a 的取值范围是(0,1)∪(2,+∞).解析:当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).三、解答题10.化简:(1)a 3b 23ab 2a 14b 124a -13 b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278-23 +(0.002)-12 -10(5-2)-1+(2-3)0. 解析:(1)原式=a 3b 2a 13b 23 12ab 2a -13 b 13=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1. (2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭⎪⎫-82723 +50012 -10(5+2)+1=49+105-105-20+1 =-1679.11.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解析:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3=a ⎝ ⎛⎭⎪⎫x -2a 2+3-4a,∵f (x )有最大值,∴g (x )应有最小值,且g (x )min =3-4a (a >0),∴f (x )max =⎝ ⎛⎭⎪⎫133-4a =3,∴3-4a =-1,∴a =1.12.已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解析:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得b =1,所以f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t2-1)等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得⎩⎨⎧t ⎪⎪⎪⎭⎬⎫t >1或t <-13.。
(时间:40分钟)1.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)等于()A.-e B.-1 C.1 D.e答案 B解析∵f′(x)=2f′(1)+错误!,∴f′(1)=2f′(1)+1,∴f′(1)=-1。
故选B.2.曲线f(x)=错误!在点(1,f(1))处切线的倾斜角为错误!,则实数a=( )A.1 B.-1 C.7 D.-7答案 C解析f′(x)=错误!=错误!,又∵f′(1)=tan错误!=-1,∴a=7。
3.已知直线y=kx是曲线y=ln x的切线,则k的值是( )A.e B.-e C。
错误! D.-错误!答案 C解析依题意,设直线y=kx与曲线y=ln x切于点(x0,kx0),则有错误!由此得ln x0=1,x0=e,k=错误!,选C.4.曲线y=x e x+2x-1在点(0,-1)处的切线方程为()A.y=3x-1 B.y=-3x-1C.y=3x+1 D.y=-2x-1答案 A解析依题意得y′=(x+1)e x+2,则曲线y=x e x+2x-1在点(0,-1)处的切线的斜率为(0+1)e0+2=3,故曲线y=x e x+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1,故选A。
5.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小值为( )A.1 B。
错误! C.错误! D.错误!答案 B解析因为定义域为(0,+∞),所以y′=2x-错误!=1,解得x=1,则在P(1,1)处的切线方程为x-y=0,所以两平行线间的距离为d=错误!=错误!。
6.直线x-2y+m=0与曲线y=x相切,则切点的坐标为________.答案(1,1)解析∵y=x=x错误!,∴y′=错误!x错误!,令y′=错误!x错误!=错误!,则x=1,则y=错误!=1,即切点坐标为(1,1).7.在平面直角坐标系xOy中,若曲线y=ax2+错误!(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是________.答案-3解析 由曲线y =ax 2+错误!过点P (2,-5),得4a +错误!=-5.①又y ′=2ax -错误!,所以当x =2时,4a -错误!=-错误!,②由①②得错误!所以a +b =-3。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标8
指数与指数函数 理
[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.
一、选择题
1.(2017·云南昆明模拟)设a =22.5,b =2.50,c =⎝ ⎛⎭
⎪⎫12 2.5,则a ,b ,c 的大小关系是( C )
A .a >c >b
B .c >a >b
C .a >b >c
D .b >a >c
解析:b =2.50
=1,c =⎝ ⎛⎭
⎪⎫12 2.5=2-2.5,
则2
-2.5
<1<22.5
,即c <b <a .
2.(2017·河南洛阳模拟)已知函数f (x )=2x
-2,则函数y =|f (x )|的图象可能是( B )
解析:|f (x )|=|2x
-2|=⎩
⎪⎨⎪⎧
2x
-2,x ≥1,2-2x
,x <1,
易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32.
又|f (x )|≥0,故选B . 3.已知f (x )=3x -b
(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )
A .[9,81]
B .[3,9]
C .[1,9]
D .[1,+∞)
解析:由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2
在[2,4]上是增函数,f (x )min =
f (2)=1,f (x )max =f (4)=9.可知C 正确,故选C .
4.(2017·山西太原模拟)函数y =2x
-2-x
是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减
解析:令f (x )=2x -2-x ,则f (-x )=2-x -2x
=-f (x ),所以函数f (x )是奇函数,排除C ,D .又函数y =-2-x
,y =2x 均是R 上的增函数,故y =2x -2-x
在R 上为增函数,故选A .
5.(2017·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2
-m )·4x -2x
<0恒成立,则实数m 的取值范围是( C )
A .(-2,1)
B .(-4,3)
C .(-1,2)
D .(-3,4)
解析:原不等式变形为m 2
-m <⎝ ⎛⎭⎪⎫12x .
∵函数y =⎝ ⎛⎭⎪⎫12x
在(-∞,-1]上是减函数,
∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭
⎪⎫12-1
=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭
⎪⎫12x 恒成立等价于m 2
-m <2,解得-1<m <2,故选C .
6.(2017·山东济宁模拟)已知函数f (x )=|2x
-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )
A .a <0,b <0,c <0
B .a <0,b ≥0,c >0
C .2-a
<2c
D .2a
+2c
<2
解析:作出函数f (x )=|2x
-1|的图象,如图.
∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a
<1.
∴f (a )=|2a
-1|=1-2a
<1, ∴f (c )<1,∴0<c <1, ∴1<2c
<2,
∴f (c )=|2c
-1|=2c
-1, 又∵f (a )>f (c ),∴1-2a
>2c
-1, ∴2a
+2c
<2,故选D . 二、填空题
7.(2017·吉林长春模拟)已知函数f (x )=a -x
(a >0,且a ≠1),且f (-2)>f (-3),则
a 的取值范围是(0,1).
解析:因为f (x )=a -x
=⎝ ⎛⎭
⎪⎫1a
x ,且f (-2)>f (-3),
所以函数f (x )在定义域上单调递增,所以1
a
>1,
解得0<a <1.
8.(2017·山东济南模拟)若函数f (x )=a x
(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =1
4
.
解析:因为g (x )在[0,+∞)上为增函数, 则1-4m >0,即m <1
4
.
若a >1,则函数f (x )在[-1,2]上单调递增,最小值为1a
=m ,最大值为a 2
=4,解得a =
2,m =12,与m <1
4
矛盾;
当0<a <1时,函数f (x )在[-1,2]上单调递减,最小值为a 2
=m ,最大值为a -1
=4,解得a =14,m =116,综上知a =14
.
9.(2017·山东济宁月考)已知函数f (x )=(a -2)a x
(a >0,且a ≠1),若对任意x 1,x 2
∈R ,
f x 1-f x 2
x 1-x 2
>0,则a 的取值范围是(0,1)∪(2,+∞).
解析:当0<a <1时,a -2<0,y =a x
单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x
单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =
a x 单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,
+∞).
三、解答题
10.化简:(1)
a 3
b 23
ab 2
a 14
b 1
2
4a -
13 b 13
(a >0,b >0);
(2)⎝ ⎛⎭⎪⎫-278-23 +(0.002)-12 -10(5-2)-1+(2-3)0
. 解析:(1)原式=a 3b 2
a 13
b 23 12
ab 2a -13 b 13
=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1
. (2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭
⎪⎫-82723 +50012 -10(5+2)+1
=4
9+105-105-20+1 =-1679
.
11.已知函数f (x )=⎝ ⎛⎭
⎪
⎫13ax 2-4x +3.
(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.
解析:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪
⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,
-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭
⎪⎫13t
在R 上单调递减,所以f (x )在(-
∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).
(2)令g (x )=ax 2
-4x +3=a ⎝ ⎛⎭
⎪⎫x -2a 2+3-4a
,∵f (x )有最大值,∴g (x )应有最小值,且
g (x )min =3-4a (a >0),∴f (x )max =⎝ ⎛⎭
⎪⎫133-4a =3,∴3-4a =-1,∴a =1.
12.已知定义域为R 的函数f (x )=-2x
+b
2x +1+a 是奇函数.
(1)求a ,b 的值;
(2)解关于t 的不等式f (t 2
-2t )+f (2t 2
-1)<0.
解析:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b
2+a =0,解得b =1,
所以f (x )=-2x
+1
2x +1+a
.
又由f (1)=-f (-1)知-2+1
4+a =--12+11+a ,解得a =2.
(2)由(1)知f (x )=-2x
+12x +1+2=-12+1
2x +1.
由上式易知f (x )在(-∞,+∞)上为减函数.
又因为f (x )是奇函数,所以不等式f (t 2
-2t )+f (2t 2
-1)<0等价于f (t 2
-2t )<-f (2t
2
-1)等价于f (t 2
-2t )<-f (2t 2
-1)=f (-2t 2
+1).因为f (x )是减函数,由上式推得t 2
-2t >
-2t 2
+1,即3t 2
-2t -1>0,解不等式可得⎩⎨⎧
t ⎪
⎪⎪⎭⎬⎫
t >1或t <-13.。