2019高三一轮总复习文科数学课时跟踪检测:6-6直接证明与间接证明 含解析
- 格式:doc
- 大小:61.50 KB
- 文档页数:9
第六篇不等式、推理与证明专题6.6直接证明、间接证明、数学归纳法【考纲要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点3.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【命题趋势】1.直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.2.数学归纳法一般以数列、集合为背景,用“归纳—猜想—证明”的模式考查.【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养.【素养清单•基础知识】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的__结论__出发,逐步寻求使它成立的充分条件,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义一般地,假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题的成立,这样的证明方法叫作反证法.(2)用反证法证明的一般步骤①反设——假设原命题的结论不成立;②归谬——根据假设进行推理,直到推理中出现矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.用反证法证明命题“若p ,则q ”的过程可以用框图表示为 肯定条件p ,否定结论q ―→推出逻辑矛盾―→“若p ,则非q ”为假―→“若p ,则q ”为真【真题体验】1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°3.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________.4.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.5.(2019·湖北天门中学月考)设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.(2019·黑龙江大庆一模)设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k +1成立时,总可推出f (k +1)≥k +2成立”.那么,下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)时命题为真,进而需证n =__________时,命题亦真.【考法解码•题型拓展】考法一:分析法解题技巧:分析法证题的思路(1)先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【例1】 已知a >0,求证:a 2+1a 2-2≥a +1a -2.考法二:综合法归纳总结 :综合法证题的思路(1)分析条件选择方向:分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法.(2)转化条件组织过程:把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.(3)适当调整回顾反思:回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.【例2】 (1)设a ,b ,c ,d 均为正数,且a +b =c +d ,若ab >cd ,证明:①a +b >c +d ;②|a -b |<|c -d |.(2)(2019·长沙调考)已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.考法三:反证法归纳总结(1)适用范围:①“结论”的反面比“结论”本身更简单、更具体、更明确的题目;②否定性命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明法比较困难,往往用反证法.(2)推理关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.考法四:数学归纳法证明等式归纳总结:数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确地写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【例1】求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).考法五:数学归纳法证明不等式归纳总结(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证明,则可考虑应用数学归纳法.(2)数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等方法证明.【例2】已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n,求证:当n∈N*时,a n<a n+1.考法六:归纳—猜想—证明归纳总结:“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决与正整数n有关的探索性问题、存在性问题中有着广泛的应用,其关键是归纳、猜想出公式.【例3】(2019·湖北孝感检测)数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【易错警示】易错点一:反证法中未用到反设的结论【典例】设{a n}是公比为q的等比数列.设q≠1,证明:数列{a n+1}不是等比数列.【错解】:假设{a n+1}是等比数列.则{a n+1}的前三项为a1+1,a2+1,a3+1,即a1+1,a1q+1,a1q2+1.(a1+1)(a1q2+1)-(a1q+1)2=a21q2+a1+a1q2+1-a21q2-2a1q-1=a1(q2-2q+1)=a1(q-1)2≠0,所以(a1+1)(a1q2+1)≠(a1q+1)2,所以数列{a n+1}不是等比数列.(推理中未用到结论的反设)【错因分析】:错解在解题的过程中并没有用到假设的结论,故不是反证法.利用反证法进行证明时,首先对所要证明的结论进行否定性假设,并以此为条件进行归谬,得到矛盾,则原命题成立.【正解】:假设{a n+1}是等比数列.则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k +2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.又q≠0,所以q2-2q+1=0,所以q=1,这与已知q≠1矛盾.所以假设不成立,故数列{a n+1}不是等比数列.【误区防范】利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.【跟踪训练】设a>0,b>0,且a2+b2=1a2+1b2.证明:a2+a<2与b2+b<2不可能同时成立.【答案】见解析【解析】证明 假设a 2+a <2与b 2+b <2同时成立,则有a 2+a +b 2+b <4.而由a 2+b 2=1a 2+1b 2得a 2b 2=1,因为a >0,b >0,所以ab =1.因为a 2+b 2≥2ab =2(当且仅当a =b =1时,等号成立),a +b ≥2ab =2(当且仅当a=b =1时,等号成立),所以a 2+a +b 2+b ≥2ab +2ab =4(当且仅当a =b =1时,等号成立),这与假设矛盾,故假设错误.所以a 2+a <2与b 2+b <2不可能同时成立.易错点二:证明过程未用到归纳假设【典例】用数学归纳法证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *).【错解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k .那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12×⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【错因分析】:错误的原因在第二步,它是直接利用了等比数列的求和公式求出了当n =k +1时,式子12+122+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,不符合数学归纳法证明的步骤. 【正解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【误区防范】(1)用数学归纳法证明命题时常出现两种错误:一是n 0的值找错.二是证明命题n =k +1也成立时,没有用到n =k 时的归纳假设.(2)确定由n =k 变化到n =k +1的过程中项的变化情况时,要把握好项的变化规律以及首末项.【跟踪训练】 设a 1=1,a n +1=a 2n -2a n +2+1(n ∈N *),求a 2,a 3,a n ,并用数学归纳法证明你的结论.【答案】见解析【解析】a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1+11 1.这就是说,当n =k +1时结论也成立.综上可知,a n =n -1+1(n ∈N *).【递进题组】1.欲证a 2+b 2-1-a 2b 2≤0,只需证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.a +b22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥02.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.123.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.4.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.5.设f (n )=1+12+13+…+1n (n ∈N *),求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).6.用数学归纳法证明:1+n2≤1+12+13+…+12n≤12+n(n∈N*).7.(2019·湖北部分重点中学联考)已知数列{x n}满足x1=12,且x n+1=x n2-x n(n∈N*).(1)用数学归纳法证明:0<x n<1;(2)设a n=1x n,求数列{a n}的通项公式.8.(2019·武穴中学月考)试证:n 为正整数时,f (n )=32n +2-8n -9能被64整除.【考卷送检】一、选择题1.用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时,正确的反设为( ) A .自然数a ,b ,c 都是奇数B .自然数a ,b ,c 都是偶数C .自然数a ,b ,c 中至少有两个偶数D .自然数a ,b ,c 都是奇数或至少有两个偶数2.分析法又称执果索因法,若用分析法证明“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<03.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零C .恒为正值D .无法确定正负5.已知a >b >0,且 ab =1,若 0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( )A .p >qB .p <qC .p =qD .p ≥q6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.9.(2019·郑州一模)某题字迹有污损,大致内容是“已知|x |≤1,,用分析法证明|x +y |≤|1+xy |”.估计污损部分的文字内容为________.三、解答题10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.12.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.13.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).14.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).15.用数学归纳法证明1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).16.(2019·衡水高中调研)首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数.17.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由.。
[课时跟踪检测][基础达标]1.分析法是从要证明的结论出发,逐步寻找使结论成立的()A.充分条件B.必要条件C.充要条件D.等价条件答案:A2.要证明3+7<25,可选择的方法有以下几种,其中最合理的是() A.综合法B.分析法C.反证法D.归纳法解析:从要证明的结论——比较两个无理数大小出发,证明此类问题通常转化为比较有理数的大小,这正是分析法的证明方法,故选B.答案:B3.(2017届亳州模拟)实数a,b,c满足a+b+c=0,abc>0,则1a+1b+1c的值()A.一定是正数B.一定是负数C.可能是0 D.正、负不确定解析:由a+b+c=0,abc>0得a,b,c中必有两负一正,不妨设a<0,b<0,c>0,且|a|<c,则1|a|>1c,从而-1a>1c,而1b<0,所以1a+1b+1c<0.答案:B4.若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系是() A.P>Q B.P=QC.P<Q D.由a的取值确定解析:要比较两个正数P,Q的大小关系,只要比较P2,Q2的大小关系,只要比较2a+7+2a(a+7)与2a+7+2(a+3)(a+4)的大小,只要比较a(a+7)与(a+3)(a+4)的大小,即比较a2+7a与a2+7a+12的大小,只要比较0与12的大小,∵0<12,∴P<Q.答案:C5.(2018届南阳模拟)设a ,b ,c 大于0,则3个数a b ,b c ,ca 的值( ) A .至多有一个不大于1 B .都大于1C .至少有一个不大于1D .都小于1解析:由题意,若3个数a b ,b c ,ca 的值均大于1,则a >b ,b >c ,c >a ,显然矛盾,∴3个数a b ,b c ,ca 的值至少有一个不大于1,故选C. 答案:C6.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:因为a +b 2≥ab ≥2aba +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,所以f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . 即A ≤B ≤C .故选A. 答案:A7.设0<x <1,a >0,b >0,a ,b 为常数,则a 2x +b 21-x 的最小值是( )A .4abB .2(a 2+b 2)C .(a +b )2D .(a -b )2 解析:⎝ ⎛⎭⎪⎫a 2x +b 21-x [x +(1-x )]=a 2+a 2(1-x )x +b 2x 1-x +b 2≥a 2+b 2+2ab =(a +b )2.当且仅当x =aa +b时,等号成立.故选C.答案:C8.若a >0,b >0,a +b =1则下列不等式不成立的是( ) A .a 2+b 2≥12 B .ab ≤14 C.1a +1b ≥4D.a +b ≤1解析:∵a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2·⎝ ⎛⎭⎪⎫a +b 22=12, ∴A 成立;∵ab ≤⎝⎛⎭⎪⎫a +b 22=14,∴B 成立; ∵1a +1b =a +b ab =1ab ≥1⎝ ⎛⎭⎪⎫a +b 22=4,∴C 成立;∴(a +b )2=a +b +2ab =1+2ab >1,a +b >1,故D 不成立. 答案:D9.命题“a ,b 是实数,若|a +1|+(b +1)2=0,则a =b =-1”,用反证法证明时应假设________.答案:a ≠-1或b ≠-110.用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为______.答案:a ,b 都不能被5整除11.设a ,b 是两个实数,给出下列条件:①a +b >2;②a 2+b 2>2.其中能推出:“a ,b 中至少有一个大于1”的条件是________.(填序号)解析:取a =-2,b =-1,则a 2+b 2>2,从而②推不出. ①能够推出,即若a +b >2,则a ,b 中至少有一个大于1. 用反证法证明如下:假设a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾. 因此假设不成立,所以a ,b 中至少有一个大于1. 答案:①12.已知a ,b ,c 为不全相等的正数,求证:b +c -a a +c +a -b b +a +b -cc >3. 证明:因为a ,b ,c 为不全相等的正数, 所以b +c -a a +c +a -b b +a +b -cc=b a +a b +c a +a c +c b +bc -3, >2b a ·a b +2c a ·ac +2c b ·bc -3=3,即b +c -a a +c +a -b b +a +b -cc>3.13.已知α,β≠k π+π2(k ∈Z ),且sin θ+cos θ=2sin α,sin θcos θ=sin 2β.求证:1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β).证明:要证1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β)成立,即证1-sin 2αcos 2α1+sin 2αcos 2α=1-sin 2βcos 2β2⎝ ⎛⎭⎪⎫1+sin 2βcos 2β, 即证cos 2α-sin 2α=12(cos 2β-sin 2β),即证1-2sin 2α=12(1-2sin 2β),即证4sin 2α-2sin 2β=1, 因为sin θ+cos θ=2sin α,sin θcos θ=sin 2β,且(sin θ+cos θ)2=1+2sin θcos θ,所以1+2sin 2β=4sin 2α,即4sin 2α-2sin 2β=1.故原结论正确.14.已知数列{a n }的通项公式是a n =n +3,求证:数列{a n }中任意不同的三项都不可能是等比数列.证明:假设{a n }存在不同的三项a p ,a q ,a r (p 、q 、r 互不相等)构成等比数列.则a 2q =a p ·a r , 即(p +3)·(r +3)=(q +3)2, ∴pr +3(p +r )+3=q 2+23q +3,∴(pr -q 2)+3(p +r -2q )=0,由于p ,q ,r ∈N +,∴pr -q 2=0且p +r -2q =0. 于是pr -⎝⎛⎭⎪⎫p +r 22=0,得(p -r )2=0,故p =r =q . 这与p 、q 、r 互不相等相矛盾,因此假设不成立,即{a n }中任意不同的三项都不可能是等比数列.[能 力 提 升]1.设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a 三个数( ) A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析:因为⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c 时取等号,所以三个数中至少有一个不小于2. 答案:D2.设x +y =1,x ,y ∈(0,+∞),则x 2+y 2+xy 的最小值为( ) A.14 B.34 C .-14D .-34解析:因为x >0,y >0且x +y =1, 所以xy ≤⎝⎛⎭⎪⎫x +y 22=14, 所以x 2+y 2+xy =(x +y )2-xy =1-xy ≥1-14=34, 故x 2+y 2+xy 有最小值34. 答案:B3.对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都是某一三角形的三边长,则称f (x )为“可构造三角形函数”.以下说法正确的是( )A .f (x )=1(x ∈R )不是“可构造三角形函数”B.“可构造三角形函数”一定是单调函数C.f(x)=1x2+1(x∈R)是“可构造三角形函数”D.若定义在R上的函数f(x)的值域是[e,e](e 为自然对数的底数),则f(x)一定是“可构造三角形函数”解析:对于A选项,由题设所给的定义知,∀a,b,c∈R,f(a),f(b),f(c)是边长为1的正三角形的三边长,是“可构造三角形函数”,故A选项错误;对于B选项,由A选项判断过程知,故B选项错误;对于C选项,当a=0,b=3,c=3时,f(a)=1>f(b)+f(c)=110,不构成三角形,故C选项错误;对于D选项,由于e+e>e,可知,定义在R上的函数f(x)的值域是[e,e](e为自然对数的底数),则f(x)一定是“可构造三角形函数”,故D选项正确.答案:D4.设a>1,n∈N,若不等式na-1<a-1n恒成立时,则n的最小值为________.解析:n=1时,结论不成立;n=2时,不等式变为2a-2<a-1,所以(a -1)2>0,因为a>1,所以不等式成立.答案:25.设a>0,b>0,求证:lg(1+ab)≤12[lg(1+a)+lg(1+b)].证明:要证lg(1+ab)≤12[lg(1+a)+lg(1+b)],只需证1+ab≤(1+a)(1+b),即证(1+ab)2≤(1+a)(1+b),即证2ab≤a+b,而2ab≤a+b成立(a>0,b>0),∴lg(1+ab)≤12[lg(1+a)+lg(1+b)].。
课时分层训练(三十五)直接证明与间接证明(对应学生用书第206页)A组基础达标(建议用时:30分钟)一、选择题1.若a,b,c为实数,且a<b<0,则下列命题正确的是() A.ac2<bc2B.a2>ab>b2C.1a<1b D.ba>abB[a2-ab=a(a-b),∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>aB.①又ab-b2=b(a-b)>0,∴ab>b2,②由①②得a2>ab>b2.]2.用反证法证明命题:若整数系数的一元二次方程ax2+bx+c=0(a≠0)有有理实数根,则a,b,c中至少有一个是偶数.下列假设中正确的是()【导学号:79170221】A.假设a,b,c至多有一个是偶数B.假设a,b,c至多有两个偶数C.假设a,b,c都是偶数D.假设a,b,c都不是偶数D[“至少有一个”的否定为“一个都没有”,即假设a,b,c都不是偶数.] 3.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac<3a”索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0C [由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.]4.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +xy ( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2C [因为x >0,y >0,z >0,所以⎝ ⎛⎭⎪⎫y x +y z +⎝ ⎛⎭⎪⎫z x +z y +⎝ ⎛⎭⎪⎫x z +x y =⎝ ⎛⎭⎪⎫y x +x y +⎝ ⎛⎭⎪⎫y z +z y +⎝ ⎛⎭⎪⎫x z +z x ≥6,当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2.]5.(2018·南昌模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项之积为T n ,并且满足条件:a 1>1,a 2 016a 2 017>1,a 2 016-1a 2 017-1<0,下列结论中正确的是( ) A .q <0B .a 2 016a 2 018-1>0C .T 2 016是数列{T n }中的最大项D .S 2 016>S 2 017C [由a 1>1,a 2 016a 2 017>1得q >0,由a 2 016-1a 2 017-1<0,a 1>1得a 2 016>1,a 2 017<1,0<q <1,故数列{ a n }的前2 016项都大于1,从第2 017项起都小于1,因此T 2 016是数列{T n }中的最大项.故选C .] 二、填空题6.用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________. x ≠-1且x ≠1 [“x =-1或x =1”的否定是“x ≠-1且x ≠1”.]7.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________. m <n [法一(取特殊值法):取a =2,b =1,得m <n .法二(分析法):a -b <a -b ⇐b +a -b >a ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立.]8.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的个数是__________.3 [要使b a +a b ≥2,只要b a >0,且ab >0,即a ,b 不为0且同号即可,故有3个.] 三、解答题9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2B . [证明] 要证明2a 3-b 3≥2ab 2-a 2b 成立, 只需证:2a 3-b 3-2ab 2+a 2b ≥0, 即2a (a 2-b 2)+b (a 2-b 2)≥0, 即(a +b )(a -b )(2a +b )≥0.8分∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0, 从而(a +b )(a -b )(2a +b )≥0成立, ∴2a 3-b 3≥2ab 2-a 2B .12分10.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【导学号:79170222】[解] (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n=n (n +2).(2)证明:由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎨⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎪⎫p +r 22=pr ,即(p -r )2=0, 所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列.B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤AA [∵a +b 2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数.∴f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,即A ≤B ≤C .] 2.在不等边三角形ABC 中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足__________.a 2>b 2+c 2[由余弦定理cos A =b 2+c 2-a 22bc<0,得b 2+c 2-a 2<0,即a 2>b 2+c 2.]3.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:79170223】[解] (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增. 2分由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.5分 (2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎨⎧h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,10分解得a =b ,这与已知矛盾.故不存在.12分。
第六节直接证明与间接证明[备考方向要明了][归纳·知识整合]1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.[探究] 1.综合法与分析法有什么联系与差异?提示:综合法与分析法是直接证明的两种基本方法,综合法的特点是从已知看可知,逐步推出未知.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.分析法是从未知看需知,逐步靠拢已知.当命题的条件与结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往采用从结论出发,结合已知条件,逐步反推,寻求使当前命题成立的充分条件,把证明转化为判定这些条件是否具备的问题.2.间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[探究] 2.在什么情况下可考虑利用反证法证明问题?提示:反证法是间接证明的一种方法,它适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)若从正面证明,需要分成多种情形进行讨论,而从反面证明,只需研究一种或很少的几种情形.[自测·牛刀小试]1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有( )A .2个B .3个C .4个D .5个解析:选D 由综合法、分析法和反证法的推理过程可知,①②③④⑤都正确. 2.(教材习题改编)要证明3+7<25,可选择的方法有以下几种,其中最合理的是( )A .综合法B .分析法C .反证法D .归纳法解析:选B 要证明3+7<25成立,可采用分析法对不等式两边平方后再证明. 3.用反证法证明“如果a >b ,那么3a >3b ”假设内容应是( ) A.3a =3bB.3a <3bC.3a =3b 且3a <3b D.3a =3b 或3a <3b解析:选D 假设结论不成立, 即3a >3b 的否定为3a ≤ 3b .4.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足________.解析:由余弦定理cos A =b 2+c 2-a 22bc <0,所以b 2+c 2-a 2<0,即a 2>b 2+c 2.答案:a 2>b 2+c 25.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的个数是________.解析:要使b a +a b ≥2,只要b a >0且ab >0,即a ,b 不为0且同号即可,故有3个.答案:3[例1] 设a 、b 、c >0,证明a 2b +b 2c +c 2a ≥a +b +c .[自主解答] ∵a 、b 、c >0,根据基本不等式, 有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . ———————————————————利用综合法证明问题的步骤保持本例条件不变 ,试证明a 3+b 3+c 3≥13(a 2+b 2+c 2)·(a +b +c ).证明:∵a 、b 、c >0,∴a 2+b 2≥2ab , ∴(a 2+b 2)(a +b )≥2ab (a +b ),∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2, ∴a 3+b 3≥a 2b +ab 2.同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2, 将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a 2+b 2+c 2)(a +b +c ).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).1.已知x +y +z =1,求证:x 2+y 2+z 2≥13.证明:∵x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz , ∴2x 2+2y 2+2z 2≥2xy +2xz +2yz .∴3x 2+3y 2+3z 2≥x 2+y 2+z 2+2xy +2xz +2yz . ∴3(x 2+y 2+z 2)≥(x +y +z )2=1. ∴x 2+y 2+z 2≥13.[例2] 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2, 求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.[自主解答] 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1、x 2∈⎝⎛⎭⎫0,π2, 故x 1+x 2∈(0,π).故cos x 1cos x 2>0,sin(x 1+x 2)>0, 1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.这由x 1、x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式是显然成立的. 因此,12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22. ———————————————————分析法的适用条件当所证命题不知从何入手时,有时可以运用分析法获得解决,特别是对于条件简单而结论复杂的题目,往往行之有效,对含有根式的证明问题要注意分析法的使用.2.已知a >0,求证: a 2+1a 2-2≥a +1a-2.证明:要证 a 2+1a 2-2≥a +1a-2,只要证a 2+1a 2+2≥a +1a+ 2.∵a >0,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥ 2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2,即a2+1a2≥2,而上述不等式显然成立,故原不等式成立.[例3]设{a n}是公比为q的等比数列,S n是它的前n项和.(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?[自主解答](1)证明:若{S n}是等比数列,则S22=S1·S3,即a21(1+q)2=a1·a1(1+q+q2),∵a1≠0,∴(1+q)2=1+q+q2,解得q=0,这与q≠0相矛盾,故数列{S n}不是等比数列.(2)当q=1时,{S n}是等差数列.当q≠1时,{S n}不是等差数列.假设q≠1时,S1,S2,S3成等差数列,即2S2=S1+S3,2a1(1+q)=a1+a1(1+q+q2).由于a1≠0,∴2(1+q)=2+q+q2,即q=q2,∵q≠1,∴q=0,这与q≠0相矛盾.综上可知,当q=1时,{S n}是等差数列;当q≠1时,{S n}不是等差数列.———————————————————1.反证法的解题原则反证法的原理是“正难则反”,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法.2.反证法中常见词语的否定形式3.求证:a,b,c为正实数的充要条件是a+b+c>0,且ab+bc+ca>0和abc>0.证明:必要性(直接证法):∵a,b,c为正实数,∴a+b+c>0,ab+bc+ca>0,abc>0,因此必要性成立.充分性(反证法):假设a,b,c是不全为正的实数,由于abc>0,则它们只能是两负一正,不妨设a<0,b<0,c>0.又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,∴a(b+c)>0.①又a<0,∴b+c<0.而a+b+c>0,∴a+(b+c)>0,∴a>0.这与a<0的假设相矛盾.故假设不成立,原结论成立,即a,b,c均为正实数.另外证明:如果从①处开始,进行如下推理:a+b+c>0,即a+(b+c)>0.又a<0,∴b+c>0.则a(b+c)<0,与①式矛盾,故假设不成立,原结论成立,即a,b,c均为正实数.3个规律——利用综合法、分析法、反证法证题的一般规律(1)综合法证题的一般规律用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.(2)分析法证题的一般规律分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.(3)反证法证题的一般规律反证法证题的实质是证明它的逆否命题成立.反证法的主要依据是逻辑中的排中律,排中律的一般形式是:或者是A ,或者是非A .即在同一讨论过程中,A 和非A 有且仅有一个是正确的,不能有第三种情况出现.3个注意点——利用反证法证明问题应注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相矛盾等,推导出的矛盾必须是明显的.易误警示——不等式证明中的易误点[典例] (2011·安徽高考)(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y +xy ;(2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . 证明:(1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y +xy ⇐⇒ xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy ·(x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立. (2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy .于是,所要证明的不等式即为 x +y +1xy ≤1x +1y +xy ,其中x =log a b ≥1,y =log b c ≥1.故由(1)可知所要证明的不等式成立. [易误辨析]1.证明问题(1)有两处易误点:①不能利用分析法将其正确转化,从而无法找到证明问题的切入口;②不能灵活运用综合法将作差后的代数式变形(即分解因式),从而导致无法证明不等式成立.2.证明问题(2)时常因忽视条件“1<a ≤b ≤c ”而不能挖掘出其隐含条件,即x =log a b ,y =log b c ,从而无法证明不等式.3.在选择证明方法时,一定要有“综合性选取”的意识,明确数学证明方法不是孤立的,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法表述解答或证明过程.[变式训练] 1.设函数f (x )=x n +bx +c (n ∈N *,b ,c ∈R ).(1)设n ≥2,b =1,c =-1,证明:f (x )在区间⎝⎛⎭⎫12,1内存在唯一零点; (2)设n 为偶数,|f (-1)|≤1,|f (1)|≤1,求b +3c 的最小值和最大值. 解:(1)证明:当b =1,c =-1,n ≥2时,f (x )=x n +x -1. ∵f ⎝⎛⎭⎫12f (1)=⎝⎛⎭⎫12n -12×1<0,∴f (x )在⎝⎛⎭⎫12,1内存在零点. 又当x ∈⎝⎛⎭⎫12,1时,f ′(x )=nx n -1+1>0, ∴f (x )在⎝⎛⎭⎫12,1上是单调递增的.∴f (x )在⎝⎛⎭⎫12,1内存在唯一零点.(2)法一:由题意知⎩⎪⎨⎪⎧ -1≤f (-1)≤1,-1≤f (1)≤1,即⎩⎪⎨⎪⎧0≤b -c ≤2,-2≤b +c ≤0.由图象知,b +3c 在点(0,-2)处取到最小值-6, 在点(0,0)处取到最大值0,故b +3c 的最小值为-6,最大值为0. 法二:由题意知-1≤f (1)=1+b +c ≤1, 即-2≤b +c ≤0,① -1≤f (-1)=1-b +c ≤1, 即-2≤-b +c ≤0,② ①×2+②得-6≤2(b +c )+(-b +c )=b +3c ≤0,当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.法三:由题意知⎩⎪⎨⎪⎧f (-1)=1-b +c ,f (1)=1+b +c ,解得b =f (1)-f (-1)2,c =f (1)+f (-1)-22,∴b +3c =2f (1)+f (-1)-3.又∵-1≤f (-1)≤1,-1≤f (1)≤1,∴-6≤b +3c ≤0, 当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.一、选择题(本大题共6小题,每小题5分,共30分)1.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选A a +b 2≥ab ≥2aba +b,又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b .2.(2013·成都模拟)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若“a +b =1”,则4ab =4a (1-a )=-4⎝⎛⎭⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件.3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定解析:选C 假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a (a +7)<2a +7+2(a +3)(a +4),只要证a 2+7a <a 2+7a +12,只要证0<12, ∵0<12成立,∴P <Q 成立.4.(2013·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( ) A .0 B .1 C .2D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B由已知条件,可得⎩⎪⎨⎪⎧a +c =2b ,①x 2=ab , ②y 2=bc . ③由②③得⎩⎨⎧a =x 2b,c =y2b ,代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列.6.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C.12D.32解析:选D 据已知定义可得不等式x 2-x -a 2+a +1≥0恒成立,故Δ=1-4(-a 2+a +1)≤0,解得-12≤a ≤32,故a 的最大值为32.二、填空题(本大题共3小题,每小题5分,共15分)7.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________.答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12”8.(2013·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b =1,则使得a +b ≥μ恒成立的μ的取值范围是________.解析:∵a ,b ∈(0,+∞)且1a +9b=1,∴a +b =(a +b )⎝⎛⎭⎫1a +9b =10+⎝⎛⎭⎫9a b +ba ≥10+29=16, ∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案:(0,16]9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 三、解答题(本大题共3小题,每小题12分,共36分) 10.已知a >0,1b -1a >1,求证:1+a >11-b .证明:∵1b -1a >1,a >0,∴0<b <1, 要证1+a >11-b ,只需证1+a ·1-b >1,只需证1+a -b -ab >1,只需证a -b -ab >0, 即a -b ab >1,即1b -1a>1. 这是已知条件,所以原不等式成立.11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r . 与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.12.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n , 求证:b n ·b n +2<b 2n +1.解:(1)由已知得a n +1=a n +1,则a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,1为公差的等差数列.故a n =1+(n -1)×1=n .(2)由(1)知,a n =n ,从而b n +1-b n =2n . b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1=1-2n 1-2=2n-1. 因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2 =(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1) =-2n <0,所以b n ·b n +2<b 2n +1.1.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .证明:要证lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ), 只需证a +b 2·b +c 2·c +a 2>abc .(中间结果)∵a ,b ,c 是不全相等的正数, ∴由基本不等式得:a +b 2≥ab >0,b +c 2≥bc >0,c +a 2≥ac >0, 且上三式中由于a ,b ,c 不全相等,故等号不同时成立. ∴a +b 2·b +c 2·c +a 2>a ·b ·c .(中间结果) ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .2.如图,已知BE ,CF 分别为△ABC 的边AC ,AB 上的高,G 为EF 的中点,H 为BC 的中点.求证:HG ⊥EF .证明:连接HE ,HF ,由CF ⊥AB ,且H 是BC 的中点,可知FH 是Rt △BCF 斜边上的中线,所以HF =12BC .同理可证HE =12BC .所以HF =HE ,从而△EHF 为等腰三角形. 又G 为EF 的中点,所以HG ⊥EF .3.已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25. 证明:假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25, 则a 1+a 2+a 3+a 4≤25+25+25+25=100, 这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误. 所以a 1,a 2,a 3,a 4中至少有一个数大于25.4.如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求直线MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.解:(1)如图,取CD的中点G,连接MG,NG.因为ABCD,DCEF为正方形,且边长为2,所以MG⊥CD,MG=2,NG= 2.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF,可得MG⊥NG.所以MN=MG2+NG2= 6.(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN,由已知,两正方形不共面,故AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾.故假设不成立.所以ME与BN不共面,它们是异面直线.。
第六节 直接证明与间接证明直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.知识点一 直接证明 1.综合法利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫作综合法.2.分析法从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫作分析法.易误提醒 用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.[自测练习]1.要证明3+7<25,可选择的方法有以下几种,其中最合理的是( ) A .综合法 B .分析法 C .反证法D .归纳法解析:要证明3+7<25成立,可采用分析法对不等式两边平方后再证明. 答案:B2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析:a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.答案:D知识点二 间接证明 反证法假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫作反证法.易误提醒 利用反证法证明数学问题时,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.[自测练习]3.用反证法证明“如果a >b ,那么3a >3b ”假设内容应是( ) A.3a =3bB.3a <3bC.3a =3b 且3a <3bD.3a =3b 或3a <3b解析:假设结论不成立,即3a >3b 的否定为3a ≤3b . 答案:D4.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a ( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:因为a +1b +b +1c +c +1a ≤-6,所以三者不能都大于-2.答案:C考点一 综合法的应用|已知a ,b ,c 为不全相等的正数,求证:b +c -a a +c +a -b b +a +b -cc >3.[证明] 因为a ,b ,c 为不全相等的正数, 所以b +c -a a +c +a -b b +a +b -cc=b a +a b +c a +a c +c b +bc -3, >2b a ×a b+2c a ×a c+2c b ×bc-3=3, 即b +c -a a +c +a -b b +a +b -cc>3.综合法证题的思路1.设数列{a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.证明:(1)由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”. (2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *) 令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *). 下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.考点二 分析法|已知a >0,证明a 2+1a 2-2≥a +1a-2.[证明] 要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 22≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42, 只需证a +1a≥2.因为a >0,a +1a≥2显然成立⎝⎛⎭⎫a =1a =1时等号成立,所以要证的不等式成立.分析法证明问题的适用范围当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.2.已知a ,b ,m 都是正数,且a <b ,求证:a +m b +m >ab .证明:要证明a +m b +m >ab ,由于a ,b ,m 都是正数,只需证a (b +m )<b (a +m ), 只需证am <bm ,因为m >0,所以只需证a <b . 又已知a <b ,所以原不等式成立.考点三 反证法|等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.[解] (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1),得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q 2-pr )+2(2q -p -r )=0. 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0.所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列.反证法证明问题的五个注意点(1)分清问题的条件和结论;(2)假设所要证的结论不成立,而假设结论的反面成立(否定结论);(3)从假设和条件出发,经过正确的推理,导出与已知条件、公理、定理、定义及明显成立的事实相矛盾或自相矛盾(推导矛盾);(4)因为推理正确,所以断定产生矛盾的原因是“假设”错误,即结论的反面不成立,从而证明了原结论成立(结论成立);(5)应用反证法时,当原命题的结论的反面有多种情况时,要对结论的反面的每一种情况都进行讨论,从而达到否定结论的目的.3.已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25.证明:假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25,则a 1+a 2+a 3+a 4≤25+25+25+25=100,这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误.所以a 1,a 2,a 3,a 4中至少有一个数大于25.13.综合法与分析法证题中的易误点【典例】 (1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ;(2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . [证明] (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y +xy ⇔xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy ·(x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立. (2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy .于是,所要证明的不等式即为 x +y +1xy ≤1x +1y+xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.[易误点评] (1)证明问题(1)有两处易误点:①不能利用分析法将其正确转化,从而无法找到证明问题的切入口;②不能灵活运用综合法将作差后的代数式变形,从而导致无法证明不等式成立.(2)证明问题(2)时常因忽视条件“1<a ≤b ≤c ”而不能挖掘出其隐含条件,即x =log a b ,y =log b c ,从而无法证明不等式.[防范措施] (1)在解题时,常常把分析法和综合法结合起来运用,先以分析法寻求解题思路,再用综合法表述解答或证明过程.(2)通过a ,b ,c 的范围得到log a b ≥1,log b c ≥1,联想到x ≥1,y ≥1,从而可令log a b =x ,log b c =y ,再利用对数换底公式,把不等式转化为关于x ,y 的不等式.[跟踪练习] 设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f ⎝⎛⎭⎫x +12为偶函数. 证明:由函数f (x +1)与f (x )的图象关于y 轴对称, 可知f (x +1)=f (-x ). 将x 换成x -12代入上式可得f ⎝⎛⎭⎫x -12+1=f ⎣⎡⎦⎤-⎝⎛⎭⎫x -12, 即f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫-x +12, 由偶函数的定义可知f ⎝⎛⎭⎫x +12为偶函数.A 组 考点能力演练1.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 是正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫ab a +b ,则A 、B 、C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:∵a +b 2≥ab ≥2aba +b .又f (x )=⎝⎛⎭⎫12x在R 上为减函数. ∴f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b 即A ≤B ≤C ,选A. 答案:A2.(2016·宁波模拟)分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0单调递减,若x 1+x 2>0,则f (x 1)C .恒为正值D .无法确定正负 解析:由f (x )是定义在R 上的奇函数, 且当x ≥0时,f (x )单调递减, 可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0,故选A. 答案:A4.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:由已知条件,可得⎩⎪⎨⎪⎧a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎨⎧a =x 2b,c =y2b .代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列. 答案:B5.(2016·大连模拟)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a ,b ∈S ,对于有序元素对(a ,b ),在S 中有唯一确定的元素a *b 与之对应),若对任意的a ,b ∈S ,有a *(b *a )=b ,则对任意的a ,b ∈S ,下列等式中不恒成立的是( )A .(a *b )*a =aB .[a *(b *a )]*(a *b )=aC .b *(b *b )=bD .(a *b )*[b *(a *b )]=b=b ,[a *(b *a )]*(a *b )=中的等式均恒成立,仅选项A 应满足的条件是________. ,b ≥0且a ≠b . 7.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是________. 解析:∵P 2=2a +7+2a a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,又∵P >0,Q >0,∴P <Q .答案:P <Q8.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________.答案:“存在x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|,则|f (x 1)-f (x 2)|≥12”9.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0.(1)求证:1a 2+4b 2≥9a 2+b2;(2)求证:m ≥72.证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b 2成立,只需证⎝⎛⎭⎫1a 2+4b 2(a 2+b 2)≥9, 即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b 2≥4.根据基本不等式,有b 2a 2+4a 2b 2≥2b 2a 2·4a 2b 2=4成立, 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1,由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72.因为a 2+b 2=m -2>0,1a 2+4b 2=2m -1>0,所以m ≥72.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在[-1,1]上的最大值为2,最小值为-52.这与|b |+(-|b |)=0相矛盾,所以a ≠0.(2)当⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在[-1,1]上是单调函数,故其最值在区间的端点处取得.所以⎩⎪⎨⎪⎧f (1)=a +b +c =2,f (-1)=a -b +c =-52, 或⎩⎪⎨⎪⎧f (1)=a +b +c =-52,f (-1)=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪b a <2. 由(1)(2),得a ≠0且⎪⎪⎪⎪b a <2.B 组 高考题型专练1.(2014·高考山东卷)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根解析:反证法中否定结论需全否定,“至少有一个”的否定为“一个也没有”. 答案:A2.(2013·高考北京卷改编)给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0,证明:d 1,d 2,…,d n-1是等比数列.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q >1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q )q i -1. 因此d i ≠0且d i +1d i =q (i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.。
[课时跟踪检测][基础达标]1.分析法是从要证明的结论出发,逐步寻找使结论成立的()A.充分条件B.必要条件C.充要条件D.等价条件答案:A2.要证明3+7<25,可选择的方法有以下几种,其中最合理的是() A.综合法B.分析法C.反证法D.归纳法解析:从要证明的结论——比较两个无理数大小出发,证明此类问题通常转化为比较有理数的大小,这正是分析法的证明方法,故选B.答案:B3.(2017届亳州模拟)实数a,b,c满足a+b+c=0,abc>0,则1a+1b+1c的值()A.一定是正数B.一定是负数C.可能是0 D.正、负不确定解析:由a+b+c=0,abc>0得a,b,c中必有两负一正,不妨设a<0,b<0,c>0,且|a|<c,则1|a|>1c,从而-1a>1c,而1b<0,所以1a+1b+1c<0.答案:B4.若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系是() A.P>Q B.P=QC.P<Q D.由a的取值确定解析:要比较两个正数P,Q的大小关系,只要比较P2,Q2的大小关系,只要比较2a+7+2a(a+7)与2a+7+2(a+3)(a+4)的大小,只要比较a(a+7)与(a+3)(a+4)的大小,即比较a2+7a与a2+7a+12的大小,只要比较0与12的大小,∵0<12,∴P<Q.答案:C5.(2018届南阳模拟)设a ,b ,c 大于0,则3个数a b ,b c ,ca 的值( ) A .至多有一个不大于1 B .都大于1C .至少有一个不大于1D .都小于1解析:由题意,若3个数a b ,b c ,ca 的值均大于1,则a >b ,b >c ,c >a ,显然矛盾,∴3个数a b ,b c ,ca 的值至少有一个不大于1,故选C. 答案:C6.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:因为a +b 2≥ab ≥2aba +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,所以f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . 即A ≤B ≤C .故选A. 答案:A7.设0<x <1,a >0,b >0,a ,b 为常数,则a 2x +b 21-x 的最小值是( )A .4abB .2(a 2+b 2)C .(a +b )2D .(a -b )2 解析:⎝ ⎛⎭⎪⎫a 2x +b 21-x [x +(1-x )]=a 2+a 2(1-x )x +b 2x 1-x +b 2≥a 2+b 2+2ab =(a +b )2.当且仅当x =aa +b时,等号成立.故选C.答案:C8.若a >0,b >0,a +b =1则下列不等式不成立的是( ) A .a 2+b 2≥12 B .ab ≤14 C.1a +1b ≥4D.a +b ≤1解析:∵a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2·⎝ ⎛⎭⎪⎫a +b 22=12, ∴A 成立;∵ab ≤⎝⎛⎭⎪⎫a +b 22=14,∴B 成立; ∵1a +1b =a +b ab =1ab ≥1⎝ ⎛⎭⎪⎫a +b 22=4,∴C 成立;∴(a +b )2=a +b +2ab =1+2ab >1,a +b >1,故D 不成立. 答案:D9.命题“a ,b 是实数,若|a +1|+(b +1)2=0,则a =b =-1”,用反证法证明时应假设________.答案:a ≠-1或b ≠-110.用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为______.答案:a ,b 都不能被5整除11.设a ,b 是两个实数,给出下列条件:①a +b >2;②a 2+b 2>2.其中能推出:“a ,b 中至少有一个大于1”的条件是________.(填序号)解析:取a =-2,b =-1,则a 2+b 2>2,从而②推不出. ①能够推出,即若a +b >2,则a ,b 中至少有一个大于1. 用反证法证明如下:假设a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾. 因此假设不成立,所以a ,b 中至少有一个大于1. 答案:①12.已知a ,b ,c 为不全相等的正数,求证:b +c -a a +c +a -b b +a +b -cc >3. 证明:因为a ,b ,c 为不全相等的正数, 所以b +c -a a +c +a -b b +a +b -cc=b a +a b +c a +a c +c b +bc -3, >2b a ·a b +2c a ·ac +2c b ·bc -3=3,即b +c -a a +c +a -b b +a +b -cc>3.13.已知α,β≠k π+π2(k ∈Z ),且sin θ+cos θ=2sin α,sin θcos θ=sin 2β.求证:1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β).证明:要证1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β)成立,即证1-sin 2αcos 2α1+sin 2αcos 2α=1-sin 2βcos 2β2⎝ ⎛⎭⎪⎫1+sin 2βcos 2β, 即证cos 2α-sin 2α=12(cos 2β-sin 2β),即证1-2sin 2α=12(1-2sin 2β),即证4sin 2α-2sin 2β=1, 因为sin θ+cos θ=2sin α,sin θcos θ=sin 2β,且(sin θ+cos θ)2=1+2sin θcos θ,所以1+2sin 2β=4sin 2α,即4sin 2α-2sin 2β=1.故原结论正确.14.已知数列{a n }的通项公式是a n =n +3,求证:数列{a n }中任意不同的三项都不可能是等比数列.证明:假设{a n }存在不同的三项a p ,a q ,a r (p 、q 、r 互不相等)构成等比数列.则a 2q =a p ·a r , 即(p +3)·(r +3)=(q +3)2, ∴pr +3(p +r )+3=q 2+23q +3,∴(pr -q 2)+3(p +r -2q )=0,由于p ,q ,r ∈N +,∴pr -q 2=0且p +r -2q =0. 于是pr -⎝⎛⎭⎪⎫p +r 22=0,得(p -r )2=0,故p =r =q . 这与p 、q 、r 互不相等相矛盾,因此假设不成立,即{a n }中任意不同的三项都不可能是等比数列.[能 力 提 升]1.设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a 三个数( ) A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析:因为⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c 时取等号,所以三个数中至少有一个不小于2. 答案:D2.设x +y =1,x ,y ∈(0,+∞),则x 2+y 2+xy 的最小值为( ) A.14 B.34 C .-14D .-34解析:因为x >0,y >0且x +y =1, 所以xy ≤⎝⎛⎭⎪⎫x +y 22=14, 所以x 2+y 2+xy =(x +y )2-xy =1-xy ≥1-14=34, 故x 2+y 2+xy 有最小值34. 答案:B3.对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都是某一三角形的三边长,则称f (x )为“可构造三角形函数”.以下说法正确的是( )A .f (x )=1(x ∈R )不是“可构造三角形函数”B.“可构造三角形函数”一定是单调函数C.f(x)=1x2+1(x∈R)是“可构造三角形函数”D.若定义在R上的函数f(x)的值域是[e,e](e 为自然对数的底数),则f(x)一定是“可构造三角形函数”解析:对于A选项,由题设所给的定义知,∀a,b,c∈R,f(a),f(b),f(c)是边长为1的正三角形的三边长,是“可构造三角形函数”,故A选项错误;对于B选项,由A选项判断过程知,故B选项错误;对于C选项,当a=0,b=3,c=3时,f(a)=1>f(b)+f(c)=110,不构成三角形,故C选项错误;对于D选项,由于e+e>e,可知,定义在R上的函数f(x)的值域是[e,e](e为自然对数的底数),则f(x)一定是“可构造三角形函数”,故D选项正确.答案:D4.设a>1,n∈N,若不等式na-1<a-1n恒成立时,则n的最小值为________.解析:n=1时,结论不成立;n=2时,不等式变为2a-2<a-1,所以(a -1)2>0,因为a>1,所以不等式成立.答案:25.设a>0,b>0,求证:lg(1+ab)≤12[lg(1+a)+lg(1+b)].证明:要证lg(1+ab)≤12[lg(1+a)+lg(1+b)],只需证1+ab≤(1+a)(1+b),即证(1+ab)2≤(1+a)(1+b),即证2ab≤a+b,而2ab≤a+b成立(a>0,b>0),∴lg(1+ab)≤12[lg(1+a)+lg(1+b)].。
第六章第6节直接证明和间接证明[基础训练组]1.(导学号14577583)命题“如果数列{a n}的前n项和S n=2n2-3n,那么数列{a n}一定是等差数列”是否成立( )A.不成立B.成立C.不能断定D.与n取值有关解析:B [因为S n=2n2-3n,所以n=1时a1=S1=-1,当n≥2时,a n=S n-S n-1=2n2-3n-2(n-1)2+3(n -1)=4n-5,n=1时适合a n,且a n-a n-1=4,故{a n}为等差数列,即命题成立.]2.(导学号14577584)(2018·济南市模拟)用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数解析:B [“至少有一个”的否定为“都不是”,故选 B.]3.(导学号14577585)设a=3-2,b=6-5,c=7-6,则a、b、c的大小顺序是( )A.a>b>c B.b>c>aC.c>a>b D.a>c>b解析:A [∵a=3-2=13+2,b=6-5=16+5,c=7-6=17+6,又∵7+6>6+5>3+2>0,∴a>b>c.]4.(导学号14577586)设0<x<1,a>0,b>0,a,b为常数,a2x+b21-x的最小值是( )A.4ab B.2(a2+b2) C.(a+b)2D.(a-b)2解析:C [a2x+b21-x(x+1-x)=a2+a2-xx+b2x1-x+b2≥a2+b2+2ab=(a+b)2.当且仅当x=aa+b时,等号成立.]5.(导学号14577587)若P=a+a+7,Q=a+3+a+4,a≥0,则P、Q的大小关系是( )A.P>Q B.P=QC.P<Q D.由a的取值确定解析:C [令a=0,则P=7≈2.6,Q=3+4≈3.7,∴P<Q.据此猜想a≥0时P<Q.证明如下:要证P<Q,只要证P2<Q2,只要证2a+7+2a a+<2a+7+2a+a+,只要证a2+7a<a2+7a+12,只要证0<12,∵0<12成立,∴P<Q成立.故选 C.]6.(导学号14577588)(2018·烟台市模拟)设a>b>0,m=a-b,n=a-b,则m,n的大小关系是________ .解析:法一(取特殊值法):取a=2,b=1,则m<n.法二(分析法):a-b<a-b?b+a-b>a?a<b+2b·a-b+a-b?2b·a-b>0,显然成立.答案:n>m7.(导学号14577589)(2016·高考新课标全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是____________ .解析:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.答案:1和38.(导学号14577590)(2018·邯郸市模拟)设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是________ .(填序号)解析:若a=12,b=23,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于 1.答案:③9.(导学号14577591)若a>b>c>d>0且a+d=b+c,求证:d+a<b+c.证明:要证d+a<b+c,只需证(d+a)2<(b+c)2,即a+d+2ad<b+c+2bc,因a+d=b+c,只需证ad<bc,即ad<bc,设a+d=b+c=t,则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,故ad<bc成立,从而d+a<b+c成立.10.(导学号14577592)(2018·临沂市三校联考)已知数列{a n}的前n项和为S n,且满足a n+S n=2.(1)求数列{a n}的通项公式;(2)求证:数列{a n}中不存在三项按原来顺序成等差数列.解析:(1)当n=1时,a1+S1=2a1=2,则a1=1.又a n+S n=2,所以a n+1+S n+1=2,两式相减得a n+1=12a n,所以{a n}是首项为1,公比为12的等比数列,所以a n=12n-1.(2)证明(反证法):假设存在三项按原来顺序成等差数列,记为a p+1,a q+1,a r+1(p<q<r,且p,q,r∈N*),则2·12q=12p+12r,所以2·2r-q=2r-p+1.①又因为p<q<r,所以r-q,r-p∈N*.所以①式左边是偶数,右边是奇数,等式不成立.所以假设不成立,原命题得证.[能力提升组]11.(导学号14577593)(2018·石家庄市质检)某市为了缓解交通压力实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是( )A.今天是周六B.今天是周四C.A车周三限行D.C车周五限行解析:B [因为每天至少有四辆车可以上路行驶,E车明天可以上路,E车周四限行,所以今天不是周三;因为B车昨天限行,所以今天不是周一,也不是周日;因为A,C两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四,选 B.]12.(导学号14577594)设a,b,c都是正数,则a+1b,b+1c,c+1a三个数( )A.都大于 2 B.都小于 2C.至少有一个不大于 2 D.至少有一个不小于 2解析:D [假设a+1b,b+1c,c+1a都小于2,则有a+1b+b+1c+c+1a<6.因为a,b,c都是正数,所以a+1b+b+1c+c+1a=a+1a+b+1b+c+1c≥2a·1a+2b·1b+2c·1c=6与a+1b+b+1c+c+1a<6矛盾.故假设不成立,所以a+1a,b+1b,c+1a至少有一个不小于2,故选 D.]13.(导学号14577595)若二次函数f(x)=4x2-2(p-2)x-2p2-p+1,在区间[]-1,1内至少存在一点c,使f(c)>0,则实数p的取值范围是________ .解析:法一:(补集法)令f-=-2p2+p+1≤0,f=-2p2-3p+9≤0,解得p≤-3或p≥32,故满足条件的p的范围为-3,32.法二:(直接法)依题意有f(-1)>0或f(1)>0,即2p2-p-1<0或2p2+3p-9<0,得-12<p<1或-3<p<32.故满足条件的p的取值范围是-3,3 2答案:-3,3 214.(导学号14577596)已知数列{a n}与{b n}满足b n a n+a n+1+b n+1a n+2=0,b n=3+-n2,n∈N*,且a1=2,a2=4.(1)求a3,a4,a5的值.(2)设c n=a2n-1+a2n+1,n∈N*,证明:{c n}是等比数列.解:(1)由b n=3+-n2,n∈N*,可得b n=1,n为奇数,2,n为偶数.又b n a n+a n+1+b n+1a n+2=0,当n=1时,a1+a2+2a3=0,由a1=2,a2=4,可得a3=-3;当n=2时,2a2+a3+a4=0,可得a4=-5;当n=3时,a3+a4+2a5=0,可得a5=4.(2)证明:对任意n∈N*,a2n-1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③②-③,得a2n=a2n+3,④将④代入①,可得a2n+1+a2n+3=-(a2n-1+a2n+1),即c n+1=-c n(n∈N*).又c1=a1+a3=-1,故c n≠0,因此q=-1.所以{c n}是等比数列.。
第 2 讲 直接证明与间接证明a n是一个与 n 没关的常数,则该常数的可能值的会合为() 1.等差数列 { a n } 中, a 2nA . {1}1B. 1,21C. 2D. 0, 1, 12 222 2≤ 0,只需证明 ()2.要证: a+ b- 1-a b A . 2ab -1- a 2 b 2≤ 02 2- 1- a 4+ b 4 B . a + b ≤ 02a + b22C.- 1- a b ≤ 0D . (a 2- 1)(b 2-1) ≥ 03.若 a , b , c 是不全相等的实数,求证: a 2+ b 2+ c 2≥ ab + bc + ac.其证明过程以下:∵ a ,b , c ∈ R ,∴ a 2+ b 2≥2ab , b 2+ c 2≥ 2bc , a 2+ c 2≥ 2ac. 又 a ,b , c 不全相等,∴ 2(a 2+ b 2+ c 2) ≥2(ab + bc + ac) ,∴ a 2+ b 2+c 2 ≥ ab + bc + ac.此证法是 ( )A .剖析法B .综合法C .反证法D .剖析法与综合法并用4.以下是证明 7- 1> 11- 5的过程,其证法是 ( )要证 7-1> 11- 5, 只需证7+ 5> 11+ 1,即证 ( 7+ 5)2>( 11+ 1)2,即证35> 11,即证 35>11.35>11 明显建立,∴ 7- 1> 11- 5.A .剖析法B .综合法C .间接证法D .剖析法与综合法并用1,b + 1, c +1(5.已知 a , b ,c 都是正数,则三数 a +)bc aA .都大于 2B .都小于 2C .起码有一个不大于 2D .起码有一个不小于 26. α, β是两个不一样的平面, m , n 是平面 α及 β以外的两条不一样的直线,给出四个论断:① m ⊥ n ;② α⊥ β;③ n ⊥ β;④ m ⊥ α.以此中的三个论断作为条件,余下一个论断作为结论,写出你以为正确的一个命题____________________ .7.下表中的对数值有且仅有一个是错误的:x3 5 8 915lg x 2a - b 请将错误的一个更正为a + c 3- 3a - 3c________________.4a -2b3a - b + c + 18. (2013 年湖北 )已知等比数列 { a n } 知足: |a 2- a 3|= 10,a 1a 2a 3= 125.(1)求数列 { a n } 的通项公式;(2)能否存在正整数m,使得1+1++1≥ 1?若存在,求m 的最小值;若不存在,12a ma a请说明原因.9.(2012 年广东广州一模) 已知等差数列 { a n} 的公差 d≠ 0,它的前 n 项和为 S n,若 S5=70,且 a2, a7,a22成等比数列.(1)求数列 { a n} 的通项公式;113(2)设数列S n的前 n 项和为T n,求证:6≤ T n<8.第 2 讲 直接证明与间接证明1. B 2.D 3.B 4.A5.D6.若①③④,则②或若②③④,则① 分析: 依题意可得以下四个命题:(1)m ⊥n , α⊥ β, n ⊥β? m ⊥ α; (2)m ⊥ n , α⊥ β, m ⊥ α? n ⊥ β; (3)m ⊥n , n ⊥ β, m ⊥ α? α⊥β; (4) α⊥β, n ⊥ β,m ⊥α? m ⊥ n. 不难发现,命题 (3) ,(4) 为真命题,而命题 (1), (2)为假命题.7. lg15 =3a - b +c 分析: 假如 lg3 =2a - b 是正确的,那么 lg9 = 2lg3 = 2(2a - b)= 4a- 2b ;假如 lg3 = 2a - b 是错误的,那么 lg9 = 4a - 2b 也是错误的,这与题意矛盾.反过来, lg9= 4a -2b 也不是错误的,不然 lg3= 2a - b 是错误的.相同,假如 lg5 = a + c ,那么 lg8=3lg2 = 3(1- lg5) = 3(1- a -c) ,假如 lg5 = a + c 是错误的,那么 lg8 =3- 3a - 3c ,也错误,这与题意矛盾;明显 lg8= 3- 3a - 3c 也不是错误的, 不然 lg5= a +c 也错误.∴ lg15 = lg(3 × 5)=lg3 +lg5= (2a - b)+ (a + c)= 3a -b + c ,∴应将最后一个错误的更正为lg15 = 3a - b + c.8. 解: (1)由已知条件得: a 2= 5,又 a 2|q - 1|=10,∴ q =- 1 或 3.∴数列 { a n } 的通项 a n =- 5·(- 1) n -1 或 a n = 5×3n -2.1+1+ + 1 =- 1或 0,不存在这样的正整数 m ;(2)若 q =- 1, a 1 a 2a m 5 若 q =3, 1 + 1 + + 1 =91 m 9a 2 a 10 1- 3< 10<1.a m.综上所述,不存在这样的正整数9. (1) 解: ∵数列 { a n } 是等差数列,∴ a n = a 1+(n -1)d , S n = na 1+ n n - 1d. 2S 5= 70,依题意,得 a 72= a 2 a 22,即 5a 1+ 10d = 70,解得a 1 =6,a 1+ 6d 2= a 1+ d a 1+ 21d . d = 4.∴数列 { a n } 的通项公式为 a n = 4n +2(n ∈ N *) .(2)证明: 由(1) ,可得 S n = 2n 2+ 4n.∴ 1 = 2 1 = 1 = 1 1 - 1 .nn 2n +4n 2n n + 2 4 n + 2S∴T =1+1+1+ +1 +1S -S= 11 + 11-1 +1 1-1 + +1 1-1+11- 141-34 2 44 35 4 n - 1 n + 1 4 n n + 2 = 11+ 1- 1 - 142 n + 1 n + 2 = 3-1 1 + 18 4 n + 1 n + 2 .∵T -3=- 11 +13n 8 4 n + 1 n + 2 <0,∴ T n <8.∵ T n +1- T n =11 - 1,∴数列 { T n } 是递加数列.4 n + 1 n +3∴ T n ≥ T 1= 1.6∴ 1≤T n <3.68。
[课 时 跟 踪 检 测]
[基 础 达 标]
1.分析法是从要证明的结论出发,逐步寻找使结论成立的( )
A .充分条件
B .必要条件
C .充要条件
D .等价条件
答案:A
2.要证明
3+7<25,可选择的方法有以下几种,其中最合理的是( )
A .综合法
B .分析法
C .反证法
D .归纳法 解析:从要证明的结论——比较两个无理数大小出发,证明此类问题通常转化为比较有理数的大小,这正是分析法的证明方法,故选B.
答案:B
3.(2018届亳州模拟)实数a ,b ,c 满足a +b +c =0,abc>0,则1a +1b +1c
的值( )
A .一定是正数
B .一定是负数
C .可能是0
D .正、负不确定
解析:由a +b +c =0,abc>0得a ,b ,c 中必有两负一正,不妨设a<0,
b<0,c>0,且|a|<c ,则1|a|>1c ,从而-1a >1c ,而1b <0,所以1a +1b +1c
<0. 答案:B
4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系
是( )
A .P>Q
B .P =Q
C .P<Q
D .由a 的取值确定
解析:要比较两个正数P ,Q 的大小关系,只要比较P 2,Q 2的大小关系,只要比较2a +7+2
a (a +7)与2a +7+2(a +3)(a +4)的大小, 只要比较a (a +7)与(a +3)(a +4)的大小,
即比较a 2+7a 与a 2+7a +12的大小,
只要比较0与12的大小,∵0<12,∴P<Q.
答案:C
5.(2018届南阳模拟)设a ,b ,c 大于0,则3个数a b ,b c ,c a
的值( ) A .至多有一个不大于1
B .都大于1
C .至少有一个不大于1
D .都小于1
解析:由题意,若3个数a b ,b c ,c a
的值均大于1,则a>b ,b>c ,c>a ,显然矛盾,
∴3个数a b ,b c ,c a
的值至少有一个不大于1,故选C. 答案:C
6.已知函数f(x)=⎝ ⎛⎭⎪⎪⎫12x ,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎪⎫a +b 2,B =f(ab),C =f ⎝ ⎛⎭
⎪⎪⎫2ab a +b ,
则A ,B ,C 的大小关系为( )
A .A ≤
B ≤C
B .A ≤
C ≤B C .B ≤C ≤A
D .C ≤B ≤A 解析:因为a +b 2≥ab ≥2ab a +b
, 又f(x)=⎝ ⎛⎭
⎪⎪⎫12x 在R 上是减函数, 所以f ⎝ ⎛⎭⎪⎪⎫a +b 2≤f(ab)≤f ⎝ ⎛⎭
⎪⎪⎫2ab a +b . 即A ≤B ≤C.故选A.
答案:A
7.设0<x<1,a>0,b>0,a ,b 为常数,则a 2x +b 2
1-x
的最小值是( ) A .4ab
B .2(a 2+b 2)
C .(a +b)2
D .(a -b)2
解析:⎝ ⎛⎭
⎪⎪⎫a 2x +b 21-x [x +(1-x)]=a 2+a 2(1-x )x +b 2x 1-x +b 2≥a 2+b 2+2ab =(a +b)2.
当且仅当x =
a a +b
时,等号成立.故选C. 答案:C 8.若a>0,b>0,a +b =1则下列不等式不成立的是( )
A .a 2+b 2≥12
B .ab ≤14。