§2.3.1《离散型随机变量的方差》
- 格式:doc
- 大小:69.00 KB
- 文档页数:3
2.3.2 离散型随机变量的方差1.问题导航(1)离散型随机变量的方差及标准差的定义是什么?(2)方差具有哪些性质?两点分布与二项分布的方差分别是什么? (3)如何计算简单离散型随机变量的方差? 2.例题导读(1)例4求随机变量的均值和方差、标准差,请试做教材P 68练习1题. (2)例5是均值和方差的实际应用,请试做教材P 68练习3题.1.方差、标准差的定义及方差的性质 (1)方差及标准差的定义:设离散型随机变量X 的分布列为①方差D (X )=∑n i =1(x i -E (X ))2p i . ②标准差为________D (X ).(2)方差的性质:D (aX +b )=________a 2D (X ). 2.两个常见分布的方差(1)若X 服从两点分布,则D (X )=________p (1-p ). (2)若X ~B (n ,p ),则D (X )=________np (1-p ).1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案:(1)× (2)√ (3)√2.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为( )A.43B.83C.89D .1答案:C3.如果X 是离散型随机变量,E (X )=6,D (X )=0.5,X 1=2X -5,那么E (X 1)和D (X 1)分别是( )A .E (X 1)=12,D (X 1)=1B .E (X 1)=7,D (X 1)=1C .E (X 1)=12,D (X 1)=2 D .E (X 1)=7,D (X 1)=2 答案:D4.已知随机变量X ________.答案:3.561.方差与标准差的作用随机变量的方差与标准差一样,都是反映随机变量的取值的稳定与波动、集中与离散程度的,方差越小,取值越集中,稳定性越高,波动性越小;反之,方差越大,取值越不集中,稳定性越差,波动性越大.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.求离散型随机变量的方差袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、均值和方差;[解] 由题意得,ξ的所有可能取值为0,1,2,3,4,P (ξ=0)=1020=12,P (ξ=1)=120,P (ξ=2)=220=110,P (ξ=3)=320,P (ξ=4)=420=15.故ξ的分布列为所以E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.[互动探究] 在本例条件下,若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解:由D (aξ+b )=a 2D (ξ)=11,E (aξ+b )=aE (ξ)+b =1,及E (ξ)=1.5,D (ξ)=2.75,得2.75a 2=11,1.5a +b =1,解得a =2,b =-2或a =-2,b =4.1.求离散型随机变量X 的均值、方差的步骤: (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列;(4)由均值、方差的定义求E (X ),D (X ).2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了1.(1)已知随机变量ξ若E (ξ)=23,则D (ξ)的值为________.解析:由分布列的性质,得 12+13+p =1,解得p =16. ∵E (ξ)=0×12+1×13+16x =23,∴x =2.D (ξ)=⎝⎛⎭⎫0-232×12+⎝⎛⎭⎫1-232×13+⎝⎛⎭⎫2-232×16=1527=59. 答案:59(2)甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望.解:乙投篮的次数ξ的取值为0,1,2.P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324.两点分布与二项分布的方差一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30 s ,求司机总共等待时间η的期望与方差. [解] (1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B (6,13),故E (ξ)=6×13=2,D (ξ)=6×13×(1-13)=43.(2)由已知η=30ξ,故E (η)=30E (ξ)=60(s),D (η)=900D (ξ)=1 200.解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).2.(1)(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:由E (X )=30,D (X )=20,可得⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13.答案:13(2)在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为0.8,求小李在比赛中得分的数学期望与方差.解:用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,0.8),η=3ξ+2.因为E(ξ)=10×0.8=8,D(ξ)=10×0.8×0.2=1.6,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26(分),D(η)=D(3ξ+2)=32×D(ξ)=9×1.6=14.4.均值、方差的综合应用甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X与Y,且X,Y 的分布列如下:(1)求a,b的值;(2)计算X,Y的期望与方差,并以此分析甲、乙技术状况.[解](1)由离散型随机变量的分布列的性质可知a+0.1+0.6=1,得a=0.3.同理0.3+b+0.3=1,得b=0.4.(2)E(X)=1×0.3+2×0.1+3×0.6=2.3,E(Y)=1×0.3+2×0.4+3×0.3=2,D(X)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81,D(Y)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(X)>E(Y),说明在一次射击中,甲的平均得分比乙高,但D(X)>D(Y),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.离散型随机变量的期望反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相试评定这两个保护区的管理水平.解:甲保护区违规次数ξ的数学期望和方差分别为E (ξ)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D (ξ)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数η的数学期望和方差分别为E (η)=0×0.1+1×0.5+2×0.4=1.3; D (η)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (ξ)=E (η),D (ξ)>D (η),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动性大,乙保护区的违规事件次数更集中和稳定,说明乙保护区的管理水平较好.试求D (X )和D (2X -1).[解] E (X )=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8,所以D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.所以D (2X -1)=4D (X )=4×1.56=6.24.[错因与防范] (1)解答本例易将方差的性质用错,即D (aZ +b )=aD (Z )+b . (2)解决此类问题方法,应利用公式E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ),将求E (aX +b ),D (aX +b )的问题转化为求E (X ),D (X )的问题,从而可以避免求aX +b 的分布列的繁琐的计算,解题时可根据两者之间的关系列出等式,进行相关计算.4.已知随机变量X ~B (100,0.2),那么D (4X +3)的值为( ) A .64 B .256 C .259 D .320解析:选B.由X ~B (100,0.2)知n =100,p =0.2, 由公式得D (X )=np (1-p )=100×0.2×0.8=16, 因此D (4X +3)=42D (X )=16×16=256.1.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:选D.随机变量ξ∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6解析:选B.由已知随机变量X +Y =8,所以有Y =8-X . 因此,求得E (Y )=8-E (X )=8-10×0.6=2, D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.3.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.解析:因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定. 答案:乙4.若随机变量X 的分布列为:(1)求m 的值;(2)求E (X )和D (X ).解:(1)由随机变量分布列的性质,得0.1+0.2+0.4+m +0.1=1,解得m =0.2.(2)E (X )=-2×0.1+(-1)×0.2+0×0.4+1×0.2+2×0.1=0,D (X )=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.[A.基础达标]1.下列说法正确的是( )A .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平C .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差D (ξ)反映了ξ取值的概率的平均值解析:选C.由离散型随机变量的数学期望与方差的定义可知,C 正确.故选C. 2.设X ~B (n ,p ),若D (X )=4,E (X )=12,则n 和p 分别为( ) A .18和23B .16和12C .20和13D .15和14解析:选A.∵X ~B (n ,p ),∴⎩⎪⎨⎪⎧np =12,np (1-p )=4,解得p =23,n =18.3.已知X 的分布列如下表所示,则下列式子:①E (X )=-13;②D (X )=2327;③P (X =0)=13.其中正确的有( )A.0个 B .1个 C .2个D .3个解析:选C.E (X )=(-1)×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,故只有①③正确. 4.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k ·(13)n -k ,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12 C.29D .16解析:选A.由题意可知ξ~B (n ,23),∴23n =E (ξ)=24.∴n =36. ∴D (ξ)=n ×23×(1-23)=29×36=8.5.(2015·滨州高二期末检测)若随机变量X 的分布列为:P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .2C .4D .无法计算解析:选A.依题意有a =1-13=23,所以E (X )=13m +23n =2,即m +2n =6.又D (X )=13(m-2)2+23(n -2)2=2n 2-8n +8=2(n -2)2,所以当n =2时,D (X )有最小值为0.6.(2014·高考浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.答案:257.(2015·扬州高二检测)设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:由独立重复试验的方差公式可以得到 D (ξ)=np (1-p )≤n (p +1-p 2)2=n4,等号在p =1-p =12时成立,所以D (ξ)max =100×12×12=25,D (ξ)max =25=5.答案:1258.随机变量ξ的分布列如下,其中a ,b ,c 成等差数列.若E (ξ)=53,则D (ξ)的值为________.解析:因为a ,b ,c 成等差数列,所以a +c =2b .又因为a +b +c =1,所以b =13.又因为E (ξ)=a +2b +3c =53,所以a =12,b =13,c =16,所以ξ的分布列为所以D (ξ)=(1-53)2×12+(2-53)2×13+(3-53)2×16=59.答案:599.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以ξ表示取出次品的个数,求ξ的分布列、期望值及方差.解:ξ的可能值为0,1,2,P (ξ=0)=C 02C 310C 312=611;P (ξ=1)=C 12C 210C 312=922;P (ξ=2)=C 22C 110C 312=122.∴ξ的分布列为∴E (ξ)=0×611+1×922+2×122=12,D (ξ)=(0-12)2×611+(1-12)2×922+(2-12)2×122=322+988+988=1544.10.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)=62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:因为每一株沙柳成活率均为p ,种植了n 株沙柳,相当于做n 次独立重复试验,因此ξ服从二项分布ξ~B (n ,p ).(1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为:(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3), 得P (A )=1+6+15+2064=2132.[B.能力提升]1.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布列大致如下表所示:甲:乙:试分析两名学生的成绩水平.解:∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80, ∵E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.2.如表,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.解:可能为0个,1个,2个,4个.P (X =0)=9A 44=924,P (X =1)=C 14×2A 44=824, P (X =2)=C 24×1A 44=624,P (X =4)=1A 44=124. 故X 的分布列为:∴E (X )=0×924+1×824+2×624+4×124=1, D (X )=924×(0-1)2+824×(1-1)2+624×(2-1)2+124×(4-1)2=9+0+6+924=1. 3.某学校为高二年级开展第二外语选修课,要求每位同学最多可以选报两门课程.已知有75%的同学选报法语课,有60%的同学选报日语课.假设每个人对课程的选报是相互独立的,且各人的选报相互之间没有影响.(1)任选1名同学,求其选报过第二外语的概率;(2)任选3名同学,记ξ为3人中选报过第二外语的人数,求ξ的分布列、期望和方差. 解:设事件A :选报法语课;事件B :选报日语课.由题设知,事件A 与B 相互独立,且P (A )=0.75,P (B )=0.6.(1)法一:任选1名同学,该同学一门课程都没选报的概率是P 1=P (A -B -)=P (A )·P (B )=0.25×0.4=0.1.所以该人选报过第二外语的概率是P 2=1-P 1=1-0.1=0.9.法二:任选1名同学,该同学只选报一门课程的概率是P 3=P (AB )+P (AB )=0.75×0.4+0.25×0.6=0.45,该人选报两门课程的概率是P 4=P (AB )=0.75×0.6=0.45.所以该同学选报过第二外语的概率是P 5=P 3+P 4=0.45+0.45=0.9.(2)因为每个人的选报是相互独立的,所以3人中选报过第二外语的人数ξ服从二项分布B (3,0.9),P (ξ=k )=C k 3×0.9k ×0.13-k ,k =0,1,2,3, 即ξ的分布列是ξ的期望是E(ξ)=(或ξ的期望是E(ξ)=3×0.9=2.7),ξ的方差是D(ξ)=3×0.9×(1-0.9)=0.27.。
2.3.2离散型随机变量的方差学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念(重点).2.能计算简单离散型随机变量的方差,并能解决一些实际问题(难点).3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差(重点).知识点1离散型随机变量的方差、标准差设离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p nn 则(x i-E(X))2描述了x i(i=1,2,…,n)相对于均值E(X)的偏离程度,而D(X)=i=1 (x i-E(X))2p i为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.我们称D(X)为随机变量X的方差,并称其算术平方根D(X)为随机变量X的标准差.【预习评价】(1)离散型随机变量的方差和标准差反映了随机变量的什么性质?(2)离散型随机变量的方差越大,随机变量越稳定还是方差越小越稳定?提示(1)离散型随机变量的方差和标准差反映了随机变量取值偏离于均值的平均程度.(2)离散型随机变量的方差越小随机变量越稳定.知识点2离散型随机变量方差的性质1.设a,b为常数,则D(aX+b)=a2D(X).2.D(c)=0(其中c为常数).【预习评价】设随机变量X的方差D(X)=1,则D(2X+1)的值为()A.2B.3C.4D.5知识点3服从两点分布与二项分布的随机变量的方差1.若X 服从两点分布,则D (X )=p (1-p )(其中p 为成功概率).2.若X ~B (n ,p ),则D (X )=np (1-p ). 【预习评价】同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)等于( ) A.158B.154C.52D.5题型一 求离散型随机变量的方差【例1】 袋中有5个大小相同的小球,其中有1个白球、4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X 的均值和方差.规律方法 求离散型随机变量的方差的类型及解决方法(1)已知分布列型(非两点分布或二项分布):直接利用定义求解,先求均值,再求方差.(2)已知分布列是两点分布或二项分布型:直接套用公式求解,具体如下: a.若X 服从两点分布,则D (X )=p (1-p ). b.若X ~B (n ,p ),则D (X )=np (1-p ).(3)未知分布列型:求解时可先借助已知条件及概率知识先求得分布列,然后转化成(1)中的情况.(4)对于已知D (X )求D (aX +b )型,利用方差的性质求解,即利用D (aX +b )=a 2D (X )求解.【训练1】袋中有大小相同的四个球,编号分别为1,2,3,4,每次从袋中任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放回袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和方差.题型二两点分布与二项分布的方差【例2】为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,均值E(ξ)为3,标准差D(ξ)为6 2.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以下的沙柳未成活,则需要补种.求需要补种沙柳的概率.规律方法方差的性质:(1)D(aξ+b)=a2D(ξ).(2)若ξ服从两点分布,则D(ξ)=p(1-p).(3)若ξ~B(n,p),则D(ξ)=np(1-p).【训练2】已知随机变量ξ的分布列如下表:(1)求E(ξ),D(ξ),D(ξ);(2)设η=2ξ+3,求E(η),D(η).题型三均值与方差的综合应用【例3】有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中,ξA,ξB分别表示甲、乙两种材料的抗拉强度,在使用时要求抗拉强度不低于120,试比较甲、乙两种建筑材料的稳定程度(哪一个的稳定性较好).规律方法(1)均值体现了随机变量取值的平均大小,在两种产品相比较时,只比较均值往往是不恰当的,还需比较它们的取值的离散程度,即通过比较方差,才能准确地得出更恰当的判断.(2)离散型随机变量的分布列、均值、方差之间存在着紧密的联系,利用题目中所给出的条件,合理地列出方程或方程组求解,同时也应注意合理选择公式,简化问题的解答过程.【训练3】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (1)求ξ的分布列、均值和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.课堂达标1.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( ) A.8 B.15C.16D.322.已知离散型随机变量X 的分布列为X 1 2 3 4 P14131614则D (X )的值为( ) A.2912B.31144C.179144D.17123.已知小明投10次篮,每次投篮的命中率均为0.7,记10次投篮中命中的次数为X ,则D (X )=________.4.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D(X)=0.89,则对应x1,x2,x3的概率p1,p2,p3分别为________,________,________.5.某厂一批产品的合格率是98%,(1)计算从中抽取一件产品为正品的数量的方差;(2)从中有放回地随机抽取10件产品,计算抽出的10件产品中正品数的方差及标准差.课堂小结1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D(X)或标准差越小,则随机变量X偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X的取值越分散.2.求离散型随机变量X的均值、方差的步骤(1)理解X的意义,写出X的所有可能的取值;(2)求X取每一个值的概率;(3)写出随机变量X的分布列;(4)由均值、方差的定义求E(X),D(X).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E(X)和D(X).基础过关1.已知X~B(n,p),E(X)=8,D(X)=1.6,则n与p的值分别是()A.100和0.08B.20和0.4C.10和0.2D.10和0.82.若离散型随机变量X的分布列如下,则X的均值E(X)等于()X 0 1A.2B.2或12C.12D.13.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( ) A.6B.9C.3D.44.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.5.已知某随机变量X 的分布列如下,其中x >0,y >0,随机变量X 的方差D (X )=12,则x +y =________.6.设随机变量ξ的分布列为P (ξ=k )=C k n ⎝ ⎛⎭⎪⎫23k·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (ξ)=24,求随机变量ξ的标准差.7.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.能力提升8.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于( ) A.5B.8C.10D.169.某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A.x ,s 2+1002 B.x +100,s 2+1002 C.x ,s 2D.x +100,s 210.已知随机变量ξ的分布列如下表,则ξ的方差为________.11.已知随机变量X的分布列如下,若E(X)=3,则D(X)=________.X 123 4P n 0.20.3m12.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值E(X)及方差D(X).13.(选做题)A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别如下表:X1=x i5%10%P(X1=x i)0.80.2X2=x i2%8%12%(1)在A,B两个投资项目上各投资100万元,Y1和Y2分别表示投资项目A和B 所获得的利润,求方差D(Y1),D(Y2).(2)将x(0≤x≤100)万元投资项目A,100-x万元投资项目B,f(x)表示投资项目A 所得利润的方差与投资项目B所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取得最小值.。
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法例1 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX .温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX =(-1)×21+0×(1-2q )+1×q 2=q 2-21; DX =[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q )+[1-(q 2-21)]2×q 2.这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差例2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1.三、方差的应用例3 海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X1、X2(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.温馨提示随机变量X的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X1、X2,且EX1=EX2或EX1与EX2比较接近时,我们常用DX1与DX2来比较这两个随机变量,方差值大的,则表明X较为离散,反之则表明X较为集中.同样,标准差的值较大,则标明X与其均值的偏差较大,反之,则表明X与其均值的偏差较小.各个击破类题演练1 若随机事件A在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.变式提升1 某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).类题演练2 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值.变式提升2 证明:事件在一次实验中发生的次数的方差不超过14.类题演练3 甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,且ξ、η的分布列为:计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣.变式提升3 现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下每天的产量相等,而出次品的个数的分布列如下:甲乙根据以上条件,选派谁去合适?参考答案课堂导学例1 解:由于离散型随机变量的分布列满足(1)p i ≥0,i =1,2,3,...; (2)p 1+p 2+...+p n + (1)故221(12)1,20121,1.q q q q ⎧+-+=⎪⎪≤-≤⎨⎪≤⎪⎩解得q =1-22. 故X 的分布列为∴EX =(-1)×2+0×(2-1)+1×(22-) =-2321++(-2)=1-2; DX =[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1.例2 解:设成功次数为随机变量X ,由题意可知X —B (100,p ), 那么σX =)1(100p p DX -=,因为DX =100p (1-p )=100p -100p 2(0≤p ≤1). 把上式看作一个以p 为自变量的一元二次函数,易知当p =21时,DX 有最大值25.所以DX 的最大值为5,即当p =21时,成功次数的标准差的最大值为5. 例3 解:∵EX 1=0,EX 2=0, ∴EX 1=EX 2,∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5, DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2, ∴DX 1<DX 2,由上可知,A 面大钟的质量较好. 各个击破类题演练1 解:由题意得ξ的分布列为∴Eξ=0×(1-2a )+1×2a =2a ∴Dξ=(0-2a )2(1-2a )+(1-2a )22a =(1-2a )2a (2a +1-2a ) =2a (1-2a )=-4[a -41]2+41, 由分布列的性质得0≤1-2a ≤1, 且0≤2a ≤1,∴0≤a ≤21, ∴当a =41时,Dξ最大值为41; 当a =0或21时Dξ的最小值为0.变式提升1 解:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为P (ξ=1)=0.8, ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16; ξ=3,表示第一、二发未中,第三发命中, 故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中, 故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中, 故P (ξ=5)=(1-0.8)4=0.001 6,因此,它的分布列为Eξ=1×0.8+2×0.16+3×0.032+4×0.006 4+5×0.001 6=1.25.Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.006 4+(5-1.25)2×0.001 6=0.31. 类题演练2 解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p )+1×p =p ,Dξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2. (1)Dξ=p -p 2=-(p -21)2+41, ∵0<p <1,∴当p =21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p +p1≥22. 当且仅当2p =p 1,即p =22时,ξξE D 12-取得最大值2-22.变式提升2 证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p ,P (ξ=1)=p ,Eξ=0×(1-p )+1×p =p ,Dξ=(1-p )·(0-p )2+p (1-p )2= p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41.类题演练3 解:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).Dξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5. Dη=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24. 所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 变式提升3 解:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
教师学科教案[ 20–20学年度第__学期]任教学科: _____________任教年级: _____________任教老师: _____________xx市实验学校§2.3 离散型随机变量的均值与方差§2.3.1 离散型随机变量的均值教学目标:知识与技能:了解离散型随机量的均或期望的意,会根据离散型随机量的分布列求出均或期望.过程与方法:理解公式“ E( aξ +b) =aEξ +b”,以及“若ξ: B( n,p ), Eξ =np” . 能熟地用它求相的离散型随机量的均或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和之美, 体数学的文化功能与人文价。
教学重点:离散型随机量的均或期望的概念教学难点:根据离散型随机量的分布列求出均或期望授课类型:新授课时安排: 1教学过程:一、复习引入:1.离散型随机量的二分布: 在一次随机中,某事件可能生也可能不生,在 n 次独立重复中个事件生的次数ξ 是一个随机量.如果在一次中某事件生的概率是P,那么在 n 次独立重复中个事件恰好生k 次的概率是P n (k) C n k p k q n k,(k=0,1,2,⋯, n,q 1 p).于是得到随机量ξ 的概率分布如下:ξ01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0称的随机量ξ 服从二分布,作ξ~ B(n , p) ,其中n, p 参数,并C n k p k q n k=b(k;n,p).二、讲解新课:根据已知随机量的分布列,我可以方便的得出随机量的某些制定的概率,但分布列的用途不止于此,例如:已知某射手射所得数ξ 的分布列如下ξ45678910P0.020.040.060.090.280.290.22在 n 次射之前,可以根据个分布列估n 次射的平均数.就是我今天要学的离散型随机量的均或期望根据射手射所得数ξ 的分布列,我可以估,在 n 次射中,大有P(4)n0.02n次得 4;P(5)n0.04n次得 5;⋯⋯⋯⋯P(10) n 0.22n次得10.故在 n 次射的数大4 0.02 n5 0.04 n10 0.22n(4 0.02 5 0.0410 0.22) n ,从而,n 次射的平均数4 0.025 0.0410 0.22 8.32 .是一个由射手射所得数的分布列得到的,只与射数的可能取及其相的概率有关的常数,它反映了射手射的平均水平.于任一射手,若已知其射所得数ξ的分布列,即已知各个P(i ) (i=0,1,2,⋯, 10),我可以同他任意n 次射的平均数:0 P(0) 1 P(1)⋯10 P(10).1.均或数学期望 :一般地,若离散型随机量ξ 的概率分布ξx1x2⋯x n⋯P p1p⋯pn⋯2称 Ex1 p1 x2 p2⋯x n p n⋯ξ 的均或数学期望,称期望.2.均或数学期望是离散型随机量的一个特征数,它反映了离散型随机量取的平均水平3.平均数、均 :一般地,在有限取离散型随机量ξ的概率分布中,令 p1p2⋯ p n,有p1 p2⋯ p n 11,E( x1x2⋯ x n ),所以ξ 的数学期望又称平均数、n n均4.均或期望的一个性 :若a b (a、b是常数),ξ 是随机量,η也是随机量,它的分布列ξx1x2⋯x n⋯ηax1b ax2b⋯ax n b⋯P p1p2⋯p n⋯于是 E(ax1b) p1(ax2b) p2⋯(ax n b) p n⋯= a( x1 p1x2 p2⋯x n p n⋯)b( p1p2⋯p n⋯)= aE b ,由此,我得到了期望的一个性: E(a b) aE b5. 若ξ: B(n,p ), Eξ=np明如下:∵P(k) C n k p k (1 p)n k C n k p k q n k,∴E0×C n0p0q n+ 1×C1n p1q n 1+ 2×C n2p2q n 2+⋯+ k×C n k p k q n k+⋯+ n ×C n n p n q0.又∵kC n k k n!k)! (k n(n1)!nC n k11,k!(n1)![( n1)( k1)]!∴E np(C n01 p0q n 1+ C n11 p1q n2+⋯+ C n k11 p k 1 q( n 1) (k 1)+⋯ +C n n11 p n 1q 0 )np ( p q) n1np .故若ξ~ B(n , p) ,E np.三、讲解范例:例 1.球运在比中每次球命中得 1 分,不中得0 分,已知他命中的概率0.7 ,求他球一次得分的期望解:因 P(1)0.7, P(0) 0.3 ,所以 E10.70 0.30.7例 2.一次元由 20 个构成,每个有 4 个,其中有且有一个是正确答案,每正确答案得 5 分,不作出或不得分,分100 分学生甲任一的概率0.9 ,学生乙在中每都从 4 个中随机地一个,求学生甲和乙在次英元中的成的期望解:学生甲和乙在次英中正确答案的个数分是,,~B (20,0.9 ),~ B(20,0.25) ,E200.918, E200.25 5由于答对每题得 5 分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:E(5 ) 5E( ) 5 18 90,E(5 ) 5E( ) 5 5 25例 3.随机抛掷一枚骰子,求所得骰子点数的期望解:∵ P(i )1/ 6,i 1,2,,6 ,E11/ 621/ 6 6 1/ 6 =3.5例 4.随机的抛掷一个骰子,求所得骰子的点数ξ 的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P 111111 666666所以E1×1+2×1+3×1+4×1+5×1+6×1 666666=(1 +2+3+4+5+6) ×1= 3.5 .6抛掷骰子所得点数ξ 的数学期望,就是ξ 的所有可能取值的平均值.四、课堂练习:1.口袋中有 5 只球,编号为1,2, 3,4,5,从中任取 3 球,以表示取出球的最大号码,则E()A. 4;B. 5;C.4.5 ;D. 4.75答案: C2.篮球运动员在比赛中每次罚球命中的 1 分,罚不中得 0 分.已知某运动员罚球命中的概率为 0.7 ,求⑴他罚球 1 次的得分ξ的数学期望;⑵他罚球 2 次的得分η的数学期望;⑶他罚球 3 次的得分ξ的数学期望.3.设有 m升水,其中含有大肠杆菌 n 个.今取水 1 升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ 的数学期望.五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出 Eξ公式 E(aξ +b) = aEξ +b,以及服从二项分布的随机变量的期望 Eξ =np六、布置作业:练习册七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ +b)= aEξ +b,以及服从二项分布的随机变量的期望Eξ =np 。
课题:§2.3.1离散型随机变量的均值【三维目标】:知识与技能:1.记住并理解离散型随机变量的期望的概念。
2.能熟练应用概念解决问题。
3.理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξB (n,p ),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的均值或期望。
过程与方法:通过具体例子,理解离散型随机变量的期望的概念。
同时理解离散型随机变量的期望与样本平均值的关系。
通过应用概念解决实际问题,提高分析问题、解决问题的能力; 情感态度与价值观:通过学习,体会数学在解决实际问题中的作用。
【重 点】:1离散型随机变量的均值或期望的概念2几种典型的离散型随机变量的分布列及均值或期望的求法【难 点】:将实际问题转化为求离散型随机变量的分布列及均值或期望的问题 【学法指导】:认真阅读教材,结合实例理解概念和应用,并注意解题步骤。
【知识链接】:1. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量若ξ是离散型随机变量,b a b a ,,+=ξη是常数,则η也是离散型随机变量2. . 离散型随机变量分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()P x p ξ==,则称表为随机变量3. 分布列的两个性质: ⑴P i ≥0,i =1,2,…; ⑵P 1+P 2+…=1。
4.恒等式:11--=k n knCkCn【学习过程】引入:对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。
但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。
例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。
一、对随机变量ξ的均值的理解问题1:某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?问题2:某商场要将单价分别为18元/kg ,24元/kg ,36元/kg 的3种糖果按3:2:1的比例混合销售,如何对混合糖果定价才合理?问题3:结合问题1、2,记住并理解随机变量ξ的均值或数学期望的概念:则称 =ξE +11p x 22x …n n … 为ξ的均值或数学期望,简称期望.注: 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 问题4:在初中,我们学过n 个数据的平均数为+1(x +2x …nx n 1)⨯+,你能解释一下它与“随机变量ξ的均值”之间的关系吗?问题2:离散型随机变量的期望与样本平均值的关系:问题5:设Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量. (1) Y 的分布列是什么?(2)试推导 EY基础训练:= . (2)若η=2ξ+1,则E η= .a= b= . 二、典例分析:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望小结:一般地,如果随机变量X 服从两点分布:则:例2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,他连续罚球3次;(1)求他得到的分数X 的分布列; (2)求X 的期望。