Extractors from Reed-Muller codes
- 格式:pdf
- 大小:175.92 KB
- 文档页数:10
提取验证码正则-回复关于提取验证码的正则表达式在网络应用程序和网站中,验证码(Verification Code)是一种用于验证用户身份的常见验证机制。
验证码通常由一系列随机生成的字符或数字组成,以防止自动化程序或机器人对系统进行恶意操作。
对于开发人员和软件工程师来说,在处理验证码时,提取其中的内容是非常关键的一项任务。
在本文中,我们将使用正则表达式来提取验证码的内容。
正则表达式是一种强大的文本匹配工具,可以根据预定义的模式来搜索并提取目标字符串。
以下是一步一步回答的过程:步骤1: 理解验证码的模式首先,要提取验证码,我们需要先了解验证码的模式。
通常,验证码由一组字符或数字组成,并且具有固定的长度。
在这个例子中,我们将使用一个由6个数字组成的验证码作为模式。
例如,我们的目标字符串可能是"验证码:123456"。
我们的目标是提取其中的"123456"。
步骤2: 构建正则表达式使用了解到的模式和目标,我们可以构建正则表达式来提取验证码的内容。
对于我们的例子,我们可以使用"\d{6}"来匹配6个数字的模式。
在这个正则表达式中,"\d"表示任意一个数字字符,"{6}"表示重复6次。
步骤3: 在代码中应用正则表达式将正则表达式应用到实际的代码中,可以使用编程语言提供的正则表达式功能。
以下是使用Python语言进行提取的示例代码:pythonimport re# 目标字符串text = "验证码:123456"# 正则表达式pattern = r"\d{6}"# 提取验证码match = re.search(pattern, text)if match:code = match.group()print("提取到的验证码是:", code)else:print("未找到验证码")在上述示例代码中,我们首先导入了Python的re模块,它提供了正则表达式的功能。
extract函数提取数字
在Python中,我们可以使用re模块来进行正则表达式的操作。
首先,我们需要导入re模块,然后使用re模块中的findall函数
来提取数字。
以下是一个示例代码:
python.
import re.
def extract_numbers(input_string):
numbers = re.findall(r'\d+', input_string)。
return numbers.
input_string = "这是一个包含123数字456的字符串"
result = extract_numbers(input_string)。
print(result)。
在这个示例中,我们定义了一个名为extract_numbers的函数,该函数接受一个字符串作为输入,并使用re.findall函数来提取其
中的数字。
正则表达式r'\d+'表示匹配一个或多个连续的数字。
在
示例中,输入字符串为"这是一个包含123数字456的字符串",经
过提取后得到的结果为['123', '456']。
除了Python,其他编程语言如JavaScript、PHP、Java等也都
有类似的正则表达式提取函数,只是具体的语法和函数名称可能会
有所不同。
总的来说,使用extract函数提取数字的方法主要是通过正则
表达式来匹配数字的模式,然后将匹配到的结果提取出来。
希望这
个示例能够帮助你理解如何使用extract函数提取数字。
extract method from duplicate code消除代码重复:提取方法的应用Duplicate code refers to sections of code that are used multiple times, sometimes in different locations or contexts within the same program. Extracting methods from duplicate code entails taking sections of code that are similar and combining them into a single method, which is called from the various locations throughout the program. Extracting methods from duplicate code can help reduce code complexity, save development time, improve code readability, make programs more maintainable, and even add flexibility. In this article, I’ll explain the technique of extracting methods from duplicate code.##1. Identifying Duplicate CodeThe first step in extracting methods from duplicate code is to identifysecti ons of the codebase which are used multiple times. It’s important to pay attention to code that are similar but not exactly the same; if two pieces of code contain nearly identical logic, then they can still be considered duplicate code.It’s also importa nt to pay attention to how the code is used; if two pieces of code do the same thing, but are used in different contexts, then they may require separate methods. Finally, it’s important to ensure that code is extracted in a way that does not introduce bugs into the program.##2. Extracting the MethodOnce you’ve identified a section of code that can be extracted, move it into its own method. The method should have a clear name that describes what it does, and should be broken down into small, readable chunks.It’s important to ensure that all of the variables used in the code are either passed as parameters to the method, or are declared as global variables and updated by the method. Global variables should be used with caution; if a variable is declared globally, then it should be declared in one place, and all references to that variable should be updated when the method is called.##3. Refactoring the CodeAfter the method has been extracted, all references to the code need to be updated with calls to the new method. This requires careful attention to detail; if any references to the moved code are missed, then the program may not behave as expected.It’s also important to consider how the program logic can be refactored; if the moved code was part of a loop, then it may be necessary to return statements or break statements. This step of the process should be carefully tested to ensure that the program behaves as expected.##4. Testing and RefiningOnce the new method has been extracted and the code has been refactored, it’s important to test the program to ensure that it behaves as expected. This involves running the program, paying attention to any changes in the program’s behavior, and debugging any issues that arise.It’s also important to pay at tention to the readability and maintainability of the code; if the method is too complex, or contains too much logic, then it may need to be broken down into smaller methods. Once the code has been tested and refined, the process of extracting methods from duplicate code should be complete.##ConclusionExtracting methods from duplicate code is an important step in writing maintainable and readable code. By identifying sections of code that are used multiple times, extracting them into methods, refactoring the code to call the methods, and testing and refining the program, developers can increase the maintainability and readability of their programs.。
pdfplumber extract_text参数
pdfplumber是一个 Python 库,用于从 PDF 文件中提取和处理文本和数据。
在使用pdfplumber的extract_text方法时,可以传递一些参数来控制提取的行为。
•pages: 指定要提取文本的页面范围。
可以是一个页面索引、页面范
围(例如 "1-3")或一个页面列表(例如 [1, 2, 3])。
默认为提取所
有页面。
•password: 用于解密 PDF 文件的密码。
如果 PDF 文件被加密,需要提供密码才能提取文本。
•layout: 指定提取的文本布局。
默认为True,表示提取布局文本;
如果设置为False,则提取纯文本,不考虑布局。
•replace_chars: 一个字符串,包含要替换的字符。
这些字符在提取的文本中将被替换为空格或其他指定的字符。
•ignore_invalid_utf8: 如果设置为True,则忽略无效的 UTF-8 字符。
默认为False,将抛出异常。
•use_x_font_size: 如果设置为True,则使用 X 字体大小来计算
字体大小,而不是使用默认的字体大小。
默认为False。
这些参数可以帮助你控制从 PDF 文件中提取文本的方式,以满足特定的需求。
你可以根据实际情况调整这些参数的值,以获得最佳的提取效果。
vscode提取方法
1.打开VSCode,打开要提取的代码文件。
2. 选中要提取的代码段,并右击,选择“Refactor” -> “Extract Method”。
3. 在弹出的窗口中输入新方法的名称,并选择新方法要放置的位置。
4. 点击“Extract”按钮,即可完成代码提取。
5. 在新方法中添加参数,根据需要传递参数。
6. 在原来的代码中调用新方法即可。
注意事项:
1. 方法提取后,要保证新方法的可重用性和代码的可读性。
2. 提取代码前,要先思考是否有必要提取,以及提取后是否对整个代码结构有影响。
3. 建议在方法提取前,先进行代码备份,以防操作失误造成代码丢失。
- 1 -。
json提取器中正则写法在JSON 数据中使用正则表达式进行提取可以使用一些基本的正则表达式模式。
以下是一些示例,说明如何使用正则表达式从JSON 数据中提取信息:1. 提取键值对:如果你想提取JSON 中的键值对,可以使用类似于`\"key\"\s*:\s*\"value\"` 的正则表达式。
这个模式匹配形如`"key": "value"` 的键值对,其中`\s*` 表示可以包含零或多个空白字符。
2. 提取数组元素:如果你想提取JSON 数组中的元素,可以使用`\"array\"\s*:\s*\[(.*?)\]` 的正则表达式。
这个模式匹配形如`"array": [...]` 的数组,其中`(.*?)` 表示非贪婪匹配,匹配括号内的内容。
3. 提取嵌套结构:对于嵌套的JSON 结构,你可能需要使用递归的方式。
例如,提取嵌套在`"nested"` 键下的值可以使用`\"nested\"\s*:\s*\{(.*?)\}`。
这个模式匹配形如`"nested": {...}` 的嵌套结构。
以下是一个简单的Python 示例,演示如何使用正则表达式从JSON 数据中提取信息:```pythonimport reimport jsondef extract_value(json_string, key):pattern = f'\"{key}\"\s*:\s*\"(.*?)\"'match = re.search(pattern, json_string)if match:return match.group(1)else:return None# 示例JSON 数据json_data = '{"name": "John", "age": 25, "city": "New York"}'# 提取键为"name" 的值name_value = extract_value(json_data, 'name')print(f'Name: {name_value}')```请注意,正则表达式可能对于简单的JSON 结构较为有效,但对于复杂的嵌套结构,建议使用专门的JSON 解析器,例如Python 中的`json` 模块,以确保更可靠和灵活的数据提取。
extract函数用法如何使用extract函数。
提取函数是在计算机编程中广泛使用的一种功能。
它可以帮助我们从给定的数据集中提取特定的信息。
在本文中,我们将探讨提取函数的使用方法,并展示如何使用不同编程语言中的提取函数。
什么是提取函数?提取函数是一种用于从大量数据中提取有用信息的功能。
它可以根据特定的条件来搜索和匹配数据,并将匹配的结果返回给用户。
提取函数可以用于提取文本中的关键字、提取数据集中的特定列或行、从网页中提取链接等。
在不同的编程语言中,提取函数通常具有不同的名称和语法。
在接下来的部分中,我们将逐步介绍提取函数的使用方法。
使用Python中的提取函数在Python中,我们可以使用正则表达式(re库)进行数据提取。
正则表达式是一种强大的工具,可以用于根据模式匹配的方式搜索和替换字符串。
以下是使用Python中的提取函数的一般步骤:1.导入re库:在Python中使用re库之前,我们需要先导入它。
可以使用以下代码行导入re库:import re2.创建正则表达式模式:在使用提取函数之前,我们需要创建一个正则表达式模式,该模式将根据我们的需求来搜索和匹配数据。
例如,如果我们想从给定的文本中提取所有的Email地址,我们可以使用以下正则表达式模式:pattern = r'\b[A-Za-z0-9._+-]+@[A-Za-z0-9.-]+\.[A-Z a-z]{2,7}\b'3.使用re.findall()函数:使用re.findall()函数,我们可以在给定的文本中查找与模式匹配的所有项,并将它们作为列表返回。
以下是使用re.findall()函数从文本中提取所有的Email地址的示例代码:text = "Please contact us at info@example for further assistance" emails = re.findall(pattern, text)4.打印提取的结果:最后一步是打印提取函数的结果。
文章标题:深度探讨:从简单到复杂——理解idea中的extract method在软件开发领域,提高代码的可读性和可维护性是非常重要的。
而在编写代码的过程中,我们经常会遇到一些重复的、相似的代码段。
这时,我们就可以运用idea中的extract method来实现代码的重构,以提高代码的重用性和可维护性。
在本文中,我将深入探讨idea中的extract method的概念和用法,帮助你更好地理解并运用这一技巧。
1. extract method是什么?在编写代码的过程中,我们经常会遇到一些功能相似的代码段。
而这些功能相似的代码段可能散布在不同的地方,导致代码重复,可读性差,难以维护。
而extract method就是一种重构技术,它可以将一个代码段提取成一个独立的方法,然后在原来的位置调用这个方法,从而达到代码复用的效果。
2. 如何使用extract method?在idea中使用extract method非常简单。
选中需要提取的代码段,然后右键点击鼠标,在弹出的菜单中选择"Refactor" -> "Extract" -> "Method"。
在弹出的对话框中,输入要提取的方法名,以及选择要将方法提取到的位置即可完成方法的提取。
3. 为什么要使用extract method?使用extract method有很多好处。
它可以减少重复代码,提高代码的可读性。
它可以提高代码的重用性,当其他地方需要相同功能时,可以直接调用提取的方法,而不用重复编写代码。
另外,如果有需要修改的地方,只需修改提取的方法即可,而不用挨个地修改重复的代码段。
4. 个人观点和理解作为一名软件开发工程师,我经常使用extract method来优化和重构代码。
我发现,使用extract method可以使代码更加清晰、简洁,并且易于维护。
而且,当需要添加新功能或修改代码时,提取的方法也使得修改变得更加方便和安全。
intellij idea提取方法对象重构
在IntelliJ IDEA 中,你可以使用"Extract Method" 重构功能来将一段复杂的代码提取成一个独立的方法。
以下是如何进行操作的步骤:
1.首先,选中你想要提取的代码段。
如果你想要提取的代码段跨越了多个代码块,那么你需要先手动将它们
组合在一起。
2.然后,你可以通过以下步骤进行提取:
o在选中的代码上点击右键,选择"Refactor"。
o在弹出的菜单中,选择"Extract"。
o在弹出的子菜单中,选择"Method..."。
3.在弹出的"Extract Method" 对话框中,你可以设置新方法的名字以及其它相关的选项。
设置完毕后,点击
"Refactor"。
4.IntelliJ IDEA 将会自动为你生成新的方法,并将原来的代码替换为对新方法的调用。
同时,它也会更新所
有引用到这段代码的地方。
以上就是IntelliJ IDEA 中"Extract Method" 的基本操作步骤。
你可以通过这个功能来提高代码的可读性和可维护性,同时也可以帮助你更好地组织你的代码。
vue 提取基线代码Vue 是一种流行的前端框架。
当我们开始一个新项目时,通常需要从一个现有的项目中提取基线代码。
这个过程虽然可能看起来很简单,但如果没有正确的步骤,就很容易遭遇麻烦。
本文将向您介绍提取Vue 基线代码的正确方式。
1. 确认项目结构在提取 Vue 基线代码之前,先了解项目的结构。
Vue 基线代码通常由多个文件组成,包括 HTML 文件、CSS 文件、JavaScript 文件等。
确保您知道在哪个文件夹中存储这些文件。
如果您不确定,请导航到每个文件夹以查看其内容。
2. 导出文件在了解了项目结构之后,下一步是导出所有需要的文件。
在 Vue 项目中,您需要导出的文件通常是:- index.html- main.js- App.vue- router.js- store.js确保您在导出文件时将它们保存到一个文件夹中。
这样做是为了便于后续处理和使用。
3. 在新项目中创建文件夹在新的 Vue 项目中,创建一个新的文件夹,将您从旧项目中导出的文件放入该文件夹中。
4. 安装依赖项在导出文件的文件夹中打开命令行,运行以下命令以安装所需的所有依赖项:```npm install```这将下载安装所有必需的依赖项。
5. 修改 index.html 文件打开 index.html 文件,并修改它以反映您的新项目的需求。
这可能包括更改页面标题、添加引用到新项目中的 JavaScript 和 CSS 文件等。
确保您的 index.html 文件与您的项目结构相符合。
6. 修改 main.js 文件打开 main.js 文件并确保其中正确引用了您的 App.vue 文件。
您可能还需要添加一些插件和库,这取决于您的新项目的需求。
7. 修改 App.vue 文件打开 App.vue 文件并根据您的新项目的需求进行修改。
您可以更改组件名称、样式,或将代码拆分为较小的组件。
确保您在操作之前充分了解 Vue 组件的基本知识。
古典密码 python古典密码是指古代所使用的一种加密方式,主要通过替换字母或者改变字母顺序来实现信息的保密传输。
在这篇文章里,我们将探讨如何使用Python语言实现几种常见的古典密码算法。
一、凯撒密码凯撒密码是最简单的一种古典密码,它的加密方式是将明文中的每个字母按照一定的偏移量进行替换。
偏移量可以是一个固定的数值,例如偏移量为3时,明文中的字母A就被替换为D,字母B被替换为E,以此类推。
在Python中,我们可以使用简单的循环结构和字符操作来实现凯撒密码的加密和解密过程。
下面是一个使用凯撒密码加密的示例代码:```pythondef caesar_encrypt(plain_text, shift):encrypted_text = ""for char in plain_text:if char.isalpha(): # 只加密字母if char.isupper():encrypted_text += chr((ord(char) - 65 + shift) % 26 + 65)else:encrypted_text += chr((ord(char) - 97 + shift) % 26 + 97)else:encrypted_text += charreturn encrypted_text```二、维吉尼亚密码维吉尼亚密码是一种基于凯撒密码的改进型密码,在凯撒密码的基础上引入了一个密钥,通过密钥中的字母顺序来决定每个字母的偏移量。
这样可以增加密码的复杂度,提高安全性。
在Python中,我们可以使用一个循环结构和字符操作来实现维吉尼亚密码的加密和解密过程。
下面是一个使用维吉尼亚密码加密的示例代码:```pythondef vigenere_encrypt(plain_text, key):encrypted_text = ""key_length = len(key)for i in range(len(plain_text)):char = plain_text[i]if char.isalpha():if char.isupper():shift = ord(key[i % key_length].upper()) - 65encrypted_text += chr((ord(char) - 65 + shift) % 26 + 65)else:shift = ord(key[i % key_length].lower()) - 97encrypted_text += chr((ord(char) - 97 + shift) % 26 + 97)else:encrypted_text += charreturn encrypted_text```三、栅栏密码栅栏密码是一种通过重排明文中的字母顺序来实现加密的密码算法。
idea 重构提取参数全文共四篇示例,供读者参考第一篇示例:在软件开发过程中,对代码的重构是一项非常重要的任务。
代码重构旨在改善代码的结构和质量,使代码更易于理解、维护和扩展。
提取参数是一种常见的重构技术,它可以帮助我们消除代码中的重复,并使代码更具灵活性和可扩展性。
什么是提取参数?提取参数是指将某个函数或方法中的常量或硬编码的值提取出来,作为参数传入该函数或方法中。
通过提取参数,我们可以将代码中的硬编码值变成可配置的参数,从而提高代码的可定制性和可复用性。
那么,在实际开发中,如何进行提取参数的重构呢?接下来,我们将介绍一些常见的提取参数的场景和技巧。
1. 提取常量参数在代码中,我们经常会看到一些常量值被硬编码在函数或方法中,如下面的示例代码所示:```javapublic double calculateArea() {double width = 10;double height = 5;return width * height;}```在这个例子中,10和5是硬编码的常量值,我们可以通过提取参数来改善代码的可维护性。
我们可以将width和height提取出来,作为方法的参数:通过这种重构,我们可以动态传入不同的宽度和高度值,使函数更具灵活性和可复用性。
除了数值型参数外,我们还可以针对字符串参数进行提取。
下面是一个简单的示例代码:在这个例子中,"Hello, world!"是一个硬编码的字符串,我们可以将其提取为参数:在一些应用中,我们可能会需要从配置文件或外部资源中读取参数,这时可以通过提取参数来管理这些配置信息。
下面是一个读取配置信息的示例代码:在这个例子中,Config是一个读取配置信息的工具类,我们可以将host和port提取为方法的参数:通过这种重构,我们可以更好地管理配置信息,并使代码更具可配置性。
在实际应用中,提取参数是一种非常重要的重构技术,它可以帮助我们改善代码的结构和质量。
pandas extract用法-回复Pandas是一个强大的Python库,用于数据处理和分析。
它提供了许多功能来处理和转换数据,其中之一是`extract`函数。
`extract`函数可以用来提取字符串中符合特定模式的部分。
在本篇文章中,我将详细介绍`extract`函数的使用方法,并通过示例演示它的实际应用。
第一步:了解extract函数的基本语法和参数在开始之前,我们需要了解`extract`函数的基本语法和参数。
它的基本语法如下:DataFrame['column_name'].str.extract(pat, flags=0, expand=True)参数说明:- `pat`:提取模式,可以是正则表达式或带有分组的字符串。
- `flags`:正则表达式的标志,用于控制匹配的方式。
- `expand`:指定返回结果的形式。
第二步:使用正则表达式作为提取模式`extract`函数主要通过正则表达式来提取字符串中的部分。
正则表达式是一种强大的模式匹配工具,用于识别具有特定模式的字符串。
我们可以将正则表达式作为`pat`参数传递给`extract`函数。
下面的例子将进一步说明如何使用正则表达式来提取字符串中的内容。
假设我们有以下的一个数据集,其中包含了人们的姓名信息:import pandas as pddata = {'Name': ['John Smith', 'Jane Doe', 'Robert Johnson']}df = pd.DataFrame(data)我们想要从`Name`列中提取出人们的姓氏。
为了做到这一点,我们可以使用正则表达式`\w+`,其中:- `\w`代表匹配一个单词字符- ``代表匹配字符串结尾因此,正则表达式`\w+`表示匹配字符串中的最后一个单词字符到字符串结尾的部分。
现在,我们可以使用`extract`函数来提取姓氏信息。
Python中的正则表达式提取URL是很常见的需求,特别是在处理网页爬虫或者数据分析的过程中。
正则表达式是一种强大的文本匹配工具,可以用来寻找特定模式的字符串。
在Python中,re模块提供了对正则表达式的支持,可以用来提取URL。
1. URL的基本概念URL全称为统一资源定位符(Uniform Resource Locator),是互联全球信息站用来指定资源的位置区域。
它由协议、域名、路径和查询参数等部分组成,例如xxx。
2. Python中的正则表达式Python中使用re模块来操作正则表达式。
re模块提供了一系列函数来进行正则表达式匹配和搜索,包括search、match、findall等。
3. 提取URL的正则表达式在Python中,可以使用正则表达式来提取URL。
常用的URL正则表达式如下:\b((网络协议|网络协议s)://|.)\S+这个正则表达式可以匹配以网络协议://、网络协议s://或开头的URL,然后接上任意非空白字符,直到遇到空白字符为止。
可以通过这个正则表达式来提取文本中的URL。
4. 提取URL的示例代码下面是一个示例代码,使用了re模块来提取文本中的URL:import retext = "Wee to my website xxx and also check out this link xxx" urls = re.findall(r'\b((网络协议|网络协议s)://|.)\S+', text)for url in urls:print(url[0])这段代码会输出文本中提取到的所有URL。
5. 注意事项在使用正则表达式提取URL时,需要注意一些事项:- URL的格式可能会有多种情况,需要根据实际情况来选择合适的正则表达式。
- 正则表达式可能会提取到一些不符合要求的文本,需要根据实际需求进行筛选和处理。
6. 其他方法除了使用正则表达式外,还可以使用第三方库如BeautifulSoup、lxml等来解析HTML文档,并从中提取URL。
reedsolomon编码的列表译码算法Reed-Solomon编码是一种广泛应用于错误纠正和数据恢复的算法。
它最初由Irving S. Reed和Gustave Solomon于1960年提出,经过多年的发展和改进,已成为一种简单而强大的纠错码。
Reed-Solomon编码主要用于数据传输和存储系统中,可以在有限的容错能力下实现高质量的数据恢复。
它的一个重要应用是在光盘和DVD中,用于纠正由于划痕和污损引起的读取错误。
此外,它还被广泛应用于数字通信领域,如无线通信、卫星通信和数字电视等。
Reed-Solomon编码的基本原理是将要发送的数据分成若干个数据块,并对每个数据块添加一些冗余信息。
这些冗余信息被称为校验码,它们的作用是检测和纠正传输过程中的错误。
根据Reed-Solomon编码的特性,即使在数据丢失的情况下,仍然能够恢复原始数据。
这是因为冗余信息提供了足够的额外信息,使得误差能够被检测和修复。
在Reed-Solomon编码中,有两个重要的参数:符号长度和纠错能力。
符号长度决定了数据块的大小,而纠错能力则决定了编码的容错能力。
较长的符号长度和较高的纠错能力通常需要较大的冗余信息,这会导致数据传输或存储的开销增加。
Reed-Solomon编码的实现可以使用两种主要的算法:拉格朗日插值算法和Berlekamp-Massey算法。
拉格朗日插值算法是一种基于多项式插值的计算方法,可以根据已知的数据点重构出原始多项式。
这种算法适用于低纠错能力和小规模的编码。
而Berlekamp-Massey算法则是一种迭代的算法,用于快速计算可纠错的错误模式。
它适用于高纠错能力和大规模的编码。
除了这两种算法外,还有一种常用的优化算法称为列表译码算法。
列表译码算法是一种基于全搜索的算法,通过穷举所有可能的错误模式来找到最优的纠正方案。
列表译码算法的关键思想是利用冗余信息和已知的部分正确数据,生成一组可能的错误纠正方案,并通过计算每个方案的度量值来选择最优的纠正结果。
提取验证码正则-回复提取验证码是指从一个文本或图像中,将验证码(通常是一系列数字和字母的组合)提取出来,以便进一步进行处理或分析。
在实际生活和工作中,我们经常会遇到需要提取验证码的需求,例如自动填写注册表单、自动登录等。
为了实现这个目标,我们可以使用正则表达式(RegExp)来识别并提取验证码。
首先,了解正则表达式。
正则表达式是一种用于匹配字符串模式的工具。
它由各种字符和字符组合构成,用以描述文本模式,从而匹配和定位特定字符串。
在JavaScript中,我们可以使用RegExp对象和相关方法来创建和操作正则表达式。
接下来,我们来看一下如何使用正则表达式提取验证码。
步骤1:分析验证码的模式。
不同的网站和应用程序可能使用不同的验证码模式。
通常情况下,验证码由一串字母和数字组成,长度在4到8个字符之间。
假设我们要提取的验证码是这样的模式。
步骤2:编写正则表达式模式。
根据我们对验证码的模式的分析,我们可以创建一个正则表达式模式来匹配验证码。
一个基础的示例是:`/[A-Za-z0-9]{4,8}/`。
这个模式将匹配包含4到8个字母和数字的字符串。
请注意,方括号内的`A-Za-z0-9`表示字母和数字的组合。
步骤3:使用正则表达式提取验证码。
一旦我们创建了正则表达式模式,我们可以使用RegExp对象的exec()方法来提取验证码。
例如:javascriptconst text = '请输入验证码:ABCD1234';const pattern = /[A-Za-z0-9]{4,8}/; 正则表达式模式const result = pattern.exec(text);console.log(result[0]); 输出提取到的验证码这段代码会在控制台输出`ABCD1234`,这是从文本中提取出来的验证码。
我们可以将提取验证码的代码封装成一个函数,以便在需要时进行调用。
例如:javascriptfunction extractCaptcha(text) {const pattern = /[A-Za-z0-9]{4,8}/;const result = pattern.exec(text);if (result) {return result[0];} else {return null;}}const text = '请输入验证码:ABCD1234';const captcha = extractCaptcha(text);console.log(captcha); 输出提取到的验证码现在,我们已经详细了解了如何使用正则表达式提取验证码。
Extractors from Reed-Muller CodesAmnon Ta-Shma Department of Computer Science Tel-Aviv UniversityIsrael69978.email:amnon@post.tau.ac.il.∗David Zuckerman Department of Computer Science University of TexasAustin,TX78712.email:diz@†Shmuel Safra Department of Computer Science Tel-Aviv UniversityIsrael69978.email:safra@post.tau.ac.ilAbstractFinding explicit extractors is an important derandom-ization goal that has received a lot of attention in the past decade.Previous research has focused on two approaches, one related to hashing and the other to pseudorandom gen-erators.A third view,regarding extractors as good error correcting codes,was noticed before.Yet,researchers had failed to build extractors directly from a good code without using other tools from pseudorandomness.We succeed in constructing an extractor directly from a Reed-Muller code. To do this,we develop a novel proof technique.Furthermore,our construction is the£rst to achieve de-gree close to linear.In contrast,the best previous construc-tions brought the log of the degree within a constant of op-timal,which gives polynomial degree.This improvement is important for certain applications.For example,it follows that approximating the VC dimension to within a factor of N1−δis AM-hard for any positiveδ.∗Some of this work was done while the author was at the Univer-sity of California at Berkeley,and supported in part by a David and Lu-cile Packard Fellowship for Science and Engineering and NSF NYI Grant CCR-9457799.†Some of this work was done while the author was on leave at the University of California at Berkeley.Supported in part by a David and Lucile Packard Fellowship for Science and Engineering,NSF Grant CCR-9912428,NSF NYI Grant CCR-9457799,and an Alfred P.Sloan Research Fellowship.1Introduction1.1History and background.Sipser[Sip88]and Santha[San87]were the£rst to real-ize that extractor-like structures can be used to save on ran-domness.Sipser and Santha showed the existence of such objects,and left open the problem of explicitly constructing them.True extractors were£rst de£ned in[NZ96]:De£nition1.1.[NZ96]E:{0,1}n×{0,1}t→{0,1}m is anǫ-extractor for a class of distributions X over{0,1}n, if for every distribution X∈X the distribution E(X,U t) is within statistical distanceǫfrom U m.1E is explicit if E(x,y)can be computed in time polynomial in the input length n+t.E is a(k,ǫ)-extractor if E is an extractor for all distributions with min-entropy k.2Thus,extractors extract the entropy from a defective ran-dom source using few additional truly random bits.The goal is to construct extractors for any min-entropy k with t, the number of truly random bits,as small as possible and m,the number of output bits,as large as possible.Building on earlier work of Zuckerman[Zuc90,Zuc96], Nisan and Zuckerman[NZ96]built an extractor with t= O(log2n)when the entropy of the source k was high, k=Ω(n).Srinivasan and Zuckerman extended this so-lution to the case k=n1/2+ǫand Ta-Shma[TS96]further extended it to any entropy k.Also,Ta-Shma was the£rst to 1U t denotes the uniform distribution on t bits,and E(X,U t)denotes the distribution obtained by evaluating E(x,y)for x chosen according to X and y according to U t.Also,see Section2for the de£nition of statistical distance,also known as variation distance.2See Section2for the de£nition of min-entropy.1k t m RefΩ(n)O(log n)Ω(k)[Zuc97]any k O(log2nlog k )k1−α[Tre99]any k O(log n)k/log n[RSW00] k≥√nm log2n log n+m ThisO(log(log∗m))paperk≥n1/c m log n+m ThisO(c2log m)paperΩ(n)log n+Ω(k)ThisO(log log n)paper any k log n+Θ(1)k+t Optimal.−Θ(1)[RTS00] estones in building explicit extrac-tors.The errorǫis a constant.extract all the entropy from the source.Zuckerman[Zuc97] showed a construction with t=O(log n)working for high entropies k=Ω(n).All of this work used hashing and k-wise independence in various forms.Departing from previous techniques,Trevisan[Tre99] showed a connection between pseudorandom generators for small circuits and extractors.Trevisan used the Nisan-Wigderson pseudorandom generator[NW94]to construct a simple and elegant extractor that achieves t=O(log n) when k=nΩ(1)and t=O(log2n)for the general case. Trevisan’s work was extended in[ISW99,ISW00,RSW00, TSUZ01]to work for every k with only t=O(log n)truly random bits.These extensions added to the complexity of the extractor.Thus,in the current state of the art,there are two tech-niques that are used in various forms and combinations and different degrees of complexity.Even after all that work,all the known constructions use t=O(log n)while the lower bound is only t=log n+O(1).This progress is summa-rized in Table1.1for the case of constant errorǫ.1.2The signi£cance of the extractor degree.Besides their straightforward applications to simulating randomized algorithms using weak sources,extractors have had applications to many areas in derandomization that are seemingly unrelated to weak sources.These include con-structing expanders that beat the second eigenvalue method [WZ99],superconcentrators and non-blocking networks [WZ99],sorting and selecting in rounds[WZ99],pseudo-random generators for space-bounded computation[NZ96], unapproximability of clique[Zuc96]and certainΣP2mini-mization problems[Uma99],time versus space complexi-ties[Sip88],leader election[Zuc97,RZ98],another proofthat BPP⊆PH[GZ97],random sampling using few ran-dom bits[Zuc97],and error-correcting codes with stronglist decoding properties[TSZ01].Hastad[Hªa s96]uses non-explicit dispersers3in his result that C LIQUE is unapprox-imable to within n1−αfor anyα>0.The use of non-explicit dispersers make the result depend on the assump-tion that NP=ZPP;a derandomized version would as-sume that NP=P.In many of these applications,extractors are viewed ashighly unbalanced strong expanders.In this view an ex-tractor is a bipartite graph G=(V1,V2,E)with V1being {0,1}n,V2={0,1}m and an edge(x,z)exists iff there is some y∈{0,1}t such that E(x,y)=z.Thus,the degreeof each vertex of V1is T=2t,and the extractor hashes theinput x∈V1to a random neighbor among its T neighborsin V2.Often this degree T is of more interest than t=log T.For example,in the samplers of[Zuc97]the degree is thenumber of samples;in the simulation of BPP using weaksources[Zuc96]the degree is the number of calls to the BPPalgorithm;in the extractor codes of[TSZ01]T is the lengthof the code;and in the unapproximability of C LIQUE,thesize of the graph is closely related to T.As stated before,all previous constructions have degreeT=poly(n)=poly(log|V1|)while the lower bound(that matches non-explicit constructions)is only T=O(n)= O(log|V1|).In fact,when the errorǫallowed is very large and close to1,dispersers require degree which is smaller than n,namely O(nlog11−ǫ).Getting such a disperser would derandomize Hastad’s result.Our construction breaks the polynomial degree boundand is the£rst to be close to linear.An unapproximabil-ity result that required just the extractors we construct isdue to Mossel and Umans[MU01].They showed that iffor allδ>0there are explicit dispersers with degree n1+δfor sources with min-entropy nδ,then it is AM-hard to ap-proximate the VC dimension to within a factor of N1−γforall positiveγ.Our degree is even smaller,and extractors arestronger than dispersers,so the unconditional unapproxima-bility of VC dimension follows.1.3Our construction.Our construction uses error-correcting codes.Codes areknown to be related to extractors.In fact,Ta-Shma andZuckerman[TSZ01]showed that extractors are equivalentto codes over large alphabets having good list decodingproperties.Explicit extractors correspond to codes with ex-plicit encoding.However,they used extractors to give goodlist decodable codes,but not the reverse.3A disperser is a one-sided version of extractor.2Even earlier,Trevisan used error-correcting codes in his extractor construction.However,this construction seems to draw its power from pseudorandom generators rather than from coding theory.Indeed,Trevisan himself emphasized the use of pseudorandom generators,since he obtained rel-atively strong extractors without using codes at all.Trevisan’s extractor can be viewed as £rst encoding theweak source input x ∈{0,1}nwith any good error correct-ing code (good here means minimum distance close to half)and then using the truly random bits y to select bits from the encoded string using designs.A natural question is whether one can use a speci£c good code to allow y to be used in a more ef£cient way.Our extractor construction is the £rst to do this.Our good code is a Reed-Muller code.Speci£cally,we view the input x from the weak source as de£ning a degree h multivariate polynomial ˆx :F D →F over some large £eld F (h is about n 1/D ).We will need to convert £eld ele-ments to bits,for which we use a good binary code.We use the truly random bits to choose an element a ∈F D ,as well as a random position j of the binary code.The i th output bit of the extractor is the j th bit of ˆx (a +(i,0,...,0)).Thus,the construction can be viewed as using a Reed-Muller con-catenated with a good binary code for encoding,and select-ing m consecutive points for the output.For simplicity we will focus on the bivariate case,though the multivariate case works as well,and gives different pa-rameters.Notice the simple way in which we use the ran-dom string y to select the output bits.Indeed,this gives an extractor using only t =log n +O (log m ǫ)truly random bits.Formally,we prove:Theorem 1.For every m =m (n ),k =k (n )and ǫ=ǫ(n )≤1/2such that 3m ≤k ≤n ,there is anexplicit family of (k,ǫ)extractors E n :{0,1}n ×{0,1}t→{0,1}mwith t =log n +O (log m ǫ).To further improve our result,we develop a technique to dramatically reduce the factor of m penalty that Yao’s lemma usually induces in the error.In particular,we no-tice that our construction (and Trevisan’s,for example)can be viewed as an ef£cient reduction from the problem of constructing extractors for general sources,to the problem of constructing extractors for almost semi-random sources (de£ned in Section 3.1).We then show an ef£cient con-struction for almost semi-random sources.We use this to give a construction using only t =log n +O (log(log ∗m ))truly random bits.Formally,Theorem 2.For every m =m (n ),k =k (n )and ǫ=ǫ(n )such that 3m n log(n/ǫ)≤k ≤n and m ≥Ω(log 2(1ǫ)),there is an explicit family of (k,ǫ)ex-tractors E n :{0,1}n ×{0,1}t →{0,1}mwith t =log n +polylog(ǫ−1)+O (log(log ∗m ))4.Notice that while we dramatically improve the random bit complexity,both constructions work only for entropies k =n 1/2+γand the number of output bits is only k δfor some δ<γ.We can make the construction work for smaller entropies by using multivariate polynomials instead of bivariate polynomials,but then we pay in the number of the output bits and the ly,we prove:Theorem 3.For every n,m and D ,there is an explicit fam-ily of (k,ǫ)extractors E n :{0,1}n ×{0,1}t →{0,1}mwith k =Ω(m D −1n 1/D log n ),t ≤log n +O (D 2log m ),and ǫ=1−18D .We defer the proof to the full version of the paper.We can also extract more output bits in the case where the entropy is k =Ω(n ).Formally,Theorem 4.For any constants δ,ǫ>0,there is a con-stant γsuch that there is an explicit family of (δn,ǫ)ex-tractors E :{0,1}n ×{0,1}t →{0,1}m,where t =log n +O (log log n )and m =γn .Beyond the signi£cance of the better bounds on the de-gree of Theorems 2,3and 4,Theorem 1is the £rst (and only)purely algebraic extractor construction,and the only one relying solely on error-correcting codes.Moreover,the simplicity and good constants may make it practical,which is probably not the case for previous constructions.1.4Our proof technique.At the highest level our proof plan resembles Trevisan’s.That is,we assume that the distribution E (X,U t )is not close to ing Yao’s lemma this gives a next bit predictor,which we use to give a small description of the el-ements of the support of X .In our case,the next bit predic-tor on average can learn the value ˆx (a 1+i,a 2)from the val-ues ˆx (a 1+1,a 2),...,ˆx (a 1+i −1,a 2),where ˆx :F 2→F is a bivariate polynomial.The similarity to Trevisan’s proof ends there.We now play a mental game.We pick a random line L and we as-sume someone is giving us the correct values of ˆx on i −1consecutive parallel left-shifts of L ,i.e.,L −(1,0)through L −(i −1,0).Each point on L is preceded by i −1points for which we already know (by assumption)the correct value of ˆx .Hence we can use the predictor to predict that point,with some moderately good success probability.Overall,the pre-dictor is correct for many points on L .We now use the fact that ˆx restricted to L is a low-degree polynomial to actu-ally £nd the value of ˆx on that line (using list-decoding for4Thepolylog(ǫ−1)term can be improved to O (log ǫ−1)but we post-pone it to the full version of the paper.3Reed-Solomon codes).We then learn L+(1,0),L+(2,0), etc.,until we learn enough lines to reconstructˆx itself.Playing that mental game we can prove that there is a set of about mh queries(and recall that h is about√n and m is the number of output bits)such that almost every x∈X can be reconstructed given the answers to these queries.Note that h2queries can always reconstruct X;our gain is that we can reconstruct X using only mh instead of h2queries. This shows that X has size at most|F|mh,or equivalently has entropy at most mh log q.We conclude that if X is larger than that the distribution E(X,U)is close to uniform.The technique was inspired by work done on list decod-ing of Reed-Muller codes,and its application to hardness ampli£cation in[STV99].Aside from applying an error-correcting technique to a different information theoretic set-ting,our proof techniuqe has additional ideas.For example, we obtain our savings by learning a line using previously learned lines,and this whole notion of recycling queries makes sense only in our setting and does not appear in pre-vious constructions.We believe this is a clean and elegant way of constructing extractors.Indeed,there has already been another construc-tion based on ours[SU01].2PreliminariesThroughout,F=F q denotes a£eld of size q.As usual, [n]denotes the set{1,2,...,n}.If S is a set and a is an element,then S+a denotes the set{s+a:s∈S}.All logarithms are to the base2.We will assume,when needed, that various quantities are integers.It is not hard to check that this has only a negligible effect on our analysis.The statistical distance(or variation distance)between two distributions D1and D2on the same space S is max T⊆S|D1(T)−D2(T)|=12 s∈S|D1(s)−D2(s)|. The min-entropy of a distribution D on a probability space S is min s∈S{−log2D(s)}.An element x∈Λ1×···×Λm,for some domainsΛi, is an m–tuple,x=x1◦...◦x m.Similarly,a distribution X overΛm,de£nes m correlated distributions X=X1◦...◦X m.For1≤i≤j≤m let X[i,j]denote the random variable X i◦...◦X j and similarly for x.Thus,Pr(X[i,j]= x[i,j])is a shortcut for Pr(X i=x i∧...∧X j=x j).P OLYNOMIALS.We will use the following lemma due to Sudan.Lemma2.1.[Sud97]Given a sequence of m distinct pairs pairs{x i,y i}∈F2,there are less than2m/a degree h polynomials p such that p(x i)=y i for at least a values of i∈[m],provided that a≥√Corollary2.2.For each element u∈F assign a set S u of size at most A.Then there are less than2A/δdegree hpolynomials p such that p(u)∈S u for at least aδfraction of points,provided thatδ≥B INARYC ODES.An[n,k]code is a linear binary codeof length n and dimension k.When we refer to relative measures,we mean the ordinary measures divided by the length.We will need binary codes with good combinatorial list decoding properties.De£nition2.3.A binary code has combinatorial list de-coding propertyαif every Hamming ball of relative radius 12−αhas O(1/α2)codewords.We will use codes from the following code construction due to[GHSZ00].Fact2.4.There is a polynomial-time(in fact,Logspace) constructible[n,k]code with combinatorial list decoding propertyα,where n=O(k/α4).Simpler and more ef£cient constructions can be achieved with somewhat worse parameters,e.g.[NN93,AGHP92].Our construction uses an(h,D)Reed-Muller code over F q.In such a code the message speci£es a polyno-mial f in D variables over F q of total degree at most h,and the output is all the values of f over F D q.Every polynomial in D variables of total degree≤h can be represented by the coef£cients of the different monomials x i11··...x i D D with i1+...i D≤h,and there are exactly h+D D such monomi-als.It follows that such a code has length q D and dimension h+D D .3Top-down overview3.1Almost Semi-Random SourcesSemi random sources were de£ned and studied in many early papers,most notably[SV86,CG88,NZ96,SZ99].We extend this de£nition to aβ–almost semi-random source: De£nition3.1.A distribution Z=Z1◦Z2◦...◦Z m is β–almostαsemi-random if for every i=1,...,m,Z i is distributed over{0,1}andPrz∈Z[Prz i(Z i=z i|Z[1,i−1]=z[1,i−1])>12+α]≤βIfβ=0we say Z isαsemi-random.Two simple facts are recorded in the following lemma. Lemma3.2.Aβ–almostαsemi-random source Z=Z1◦...◦Z m is mβclose to anαsemi random source.Anαsemi-random source Z=Z1◦...◦Z m is mαclose to the uniform distribution.4Proof.For the£rst part,we induct from i=m down to i=1.For each such i there is at most aβfraction of bad pre£xes.For each such bad pre£x,we can redistribute the weight of strings with that pre£x uniformly on all extension of the pre£x.The redistribution for a particular i makes at most aβdifference to the distribution,and the£nal distri-bution is a true semi-random source.For the second part,notice that for every pre£x the prob-ability of the next bit being0or1is at most12+α.Wecan again induct from i=m to i=1and redistribute the weight so that it is perfectly uniform.The resulting differ-ence is again at most mα.An extractor working on a general distribution over n input bits requires at least t≥log n−O(1)truly random bits,even when the allowed errorǫis a constant.In contrast, we show that extractors for semi-random sources require only t=O(1)truly random bits and explicitly construct such an extractor.We defer the proof to Section5. Theorem5.For everyα,β>0de£ne p=1−log(1+2α). There is anǫ-extractor F:{0,1}m×{0,1}r→{0,1}m′forβ-almostαsemi-random sources withǫ=O(βlog∗m),r=poly(log1pǫ)and m′=pm2−O((log∗m)2logǫ−1).3.2The main constructionLet F=F q be a£eld of size q≫√n.De£ne h= 2n log q .It is easiest to think of q as prime.The re-duction begins by viewing the n-bit input string x∈{0,1}n as a function f:F2→F of total degree at most h−1. This is possible since every degree h−1bivariate polyno-mial f can be speci£ed using h+12 coef£cients from F q and h+12 log q≥h22log q≥n.The function ZInput:x∈{0,1}n.Setting:F is a£eld of size q,h= 2n log q .We associate with x∈{0,1}n a functionˆx:F2→Fof total degree at most h−1.Binary code:BC is a linear binary code of dimen-sionℓ=log q,combinatorial list decoding prop-ertyα(see De£nition2.3),αwill be determinedlater,and length¯ℓ.Random coins:a=(a1,a2)∈F2,j∈[¯ℓ]. Output:Z(x;a,j)i=BC(ˆx(a1+i,a2))j for i= 1,...,mOur main technical contribution is:Theorem6.For every n,m andα,β>0:•Set q the smallest prime such that q2log q≥(29√nα2β2)2.•Set h=2n .Let us denote Z=Z(X,U t)where Z=Z1◦Z2◦...◦Z m.Then:•If Z is notβ-almostαsemi-random,|X|<q mh.•t≤log n+O(log(1αβ)),and,•Z can be computed in O(log q)space and poly(q)=poly(n,1αβ)time.To verify parameters note that Z uses t=log(q2)+log¯ℓrandom ing Fact2.4,¯ℓ=O((log q)/α4),so t= log(q2log q)+O(logα−1)=log n+O(log1).The running time of Z is dominated by the complexity of evaluatingˆx(a),which can be done with O(log q)space and poly(q)time.We will deal later with the challenging part of proving the reduction correctness.We are now ready to prove Theorem1:Proof.(Of Theorem1)Suppose m=m(n),k=k(n)and ǫ=ǫ(n)are such that3m n log(nǫ)≤k≤n.Let us setα=β=ǫ2mand q and h as in Theorem6.We claim Z(X;U)is the desired(k,ǫ)extractor.To see that,let X⊆{0,1}n be an arbitrary set of cardi-nality at least K=2k.As q2≤o(n(m)8)≤o(n)9,one can check that for large n,K=2k≥q mh.By Theorem 6,Z=Z(X;U)is aβ–almostαsemi-random source.It follows by Lemma3.2that Z(X;U)is m(α+β)=ǫclose to uniform.3.3Further reducing the number of truly randombitsWe now want to save the O(log m)extra term we have in t.To do that we work with a constantα,sayα=.1.Then the distribution Z=Z(X;U)is not close to uniform.How-ever,Z isβ–almostαsemi-random,with constant entropy in each of the bits.It therefore suf£ces to give an extremely ef£cient extractor for almost semi-random sources.We now prove Theorem2.Proof.(Of Theorem2)Suppose m=m(n),k=k(n) andǫ=ǫ(n)are such that3m ≤k≤n and m≥2log21.Let us setα=.1,β=Θ(ǫ∗)and q=Θ( n12).Let F(X;U)be the extractor forβ–almost semi-random sources,of Theorem5.Our extractor is E(x;y1,y2)=F(Z(x;y1);y2).That is,we£rst apply Z5on the input x together with the truly random string y 1,and then we apply the extractor F for β–almost semi-random sources together with a new truly random string y 2.Correctness :Let X ⊆{0,1}nbe an arbitrary set of car-dinality at least K =2k .Working out the parame-ters we see that |X |≥2k ≥q mh .By Theorem 6,Z =Z (X ;U )is a β–almost .1semi-random source.It then follows by Theorem 5that E (X ;U )is O (ǫ)close to uniform.Parameters :By Theorem 6,the length of y 1is log n +4log(1β)+O (1)=log n +log(log ∗m ))+log 1ǫ+O (1).By theorem 5the length of y 2is polylog(ǫ−1).Thus the number of truly random bits used is as required.The output length of Z is m ,and thus the output lengthof F is at least pm −O ((log ∗m )2log 1)≥pm pro-vided that m ≥Ω(log 21ǫ).To get error ǫand m output bits,just apply the above construction with m ′=4m and ǫ′=Ω(ǫ).3.4Increasing the output lengthWe can apply techniques from [RSW00,NZ96]to in-crease the length of the output and prove Theorem 4:Proof.(of Theorem 4,Sketch.)Reingold,et.al.[RSW00]showed how to add O (log log n )truly random bits to theinput X and extract a block B of length δ2n ,such that B is close to a 2γn source and X is close to a source with min-entropy δ4n ,even conditioned on B .We can then apply techniques implicit in [NZ96]and explicit in [SZ99].We use the extractor of Theorem 2to add log n +O (log ∗n )truly random bits to X and extract polylog(n )almost-random bits that are close to uniform even conditioned on B .We now use these polylog(n )bits and the original ex-tractor of [NZ96](though the more complex [Zuc97]is bet-ter)to extract γn almost-random bits from B .4The main proofTo prove Theorem 6,we show that if Z is not as required then there exists a large subset X ′′of X such that the an-swers to a small number of queries distinguishes elements of X ′′.This shows that X ′′is small,and therefore X itself is small.We begin with some de£nitions.De£nition 4.1.A predictor P for bivariate polynomials is a probabilistic function which,on input a ∈F 2,makes queries Q (a )about a bivariate polynomial f .The set Q (a )may be chosen at random and may or may not depend on a .On receiving the answers to the queries from an oracle,P computes a subset P (a )⊆F .The queries are usually point queries of the form,“what is f (v )?”for some point v ∈F 2.Some queries are line queries of the form “which polynomial among p 1,...,p B is equal to f restricted to line L ,denoted f |L ?”We will be interested in the number of possibilities a query distin-guishes.For example,this is q for the point queries and B for the line queries.The number of possibilities a set of queries distinguishes is the product of the possibilities for each query in the set.P has A possible answers if for every a ∈F 2,every possible set of queries and every set of answers,the size of P (a )is at most A .P predicts f :F 2→F with success p if,when the oracle answers the queries according to f ,Pr a ∈F 2coins of P[f (a )∈P (a )]≥pP predicts S ⊆{0,1}nwith success p if,for every x ∈S ,P predicts ˆx with success p .P has preprocessed queries if Q (a )does not depend on a ,and P is deterministic if it does not use random coins (neither to choose Q nor to compute its answer).Notation 4.2.Suppose P is a predictor for bivariate poly-nomials and f :F 2→F .P fQ (a )denotes the value when the queries are Q (a )and the oracle answers according to f .Whenever the set of queries Q is clear from the context we write P f (a )to denote this value.If P is deterministic,the set of queries Q is completely determined by a ,and then we always denote this value by P f (a ).Theorem 6follows from the following proposition:Proposition 1.If Z =Z (X ;U )is not β–almost αsemi-random,then there exists a deterministic predictor for a set X ′′,of size at least |X ′′|≥β4|X |,with 1possible answer and success 1.There are at most (m −1)h point queries and h line queries,all preprocessed,and the line queries distinguish at most O (1/βα2)=o (βq )possibilities.Hence |X |≤o (q mh ).Notice that while in general we need about h 22values to determine an arbitrary degree h −1bivariate polynomial,here only about mh queries suf£ce.This immediately im-plies X is small.4.1Evaluating a PointWe now £x a set X such that Z =Z (X ;U )is not β–almost αsemi-random.We begin with a certain “segment predictor.”De£nition 4.3.P is a segment predictor if the queries are point queries of the form Q (a 1,a 2)={(a 1−s,a 2),...,(a 1−1,a 2)}.6Our £rst step towards proving Proposition 1will be to prove the following.Lemma 4.4.There exists a segment predictor EP for X ′⊂X of cardinality |X ′|≥β2|X |making at most m −1point queries,A =O (1/α2)possible answers and p =β4suc-cess.Proof.Since Z is not β–almost αsemi-random,then there is an i 0∈{1,...,m }such thatPr z ∈Z[Pr(Z i 0=z i 0|Z [1,i 0−1]=z [1,i 0−1])>12+α]≥βWe can now de£ne T :{0,1}i 0−1→{0,1}by letting T (z 1,...,z i 0−1)be the most frequent value of (Z i |Z [1,i 0−1]=z [1,i 0−1])breaking ties arbitrarily.Wethen have Pr z ∈Z [Pr(T (z [1,i 0−1])=z i 0)>1+α]≥β.An averaging argument shows that there exists a subset X ′⊂X of cardinality at least β2|X |such that for every x ∈X ′,Pru ∈U z ∈Z (x ;u )[Pr(T (z [1,i 0−1])=z i 0)>12+α]≥β2Another averaging argument yields,for every x ∈X ′Pr a [Pr j [Pr(T (z [1,i 0−1])=z i 0)>12+α]≥β4]≥β4(1)We can now de£ne our segment predictor.EP :Evaluate PointInput :a =(a 1,a 2)∈F 2Queries :The query points are Q (a 1,a 2)={(a 1−(i 0−1),a 2),...,(a 1−1,a 2)}.The an-swer to the query (a 1−i,a 2)is b i .Algorithm :For every j ∈[¯ℓ]compute g j (a )=T (BC (b i 0−1)j ,...,BC (b 1)j )and set g (w )=g 1(w )...g ¯ℓ(w ).Output :EP (w )is the set of all codewords of BC that have at least 12+αrelative agreement with g (w ).Note that EP is deterministic and that the queries depend on the input a .We claim:Claim 4.5.For every x ∈X ′we have Pr a (ˆx (a )∈EP ˆx (a ))≥β4.Proof.When the answers b 1,...,b i 0−1re¤ect the values of ˆx we have b i =ˆx (a 1−i,a 2)and:g j (a )=T (BC (ˆx (a 1−i 0+1,a 2))j ,...,BC (ˆx (a 1−1,a 2))j )By Equation (1)for every x ∈X ′,for at least β4of the points a ∈F 2,Pr j ∈[¯ℓ][g j (a )=BC (ˆx (a ))j ]≥12+αand whenever this happens we have that ˆx (a )∈EP ˆx (a ).Finally,since BC has combinatorial list decoding prop-erty αfor any a ,|EP ˆx (a )|≤O (1α2).4.2Evaluating a LineWe use the procedure EP to build a procedure EL (for “Evaluate-Line”)that given a line L makes some speci£c queries and outputs a single polynomial over F .EL p (L ):Evaluate LineInput :A line L :F →F 2.Algorithm :•For every i =1,...,q :–Evaluate EP (L (i ))by making the nec-essary point queries.•Form the set S={(i,w )|i ∈[1,q ],w ∈EP (L (i ))}.•Compute the list G of all univariate polyno-mials g :F →F of degree at most h −1with agreement at least β8q with S .Output :Query which one of the polynomials in G is equal to f |L ,and output this polynomial.We now show that EL does well on random lines.Lemma 4.6.For every x ∈X ′:PrL,j 1,...,j ℓ[EL ˆx (L )=ˆx (L )]≤η=16βqThe lemma follows from the following claim,which shows that G almost always contains the right polynomial.Claim 4.7.For every x ∈X ′,Pr L (ˆx (L )∈G )≤16βqProof.Call v ∈F 2nice for p :F 2→F if p (v )∈EP p (v ).We know that:•For every x ∈X ′,Pr v ∈F 2[v is nice for ˆx ]≥β4and•For every p :F 2→F and v ,|EP p (v )|≤A =O (1α2).7。