七年级数学下册拔高题
- 格式:docx
- 大小:73.87 KB
- 文档页数:3
一、选择题(每题4分,共20分)1. 已知a、b是方程x^2-4x+3=0的两个实数根,则a+b的值是:A. 2B. 3C. 4D. 52. 下列各数中,有理数是:A. √2B. πC. 3.14D. -√23. 在下列各数中,绝对值最小的是:A. 2B. -3C. 0.5D. -2.54. 已知x=2,则代数式x^2-5x+6的值为:A. 1B. 3C. 5D. 75. 若a、b是方程x^2-3x+2=0的两个实数根,则a^2+b^2的值是:A. 4B. 5C. 6D. 7二、填空题(每题4分,共16分)6. 已知方程x^2-2x-3=0的解是x1、x2,则x1+x2=________,x1x2=________。
7. 若a、b是方程x^2-5x+6=0的两个实数根,则a^2+b^2=________。
8. 已知a、b是方程x^2-2x+1=0的两个实数根,则a^2+2ab+b^2=________。
9. 若x^2+3x-4=0的两个实数根分别为x1、x2,则x1+x2=________,x1x2=________。
10. 若x^2-3x+2=0的两个实数根分别为x1、x2,则x1^2+x2^2=________。
三、解答题(每题10分,共30分)11. (10分)已知方程x^2-4x+3=0的解是x1、x2,求(x1+x2)^2+2x1x2的值。
12. (10分)已知方程x^2-5x+6=0的解是x1、x2,求x1^2+x2^2+2x1x2的值。
13. (10分)已知方程x^2-2x+1=0的解是x1、x2,求x1^2+x2^2-x1x2的值。
答案:一、选择题1. C2. C3. C4. B5. A二、填空题6. 4,-37. 118. 19. -3,-410. 5三、解答题11. 1912. 3713. 2。
三角形、多边形拔高题一、填空题1、三角形三个内角的比为1:3:5,则最大的内角是_____度2、两根木棒的长分别为cm 3和cm 5,要选择第三根木棒,将它钉成一个三角形,若第三根木棒的长为偶数,则第三根木棒的长是._____cm3、若一个多边形的每一个内角都等于0135,则这个多边形是____边形,它的内角和等于____.二、选择题1、三角形三条高的交点一定在( )A 、三角形的内部B 、三角形的外部C 、三角形的内部或外部.D 、三角形的内部、外部或顶点 2、适合条件C B A ∠=∠=∠21的∆ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 3、直角三角形两锐角的角平分线相交所成的角的度数是( ) A 、045 B 、0135 C 、045或0135 D 、不能确定三、解答题1、已知∆ABC 中,A ∠比2B ∠大040,B ∠比2C ∠少010,求各角的度数.2、如图,090⋅=∠+∠+∠+∠+∠+∠n F E D C B A ,求n ;3、如图,在六边形ABCDEF 中,AF//CD ,AB//DE ,且0080120=∠=∠B A ,,求C ∠ 和D ∠的度数4、已知∆ABC 的三边长分别为c b a ,,,且05|2|2=-++-+)(c b a c b 求b 的取值范围.二元一次方程组拔高题一、填空题1、已知24x y -=,则142______x y -+=.2、若3321m nm n mxny -+-=是关于x 、y 的二元一次方程组,则______mn=. 3、消去方程组235342x ty t=-⎧⎨=+⎩中的t ,得___________.4、当m =_______时,方程组2448x my x y +=⎧⎨+=⎩的解是正整数.5、某学生在n 次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均为90分,如果最后一次考试得73分,则平均分为87分,则n =_______.6、某商品售价a 元,利润为成本的20%,若把利润提高到30%,售价应提高到_______元.二、选择题1、已知方程组2342x y ax by -=⎧⎨+=⎩与3564x y bx ay -=⎧⎨+=-⎩有相同的解,则a 、b 的值为( )A .21a b =-⎧⎨=⎩B .12a b =⎧⎨=-⎩C .12a b =⎧⎨=⎩D .12a b =-⎧⎨=-⎩2、若方程组()213431kx k y x y +-=⎧⎪⎨+=⎪⎩的解x 和y 互为相反数,则k 的值为( )A .2B .-2C .3D .-33、如果关于x y 、的方程组24x y mx y m +=⎧⎨-=⎩的解是二元一次方程3+214x y =的一个解,那么m 的值( )A .1B .-1C .2D .-24、6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,A 现在年龄是( ) A .12 B .18 C .24 D .30三、解答题(1)5341134x y x yx y x y +-⎧-=⎪⎪⎨+-⎪+=⎪⎩(2)3221456x y x y x y ++-+==2、某车间有甲、乙两种硫酸的溶液,浓度分别为90%和70%,现将两种溶液混合配制成浓度为80%的硫酸溶液500千克,甲、乙两种溶液各需取多少克?数据的收集、整理与描述拔高题B 校50%20%25%5% 其他水粉画书法剪纸A 校28%22%40%10%其他水粉画书法剪纸1.根据下图提供的信息,甲的圆心角为1200,乙的圆心角为600,丙占30%,丁占20%。
七年级数学下学期综练习一、选择题。
1.如图,在数轴上有M ,N ,P ,Q 四点,其中某一点表示无理数2,这个点是( )A .MB .NC .PD .Q 2.下列实数中:36,11,1.414,225,39,π,无理数有( )A .2个B .3个C .4个D .5个3.若点P 在第二象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标为( ) A .(-3,2) B .(-2,3) C .(3,-2) D .(2,-3) 4.下列说法不正确的是( )A.⎝⎛⎭⎫-142的平方根是±14 B .-5是25的一个平方根C .0.9的算术平方根是0.3 D.3-27=-35.如图,直线a ,b 被直线c 所截,下列条件中,不能判断直线a ,b 平行的是( ) A .∠2=∠3 B .∠1=∠4 C .∠1+∠3=180° D .∠1+∠4=180°6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( ) A .132° B .134° C .136° D .138° 7.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则x 1=x 0+x 22,y 1=y 0+y 22.在平面直角坐标系中有三个点A (1,-1),B (-1,-1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且P A =P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)8.若m ,n 满足(m -1)2+n -15=0,则m +n 的平方根是( ) A .±4 B .±2 C .4 D .29.下列命题中:①立方根等于它本身的数有-1,0,1;②负数没有立方根;③36=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.真命题的个数有( )A .1个B .2个C .3个D .4个10. 若32-a =-3b -3 ,则b -a +3的平方根( ). A. ±1 B. 2±C. 3±D. ±2二、填空题。
七年级下册数学期末拔高试题1. 某家电商场经销A、B、C三种品牌的彩电,5月份共获利48000元,已知A种品牌的彩电每台可获利100元,B种品牌的彩电每台可获利144元,C种品牌的彩电每台可获利360元,请你根据相关信息补全彩电销售台数的条形图和所获利润的百分数的扇形图。
2. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,某校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,该校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少3. 开学初,小芳和小亮去学校商店购买学习用品,小芳用18元买了一支钢笔和3本笔记本;小亮用31元购买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案请你一一写出来.购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲乙两个班共100多人,去该公园举行联欢活动,其中甲班有50多人而乙班不足50人,如果以班为单位购买门票,一共要付920元;如果两个班一起购买门票,一共要付515元.问甲、乙两班分别有多少人5. 在平面直角坐标系中,设坐标的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出可得到整数点可得到整数点发时间的坐标 的个数1秒 (0,1)、(1,0)2 2秒 3秒(2)当点P 从点O 出发10秒,可得到的整数点的个数是_______________个;(3)当点P 从O 出发________________秒时,可得到整数点(10,5)6. 已知1∠的度数是它补角的3倍,2∠等于45,那么AB CD ∥吗为什么7. 如图,AB ∥CD ,BN 、DN 分别平分∠ABM 、∠MDC ,试问∠BMD 与∠BND 之 间的数量关系如何证明你的结论。
1、三角形的三个外角中,钝角最多有( )。
A :1个 B: 2个 C:3 个 D : 4 个2、直角三角形两锐角的平分线相交所成的钝角是( )。
A :120°B : 135° C:150° D: 165°3、如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P,若∠A=500 ,则 ∠BPC 等于( )A 、90°B 、130°C 、270°D 、315°4、一个多边形的每一个外角都等于30°,这个多边形的边数是 ,它的内角和是5、如图所示,若∠A =32°,∠B =45°,∠C =38°,则∠DFE 等于( ) A 。
120° B。
115° C。
110° D。
105°6、已知等腰三角形的两边长分别为4cm 和7cm , 它的周长是_________㎝.7、等腰三角形一腰上的中线将这个等腰三角形的周长分成15和6两部分,则这个等腰三角形的三边长是_________________.8、若过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形有k 条对角线,求(m -k )n 的值__________。
9、如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=___10、下列正多边形中,与正三角形同时使用能进行镶嵌的是 ( )A.正十二边形 B 。
正十边形 C 。
正八边形 D.正五边形11、如图:小明从A 点出发前进10m ,向右转150,,再前进10m ,右转150……这样一直走下去,他第一次回到出发点A 时,一共走了____m 。
12、过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( ) A 、8 B 、9 C 、10 D 、1113、n 边形的每个外角都为24°,则边数n 为( )A 、13B 、14C 、15D 、16(第3题)F E D C B A14、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。
初一下学期数学拔高训练例题二元一次方程(组)【例1】已知方程组!赛+》尸八的解x, y满足方程5x-y=3,求k的值.如4尸丘+I[【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x, y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值•(3)将方程组中的两个方程相加,得5x-y=2k+11 ,又知5x-y=3,所以整体代入即可求出k的值.2兀+3尸匕①3%-4y=k+l I.②5x^=3.③解法一:②得盂-7尸11*④③得M4y=-》2f解得尸-孝杷尸-等代入③,得弘十等=3, 解得絆存把•二:一■ = J代入①,得:厂_厂」:」,解得k=-4.解法二:① X 3—② X2,得17y=k-22 ,解得杷尸特代人①「得2沪3込骨)2 , 昨牛斗铲-杷和r=nr~代入③・得氐哼-_罟_ ◎解得z解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到, 考巧妙解法的时间, 可能这道题我们已经用一般解法解了一半了, 当然,巧妙解法很容易想到的话,那就应该用巧妙解法了 •【例2】 某种商品价格为每件3 3元,某人身边只带有2元和5元两种面值的人民币 各若干张,买了一件这种商品•若无需找零钱,则付款方式有哪几种 (指付出2元和5元钱 的张数)?哪种付款方式付出的张数最少?【思考与分析】 本题我们可以运用方程思想将此问题转化为方程来求解 •我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式 •然后找出已知量和未知量设元,列方程组求解•最后,比较各个解对应的 x+y 的值,即可知道哪种付款方式付出的张数最少• 解: 设付出2元钱的张数为 x ,付出5元钱的张数为 y ,则x,y 的取值均为自然数•依 题意可得方程:2x+5y=33.因为5y 个位上的数只可能是0或5,所以2x 个位上数应为3或8胱好尸斗尸①【例3】解方程组|N 订尸& ②【思考与分析】本例是一个含字母系数的方程组 •解含字母系数的方程组同解含字母系数的 方程一样,在方程两边同时乘以或除以字母表示的系数时, 也需要弄清字母的取值是否为零。
《垂线》拔高练习一.选择题(本大题共5小题,共25.0分)1. (5分)如图,因为直线丄/于点B, BCAJ于点、B,所以直线佔和BC重合,则其中蕴含的数学原理是()AC11BA. 平面内,过一点有且只有一条直线与已知直线垂直B. 垂线段最短C. 过一点只能作一条垂线D. 两点确定一条直线2. (5分)已知线段CD,点M在线段结合图形,下列说法不正确CA・延长线段A3、CD.相交于点FB. 反向延长线段84、DC,相交于点FC. 过点M画线段A3的垂线,交CD于点ED. 过点M画线段CD的垂线,交CD于点E3. (5分)如图,已知直线AD、BE、CF相交于点O, OG丄AD,且ZBOC=35° ,ZFOG=30Q ,则ZDOE的度数为()B4.(5分)如图,OB丄CD于点O, Z1 = Z2,则Z2与Z3的关系是()BA. Z2=Z3 B・Z2与Z3互补C. Z2与Z3互余D.不确定5. (5分)如图,直线AB与直线CD相交于点O, E是ZCOB内一点,且OE丄AB, ZAOC=35° ,则ZEOD的度数是()1C、2 _______A GA.155°B. 145°C. 135°D. 125°二.填空题本大题共5小题,共25.0分)6. (5分)如图,直线佔与CD相交于点O, EO丄CD于点O, OF平分ZAOC,若ZBOE: ZAOC=4: 5,则ZEOF为 __________ 度.7・(5分)如果两个角的两条边分别垂直,而其中一个角比另一个角的4倍少60° , 则这两个角的度数分别为_ .& (5分)如图,直线AB、CD相交于点O,OE丄AB,垂足是点O, ZBOC=\40Q , 则ZDOE= ________ .9. (5分)已知ZAOB和ZCOD的两边分别互相垂直,且ZCOD比ZAO3的3倍少60°,则ZCOD的度数为_________10. (5分)如图,三条直线AB. CD、EF相交于0,且CD丄EF, ZAOE=6S° .若三、解答题(本大题共5小题,共50.0分)11. (10分)如图1,已知A 、O 、3三点在同一直线上,射线OD 、OE 分别平 分ZAOC 、ZBOC.(1) 求ZDOE 的度数;(2) 如图2,在ZAOD 内引一条射线OF 丄OC,其他不变,设ZDOF=a° (o"/<90°).g 求ZAOF 的度数(用含“的代数式表示);b.若ZBOD 是ZAOF 的2倍,求ZDOF 的度数.(1) ___________________ ZDOE 的补角有 :(2) 若ZDOE : ZAOD=i : 7,求ZAOC 的度数;(3) 射线OF 丄OE.① 当射线OF 在直线AB 上方时,试探究ZBOC 与上DOF 之间的数量关系,并说明理由;O, OE 是ZBOD 的平分线E图1 02②当射线OF在直线AB下方时,ZBOC与ZDOF之间的数量关系是__________ .13.(10分)已知直线AB和CD相交于O点,CO丄OE,OF平分ZAOE, Z2=26° .(1) ___________________________ 写岀图中所有Z4的余角•(2)写出图中相等的三对角:①②③(3)求Z5的度数.14. (10分)已知:如图,AO丄BC, DO丄OE・(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果ZCOE=35° ,求ZBOD的度数・15. (10分)若ZA与的两边分别垂直,请判断这两个角的数量关系.(1) ___________________________________ 如图①,ZA与ZB的数量关系是;如图②,ZA与的数量关系是______ .(2)请从图①或图②中选择一种情况说明理山.《相交线》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1. (5分)如图,因为直线A3丄/于点B, BC丄/于点B,所以直线AB和BC重合,则其中蕴含的数学原理是()AC1A. 平面内,过一点有且只有一条直线与已知直线垂直B. 垂线段最短C. 过一点只能作一条垂线D. 两点确定一条直线【分析】根据垂线的性质即可判断.【解答】解:因为直线佔丄/于点B, BC丄/于点B,所以直线AB和3C重合(在平面内,过一点有且只有一条直线与已知直线垂直),故选:A.【点评】本题考查垂线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.2. (5分)已知线段AB、CD,点M在线段上,结合图形,下列说法不正确CA. 延长线段AB、CD,相交于点FB. 反向延长线段84、DC,相交于点FC. 过点M画线段的垂线,交CD于点ED. 过点M画线段CD的垂线,交CD于点E【分析】根据线段和垂线段的定义,结合图形进行分析即可. 【解答】解:A、延长线段AB、CD,相交于点F,说法正确;B、反向延长线段84、DC,相交于点尺说法正确;C、过点M画线段AB的垂线,交CD于点E,说法正确;D、过点M画线段CD的垂线,交CD于点E,说法错误;故选:D.【点评】此题主要考查了直线、射线、线段,关键是正确掌握三线的特点.3. (5分)如图,已知直线AD、BE、CF相交于点O, OGLAD,且ZBOC=35° ,ZFOG=30Q ,则ZDOE的度数为()【分析】根据对顶角相等,以及垂直的定义求出所求角度数即可.【解答】解:V ZBOC=35° , ZFOG=30° ,A ZEOF=ZBOC=35° ,Z GOE= Z GOF+ Z FOE=65 ° ,TOG 丄AD,A ZGOD=90Q ,A ZDOE=25° ,故选:D.【点评】此题考查了垂线,以及对顶角、领补角,熟练掌握各自的性质是解本题的关键.4・(5分)如图,OB丄CD于点6 Z1 = Z2,则Z2与Z3的关系是()C. Z2与Z3互余D.不确定【分析】根据垂线定义可得Z l +再根据等量代换可得Z2+Z3=90°・【解答】解:、:OB 丄CD,.\Z1+Z3=9O° ,VZ1=Z2,A Z2+Z3=90° ,・・・Z2与Z3互余,故选:C.【点评】此题主要考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所 成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直 线叫做另一条直线的垂线.5. (5分)如图,直线与直线CD 相交于点O, E 是ZCOB 内一点,且OE 丄AB,ZAOC=35° ,则ZEOD 的度数是( )【分析】山对顶角相等可求得ZBOD,根据垂直可求得ZEOB,再利用角的和差 可求得答案.【解答】解:V ZAOC=35° ,r. ZBOD=35° ,':EOLAB,A Z £05=90° ,r. ZEOD=ZEOB+ZBOD=90° +35° =125° , 故选:D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键, 注意山垂直可得到角为90° .二、填空题(本大题共5小题,共25.0分)6. (5分)如图,直线与CD 相交于点O, EO 丄CD 于点O, OF 平分Z4OC,第28页(共18页)C. 135°D. 125°B. 145°若ZBOE: ZAOC=4: 5,则A EOF为一115 度.【分析】依据ZAOC+ZBOE=90° , ZBOE: ZAOC=4:5,即可得出ZAOC=50° , 根据OF平分ZAOC,可得Z COF=25 ° ,进而得到Z EOF= Z COF+ Z COE=\\5° .【解答】解:•:EO丄CD,;・ZCOE=90° ,r. ZAOC+ZBOE=90° ,又V ZBOE: ZA0C=4: 5,A ZAOC=50° ,乂YOF平分ZAOC,:.ZCOF=25° ,A ZEOF=ZCOF+ZCOE=25° +90° =115° ,故答案为:115.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.7.(5分)如果两个角的两条边分别垂直,而其中一个角比另一个角的4倍少60° ,则这两个角的度数分别为48°、132°或20°、20° ..【分析】分两种悄况进行讨论,依据两个角的两条边分别垂直画出图形,而其中一个角比另一个角的4倍少60°,即可得到这两个角的度数.【解答】解:如图,a+P=180° , 3 =4 a・60° ,解得 a =48° , 3=132°;如图,a 二 B , B =4 a - 60° ,解得a = P =20 _;综上所述,这两个角的度数分别为48°、132°或20°、20° .故答案为:48°、132°或20°、20° .【点评】本题考查了垂线,当两条直线相交所成的四个角中,有一个角是直角时, 就说这两条直线互相垂直.& (5分)如图,直线AB、CD相交于点O,OE丄AB,垂足是点O, ZBOC=\40Q , 则ZDOE= 50°【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:・・•直线AB、CD相交于点O,A ZBOC=ZAOD=\40° ,乂TOE 丄AB,r.ZZ)OE=140o・90° =50° ,故答案为:50° .【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.9. (5分)已知ZAOB和ZCOD的两边分别互相垂直,且ZCOD比ZAOB的3 倍少60°,则ZCOD的度数为30°或120°【分析】有两种情况:①如图1,根据ZCO£>=90° +90°- ZAOB,列方程可得结论;②如图2, ZAOB+ Z BOD= Z COD+ ZAOC,列方程可得结论.【解答】解:设ZAOB=x° ,则ZCOD=3x° - 60° ,分两种情况:①如图1, -ZAOB和ZCOD的两边分别互相垂直,・•・ ZCOD=90Q +90°・ ZAOB,即3x - 60=90+90 - %,*60° ,.\ZCOD=3X60°・60° =120°;②如图2, TOA丄OC, OB丄OD,・•・ ZAOB+ ZBOD= Z COD+ ZAOC,x+90=3x - 60+90,x=30° ,A ZCOD=30° ,综上所述,ZCOD的度数为30°或120° ,故答案为:30°或120°•【点评】此题主要考查了角的讣算,以及垂直的定义,关键是根据图形理清角之间的和差关系.10. (5分)如图,三条直线AB、CD、EF相交于O,且CD丄EF, ZAOE=68° .若OG 平分ZBOF,则ZDOG= 56 度.c八【分析】直接利用垂直的定义得出ZAOC=ZBOD的度数,再利用角平分线的定义得出答案.【解答】解:•: CD丄EF,ZCOE=90° ,V ZAOE=68° ,A ZAOC=ZBOD=22° , ZBOF=68° ,TOG 平分ZBOF,:.ZBOG=^ZBOF=34° ,2・•・ Z DOG= ZDOB+ ZBOG=56° .故答案为:56.【点评】此题主要考查了垂线以及角平分线的定义和角的计算,正确应用垂直的定义是解题关键.三、解答题(本大题共5小题,共50.0分)11. (10分)如图1,已知A、0、B三点在同一直线上,射线OD、OE分别平分ZAOC、ZBOC.(1)求ZDOE的度数;(2)如图2,在ZAOD内引一条射线OF丄OC,其他不变,设ZDOF=a°(o"<a<90°).g求ZAOF的度数(用含“的代数式表示);b.若ZBOD是ZAOF的2倍,求ZDOF的度数.图1 @2【分析】(1)根据角平分线的性质解答即可;(2) G 根据互余解答即可.b.根据ZBOD 是ZAOF 的2倍,列方程可得a 的值.【解答】解:(1)•・•点A, O, B 在同一条直线上,A ZAOC+ZBOC=\SO° ,•・•射线OD 和射线OE 分别平分ZAOC 和ZBOC,A ZCOD=^ZAOC, ZCOE 丄ZBOC2 2 A ZCOD+ZCOE=^ CZAOC+ZBOC ) =90° , 2r. ZDOE=90° ;(2) a. *:OC 丄OF,r. ZCOF=90° ,I ZDOF= a J:.ZCOD=90° - a ° ,I ZAOD=ZCOD.・•・ ZAOF=ZAOD ・ ZDOF=90° ・a° ・ a ° = (90-2a )b. V ZBOD 是ZAOF 的 2 倍,A180° ・(90 ・ a ) ° =2 (90-2a ) ° , a =18° ,即ZDOF=\S Q.【点评】此题主要考查了垂线和角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.(1) ZDOE 的补角有ZAOE 和 ZCOE ;(2) 若ZDOE : ZAOD=\: 7,求ZAOC 的度数;(3) 射线OF 丄OE2 OE 是ZBOD 的平分线①当射线OF在直线AB上方时,试探究ZBOC与ZDOF之间的数量关系,并说明理由;②出射线OF在直线下方时,ZBOC与ZDOF之间的数量关系是—丄ZB0C±2 ZDOF=180°.【分析】(1)根据角平分线的定义可得ZDOE二ZBOE,再根据补角的定义结合图形找出即可;(2)根据角平分线的定义列方程计算即可求出ZBOE,然后根据对顶角相等可得结论;(3 )计算出Z EOF的度数是90° ,设Z BOE=x , Z BOF=y ,则ZCO£>=2v+2y=180o ,可得结论.【解答】解:(1)如图1, TOE是ZBOD的平分线,・•・ ZDOE=ZBOE,由题意得:ZDOE的补角有:ZAOE^IZCOE;故答案为:ZAOE和ZCOE;(2)V ZDOE: ZAOD=\: 7,设ZDOE=x, ZAOD=7x,/.x+x+7.r=180,x=20° ,A ZAOC=ZBOD=2.x=40!3;(3)①如图2, ZDOFAZBOC,理由是:2TOE 丄OF,:.ZEOF=90° ,A ZDOF+ZDOE=90° ,•••上DOE A ZBOD,2・・・ZDOF气ZAOD斗ZBOC;②如图3, L Z B0C+ZDOF=180° ,理山是:2TOE 丄OF,;・ZEOF=90° ,第18页(共18贞)A ZBOF+ZBOE=90° ,••• ZBOF丄ZBOC,2设ZBOE=x, ZBOF=yVZC(?D=2x+2)^180°/.丄ZBOC+ Z DOF=y+2x+y= 180 °・2【点评】此题主要考查了垂线,以及角平分线定义,关键是理清角之间的关系,掌握从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.13.(10分)已知直线A3和CD相交于O点,CO丄OE,OF平分ZAOE, Z2=26° . (1)写出图中所有Z4的余角Zl, Z5 .(2)写出图中相等的三对角:① Z1二Z5 ② ZAOF=ZEOF③ ZCOE二ZDOE .(3)求Z5的度数・EA6【分析】(1)依据垂直的定义以及对顶角相等,即可得到所有Z4的余角;(2) 依据对顶角相等,角平分线的定义以及垂直的定义,即可得到相等的三对角;(3) 根据垂直的定义可得ZCOE=90° ,然后求出ZEOF,再根据角平分线的定义求出ZAOF,然后求出ZAOC,再根据对顶角相等解答即可.【解答】解:(1) TCO丄OE,:.Z4+Z5=90° ,XVZ1=Z5,r.Zl+Z5=90° ,・・・Z4的余角为Zl, Z5,故答案为:Zl, Z5;(2) •・•直线4B和CD相交于O点,.\Z1=Z5,*:OF平分ZAOE,・•・ ZAOF=ZEOF f•: CO 丄OE,・•・ ZCOE=ZDOE:故答案为:Z1=Z5, ZAOF=ZEOF, ZCOE=ZDOE;(3) *:CO丄OE,・・・ZCOE=90° ,XVZCOF=26° ,A ZEOF=90°・26° =64° ,':OF平分ZAOE,第18贞(共18页)EZAOF=EOF=M° ,6r. ZAOC=64°・26° =38° ,第18贞(共18页)•・• ZAOC与Z5是对顶角,.\Z5=38° .【点评】本题考查了余角和补角的定义,角平分线的定义,准确识图,找出各角度之间的关系是解题的关键.14. (10分)已知:如图,AO丄BC, DO丄OE.(1)不添加其他条件悄况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果ZCOE=35° ,求ZBOD的度数.B O C【分析】(1)已知AO丄BC, DO丄OE,就是已知ZDOE= ZAOB= ZA OC=90° , 利用同角或等角的余角相等,从而得到相等的角.(2)由DO丄OE, ZCOE=35° ,知ZBOD=\SO° ■乙DOE ■乙COE,故可求解.【解答】解:(1) TAO丄BC, DOLOE,A ZDOE=ZAOB=ZAOC=90° , ZBOD+ZAOD=90° , ZAOD+ZAOE=90° ,ZAOE+ZCOE=90° ,:.ZDOA=ZEOC, ZDOB=ZAOE, ZAOB=ZAOC, ZAOB=ZDOE, ZAOC=ZDOE;(2) TDO丄OE, ZCOE=35° ,r.ZBOD= 180°・ ZDOE - ZCOE=90°・ 35° =55° .【点评】本题主要考查了同角或等角的余角相等这一性质,山垂直的定义得出直角是解决本题的关键.15. (10分)若ZA与的两边分别垂直,请判断这两个角的数量关系.(1)如图①,ZA与ZB的数量关系是相等;如图②,ZA与ZB的数量关系是互补 .(2)请从图①或图②中选择一种情况说明理山.D【分析】(1)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补;(2)根据垂直的量相等的角都等于90。
三角形、多边形拔高题一、填空题1、三角形三个内角的比为1:3:5,则最大的内角是_____度2、两根木棒的长分别为cm 3和cm 5,要选择第三根木棒,将它钉成一个三角形,若第三根木棒的长为偶数,则第三根木棒的长是._____cm3、若一个多边形的每一个内角都等于0135,则这个多边形是____边形,它的内角和等于____.二、选择题1、三角形三条高的交点一定在( )A 、三角形的内部B 、三角形的外部C 、三角形的内部或外部.D 、三角形的内部、外部或顶点 2、适合条件C B A ∠=∠=∠21的∆ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 3、直角三角形两锐角的角平分线相交所成的角的度数是( ) A 、045 B 、0135 C 、045或0135 D 、不能确定三、解答题1、已知∆ABC 中,A ∠比2B ∠大040,B ∠比2C ∠少010,求各角的度数.2、如图,090⋅=∠+∠+∠+∠+∠+∠n F E D C B A ,求n ;3、如图,在六边形ABCDEF 中,AF//CD ,AB//DE ,且0080120=∠=∠B A ,,求C ∠ 和D ∠的度数4、已知∆ABC 的三边长分别为c b a ,,,且05|2|2=-++-+)(c b a c b 求b 的取值范围.二元一次方程组拔高题一、填空题1、已知24x y -=,则142______x y -+=.2、若3321m n m n mx ny -+-=是关于x 、y 的二元一次方程组,则______mn=. 3、消去方程组235342x ty t=-⎧⎨=+⎩中的t ,得___________.4、当m =_______时,方程组2448x my x y +=⎧⎨+=⎩的解是正整数.5、某学生在n 次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均为90分,如果最后一次考试得73分,则平均分为87分,则n =_______.6、某商品售价a 元,利润为成本的20%,若把利润提高到30%,售价应提高到_______元.二、选择题1、已知方程组2342x y ax by -=⎧⎨+=⎩与3564x y bx ay -=⎧⎨+=-⎩有相同的解,则a 、b 的值为( )A .21a b =-⎧⎨=⎩B .12a b =⎧⎨=-⎩C .12a b =⎧⎨=⎩D .12a b =-⎧⎨=-⎩2、若方程组()213431kx k y x y +-=⎧⎪⎨+=⎪⎩的解x 和y 互为相反数,则k 的值为( )A .2B .-2C .3D .-33、如果关于x y 、的方程组24x y mx y m +=⎧⎨-=⎩的解是二元一次方程3+214x y =的一个解,那么m 的值( )A .1B .-1C .2D .-24、6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,A 现在年龄是( ) A .12 B .18 C .24 D .30三、解答题(1)5341134x y x yx y x y +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ (2)3221456x y x y x y ++-+==2、某车间有甲、乙两种硫酸的溶液,浓度分别为90%和70%,现将两种溶液混合配制成浓度为80%的硫酸溶液500千克,甲、乙两种溶液各需取多少克?B 校50%20%25%5% 其他水粉画书法剪纸A 校28%22%40%10%其他水粉画书法剪纸数据的收集、整理与描述拔高题1.根据下图提供的信息,甲的圆心角为1200,乙的圆心角为600,丙占30%,丁占20%。
人教版七年级数学下册【期末满分冲刺】综合能力拔高卷(轻松拿满分)(考试时间:120分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时120分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题(本题共10个小题,每小题3分,共30分)1.点P(−4,3)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】根据点的坐标特征求解即可.【详解】解:点P(−4,3)的横坐标小于0,纵坐标大于0,∴点P(−4,3)所在的象限是第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.实数-5,0.3,3.1415926,227,1.010010001…(相邻两个1之间依次多一个0)中,无理数的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】根据无理数的概念:无限不循环小数判断即可.【详解】解:实数-5,0.3,3.1415926,227,1.010010001…(相邻两个1之间依次多一个0)中,1.010010001…(相邻两个1之间依次多一个0),共2个.故选:B .【点睛】本题考查了无理数,算术平方根,掌握无理数的概念:无限不循环小数是解题的关0.8080080008…(每两个8之间依次多1个0)等形式.3.已知关于x 、y 的方程组21254x y k x y k +=-ìí+=+î的解满足x+y=5,则k 的值为( )A .52B .2C .3D .5【答案】B【分析】首先解方程组,利用k 表示出x 、y 的值,然后代入5x y +=,即可得到一个关于k 的方程,求得k 的值.【详解】解:21254x y k x y k +=-ìí+=+î①②,由´②2-①得399x k =+,解得33x k =+,把33x k =+代入①得3321k y k ++=-,解得2y k =--.5x y +=Q ,3325k k \---=,解得2k =.故选B .【点睛】本题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.正确解关于x 、y 的方程组是关键.4.不等式组2561x x x £+ìí<î解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】解:2561x x x £+ìí<î由256x x £+解得,2x ³-,故此不等式组的解集为2<1x -£,把此不等式组的解集在数轴上表示为:故选:A .【点睛】本题考查的是解一元一次不等式组,在数轴上表示一元一次不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5.如图,已知AB ∥CD ,AF 交CD 于点E ,且BE ⊥AF ,∠BED =50°,则∠A 的度数是( )A .40°B .50°C .80°D .90°【答案】A【分析】本题根据垂直性质求解∠FED ,继而根据两直线平行,同位角相等求解本题.【详解】解:∵,50BE AF BED ^Ð=°,∴∠DEF=40°.又∵AB ∥CD ,∴∠A=∠DEF=40°.故选:A .【点睛】本题考查平行线的性质以及垂直性质,需注意两直线平行,同位角、内错角均相等,同旁内角互补.6.下列说法正确的是( )A 是分数B .16的平方根是4±4=±C .8.30万精确到百分位D ,则1a b =【答案】D 【分析】根据实数的分类、平方根的定义、近似数的定义、算术平方根的非负性逐一判断.【详解】解:A B 、16的平方根是4±,即C 、8.30万精确到百位,故该选项错误;D 、若,∴a=2022,b=-1,则2022(1)1a b =-=,故该选项正确;故选:D .【点睛】本题主要考查实数的有关定义与计算,熟练掌握实数的分类与大小比较及算术平方根、平方根的定义是关键.7.下图中,1Ð与2Ð是同位角的是( )A.B.C.D.【答案】A【分析】根据同位角的意义,结合图形进行判断即可.【详解】解:A.是同位角,故此选项符合题意,故A正确; B.不是同位角,故此选项不符合题意,故B错误; C.不是同位角,故此选项不符合题意,故C错误; D.不是同位角,故此选项不符合题意,故D错误.故选A.【点睛】本题考查同位角的意义,掌握同位角的意义是正确判断的前提.8.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,3),白棋(甲)的坐标为(2,3),则白棋(乙)的坐标为()A.(﹣1,1)B.(﹣2,1)C.(1,1)D.(﹣1,﹣1)【答案】A【分析】先利用黑棋(甲)的坐标为(−2,3),白棋(甲)的坐标为(2,3)画出直角坐标系,然后可写出白棋(乙)的坐标.【详解】解:如图,白棋(乙)的坐标为(−1,1).故选:A.【点睛】此题主要考查了坐标位置的确定,关键是正确确定原点位置.9.如图,将正方形ABCD的一角折叠,折痕为AE,点B落在点B′处,B ADТ比BAEÐ大48°.设BAEÐ和B ADТ的度数分别为x°和y°,那么x和y满足的方程组是( )A.4890y xy x-=ìí+=îB.482y xy x-=ìí=îC.48290x yy x-=ìí+=îD.48290y xy x-=ìí+=î【答案】D【分析】根据由将正方形ABCD的一角折叠,折痕为AE,∠B'AD比∠BAE大48°的等量关系即可列出方程组.【详解】解:.设BAEÐ和B ADТ的度数分别为x°和y°由题意可得:48290 y xy x-=ìí+=î故答案为D.【点睛】本题考查了二元一次方程组的应用,根据翻折变换的性质以及正方形的四个角都是直角寻找等量关系是解答本题的关键.10.2021年春节前夕,学校向2000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B类:少放烟花爆竹;C类:使用电子鞭炮;D类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并对100名学生的调查结果绘制成统计图(如图所示)根据抽样结果,估计全校“使用电子鞭炮”的学生有().A .200名B .400名C .600名D .750名【答案】B 【分析】用总人数2000乘以全校“使用电子鞭炮”的学生比例即可得到答案.【详解】解:100(303515)2000400100-++´=(名)故选:B .【点睛】此题考查条形统计图,利用样本中部分的比例求总体中该部分的人数,正确理解统计图是解题的关键.二、填空题(本题共8个小题,每题3分,共24分)11.计算:()23-=______ =______=______.【答案】 9 4 2【分析】负3的平方等于9,16的算术平方根等于4,8的立方根等于2.【详解】解:()239-=4=2=,故答案为:9;4;2.【点睛】本题考查乘方运算,开方运算,注意区分正数平方的相反数与负数的平方之间的区别.12.已知关于x ,y 的二元一次方程组21322x y m x y +=-ìí+=î的解满足x+y =0,则m 的值为__.【答案】1【分析】原方程组可化为:220x y x y +=ìí+=î,解出x 、y ,把y=2,x=-2代入2x+y=1-3m ,求出m .【详解】解:原方程组可化为:220x y x y +=ìí+=î①②,①-②得,y=2,把y=2,代入②得x=-2,把y=2,x=-2代入2x+y=1-3m ,得2×(-2)+2=1-3m ,解得m=1,故答案为:1.【点睛】本题考查了二元一次方程的解、二元一次方程组的解,掌握用加减消元法解二元一次方程组是解题关键.13.当m 的取值范围是______时,关于x 的方程11123x mx -+-=的解不大于11【答案】1m £或32m >【分析】先解方程,再根据解不大于11列出不等式求解即可;【详解】解:11123x mx -+-=,()()31216x mx --+=,33226x mx ---=,()3211m x -=,1132x m=-,根据320m -¹得到32m ¹,根据方程的解不大于11,∴321m -³或320m -<,解得:1m £或32m >;故答案是:1m £或32m >;【点睛】本题主要考查了解一元一次不等式,结合一元一次方程求解是解题的关键.14.关于x 的不等式组36023x x a --<ìí-<î的解集在数轴上如图表示,则a 的值为______.【答案】3【分析】先解不等式组的解集,再结合数轴得出解集得出关于a 的等式,进而得出答案.【详解】解:36023x x a --<ìí-<î①②,解不等式①得2x >-,解②得32a x +<,由数轴可知23x -<<,所以332a +=,解得a=3.故答案为:3.【点睛】此题主要考查了解一元一次不等式组,在数轴上表示不等式的解集,正确得出关于a 的等式是解题关键.15.如图,已知直线a b ∥,点B 是线段AE 的中点,2ABD S =V ,则ACE S =V ______.【答案】4【分析】先根据平行线间的距离可得ABD △的AB 边上的高等于ACE V 的AE 边上的高,再根据线段中点的定义可得2AE AB =,然后根据三角形的面积公式即可得.【详解】解:a b Q P ,ABD \V 的AB 边上的高等于ACE V 的AE 边上的高,Q 点B 是线段AE 的中点,2AE AB \=,2224ACE ABD S S \==´=V V ,故答案为:4.【点睛】本题考查了平行线间的距离、线段中点等知识点,掌握理解平行线间的距离是解题关键.16.在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A (1,3)、B (3,1),则轰炸机C 的坐标是_________.【答案】(1,2)--【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C 的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键.17.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..【答案】31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++´的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50¸+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元),由题意,得57572()[2()380]0.754545x y x y +=++´´,\5736045x y +=,5710011280()803602880045x y x y \+=+=´=,100112605031800x y \++´=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.18.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的扇形统计图,已知乙类书有90本,则丙类书的本数是__________.【答案】135【分析】根据乙类书籍有90本,占总数的30%即可求得总书籍数,丙类所占的比例是1-25%-30%,所占的比例乘以总数即可求得丙类书的本数.【详解】解:总数是:90÷30%=300(本),丙类书的本数是:300×(1-25%-30%)=300×45%=135(本),故答案为:135.【点睛】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得书籍总数是关键.三、解答题(本题共7个小题,19-23每题5分,24小题8分,25每题13分,共46分)19.计算:(1)516(8)345æö-´´´-ç÷èø(2)1133æö-¸´-ç÷èø(3)11632æö-´--ç÷èø(4)315606060777-´+´-´(515+(62|【答案】(1)4;(2)19;(3)5;(4)-60;(5)7;(6)8+【分析】(1)直接约分计算即可;(2)将除法转化为乘法,再约分计算;(3)利用乘法分配律展开计算;(4)利用乘法分配律合并计算;(5)先算开方,再算乘法,最后算加减;(6)先算开方,化简绝对值,再算加减.【详解】解:(1)516(8)345æö-´´´-ç÷èø=5168345´´´=4;(2)1133æö-¸´-ç÷èø=11133´´=19;(3)11632æö-´--ç÷èø=11632æö´+ç÷èø=116632´+´=23+=5;(4)315606060777-´+´-´=31560777æö´-+-ç÷èø=()601´-=-60;(515+=19355-+´=61+=7;(62|=732+=8+【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则和运算顺序.20.解下列方程或方程组:(1)4x-2 =2x+3 (2)13234x x+-= (3)2435x yx y-=ìí-=î【答案】(1)52x=;(2)4x=-;(3)13xy=-ìí=-î【分析】(1)移项、合并同类项、系数化1,即可求解;(2)去分母、去括号、移项、合并同类项、系数化1,即可求解;(3)利用加减消元法求解方程组即可.【详解】(1)解:4x-2=2x+3,移项,得4x-2x=3+2,合并同类项,得2x=5,系数化为1,得52x=;(2)解:x13―3x4=2去分母,得4(x+1)-9x=24,去括号,得4x+4-9x=24,移项,得4x-9x=24-4,合并同类项,得-5x=20,系数化为1,得x=-4;(3)解:2435x y x y -=ìí-=î①②②-①×3,得x=-1,把x=-1代入①,得-1-y=2,解得y=-3,故方程组的解为13-y x =ìíî=- .【点睛】本题考查一元一次方程及二元一次方程组的解法,解题的关键是熟知解题步骤.21.按要求完成下列各题.(1)解不等式组10,53 4.x x x -£ìí>-î(2)解不等式组322,357.33x x x x +>-ìï-í£-ïî并把它的解集在数轴上表示出来.【答案】(1)21x -<£;(2)24x -<£,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,第(2)题,再将不等式组的解集表示在数轴上.【详解】解:(1)10,53 4.x x x -£ìí>-î解不等式10x -£,解得1x £,解不等式534x x >-,解得2x >-,\不等式组的解集为:21x -<£;(2)322,357.33x x x x +>-ìï-í£-ïî解不等式322x x +>-,解得2x >-,解不等式35733xx-£-,解得4x£,\不等式组的解集为:24x-<£,不等式的解集表示在数轴上如图:.【点睛】本题考查了解一元一次不等式组,将不等式的解集表示在数轴上,掌握解不等式的方法以及数形结合是解题的关键.22.武汉新冠肺炎疫情发生后,全国人民众志成诚抗疫救灾.某公司筹集了抗疫物资120吨打算运往武汉疫区,现有甲、乙、两三种车型供运输选择,每辆车的运载能力和运费如下表所示: (假设每辆车均满载)车型甲乙丙运载量(吨/辆)5810运费(元/辆)450600700(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆.(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,且一次性运完所有物资,你能分别求出三种车型的辆数吗?此时的总运费为多少元?【答案】(1)4;(2)甲种车型需8辆,乙种车型需10辆;(3)甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.【分析】(1)根据甲型车运载量是5吨/辆,乙型车运载量是8吨/辆,丙型车运载量是10吨/辆,再根据总吨数,即可求出丙型车的车辆数;(2)设甲种车型需x 辆,乙种车型需y 辆,根据运费9600元,总吨数是120,列出方程组,再进行求解即可;(3)设甲车有a 辆,乙车有b 辆,则丙车有(14-a-b )辆,列出等式,再根据a 、b 、14-a-b 均为正整数,求出a ,b 的值,从而得出答案.【详解】解:(1)(120-5×8-5×8)÷10=4(辆).答:丙型车4辆.故答案为:4.(2)设甲种车型需x 辆,乙种车型需y 辆,根据题意得:581204506009600x y x y +=ìí+=î,解得:810x y =ìí=î.答:甲种车型需8辆,乙种车型需10辆.(3)设甲车有a 辆,乙车有b 辆,则丙车有(14-a-b )辆,由题意得5a+8b+10(14-a-b )=120,即a=412b -,∵a 、b 、14-a-b 均为正整数,∴b 只能等于5,∴a=2,14-a-b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费450×2+600×5+700×7=8800(元),答:甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.【点睛】本题考查了二元一次方程组和二元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.23.晋剧(山西梆子)是我国北方的一个重要戏剧剧种,也叫中路戏,是国家级非物质文化遗产.某校在传统文化活动周期间拟向同学们推介晋剧,并就“你想要听哪部晋剧曲目”调查了部分学生,选择曲目有:A.《打金枝》,B.《战宛城》,C.《杀宫》,D.《火焰驹》,E,《双锁山》,每个学生只能选择一部,根据统计结果绘制了如下不完整的统计图.请根据以上信息,解答下列问题:(1)请补全条形统计图;(2)在扇形统计图中,扇形A的圆心角是多少度?(3)若该校共有2000名学生,请你估计想听《战宛城》的学生有多少人?(4)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到想听《火焰驹》的学生的概率是多少?【答案】(1)补图见解析;(2)54°;(3)500人;(4)1 5【分析】(1)根据E的特征,结合两种统计图求出总人数,进而求出B,D组对应的人数即可;(2)先求出A组所占的百分比,再乘以360°即可;(3)用2000乘以B组所占百分比即可;(4)根据概率=D组人数÷总人数即可解题.【详解】解:(1)补全条形统计图如解图;调查学生的总人数为2430%80¸=(人),选择B 的人数为8025%20´=(人),选择D 的人数为80122082416----=(人),据此补全条形统计图.(2)选择A 的人数所占百分比为12100%15%80´=,\扇形A 所对应扇形的圆心角度数为3601554%°°´=.(3)200025%500´=(人),\估计想听《战宛城》的学生有500人;(4)Q 共有80人,其中想听《火焰驹》的有16人,P \(正好抽到想听《火焰驹》的学生)161805==,\随机抽取一人正好抽到想听《火焰驹》的学生的概率是15【点睛】本题考查了统计与概率,用样本信息估计总体信息,属于简单题,找到两种统计图之间的信息关联是解题关键,主要失分原因是: ①找不到扇形统计图和条形统计图中的对应关系;②补全条形统计时作图不规范;③在计算概率时发生错误.24.对于平面直角坐标系xOy 中的图形G 和图形G 上的任意点P (x ,y ),给出如下定义:将点P (x ,y )平移到P'(x+t ,y ﹣t )称为将点P 进行“t 型平移”,点P'称为将点P 进行“t 型平移”的对应点;将图形G 上的所有点进行“t 型平移”称为将图形G 进行“t 型平移”.例如,将点P (x ,y )平移到P'(x+1,y ﹣1)称为将点P 进行“l 型平移”,将点P (x ,y )平移到P'(x ﹣1,y+1)称为将点P 进行“﹣l 型平移”.已知点A (2,1)和点B (4,1).(1)将点A (2,1)进行“l型平移”后的对应点A'的坐标为 .(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是 .②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是 .(3)已知点C (6,1),D (8,﹣1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B',当t的取值范围是 时,B'M的最小值保持不变.【答案】(1)(3,0);(2)①P1;②42-££-t或1t=;(3)13t££【分析】(1)根据“l型平移”的定义解决问题即可.(2)①画出线段A1B1即可判断.②根据定义求出t 最大值,最小值即可判断.(3)如图2中,观察图象可知,当B′在线段B′B″上时,B'M的最小值保持不变,最小.【详解】解:(1)将点A (2,1)进行“l型平移”后的对应点A'的坐标为(3,0),故答案为:(3,0);(2)①如图1中,观察图象可知,将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A ′B ′上的点是P 1,故答案为:P 1;②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是﹣4≤t ≤﹣2或t=1.故答案为:﹣4≤t ≤﹣2或t=1.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B'M 的最小值保持不变,最小,此时1≤t ≤3.故答案为:1≤t ≤3.【点睛】本题属于几何变换综合题,考查了平移变换,“t 型平移”的定义等知识,解题的关键理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题,属于中考创新题型.25.如图,在平面直角坐标系中,已知,点,,,,,满足()0,A a (),0B b ()0,C c a b c(1)直接写出点,,的坐标及的面积;(2)如图2,过点作直线,已知是上的一点,且,求的取值范围;(3)如图3,是线段上一点,①求,之间的关系;②点为点关于轴的对称点,已知,求点的坐标.【答案】(1),,,;(2)的取值范围为;(3)①;②【分析】(1)根据求出a 、b 、c 的值,由此求解即可;(2)分当点在直线上位于轴左侧时和当点在直线上位于轴右侧时讨论求解即可得到答案;(3)①由由得,,由此求解即可;②易得,连接,由得,,化简得,,然后联立求解即可.()28212a b -+-=A B C ABC V C //l AB (),D m n l 152ACD S £△n (),M x y AB x y N M y 21BCN S =△M ()0,8A ()6,0B ()0,2C -30ABC S =V n 40n -££4324x y +=()3,4M ()28212a b -+-=D l y D l y AOB AON BOM S S S =+V V V 1118668222x y ´+´=´´(),N x y -ON NBC CON OBC BON S S S S =++△△△△111226621222x y ´´+´´+´´=315x y +=4324315x y x y +=ìí+=î【详解】解:(1)∵∴,∴,,,∴,,,∴,,,∴AC=10,OB=6,∴;(2)当点在直线上位于轴左侧时,由题意得,,解得,,当时,,结合图形可知,当时,;同理可得,当点在直线上位于轴右侧时,,当时,,,解得,,()28212a b -+-=()282a b -+-80a -=2120b -=20c +=8a =6b =2c =-()0,8A ()6,0B ()0,2C -1302ABC S AC OB ==V g D l y ()()111510222ACD S AC m m =´´-=´´-£△32m ³-32m =-3,02D æö-ç÷èø32m ³-0n £D l y 32m £32m =3,2D n æöç÷èø12//,D D AB Q 22,ACD BCD S S \=V V ()()13113156262222222n n æö´+´--´´-´´--=ç÷èø4n =-结合图形可知,当时,,∴的取值范围为;(3)①由得,,化简得,;②易得,连接,由得,,化简得,,联立方程组,解得,∴32m £4n ³-n 40n -££AOB AOM BOM S S S =+V V V 1118668222x y ´+´=´´4324x y +=(),N x y -ON NBC CON OBC BON S S S S =++△△△△111226621222x y ´´+´´+´´=315x y +=4324315x y x y +=ìí+=î34x y =ìí=î()3,4M坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.。
七年级下拔高题1、甲乙两人相距6km,若两人同时出发,同向而行,则用3h可追上乙;相向而行,1h相遇。
问:甲、方两人的平均速度各是多少?(请用二元一次方程组解答)2、若关于x、y的方程组x+y=2k,2x-y=4k的解也是方程x-y=2的解,则k的值是多少?3、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖。
现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套?(一张铁皮只能生产一种产品,一个盒身配两个盒盖)4、在解方程组ax+by=2、cx-3y=5时,小许正确的解x=1、y=2。
小陈因抄错了c,因此解得的解为x=-3,y=1。
求方程组中的a、b、c的值。
1、某商场计划购买电视机,已知该厂家生产3种不同型号的电视,出厂价分别:甲种每台1500元,乙种每台2100元,丙重每台2500元(1)商场同时购进其中两种不同型号的电视机共50台,用去90000元,请你研究一下商场的进货方案。
(2)以知商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在(1)的方案中,为使销售时获利最多,你选择哪种进货方案?2、某化工厂2006年12月在制定2007年某种化工用品的生产计划时,提供了下列数据:A生产该产品的工人人数不能超过200人B每个工人全年工作时数约2100工时C预计2007年该产品至少可以销售80000袋D每生产1袋化肥需要4工时E每袋需要原料20千克F现在库存原料800吨,本月还需200吨,2007年可以补充1200吨试根据上述数据确定2007年该产品的生产计划。
3、某化肥厂在甲、乙两仓库分别有化肥120t和60t,现要将全部化肥运往李村和张村,其中李村100t,张村80t,每次必须运10t,已知从甲仓库每运10t到李村和张村的运费分别为40元和80元;从乙仓库每运10t到李村和张村的运费分别为30元和50元。
(1)设从乙仓库运往李村化肥为xt,设计一个表格,反映题目所涉及到的调运数量与运费之间的关系(2)若让总运费不超过900元,则有几种调运方安?。
一、选择题(每题4分,共20分)1. 已知二次函数y=ax^2+bx+c的图象开口向上,且a>0,若其对称轴方程为x=-2,且函数在x=1时的值为0,则下列哪个选项可能是该函数的解析式?A. y=x^2-4x+3B. y=x^2+4x+3C. y=x^2-4x-3D. y=x^2+4x-32. 在直角坐标系中,点A(-1,2),点B(2,-1),点C在x轴上,且△ABC为等腰直角三角形,则点C的坐标是()。
A. (1,0)B. (-1,0)C. (-2,0)D. (2,0)3. 若等比数列{an}的前三项分别为a,ar,ar^2,且a+ar+ar^2=12,a^2+ar^2=48,则该数列的公比r是()。
A. 2B. 3C. 4D. 64. 已知函数y=2x-3,若函数y=kx+b与y=2x-3的图象在第二象限内有两个交点,则k和b的取值范围是()。
A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05. 在等边三角形ABC中,点D在BC边上,且AD=BD,若∠ADB=30°,则∠ABC的度数是()。
A. 30°B. 45°C. 60°D. 90°二、填空题(每题5分,共25分)6. 已知一元二次方程x^2-4x+3=0的两个根分别为m和n,则m+n=______,mn=______。
7. 在直角坐标系中,点P(2,3),点Q在y轴上,且PQ=5,则点Q的坐标是______。
8. 若等差数列{an}的前三项分别为3,5,7,则该数列的公差是______。
9. 函数y=3x^2-12x+9在x=______时取得最小值。
10. 在等腰三角形ABC中,若底边AB=8,腰AC=10,则顶角A的度数是______。
三、解答题(共55分)11. (10分)已知一元二次方程x^2-4x+3=0,求:(1)该方程的两个根;(2)若函数y=ax^2+bx+c(a≠0)的图象开口向上,且该函数的图象与x轴有两个交点,这两个交点恰为上述方程的两个根,求a、b、c的值。
1. 若a,b是实数,且a^2 + b^2 = 1,则(a+b)^2的最大值为()A. 2B. 1C. 0D. 32. 在等差数列{an}中,若a1 = 3,公差d = 2,则第10项an =()A. 17B. 18C. 19D. 203. 已知一次函数y = kx + b(k≠0)的图象经过点A(1,3)和B(2,5),则k 的值为()A. 1B. 2C. 3D. 44. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°5. 已知一元二次方程x^2 - 3x + 2 = 0,则它的两个根为()A. 1,2B. 2,1C. 1,-2D. -2,16. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1,x2,则(x1 + x2)^2的值为()A. 7B. 8C. 9D. 107. 在平面直角坐标系中,点P(2,3)关于直线y = x的对称点为()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)8. 已知一次函数y = kx + b(k≠0)的图象与x轴、y轴分别交于点A、B,若OA = 2,OB = 3,则k的值为()A. 3/2B. 2/3C. 3D. 29. 在△ABC中,∠A = 90°,∠B = 30°,则BC的长度为()A. √3B. 2C. 2√3D. 310. 已知一元二次方程x^2 - 2x - 3 = 0的解为x1,x2,则x1^2 + x2^2的值为()A. 5B. 6C. 7D. 811. 若等差数列{an}的首项为a1,公差为d,则第n项an = ________。
12. 已知一次函数y = kx + b(k≠0)的图象与x轴、y轴分别交于点A、B,若OA = 2,OB = 3,则k的值为 ________。
一、选择题(每题5分,共25分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. -32. 若方程2x-3=5的解为x=a,则a的值为()A. 2B. 3C. 4D. 53. 已知一个正方形的边长为2cm,那么它的面积是()A. 2cm²B. 4cm²C. 8cm²D. 16cm²4. 若等腰三角形的底边长为5cm,腰长为8cm,那么这个三角形的周长是()A. 18cmB. 20cmC. 22cmD. 24cm5. 在平面直角坐标系中,点A(2,3)关于原点对称的点B的坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)二、填空题(每题5分,共25分)6. 若a、b是相反数,且|a|=3,则a+b=______。
7. 已知x²-5x+6=0,则x=______。
8. 一个圆的半径扩大2倍,那么它的面积扩大______倍。
9. 若一个等边三角形的边长为6cm,那么它的周长是______cm。
10. 在平面直角坐标系中,点P(-3,4)关于x轴的对称点Q的坐标是______。
三、解答题(每题15分,共45分)11. 解下列方程:(1)3x-2=5(2)2(x-3)=612. 某班有男生x人,女生y人,且x+y=30。
若男生人数是女生人数的1.5倍,求男生和女生的人数。
13. 已知一个等腰直角三角形的斜边长为10cm,求这个三角形的面积。
四、拓展题(每题20分,共40分)14. 已知数列{an}的通项公式为an=3n-2,求:(1)数列{an}的前n项和Sn;(2)数列{an}的递推公式。
15. 在平面直角坐标系中,点A(2,3)和点B(-4,5)之间的距离为多少?请写出解题过程。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版七年级数学下册【期中满分冲刺】综合能力拔高卷(考试范围:第五章~第七章 考试时间:120分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时120分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。
在每小题给出的四个选项中只有一项是符合题目要求的。
一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是()A. -2B. 3C. -1/2D. 22. 下列方程中,解为整数的是()A. x^2 - 5x + 6 = 0B. x^2 - 4x + 3 = 0C. x^2 - 3x + 2 = 0D. x^2 - 2x + 1 = 03. 下列各数中,有理数的是()A. √2B. πC. 1/3D. √54. 下列函数中,y是x的二次函数的是()A. y = x^2 + 2x + 1B. y = x^2 - 2x + 1C. y = x^2 - 4x + 3D. y = x^2 + 4x + 35. 已知一元二次方程x^2 - 5x + 6 = 0,下列说法正确的是()A. 该方程有两个实数根B. 该方程有两个复数根C. 该方程有一个实数根D. 无法确定二、填空题(每题5分,共25分)6. 已知a > 0,b < 0,则|a| + |b| = ________。
7. 若方程2x - 3 = 5的解为x = 4,则方程4x + 6 = 2的解为x = ________。
8. 已知一元二次方程x^2 - 3x + 2 = 0,则该方程的解为x1 = ________,x2 = ________。
9. 已知二次函数y = x^2 - 2x + 1,则该函数的顶点坐标为( ________,____________)。
10. 已知a、b、c是三角形的三边,且a + b > c,b + c > a,a + c > b,则下列结论正确的是()A. a、b、c能构成三角形B. a、b、c不能构成三角形C. 无法确定三、解答题(每题10分,共40分)11. 已知一元二次方程x^2 - 4x + 3 = 0,求该方程的解。
12. 已知二次函数y = x^2 - 2x + 1,求该函数的顶点坐标。
13. 已知a、b、c是三角形的三边,且a + b > c,b + c > a,a + c > b,求证:a、b、c能构成三角形。
一、选择题(每题3分,共15分)1. 已知函数f(x) = 2x + 1,那么函数f(-1)的值是()A. -1B. 1C. 3D. -32. 若a,b,c是等差数列的连续三项,且a + b + c = 9,则b的值是()A. 3B. 4C. 5D. 63. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°4. 已知一个数的平方根是3,那么这个数是()A. 9B. -9C. 0D. 无法确定5. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0二、填空题(每题3分,共15分)6. 若等差数列{an}的第一项是3,公差是2,则第10项an的值是______。
7. 在等腰三角形ABC中,AB = AC,若∠BAC = 50°,则∠ABC的度数是______。
8. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值是______。
9. 若一个数的平方根是±2,那么这个数是______。
10. 若a,b,c是等比数列的连续三项,且a b c = 27,则b的值是______。
三、解答题(每题10分,共30分)11. 已知等差数列{an}的第一项是2,公差是3,求第10项an的值。
12. 在等腰三角形ABC中,AB = AC,若∠BAC = 60°,求∠ABC的度数。
13. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
14. 若一个数的平方根是±3,求这个数。
四、附加题(每题15分,共30分)15. 已知等差数列{an}的第一项是3,公差是-2,求前10项的和S10。
16. 在等腰三角形ABC中,AB = AC,若∠BAC = 70°,求∠ABC的度数。
2022-2023学年人教版数学七年级下册 期末拔高试题检测一、单选题1.下列命题:①对顶角相等;②内错角相等;③两条平行线之间的距离处处相等;④有且只有一条直线垂直于已知直线.其中是假命题的有( )A .①②B .②④C .②③D .③④2.下列属于二元一次方程组的是( )A .1113x y x y +=⎧⎪⎨+=⎪⎩B .57x y y z +=⎧⎨+=⎩C .1326x x y =⎧⎨-=⎩D .1x y xy x y -=⎧⎨-=⎩3.如图,把小河里的水引到田地A 处,若使水沟最短,则过点A 向河岸l 作垂线,垂足为点B ,沿AB 挖水沟即可,理由是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .过一点可以作无数条直线4.某校为了了解学生对《中华人民共和国民法典》的认知情况,在全校1260名学生中,随机抽取部分学生进行调查,把学生的认知情况分为三类:A ;完全不知道,B :听过但没读过,C :读过一部分.根据调查结果绘制成如下两幅不完整的统计图,根据图中信息,下列说法错误的是()A .此次调查抽取的人数是60人B .抽取的学生中,“读过一部分”的同学有24人C .“听过但没读过”所在的扇形的圆心角的度数是 125︒D .估计全校学生中有315人属于“完全不知道”的情况5.若一次购买单价分别为7元、5元的两款笔记本共用了54元,则7元笔记本最少买( ) A .2本 B .3本 C .4本 D .7本6.如图,已知直线a//b ,c 为截线,若∠1=60°,则∠2的度数是( )A .30°B .60°C .120°D .150°7.若关于 x 的不等式组 13x x m->⎧⎨<⎩ 无解,则 m 的取值范围是( ) A .4m > B .4m < C .4m ≥ D .4m ≤8.在下列各数0.51525354…、0、 3π 、 227 、6.1、 136 、 中,无理数的个数是( )A .4B .3C .2D .19.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是( )A .800B .600C .400D .20010.如图,将周长为 12cm 的三角形 ABC 沿 BC 向右移动 5cm ,得到三角形 111A B C ,则四边形 11AAC B 的周长为( )A .17cmB .20cmC .24cmD .22cm11.已知关于x 的不等式组 230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( ) A .2332a ≤≤ B .4332a ≤≤ C .4332a <≤ D .4332a ≤< 12.如图:已知 AB CD , 120B ∠= 度, 150D ∠= 度,则 О∠ 等于( )度.A .50B .60C .80D .90二、填空题13.如图所示,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A 、B 两岛的视角∠ACB 等于 .14.已知一个样本有40个数据,把它分成5组,第一组到第四组的频数分别是10、4、x 、16,第五组的频率是0.1,则x 的值为 .15.已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是 16.已知ab 是它的小数部分,则()()323a b -++= . 17.课间操时,小华,小军,小刚的位置如图.若小华的位置用()00,表示,小军的位置用()21,表示,则小刚的位置用坐标表示为 .三、解答题18.解不等式组:513(1)31522x x x x +>-⎧⎪⎨-≤-⎪⎩,并在数轴上表示该不等式组的解集.19.已知=3,3a+b ﹣1的平方根是±4,c 是的整数部分,求a+2b+c 的算术平方根.20.课堂上老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高,坐在教室最后面的小强为了争速度,立即就近向他周围的三个同学做调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.小强所选用的这种抽样调查的方式你认为合适吗?为什么? 21.如图,在平面直角坐标系中,点P (14,1),A (a ,0),B (0,a ),其中a >0,若△PAB 的面积为18,求a 的值.22.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?23.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系。
三角形、多边形拔高题
一、填空题
1、三角形三个内角的比为1:3:5,则最大的内角是_____度
2、两根木棒的长分别为cm 3和cm 5,要选择第三根木棒,将它钉成一个三角形,若第三根木棒的长为偶数,则第三根木棒的长是._____cm
3、若一个多边形的每一个内角都等于0
135,则这个多边形是____边形,它的内角和等于____.
二、选择题
1、三角形三条高的交点一定在( )
A 、三角形的内部
B 、三角形的外部
C 、三角形的内部或外部.
D 、三角形的内部、外部或顶点 2、适合条件C B A ∠=
∠=∠2
1
的∆ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 3、直角三角形两锐角的角平分线相交所成的角的度数是( ) A 、0
45 B 、0135 C 、045或0
135 D 、不能确定
三、解答题
1、已知∆ABC 中,A ∠比2B ∠大0
40,B ∠比2C ∠少0
10,求各角的度数. 2、如图,0
90⋅=∠+∠+∠+∠+∠+∠n F E D C B A ,求n ;
3、如图,在六边形ABCDEF 中,AF//CD ,AB//DE ,且
0080120=∠=∠B A ,,求C ∠ 和D ∠的度数
4、已知∆ABC 的三边长分别为c b a ,,,且
05|2|2
=-++-+)(c b a c b 求b 的取值范围.
二元一次方程组拔高题
一、填空题
1、已知24x y -=,则142______x y -+=.
2、若3321m n
m n mx
ny -+-=是关于x 、y 的二元一次方程组,则
______m
n
=. 3、消去方程组235342x t
y t
=-⎧⎨
=+⎩中的t ,得___________.
4、当m =_______时,方程组24
48x my x y +=⎧⎨
+=⎩
的解是正整数.
5、某学生在n 次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均为90分,如果最后一次考试得73分,则平均分为87分,则n =_______.
6、某商品售价a 元,利润为成本的20%,若把利润提高到30%,售价应提高到_______元.
B 校
50%20%
25%5% 其他水粉画书法
剪纸A 校
28%22%
40%
10%
其他水粉画书法剪纸
二、选择题
1、已知方程组2342x y ax by -=⎧⎨
+=⎩与356
4
x y bx ay -=⎧⎨+=-⎩有相同的解,则a 、b 的值为( )
A .2
1a b =-⎧⎨=⎩
B .12a b =⎧⎨=-⎩
C .1
2a b =⎧⎨=⎩
D .1
2a b =-⎧⎨=-⎩
2、若方程组()213
431
kx k y x y +-=⎧⎪⎨+=⎪⎩的解x 和y 互为相反数,则k 的值为( )
A .2
B .-2
C .3
D .-3
3、如果关于x y 、的方程组24x y m
x y m +=⎧⎨-=⎩
的解是二元一次方程3+214x y =的一个解,那么m 的值( )
A .1
B .-1
C .2
D .-2
4、6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,A 现在年龄是( ) A .12 B .18 C .24 D .30
三、解答题
(1)534
113
4x y x y
x y x y +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ (2)
3221
456
x y x y x y ++-+==
2、某车间有甲、乙两种硫酸的溶液,浓度分别为90%和70%,现将两种溶液混合配制成浓度为80%
的硫酸溶液500千克,甲、乙两种溶液各需取多少克?
数据的收集、整理与描述拔高题
1.根据下图提供的信息,甲的圆心角为1200
,乙的圆心角为600
,丙占30%,丁占20%。
(1) 画出条形统计图。
(2) 如果整个圆代表540人,另求出甲、乙、丙、丁所代表的人数。
2.(本题10分)如图是A 、B 两所学校艺术节期间收到的各类艺术作品的统计图:
⑴ 从图中能否看出哪所学校收到的水粉画作品的数量多?为什么?
⑵ 已知A 学校收到的剪纸作品比B 学校的多20件,收到的书法作品比B 学校的少100件,请问这两所学校收到艺术作品的总数分别是多少件?
3.(12分)某校在一次“评教评学”活动中,对老师讲课的“拖堂”现象的态度进行调查,统计数
根据表中数据分别求出a、b、c、d、e的值;
4.(本题10分)某果农承包了一片果林,为了了解整个果林的挂果情况,果农随机抽查了部分果树的挂果数进行分析.如图是根据数据绘制的统计图,图中从左到右各长方形之比为5∶6∶8∶4∶2,又知挂果数大于60的果树共有48棵.
(1)果农共抽查了多少棵果树?
(2)在抽查的果树中挂果数在40~60之间的树有多少棵,占百分之几?。