新北师大版八年级数学上册期末测试卷(5)
- 格式:doc
- 大小:143.50 KB
- 文档页数:6
最新北师大版八年级数学上册期末测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .305.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根 751-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =________度.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.化简:x(4x +3y)-(2x +y)(2x -y)3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、C6、A7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -2、k<6且k ≠33、3m ≤.4、4556、AC=DF (答案不唯一) 三、解答题(本大题共6小题,共72分)1、2x =2、3xy+y 23、(1)详见解析(2)k 4=或k 5=4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)略;(2)78°.6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
最新北师大版八年级数学上册期末测试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为________. 4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x =+ (2)3111x x x =-+-2.先化简,再求值:()()22141a a a +--,其中18a =.3.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.5.如图,矩形ABCD的对角线AC,BD相交于点O,点E ,F在BD上,BE=DF (1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、A5、B6、D7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、7或-12、22()1y x =-+3、1或1245、:略6、7三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、23、–1≤x <34、(1)略;(2)37°5、6、(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.。
新北师大版八年级数学上册期末测试卷【含答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±8 2.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 6.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6 D.37.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.下列图形中,不是轴对称图形的是()A .B .C .D .9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.比较大小:23________13.3.使x 2-有意义的x 的取值范围是________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。
新北师大版八年级数学上册期末考试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.因式分解:22ab ab a -+=__________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、D6、A7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、52、()21 a b-3、3m≤.4、135°5、46、45︒三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、-53、(1)k<52(2)24、(1)证明略;(2)证明略;(3)10.5、(1)①132y x=-+;②四边形ABCD是菱形,理由略;(2)四边形ABCD能是正方形,理由略,m+n=32.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
2022-2023学年北师大数学八年级上册期末测试卷参考答案与试题解析一.选择题(共8小题)1.如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2B.6C.8D.2【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可求得BD=6,AD⊥BC,再利用勾股定理可求解.【解答】解:∵BC=12,AD是△ABC的中线,∴BD=CD=6,∵AB=AC=10,∴AD⊥BC,∴AD=.故选:C.2.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.19【考点】勾股定理的证明.【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:设AC=AD=x,则BD=30﹣5﹣2x=25﹣2x,∵BD2=BC2+CD2,∴52+(2x)2=(25﹣2x)2,∴x=6,∴AB=25﹣2x=13,AD=6,∴这个风车的外围周长是:(13+6)×4=76.故选:A.3.下列等式成立的是()A.÷=3B.C.D.2+=2【考点】二次根式的混合运算;平方根.【分析】根据二次根式的乘除运算法则、加减运算法则以及二次根式的性质即可求出答案.【解答】解:A、原式=,故A不符合题意.B、原式=±0.4,故B符合题意.C、原式=6,故C不符合题意.D、2与不是同类项,不能合并,故D不符合题意.故选:B.4.已知两点M(﹣1,﹣2)和N关于x轴对称,则点N的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(﹣1,﹣2)关于x轴对称的点的坐标为(﹣1,2).故选:A.5.一次函数y=kx﹣2(k>0)的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数y=kx﹣2,k>0,b=﹣2<0,可知图象一定经过第一、三,四象限,不经过第二象限.【解答】解:∵一次函数y=kx﹣2(k>0),b=﹣2<0,∴一次函数y=kx﹣2(k>0)的图象一定经过第一、三,四象限,不经过第二象限.故选:B.6.下列图形中,不能表示y是x函数的是()A.B.C.D.【考点】函数的概念.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,C选项中一个x值对应多个y值,与函数的概念不一致,由此即可求解.【解答】解:A图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;B图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;C图形中,一个x值对应多个y值,不符合函数的定义,故符合题意;D图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;故选:C.7.用代入消元法解二元一次方程组时,将②代入①,正确的是()A.5x+3(x﹣2)=22B.5x+(x﹣2)=22C.5x+3(x﹣2)=66D.5x+(x﹣2)=66【考点】解二元一次方程组.【分析】利用代入消元法进行分析即可.【解答】解:,把②代入①得:5x+3(x﹣2)=22,故选:A.8.在长方形ABCD中,放入5个形状大小相同的小长方形(空白部分),其中AB=7cm,BC=11cm,则阴影部分图形的总面积为()cm2A.27B.29C.34D.36【考点】二元一次方程组的应用;一元一次方程的应用.【分析】设小长方形的长为xcm,宽为ycm,根据图形中大长方形的长和宽列二元一次方程组,求出x和y的值,即可解决问题.【解答】解:设小长方形的长为xcm,宽为ycm,根据题意,得:,解得:,∴每个小长方形的面积为2×5=10(cm2),∴阴影部分的面积=7×11﹣5×10=27(cm2),故选:A.二.填空题(共8小题)9.如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,连接PQ.当动点P、Q运动2s时,PQ=13cm.【考点】勾股定理的应用;勾股定理的逆定理.【分析】由勾股定理的逆定理得△ABC是直角三角形且∠B=90°,再由勾股定理求出PQ的长即可.【解答】解:∵AB=7cm,AC=25cm,BC=24cm,∴AB2+BC2=625=AC2,∴△ABC是直角三角形且∠B=90°,当动点P、Q运动2s时,AP=1×2=2(cm),BQ=2×6=12(cm),∴BP=AB﹣AP=7﹣2=5(cm),在Rt△BPQ中,由勾股定理得:PQ===13(cm),故答案为:13cm.10.已知△ABC的三边长分别为5、12、13,则△ABC的面积为30.【考点】勾股定理的逆定理;三角形的面积.【分析】根据三边长度可利用勾股定理的逆定理判断三角形为直角三角形.再求面积.【解答】解:∵△ABC的三边长分别为5,12,13,∴52+122=(13)2,∴△ABC是直角三角形,两直角边是5,12,∴△ABC的面积为:×5×12=30,故答案为:30.11.已知实数x,y满足|x﹣3|+=0,则x y的值是9.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据绝对值以及算术平方根的非负性解决此题.【解答】解:∵|x﹣3|≥0,,∴当|x﹣3|+=0,则x=3,y=2.∴x y=32=9.故答案为:9.12.甲、乙两人在一条长400米的直线跑道上同起点、终点、同方向匀速跑步,先到终点的人原地休息,已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,甲、乙两人相距的最大距离68米.【考点】一次函数的应用.【分析】根据甲先出发2秒求出甲的速度,再根据题意,80秒时乙到达终点求出乙的速度,然后根据乙出发80秒时两人的距离等于两人行驶的路程的差列式计算即可得解.【解答】解:根据题意,t=0时,甲出发3秒行驶的路程为12米,所以,甲的速度=12÷3=4(米/秒),∵先到终点的人原地休息,∴80秒时,乙先到达终点,∴乙的速度=400÷80=5(米/秒),∴c=400﹣4×(80+3)=68(米).故答案为:68.13.甲、乙两车都从A地出发匀速行驶到B地,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的关系如图所示,则下列结论中正确的有①②④(直接填序号).①AB两地相距480km;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时追上甲车;④甲、乙两车相距50km时,t的值为、、、.【考点】一次函数的应用.【分析】根据函数图象,可以直接判断①②;根据图象中的数据,可以计算出甲、乙两车的速度,然后即可计算出乙车出发后几小时追上甲车,从而可以判断③;再根据分类讨论的方法,可以判断④.【解答】解:由图象可得,AB两地相距480km,故①正确,符合题意;乙车比甲车晚出发1小时,却比甲车早到1小时,故②正确;甲车的速度为:480÷8=60(km/h),乙车的速度为:480÷(7﹣1)=480÷6=80(km/h),设乙车出发a小时追上甲车,则80a=60(a+1),解得a=3,即车出发后3小时追上甲车,故③错误,不符合题意;当甲、乙两车相距50km时,乙车出发前:60t=50,得t=;乙车出发到两车相遇前:60t﹣80(t﹣1)=50,得t=;两车相遇后,乙车未到达B地,80(t﹣1)﹣60t=50,得t=;乙车到达B地后,480﹣60t=50,得t=;由上可得,甲、乙两车相距50km时,t的值为、、、,故④正确,符合题意;故答案为:①②④.14.青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的,则水果青团销量将达到4月份总销量的,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为.【考点】三元一次方程组的应用.【分析】设3月份红豆青团、肉松青团、水果青团销量分别为:2x,3x,4x,4月份增加的销量为a,4月份红豆青团销量增加y,则肉松青团4月份增加的销量为:y﹣x,根据题意列方程组求解.【解答】解:设3月份红豆青团、肉松青团、水果青团销量分别为:2x,3x,4x,4月份增加的销量为a,4月份红豆青团销量增加y,则肉松青团4月份增加的销量为:y ﹣x,由题意得:,解得:,∴=,故答案为:,15.已知关于x,y的二元一次方程组的解满足x+y=﹣4,则k的值为7.【考点】二元一次方程组的解.【分析】现将二元一次方程组的两个方程直接相加,得到5(x+y)+4k=8,再将x+y=﹣4整体代入,得到关于k的一元一次方程,求出k的值即可.【解答】解:,①+②得,5(x+y)+4k=8,∵x+y=﹣4,∴﹣20+4k=8,解得k=7,故答案为:7.16.如图,若AB∥CD,CD∥EF,∠2﹣∠1=30°,那么∠BCE=150°.【考点】平行线的性质;平行公理及推论.【分析】延长EC交AB于点G,利用平行线的性质可得∠2=∠GCD,∠1=∠BCD,然后根据已知∠2﹣∠1=30°,从而可得∠GCB=30°,最后利用平角定义进行计算即可解答.【解答】解:延长EC交AB于点G,∵CD∥EF,∴∠2=∠GCD,∵AB∥CD,∴∠1=∠BCD,∵∠2﹣∠1=30°,∴∠GCB=∠GCD﹣∠BCD=30°,∴∠BCE=180°﹣∠GCB=150°,故答案为:150°.三.解答题(共8小题)17.如图,在Rt△AOB和Rt△COD中,AB=CD=25,OB=7,AC=4.求BD的长.【考点】勾股定理.【分析】(1)在Rt△AOB中,利用勾股定理求出OA=24,在Rt△COD中,利用勾股定理求出OD=15,可得答案.【解答】解:(1)在Rt△AOB中,由勾股定理得,OA===24,∵AC=4.∴OC=OA﹣AC=24﹣4=20;在Rt△COD中,由勾股定理得,OD===15,∴BD=OD﹣OB=15﹣7=8.18.如图所示,一个梯子AB长2.5米,顶端A靠在墙AB上,这时梯子下端B与墙角C距离为0.7米.如果梯子的顶端A下滑0.4米到了点E的位置,那么梯子的底端B在水平方向滑动了0.4米吗?为什么?【考点】勾股定理的应用.【分析】在直角三角形ABC中,根据勾股定理得:AC=2.4米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理得CD=1.5米,进而得出答案.【解答】解:不是.理由如下:在Rt△ABC中,AB=2.5米,BC=0.7米,故AC===2.4(米),∵AE=0.4米,∴CE=AC﹣AE=2.4﹣0.4=2(米),在Rt△ECD中,AB=DE=2.5米,∴CD===1.5(米),故BD=CD﹣CB=1.5﹣0.7=0.8(米).答:梯子的底端B在水平方向滑动了0.8米.19.计算:(1);(2)﹣+;(3);(4)++|﹣2|.【考点】实数的运算;平方根.【分析】(1)根据算术平方根,零指数幂的运算法则进行计算即可得出答案;(2)应用算术平方根,立方根的运算法则进行计算即可得出答案;(3)应用平方根的定义进行计算即可得出答案;(4)应用算术平方根,立方根及绝对值的性质进行计算即可得出答案.【解答】解:(1)原式=12﹣1+3=14;(2)原式=30﹣3+9=36;(3)x=,x1=,x2=﹣;(4)原式=﹣+(2﹣)=2﹣.20.如图所示,直线分别与x轴、y轴分别交于点A和点B,C是OB上一点,若将△ABC沿AC折叠,点B恰好落在x轴上的点B′处.(1)求:点A,点B的坐标;(2)点B′,点C的坐标.(3)若P在x轴上运动且△PB'C是等腰三角形,直接写出所有符合条件的点P的坐标.【考点】一次函数综合题.【分析】(1)分别令x=0,y=0,求点A、B的坐标即可;(2)设C(0,t),由折叠的性质可知AB=AB'=5,可求B'的坐标,再由BC=B'C,列出方程3﹣t=,求出t的值即可.(3)设P(x,0),分别求出PC=,B'P=|x+1|,B'C=,再根据等腰三角形的边的关系分类讨论即可求解.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x=4,∴A(4,0);(2)由折叠可知,BC=B'C,AB=AB',∵AB=5,∴AB'=5,∴B'(﹣1,0),设C(0,t),∴BC=3﹣t,∴3﹣t=,解得t=,∴C(0,);(3)设P(x,0),∴PC=,B'P=|x+1|,B'C=,当PC=B'P时,=|x+1|,解得x=,∴P(,0);当PC=B'C时,=,解得x=±1,∴P(1,0);当B'P=B'C时,|x+1|=,解得x=或x=﹣,∴P(,0)或(﹣,0);综上所述:P点坐标为(,0)或(1,0)或(,0)或(﹣,0).21.已知如图,直线y1=x+3与两坐标轴分别交于点A、B,点B关于x轴的对称点是点D,直线y2=﹣x+b经过点B,且与x轴相交于点C,点P是直线y2上一动点,过点P 作y轴的平行线交直线y1于点E,再以PE为边向右边作正方形PEFG.(1)①求b的值;②判断△ABD的形状,并说明理由;(2)连接OP、DP,当△POD的周长最短时,求点F的坐标;(3)在(2)的条件下,在x轴上是否存在一点Q,使得△AEQ是等腰三角形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①求出B点坐标,再将B点坐标代入y2=﹣x+b,即可求b的值;②求出点A、D、B的坐标,再求出△ABD的三边长即可判断;(2)设O点关于直线y=﹣x+3的对称点为O',由对称性得∠O'CO=90°,则O'(3,3),连接DO',则DO'与直线y=﹣x+3的交点为P点,当O'、D、P三点共线时,△OPD 的周长最小,求出直线DO'与直线BC的交点,可知P点坐标,再由正方形的性质求出点F(4+,3+);(3)设Q(x,0),分别AQ=|x+3|,AE==6+,EQ=,再由等腰三角形的性质,根据边的情况,分三种情况讨论即可.【解答】解:(1)①令x=0,则y=3,∴B(0,3),∵直线y2=﹣x+b经过点B,∴b=3;②△ABD是等边三角形,理由如下:令y=0,则x+3=0,解得x=﹣3,∴A(﹣3,0),∵点B关于x轴的对称点是点D,∴D(0,﹣3),∴AB=6,AD=6,BD=6,∴△ABD是等边三角形;(2)∵b=3,∴直线y2=﹣x+3,令y=0,则x=3,∴C(3,0),设O点关于直线y=﹣x+3的对称点为O',∵OB=OC=3,∴∠BCO=45°,∴∠OO'C=45°,∴∠O'CO=90°,∴O'(3,3),连接DO',则DO'与直线y=﹣x+3的交点为P点,∵OP=O'P,∴△OPD的周长=OD+OP+PD=OD+O'P+PD≥OD+O'D,∴当O'、D、P三点共线时,△OPD的周长最小,设直线DO'的解析式为y=mx+n,∴,解得,∴y=2x﹣3,联立方程组,解得,∴P(2,1),∵PE∥y轴,∴E(2,3+),∴PE=2+,∵四边形PEFG是正方形,∴F(4+,3+);(3)在x轴上存在一点Q,使得△AEQ是等腰三角形,理由如下:设Q(x,0),∴AQ=|x+3|,AE==6+,EQ=,当AQ=AE时,|x+3|=6+,解得x=6﹣或x=﹣6﹣,∴Q(6﹣,0)或(﹣6﹣,0);当AQ=EQ时,|x+3|=,解得x=﹣,∴Q(﹣,0);当AE=EQ时,6+=,解得x=4+3或x=﹣3(舍),∴Q(4+3,0);综上所述:Q点坐标为(6﹣,0)或(﹣6﹣,0)或(4+3,0)或(﹣,0).22.若正比例函数y1=﹣x的图象与一次函数y2=2x+m的图象交于点A,且点A的横坐标为﹣2.(1)求该一次函数的表达式;(2)直接写出方程组的解;(3)在一次函数y2=2x+m的图象上是否存在点B,使得△AOB的面积为9,若存在,求出点B坐标;若不存在,请说明理由.【考点】一次函数与二元一次方程(组);一次函数的性质;待定系数法求一次函数解析式.【分析】(1)先求出A点的纵坐标,把A点的坐标代入y=2x+m,求出m即可;(2)根据方程组的特点和A点的坐标得出答案即可;(3)设直线y=2x+6与y轴的交点为C,与x轴的交点为D,则C(0,6),D(﹣3,0),求出△AOC和△AOD的面积,分为两种情况当B点在第三或第一象限时,根据三角形的面积求出B点的纵坐标或横坐标,即可求出答案.【解答】解:(1)将x=﹣2代入y=﹣x,得y=2,则点A坐标为(﹣2,2),将A(﹣2,2)代入y=2x+m,得m=6,所以一次函数的解析式为y=2x+6;(2)∵正比例函数y1=﹣x的图象与一次函数y2=2x+m的图象交于点A(﹣2,2)∴方程组的解是;(3)设直线y=2x+6与y轴的交点为C,与x轴的交点为D,则C(0,6),D(﹣3,0),∵A(﹣2,2),∴S△AOC=6×2=6,S△AOD=3×2=3;∴B点不可能在第一象限;当B点在第三象限时,∵S△AOB==9,则S△BOD=6,设B的纵坐标为n,∴S△BOD=3×(﹣n)=6,解得:n=﹣4,即点B的纵坐标是﹣4,把y=﹣4代入y=2x+6得:x=﹣5,∴B(﹣5,﹣4);当B点在第一象限时,S△AOB=S△AOC+S△BOC=9,则S△BOC=3,设B的横坐标为m,∴S△BOC=6×m=3,∴m=1,即B点的横坐标是1,把,x=1,代入y=2x+6得,y=8,∴B(1,8);综上,点B的坐标为(1,8)或(﹣5,﹣4).23.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数;(2)并补全条形统计图;(3)求扇形统计图中“在线讨论”对应的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据在线听课的人数和所占的百分比即可求得本次调查的人数;(2)根据总人数求出在线答题的人数,即可将条形统计图补充完整;(2)用“在线讨论”的人数除以总人数,再城60°即可求得扇形统计图中“在线讨论”对应的扇形圆心角的度数.【解答】解:(1)本次调查的学生总人数为:36÷40%=90(人).(2)在线答题的人数为:90﹣24﹣36﹣12=18(人),补全的条形统计图如图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°.24.如图,在△ABC中,BE平分∠ABC,∠2=∠1+∠C.(1)求证:AD⊥BE;(2)若∠ABC=2∠1,证明:∠BAC=90°.【考点】三角形内角和定理;三角形的外角性质;角平分线的定义.【分析】(1)利用角平分线的定义,可得出∠ABE=∠CBE=∠ABC,由三角形的外角性质,可得出∠ADB=∠1+∠C+∠ABE,结合∠2=∠1+∠C,可得出∠ADB=∠2+∠ABD,在△ABD中,利用三角形内角和定理,可求出∠ADB=90°,进而可证出AD⊥BE;(2)利用角平分线的定义,可得出∠ABE=∠CBE=∠ABC,结合∠ABC=2∠1,可得出∠ABE=∠1,由(1)可得出∠2+∠ABD=90°,即∠2+∠1=90°,进而可证出∠BAC=90°.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC.∵∠AED是△BCE的外角,∠ADB是△ADE的外角,∴∠AED=∠CBE+∠C,∠ADB=∠1+∠AED,∴∠ADB=∠1+∠C+∠ABE.又∵∠2=∠1+∠C,∴∠ADB=∠2+∠ABD.在△ABD中,∠ABD+∠2+∠ADB=180°,∴∠ADB=×180°=90°,∴AD⊥BE.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC.∵∠ABC=2∠1,∴∠ABE=∠1.由(1)可知:∠2+∠ABD=90°,即∠2+∠1=90°,∴∠BAC=90°.。
2022-2023学年八年级数学上册期末测试卷(附答案)一、选择题:(共24分)1.的平方根是()A.2B.﹣2C.±2D.±42.下列实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有()A.1个B.2个C.3个D.4个3.已知△ABC中,∠A=50°,则图中∠1+∠2的度数为()A.180°B.220°C.230°D.240°4.下列说法中正确的有()A.(﹣1,﹣x2)位于第三象限B.点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5C.点N(1,n)到x轴的距离为nD.平面内,过一点有且只有一条直线与已知直线平行5.在解关于x,y的方程组时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为,则原方程组的解为()A.B.C.D.6.将一副三角板按如图所示的位置摆放,∠C=∠EDF=90°,∠E=45°,∠B=60°,点D在边BC上,边DE,AB交于点G.若EF∥AB,则∠CDE的度数为()A.105°B.100°C.95°D.75°7.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AC边和BC边向外作等腰直角三角形AFC和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.36B.18C.9D.48.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.二、填空题:(共18分)9.将一根长9m的铁丝截成2m和1m两种长度的铁丝(两种都有)如果没有剩余,那么截法有种.10.一次函数y1=k1x+b和y2=k2x的图象上一部分点的坐标见表:则方程组的解为x=,y=.x……210﹣1……y1……0369……y2……630﹣3……11.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,当n为11时h的值是.12.如图,已知圆柱底面的周长为8dm,圆柱高为4dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值的平方为dm.13.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=29°,∠BDA'=90°,则∠A'EC的大小为.14.如图,∠ABC=∠ACB,△ABC的内角∠ABC的角平分线BD与∠ACB的外角平分线交于点D,△ABC的外角∠MBC的角平分线与CD的反向延长线交于点E,以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④BD平分∠ADC;⑤∠BAC+2∠BEC=180°.其中正确的结论有.(填序号)三、作图题:(本题6分)15.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.四、解答题:(共72分)16.计算(1);(2).17.解方程组.(1).(2).18.为了解八年级学生的体质健康状况,某校对八年级(10)班43名同学进行了体质检测(满分10分,最低5分),并按照男女把成绩整理如图:八年级(10)班体质检测成绩分析表平均数中位数众数方差男生7.488c 1.99女生a b7 1.74(1)求八年级(10)班的女生人数;(2)根据统计图可知,a=,b=,c=;(3)若该校八年级一共有430人,则估计得分在8分及8分以上的人数共有多少人?19.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又,∵∠1=∠B(已知)∴(同位角相等,两直线平行)∴∠AFB=∠AOE()∴∠AFB=90°()又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴AB∥CD.(内错角相等,两直线平行)20.如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:.结论:.(2)证明你所构建的是真命题.21.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y 2(km ),慢车离乙地的距离为y 1(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y 2与x 的函数关系图象如图1所示,S 与x 的函数关系图象如图2所示.请根据条件解答以下问题:(1)图中的a = ,C 点坐标为 ; (2)当x 何值时两车相遇? (3)当x 何值时两车相距200千米?22.已知:现有A 型车和B 型车载满货物一次可运货情况如表:A 型车(辆)B 型车(辆) 共运货(吨) 3 2 17 2318某物流公司现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金300元/次,B 型车每辆需租金320元/次,请选出最省钱的租车方案,并求出最少租车费.23.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)直接写出点A,B,C的坐标;(2)设OD的长度为m,求m的值和直线CD的解析式;(3)直线AB与直线CD相交于点E,求△ADE的面积.24.【数学模型】如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD 的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,请你完成接下来的推理过程:∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=α、∠B=β,(α<β)则∠E=(用α、β表示).参考答案一、选择题:(共24分)1.解:∵=4,∴的平方根是±=±2.故选:C.2.解:是分数,属于有理数;|﹣3|=3,=2,=﹣2,是整数,属于有理数;0.4040404…(每相邻两个4之间一个0)是循环小数,属于有理数;故在实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有﹣,,共2个.故选:B.3.解:∵∠A=50°,∴∠B+∠C=130°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故选:C.4.解:A、(﹣1,﹣x2)当x≠0时位于第三象限,原说法错误,不符合题意;B、点A(2,a)和点B(b,﹣3)关于x轴对称,则b=2,a=3,,则a+b的值为5,符合题意;C、点N(1,n)到x轴的距离为|n|,原说法错误,不符合题意;D、平面内,过直线外一点有且只有一条直线与已知直线平行,原说法错误,不符合题意.故选:B.5.解:把代入中可得:,解得:,把代入中可得,,解得:,故选:C.6.解:∵EF∥AB,∠E=45°,∴∠BGD=∠E=45°,∵∠CDE是△BDG的外角,∠B=60°,∴∠CDE=∠B+∠BGD=105°.故选:A.7.解:在Rt△ABC中,由勾股定理得:AC2+BC2=AB2=36,∵△AFC和△CBE是等腰直角三角形,∴S1+S2=AC2+BC2=(AC2+BC2)=×36=18,故选:B.8.解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.二、填空题:(共18分)9.解:设截成2m的有x段,1m的有y段,且x≠0,y≠0,根据题意可列方程得:2x+y=9,则y=9﹣2x,∵x、y均为正整数,∴当x=1时,y=7;当x=2时,y=5;当x=3时,y=3;当x=4时,y=1;∴方程的正整数解有4组,即截法有4种,故答案为:4.10.解:由表中数据得到x=1时,y1=y2=3,所以一次函数y1=k1x+b的图象和y2=k2x的图象的交点坐标为(1,3),所以方程组的解为x=1,y=3.故答案为:1,3.11.解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则n个纸杯叠放在一起时的高度为:(n﹣1)x+y=n﹣1+7=(n+6)cm,当n=11时,其高度为:11+6=17(cm).故答案为:17cm.12.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为8dm,圆柱高为4dm,∴AB=4dm,BC=BC′=4dm,∴AC2=42+42=32,∴AC=4.∴这圈金属丝的周长最小为2AC=8(dm),则这圈金属丝的周长的最小值的平方为128dm.故答案为:128.13.解:如图,∵∠BDA'=90°,∴∠ADA'=90°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=45°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=29°+45°=74°,∴∠AED=106°,∴∠A′ED=106°,∴∠A′EC=∠A′ED﹣∠CED=106°﹣74°=32°.故答案为32°.14.解:如图,过点D作DG⊥BF于G,DH⊥AB交BA的延长线于点H,DP⊥AC于P,过点A作AQ⊥BC于Q,∵BD是∠ABC的平分线,∴DH=DG,∵CD是∠ACF的平分线,∴DG=DP,∴DH=DP,∴AD是∠CAH的平分线,即∠CAD=∠HAD=∠CAH,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∠CAD+∠HAD+∠BAC=180°,∴∠CAD=∠ACB,∴AD∥BC,因此①正确;∵BE平分∠CBM,BD平分∠ABC,∠CBM+∠ABC=180°,∴∠DBE=∠ABC+∠CBM=×180°=90°,即BD⊥BE,因此②正确;∵BD是∠ABC的平分线,∴∠ABD=∠DBC,∵CD是∠ACF的平分线,∴∠ACD=∠FCD,∵∠ACF=∠BAC+∠ABC,∠DCF=∠BDC+∠DBC,∴∠BDC=∠BAC,∵AQ⊥BC,AB=AC,∴∠BAQ=∠CAQ=∠BAC,∵∠BAQ+∠ABC=90°,∴∠BDC+∠ABC=90°,因此③正确;∵∠ADB=∠ABC=×()=45,而∠BAC ∴∠ADB与∠BDC不一定相等,因此④不正确;∵BE⊥BD,∴∠E+∠BDC=90°,∵∠BDC=∠BAC,∴∠E+∠BAC=90°,∴2∠E+∠ABC=180°,因此⑤正确;综上所述,正确的结论有:①②③⑤,故答案为:①②③⑤.三、作图题:(本题6分)15.解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).四、解答题:(共72分)16.解:(1)原式=﹣3+4+12=﹣3+16;(2)原式=﹣=3﹣=3﹣=.17.解:(1),①×2,得2x﹣2y=8③,③+②,得6x=7,解得x=,将x=代入①,得y=﹣,∴方程组的解为;(2),①﹣②得,y=3,解得,y=9,将y=9代入①,得x=6,∴方程组的解为.18.解:(1)∵八年级(10)班男生人数为2+4+6+5+4+2=23(人),∴女生人数为43﹣23=20(人);(2)由条形统计图知,男生体质监测成绩的众数c=7,女生体质监测成绩的平均数a=5×5%+6×15%+7×30%+8×25%+9×15%+10×10%=7.6,中位数b==7.5,故答案为:7.6、7.5、7;(3)430×=210(人),答:得分在8分及8分以上的人数共有210人.19.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.20.解:(1)条件:①AD∥BE;②∠1=∠2;结论:③∠A=∠E,故答案为:①AD∥BE,②∠1=∠2;③∠A=∠E;(2)证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥BC,∴∠E=∠EBC,∴∠A=∠E.21.解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,∴快车的速度为300÷3=100(km/h),由图可得,慢车5h行驶300km,∴慢车的速度为300÷5=60(km/h),∵3×60=180(km),∴快车到达乙地时,慢车行驶了180km,即两车相距180km,∴C(3,180),故答案为:3,(3,180);(2)由(1)可知,快车的速度为100km/h,慢车的速度为60km/h,∴两车相遇所需时间为300÷(100+60)=(h),∴当x为时两车相遇;(3)①当两车行驶的路程之和为300﹣200=100(km)时,两车相距200km,此时x=100÷(100+60)=;②当两车行驶的路程和为300+200=500(km)时,两车相距200km,∵x=3时,快车到达乙地,即快车行驶了300km,∴当慢车行驶200km时,两车相距200km,此时x=200÷60=,综上所述,x为或时,两车相距200km.22.解:(1)设l辆A型车载满货物一次可运货x吨,l辆B型车载满货物一次可运货y吨,依题意得:,解得:.答:l辆A型车载满货物一次可运货3吨,l辆B型车载满货物一次可运货4吨.(2)依题意得:3a+4b=35,∴b=,又∵a,b均为自然数,∴或或,∴共有3种租车方案,方案1:租用A型车1辆,B型车8辆;方案2:租用A型车5辆,B型车5辆;方案3:租用A型车9辆,B型车2辆.(3)选择方案1所需租车费为1×300+8×320=2860(元);选择方案2所需租车费为5×300+5×320=3100(元);选择方案3所需租车费为9×300+2×320=3340(元).∵2860<3100<3340,∴最省钱的租车方案是方案1:租用A型车1辆,B型车8辆,最少租车费为2860元.23.解:(1)在直线y=﹣x+8中,令x=0,则y=8;令y=0,则x=6,∴A(6,0),B(0,8),∴AO=6,BO=8,∴AB=10=AC,∴OC=6+10=16,即C(16,0);(2)∵A(6,0),B(0,8),C(16,0),∴OB=8,OC=16,∵OD=m,∴BD=8+m,∵将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,∴DC=BD=8+m,在Rt△ODC中,m2+162=(m+8)2,解得m=12,∴D(0,﹣12),设CD的解析式为y=kx+b,则,解得,∴CD的解析式为y=x﹣12;(3)由方程组,解得,∴点E坐标为(,﹣),∴S△ADE=×10×12﹣×10×=36.24.解:【解决问题】(1)如图3,∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=∴∠E=(30°+40°)=×70°=35°;故答案为:35°;(2)如图(4),∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=2∠E+∠3+∠2,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=∠D+∠B,∴∠E=,又∵∠D=30°,∠B=50°,∴∠E=40度.故答案为:2∠E+∠3+∠2,∠D+∠B,40°;(3)由(1)和(2)得:∠E=,故答案为:∠E=;【类比应用】如图(5),延长BC交AD于F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D),∵∠D=α°、∠B=β°,即∠E=(β﹣α)°.。
最新北师大版八年级数学上册期末测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .15.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠410.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°二、填空题(本大题共6小题,每小题3分,共18分)1.若613x ,小数部分为y ,则(213)x y +的值是________.2.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________. 3.若分式1x x-的值为0,则x 的值为________. 4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是________.5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.6.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:(x-1)÷(x-21xx-),其中x2+13.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.4.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、C6、D7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、a ≤2.3、1.4、(﹣5,4).5、:略6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1+23、±34、(1)略(2-15、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1) 4800元;(2) 降价60元.。
最新北师大版八年级数学上册期末测试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-160 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)13x x =,则x=__________2.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为_______cm .3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件____使四边形AECF 是平行四边形(只填一个即可).三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知a 、b 、c 满足2225(32)0a b c ---=(1)求a、b、c的值.(2)试问:以a、b、c为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、A5、A6、A7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、223、3.4、425、1 (21,2) n n--6、AF=CE(答案不唯一).三、解答题(本大题共6小题,共72分)1、x=32、1 23、(1)a=,b=5,c=;(2)能;.4、答案略5、(1)略;(2)112.5°.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
最新北师大版八年级数学上册期末测试卷及答案【各版本】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3B .a <3C .a ≥3D .a ≤3 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2的结果是________.()a b2.已知(x﹣1)3=64,则x的值为__________.3.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为________.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为_____.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.3.已知11881,2y x x =--22x y x y y x y x+++-.4.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、53、-1或2或14、705、36、12.5三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、53、14、(1)略;(2)S平行四边形ABCD=245、略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
新北师大版八年级数学上册期末测试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.因式分解:24x -=__________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。
新北师大版八年级数学上册期末考试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣3 2.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .9210.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.函数32y x x =-+x 的取值范围是__________. 3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
2014-2015学年河南省郑州市八年级(上)期末数学试卷
一、选择题(每小题3分,共24分)
1.(3分)(2014秋•郑州期末)的算术平方根是()
A.4 B.2 C.D.±2
2.(3分)(2014•宜昌)在﹣2,0,3,这四个数中,最大的数是()
A.﹣2 B.0 C.3 D.
3.(3分)(2014•衢州)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()
A.50°B.45°C.35°D.30°
4.(3分)(2014•资阳)一次函数y=﹣2x+1的图象不经过下列哪个象限()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.(3分)(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4
6.(3分)(2014•孝感)为了解某社区居民的用电情况,随机对该社区10户居民进行了调
那么关于这10户居民月用电量(单位:度),下列说法错误的是()
A.中位数是55 B.众数是60 C.方差是29 D.平均数是54
7.(3分)(2014•滨州)下列四组线段中,可以构成直角三角形的是()
A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3
8.(3分)(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()
A.体育场离张强家2.5千米
B.张强在体育场锻炼了15分钟
C.体育场离早餐店4千米
D.张强从早餐店回家的平均速度是3千米/小时
二、选择题(每小题3分,共21分)
9.(3分)(2014•福州)计算:(+1)(﹣1)=.
10.(3分)(2013•泰州)命题“相等的角是对顶角”是命题(填“真”或“假”).11.(3分)(2014秋•郑州期末)若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为.
12.(3分)(2014•随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.
13.(3分)(2014秋•郑州期末)按如图的运算程序,请写出一组能使输出结果为3的x,y 的值:.
14.(3分)(2012•启东市模拟)已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则
二元一次方程组的解是.
15.(3分)(2013•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.
三、解答题(共55分)
16.(6分)(2014秋•郑州期末)证明三角形内角和定理
三角形内角和定理内容:三角形三个内角和是180°.
已知:
求证:
证明:
17.(6分)(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为.
18.(6分)(2014秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?
19.(9分)(2014秋•郑州期末)九(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如
(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)
20.(8分)(2014秋•郑州期末)如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,
(1)求表中BC长度的平均数、中位数、众数;
(2)求A处的垃圾量,并将图2补充完整;
(3)用(1)中的作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:=1.732)
21.(10分)(2014秋•郑州期末)观察下列各式及其验证过程:,验证:
.,验证:.
(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.
(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.
(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.
22.(10分)(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;
(2)写出d1与t的函数关系式:
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
2014-2015学年河南省郑州市八年级(上)期末数学试卷
参考答案
一、选择题(每小题3分,共24分)
1.C;2.C;3.D;4.C;5.A;6.C;7.B;8.C;
二、选择题(每小题3分,共21分)
9.1;10.假;11.(-3,-2);12.75;13.x=1,y=-1;14.;
15.(0,2),(0,-2),(-3,0),(3,0);
三、解答题(共55分)
16.;17.(-3,2);(-2,3);18.;19.;
20.;21.;22.40;。