最新简易信号发生器设计说明1
- 格式:doc
- 大小:2.67 MB
- 文档页数:26
简易信号发生器课程设计一、课程目标知识目标:1. 理解信号发生器的基本原理,掌握其组成部分及功能;2. 学会使用简易信号发生器产生不同频率、不同幅度的正弦波、方波和三角波;3. 掌握信号发生器在实际应用中的使用方法,如调整频率、幅度和波形。
技能目标:1. 能够正确组装和调试简易信号发生器,具备基本的动手实践能力;2. 学会运用信号发生器进行简单的信号分析和处理,提高实际操作技能;3. 培养学生对电子电路的故障排查和解决问题的能力。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发其探索精神和创新意识;2. 增强学生的团队合作意识,学会在小组讨论中倾听他人意见,共同解决问题;3. 培养学生严谨、认真、负责的学习态度,养成良好的实验操作习惯。
本课程针对高年级学生,结合学科特点,注重理论知识与实践操作的相结合,旨在提高学生的动手能力、创新意识和实际应用能力。
课程设计遵循由浅入深、循序渐进的原则,使学生能够充分理解信号发生器的原理,掌握相关技能,并培养积极的情感态度价值观。
通过本课程的学习,学生将能够独立完成简易信号发生器的组装、调试和应用,为后续电子技术课程打下坚实基础。
二、教学内容1. 信号发生器的基本原理及组成部分- 介绍信号发生器的功能、分类及工作原理;- 分析简易信号发生器的电路结构,包括振荡器、放大器、波形整形电路等。
2. 简易信号发生器的组装与调试- 指导学生根据电路图正确组装简易信号发生器;- 教授调试方法,使学生能够调整信号发生器输出不同频率、不同幅度的正弦波、方波和三角波。
3. 信号发生器的应用- 介绍信号发生器在电子实验、信号分析和故障诊断等方面的应用;- 演示如何使用简易信号发生器进行信号处理和实验操作。
4. 教学内容安排与进度- 第一章节:信号发生器的基本原理及组成部分(2课时)- 第二节点:简易信号发生器的组装与调试(4课时)- 第三节点:信号发生器的应用(2课时)5. 教材章节及内容列举- 教材第四章:振荡器原理及设计;- 教材第五章:放大器原理及设计;- 教材第六章:波形整形电路及信号发生器应用。
简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
课程设计说明书课题名称:简易信号发生器设计专业名称:电气类学生班级: 081学生姓名:学生学号:指导教师:课程设计任务书设计任务:设计构成正弦波、三角波、方波函数信号发生器。
1、设计要求:(1)电路能输出正弦波、方波和三角波等波形;(2)输出信号的频率要求可调;(3)拟定测试方案和设计步骤;(4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图;(5)在面包板上或万能板上安装电路;(6)测量输出信号的幅度和频率;(7)写出设计性报告。
2、技术指标频率范围:100Hz-1KHz,1KHz-10KHz;输出电压:方波Vp-p≤24V,三角波Vp-p=6V;正弦波Vp-p=1V;方波tr<30us。
目录第一章方案讨论1.1数字电路实现方案...........1.2模数结合的方案............1.3 模拟电路的实现方案........1.3.1 模拟电路实现方案一........1.3.2 模拟电路实现方案二 .......1.3.3 模拟电路实现方案三........第二章单元电路分析2.1 正弦波发生器..........2.2 三角波、方波发生器.......2.2.1 比较器+RC电路........2.2.2 比较器+积分器.......第三章简易函数发生器总电路图分析3.1 简易函数发生器电路的分析..........3.2 简易函数发生器电路的组装与调试........ 第四章元器件清单.........第五章设计总结........第一章方案讨论根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
1.1数字电路实现方案数字电路实现方案:一般可事先在存储器里存储好函数信号波形,再用D/A 转换器进行逐点恢复。
这种方案的波形精度主要取决于函数信号波形的存储点数、D/A转换器的转换速度、以及整个电路的时序处理等。
第1章绪论1.1 信号发生器的现状与发展信号发生器是一种常用的信号源,广泛的应用于电子电路、自动控制和科学实验等领域。
它是一种为电子测量和计量工作提供符合严格技术要求的电信号设备。
因此,信号发生器和示波器、电压表、频率计等仪器一样是最普通、最基本的,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到信号发生器。
自六十年代以来,信号发生器就有了迅速的发展,出现了函数发生器、扫描信号发生器、合成信号发生器、控制信号发生器等种类。
各种信号发生器的主要性能指标也都有了大幅度的提高,同时在简化机械结构、小型化、多功能等各方面也有了显著的发展。
1.2 设计容及方案的确定本课题要求以MCS-51系列单片机为核心,设计一个简易低频信号发生器。
要求能输出0.1~50HZ的正弦波、三角波和方波信号,能方便的用键盘选择不同的输出并在LED显示器上显示。
单片机通过查表的方法完成波形数据要求,输出的正弦波、三角波和方波信号频率在0.1~50HZ可调,系统有启动、调频和不同波形选择按键,转速显示要求至少4位。
根据要求我们组讨论如下:直接采用8位DA转换芯片,让单片机对8位DA芯片进行控制,从而输出波形。
第2章 基于单片机的简易低频信号发生器的设计2.1 总体设计框图图2.1.1总体设计框图如方框图所示根据要求我们组讨论如下:通过C 程序的编译,频率档位选择按键UP 、DOWN 以及波形选择按键SWITCH ,通过数码管显示频率档位和波形。
并且通过DAC0832实现数模转换,最后用示波器观察输出的结果。
2.2 单片机结构及系统工作原理数模转换器器工作原理就是模拟信号数字化的逆过程,模拟信号数字化通过采样、量化、编码完成,那么数字信号模拟化的过程读取二进制码、二进制码权值相加、输出一个总的电流或电压。
这其实就是一个模拟电子计数中的加法器。
量化电平个数相对于数模转换的分辨率,对于低频低成本的信号发生器,为了简化程序设计,所以直接采用8位DA转换芯片DAC0832,让单片机AT89C51对8位DA芯片进行控制,从而输出波形。
简易信号发生器设计摘要随着电子技术的飞快发展,单片机也应用得越来越广泛,基于单片机的智能仪器的设计技术不断成熟。
单片机构成的仪器具有高可靠性,高性价比。
单利用单片机采用程序设计方法来产生波形,线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强等优点,而且还能对波形进行细微的调整,改良波形,易于程序控制。
只要对电路稍加修改,调整程序,就能实现功能的升级。
本系统利用单片机AT89C51采用程序设计方法产生正弦波、三角波、方波、锯齿波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,并通过按键来控制四种波形的类型选择。
本次设计主要由信号发生模块、数模转换模块和仿真模块。
关键词:单片机;数模转换;液晶显示屏目录第1章概述 (1)第2章系统总体方案选择 (1)2.1 系统硬件设计图 (1)2.2系统软件设计 (1)第3章各单元硬件设计及工作原理 (2)3.1单片机最小系统的设计 (2)3.2 函数信号发生器的设计 (2)3.2.1DAC0832芯片工作方式的选择 (2)3.2.2DAC0832芯片外围电路的设计 (2)3.3LCD12864显示屏 (3)3.3.1LCD12864与LCD1602的区别 (3)3.3.2LCD12864显示屏原理及其硬件设计 (3)第4章软件设计与说明 (3)4.1软件设计思路 (3)4.2波形数据输出程序设计 (4)4.3LCD12864显示程序设计 (5)第5章调试结果及其说明与使用说明 (6)5.1调试过程中遇到的问题 (6)5.1.1LCD12864显示问题 (6)5.1.2幅值调节问题 (6)5.2使用说明 (6)第6章总结 (7)第7章参考文献 (8)附录 (9)第1章概述在本系统中,设计的要求为产生三角波、正弦波、方波信号,要求频率和幅值可调。
并且显示内容可以在LCD显示出来,在本系统中,主控为AT89C51单片机,D/A 转换芯片采用的为ADC0832,LCD显示屏采用LCD12864,本系统设置有三个控制按键,分别为频率转换按键、波形切换按键、幅值切换按键,通过这三个按键,可以对输出的波形进行控制,波形幅值为0—5V,分为5个幅值挡位,频率范围为40Hz—400Hz,分为50个频率挡位。
摘要波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
本次课程设计使用的AT89C51 单片机构成的发生器可产生锯齿波、三角波、正弦波等多种波形,波形的周期可以用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑等优点。
在本设计的基础上,加上按钮控制和LED显示器,则可通过按钮设定所需要的波形频率,并在LED上显示频率、幅值电压,波形可用示波器显示。
用AT89C51单片机采用程序设计方法构成的波形发生器,可产生方波、三角波、正弦波,再通过DA转换器DAC0832将数字信号转换成模拟信号,并通过LM324集成运放把信号放大,通过示波器将波形显示在屏幕上。
波形的周期可用程序改变,此设计具有线路简单、结构紧凑、性能优越等特点。
通过仿真测试,其性能指标达到了设计要求,均达到了课程设计的目的。
数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。
AT89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将AT89C51再配置键盘及其接口、显示器及其接口、数模转换及波形输出、指示灯及其接口等四部分,即可构成所需的波形发生器,其信号发生器构成原理框图如下图所示。
图1.1 信号发生器原理框图AT89C51是整个波形发生器的核心部分,通过程序的编写和执行,产生各种各样的信号,当数字信号电路到达转换电路,将其转换成模拟信号也就是所需要的输出波形。
并经过滤波放大电路将波形输出出来。
1、运用keil软件对程序进行编写,运行程序,并进行程序修改。
2、运用protues软件进行硬件电路仿真设计。
3、将程序下载到仿真单片机中,并观测输出波形。
4、对程序进行修改,再次运行仿真软件,直到输出理想的波形。
单片机简易信号发生器课程设计
单片机简易信号发生器是一种基于单片机技术的电子设备,它可以产生各种不同的信号波形,如正弦波、方波、三角波等。
在电子工程领域中,信号发生器是一种非常重要的测试仪器,它可以用于测试各种电子设备的性能和参数,如放大器、滤波器、振荡器等。
在本次课程设计中,我们将使用单片机技术设计一款简易的信号发生器。
首先,我们需要选择一款适合的单片机芯片,如AT89C51、PIC16F877A等。
然后,我们需要编写相应的程序代码,实现信号波形的产生和输出。
在程序设计中,我们可以使用定时器和计数器来实现不同频率的信号波形产生。
例如,我们可以使用定时器产生一个固定频率的方波信号,然后通过改变计数器的值来改变方波的占空比。
同样地,我们也可以使用定时器和计数器来产生正弦波和三角波等不同形式的信号波形。
在硬件设计方面,我们需要选择适合的电路元件来实现信号波形的输出。
例如,我们可以使用DAC芯片来将数字信号转换为模拟信号,然后通过放大器和滤波器来输出信号波形。
当然,我们也可以选择其他的电路方案来实现信号波形的输出。
单片机简易信号发生器是一款非常有用的电子设备,它可以用于各种电子设备的测试和调试。
通过本次课程设计,我们可以学习到单
片机技术的应用和信号发生器的原理,提高我们的电子技术水平。
第1章课程设计任务1.1设计目的1、掌握信号发生器的设计方法和测试技术。
2、了解单片函数发生器IC8038的工作原理和应用。
3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。
1.2 设计技术指标与要求1.2.1 设计要求基本要求:A、电路能输出正弦波、方波和三角波等三种波形;B、输出信号的频率要求可调;C、拟定测试方案和设计步骤;D、根据性能指标,计算元件参数,选好元件,设计电路并画出电路图;E、在面包板上或万能板上安装电路;F、测量输出信号的幅度和频率;H、写出设计性报告。
1.2.2 技术指标频率范围:100Hz-1KHz,1KHz-10KHz;输出电压:方波VP-P ≤24V,三角波VP-P=8V,正弦波VP-P =1V;方波tr小于30uS。
1.3 设计提示方案提示:1、设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。
如下框图所示。
2、用单片集成芯片IC8038实现,但这种方案要求幅度和频率都可调,可采用数字电位器加程控放大器实现。
第2章 系统开发过程2.1 函数发生器的组成函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题介绍方波、三角波、正弦波函数发生器的方法。
2.2 正弦波产生电路正弦波振荡电路的振荡条件:或 AF=1 在上式中,仍设 a A A ϕ∠=,f F F ϕ∠=,则可得: 1)(=+∠=f a AF AF ϕϕ,即1==AF AF和 πϕϕn f a 2=+,N=0,1,2··· RC 桥式正弦波振荡器(文氏电桥振荡器)图2.1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。
新疆塔里木大学《模拟电子技术》课程设计说明书课程名称:简易信号发生器设计系部:信息工程系专业:计算机班级:通信13模拟电子技术课程设计任务书系:信息工程系年级:大二专业:计算机目录第1章函数发生器方案选择及原理框图1.1 函数发生器方案选择 (4)1.2 总体框图 (4)第2章各部分电路设计及总电路图3.1 方波发生电路的工作原理 (6)3.2 方波---三角波转换电路的工作原理 (6)3.3 三角波---正弦波转换电路的工作原理 (9)3.4电路的参数选择及计算 (10)第4章 EWB电路仿真及仿真结果4.1 EWB软件的简单介绍 (14)4.2 方波---三角波发生电路的仿真 (15)4.3 三角波---正弦波转换电路的仿真 (16)4.4 方波---三角波发生电路的仿真实验结果 (17)4.5 三角波---正弦波转换电路的仿真实验结果 (18)第5章protel的仿真与电路板的制作5.1 protel99 SE 软件的简单介绍 (19)5.2 protel99中设计电路原理图的绘制 (19)5.3 protel99中PCB图的设计与制作 (19)5.4 电路板的制作 (20)第6章电路板的调试与误差分析6.1 方波——三角波发生电路的调试 (21)6.2 三角波——正弦波转换电路的调试 (21)6.3 总电路的调试 (21)6.4 调试中遇到的问题及解决方法 (22)6.5 误差分析 (22)第7章实验总结 (25)参考文献 (26)附录1 元器件清单 (27)附录2 EWB软件简要介绍 (28)附录3 RROTEL软件简要介绍 (29)第一章函数发生器总方案及原理框图1.1 原理框图1.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块)。
《单片机原理及应用》课程设计任务书课程设计题目:简易信号发生器设计一、设计目的和要求(一)、设计目的通过设计简易信号发生器,完成系统设计、编码、调试及维护工作的实践,了解单片机应用系统的一般设计思路,熟悉和掌握硬件系统和软件设计的一般方法。
(二)、设计要求1.设定功能:能通过按键设定信号类型、频率2.显示功能:通过数码管或液晶显示当前波形类型和频率。
3.计数功能:能设定自动输出多少个周期该波形后停止输出,直到再次按下触发按钮二、设计内容及步骤1.系统分析,完成系统分析报告2.根据的系统结构图、课程实验,查阅资料,确定系统各个模块的译码电路和地址范围以及其它硬件型号,详细画出系统硬件原理图。
3.程序流程图,编制程序。
4.调试修改显示子模块、键盘扫描子模块、定时器中断子模块和主程序5.编写课程设计报告内容包括:题目、摘要、目录、正文、结论、致谢、参考文献等。
学生在完成上述全部工作之后,应将全部内容以先后顺序写成设计报告一份,阐述整个设计内容,要求重点突出、特色鲜明、语言简练、文字通畅,字迹工整。
报告要求在专用报告书上书写。
6.完成课程设计报告,设计报告字数不得少于3000 字撰写要求如下:·设计任务·问题定义、理论分析·理论设计(程序功能结构、算法说明和程序框图)·上机调试(实验环境、实验说明和程序清单)·结果分析·心得体会三、进度安排按教学计划规定,单片机原理及应用课程设计总学时为一周,其进度及时间大致分配如下:序号设计内容天数(约占比例)1 查阅资料(约占8%)2 确定设计思路(约占15%)3 画出硬件图、确定各个模块的电路实现方法(约占27%)4 编写程序(约占25%)5 调试修改各子模块和主程序(约占15%)6 总结设计过程,编写课程设计报告1(约占10%)。
简易信号发生器设计目录1 引言...................................................................... (1)2 信号发生器的设计原理 ..................................................................... (2)2.1 EDA技术介绍 ..................................................................... .. (2)2.1.1 EDA介绍 ..................................................................... (2)2.1.2 VHDL的基本介绍 ..................................................................... . (3)2.1.3 设计工具简介 ..................................................................... .. (4)2.2 信号发生器的原理结构 ..................................................................... .. (4)2.3各个控制单元的实现 ..................................................................... . (5)2.3.1频率控制单元 ..................................................................... (5)2.3.2 信号波形成与波形选择的设计 ..................................................................... .. 62.3.3顶层文件的设计 ..................................................................... .......................... 7 3 程序设计及仿真分析 ..................................................................... . (8)3.1频率控制模块设计 ..................................................................... .. (8)3.1.1 输入识别模块程序设计...................................................................... . (8)3.1.2输入识别模块仿真 ..................................................................... . (9)3.1.3分频数模块程序设计 ..................................................................... . (11)3.1.4分频数产生的仿真 ..................................................................... .. (12)3.1.5 分频器模块程序设计 ..................................................................... (13)3.1.6 分频器的仿真 ..................................................................... (14)3.2信号控制模块设计 ..................................................................... (14)3.2.1 信号控制模块程序设计...................................................................... .. (14)3.2.1 信号控制模块仿真 ..................................................................... . (17).................................................................... ...................................... 18 3.3 顶层模块设计3.3.1顶层模块程序设计 ..................................................................... .. (18)3.3.2顶层模块仿真 ..................................................................... ............................ 19 4 硬件测试 ..................................................................... (21)4.1 示波器的波形显示及其分析 ..................................................................... . (21)4.2 幅值改变使波形改变 ..................................................................... . (23)4.3 频率改变使波形改变 ..................................................................... ......................... 23 5 设计总结 ..................................................................... (24)参考文献 ..................................................................... . (25)附录 ..................................................................... .. (26)课程设计说明书1 引言简易多功能信号发生器是信号发生器的一种,又名信号源。
项目设计报告项目名称:简易信号发生器设计专业:通信工程班级学号:10304209 姓名:鹿应许任课教师:刘寅生成绩:内容与要求:利用单片机与DAC0832设计简易的信号发生器,能够输出三种波形信号,设计电路和程序。
设计内容简要分析与说明采用DAC0832产生锯齿波的编程思路是:先输出8位二进制最小值零,然后按加1规律递增,当输出数据达到255时,再回到零重复这一过程。
采用DAC0832产生正弦波的编程思路是:把产生波形输出的二进制数据以数值的形式预先存放在程序存储器中,在按顺序依次取出来送给D/A转换器。
采用DAC0832产生三角波的编程思路是:先输出8位二进制最小值零,然后按加1规律递增,当输出数据达到255时,再按减1规律递减,当输出值捡到零时,再次重复整个过程。
因此,通过3个按键开关控制,使其最终能达到输出三种波形的目的。
该设计内容是采用单片机与DAC0832单缓冲连接电路。
由于DAC0832输出的是电流形式的模拟量,一次需要通过两级运算放大器将电路转换为电压,以便输出电压波形。
在输出锯齿波时,改变延时时间可以改变波形周期,改变输出二进制的最大值可以改变波形的幅值。
电路图如下:程序如下:#include<absacc.h> // 绝对地址访问头文件#include <reg51.h>#define uchar unsigned char#define uint unsigned int#define DA0832 XBYTE [0x7fff] //DAC0832地址sbit K1=P1^0;sbit K2=P1^1;sbit K3=P1^2;//函数名:delay_1ms//函数功能:延时1ms,T1、工作方式1,定时值64536void delay_1ms(){ TH1=0xfc; //置定时器初值TL1=0x18;TR1=1; //启动定时器1while(!TF1) ; //查询计数器是否溢出TF1=0; //溢出标志位清零}uchar code sin[ ]={0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa5,0xa8, 0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0x d6,0xd8,0xda,0xdd,0xdf,0xe1,0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf 4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0 xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1,0 xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda,0xd8,0xd6,0xd4,0xd1, 0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0 xa2,0x9f,0x9c,0x99,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76, 0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45, 0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x22, 0x20,0x1e,0x1c,0x1a,0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a, 0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02 ,0x02,0x03,0x04,0x05, 0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0x38, 0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60, 0x63,0x66 ,0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0x80 };void main(){uchar i;TMOD=0x10; //置定时器1为工作方式1while(1){if (K1==0){for(i=0;i<=255; i++) // 形成锯齿波输出值,最大值为255{DA0832=i; //D/A转换输出delay_1ms();}}if(K2==0){for(i=0;i<=255;i++) //形成正弦波输出值{DA 0832=sin[i]; //D/A转换输出delay_1ms();}}if(K3==1){for(i=0;i<=255;i++) //形成三角波输出值,最大为255{DA0832=i; //D/A转换输出delay_1ms();}for (i=255;i>=0;i--) //形成正弦波输出值,最小为0{DA0832=i; //DA转换输出delay_1ms();}}}}任务小结通过简易波形发生器的设计与制作,训练了D/A转换芯片在单片机接口电路中的应用及产生各种波形的程序设计技术,使读者初步掌握数模转换芯片与单片机的接口方法,为运用单片机组成各种开环或闭环控制电路奠定了基础。
如何设计简单的信号发生器电路设计简单的信号发生器电路是电子爱好者入门必备的技能之一。
信号发生器电路可以产生各种波形信号,用于测试电路的响应、频率特性和波形形状,是电子电路设计、修理和教学的基础设备。
本文将介绍如何设计一个简单的信号发生器电路,帮助读者快速入门。
1. 选取信号发生器电路的基本类型信号发生器电路的基本类型有多种,包括函数发生器、脉冲发生器、正弦波发生器等。
根据需求选取合适的基本类型是设计信号发生器电路的第一步。
2. 准备所需元件和工具设计信号发生器电路需要准备一些基本的元件和工具,包括集成电路、电容、电阻、电感、开关等。
此外,还需要一个电路板、焊接设备、测试仪器等。
3. 绘制电路原理图在设计信号发生器电路之前,先用电路设计软件或者手绘图纸绘制电路原理图。
原理图是电路设计的蓝图,能直观地展示电路的连接关系和元件的型号和参数。
4. 确定电路工作电压和频率范围根据设计需求,确定信号发生器电路的工作电压和频率范围。
不同类型的信号发生器电路有不同的工作电压和频率范围要求,需要注意选取合适的元件来满足要求。
5. 进行电路布局设计根据电路原理图,进行电路布局设计。
合理的电路布局能够降低电路噪音、干扰和交叉干扰,提高电路性能和稳定性。
将元件按照一定的规律排列,避免元件之间产生干扰。
6. 进行电路连接和焊接根据电路布局,进行电路连接和焊接。
在焊接过程中,需要注意焊接时间和温度,避免对元件造成损害。
焊接完成后,使用万用表测试电路的连接是否正确。
7. 进行电路调试和测试将电路连接到电源,进行电路调试和测试。
检查电路的工作状态和波形输出是否符合设计要求。
如有问题,及时调整元件参数或者电路连接,直到信号发生器电路工作正常。
8. 对信号发生器电路进行保护和优化为了保护信号发生器电路的稳定性和寿命,可以增加保护电路和滤波电路。
保护电路可以避免电源反接、过流和过压等情况对电路造成损害。
滤波电路可以降低电路的噪音和杂散频率,提高输出信号的纯净性。
简易信号发生器说明07180327陈傲1.使用功能我设计的简易信号发生器主要功能为发生四种固定频率的信号,方波,三角波,正弦波和锯齿波,有四个按键控制波形的选择,并有lcd屏幕显示菜单界面以及波形的发生情况2硬件设计电路如上图,具体硬件主要有:AT89C52单片机,LCD1602显示器,8位D/A转换器DAC0832,示波器,还有电阻,按键,运算放大器等若干。
3.软件程序(略)编译结果截图具体程序在另一文件夹中。
4.设计难点与不足这次设计的难点主要在于lcd屏幕的显示切换和信号发生程序之间的配合部分编写,在这部分编写中我用了很长的时间,也找了很多的参考资料来完善我的程序,具体问题有这么几个(1)由于各个信号发生的程序结构不同,他们各自退出程序的位置摆放也要求不同,我遇到了一个问题就是三角波的输出,由于我做成了两段式的输出,而退出程序放在外面难以执行,所以我的解决办法是在每一段程序后面都添加退出程序(如下图),如此虽然让程序变复杂了,但是所有功能都能正常实现(2)我遇到的二个问题是正弦波输出时,退出函数运行正常但波形仍然在输出,对此我的解决办法第一个是修改了按键扫描程序,第二个是修改了退出程序的位置,如图所示。
最开始我将按键扫描与退出程序放进for循环内导致问题发生。
该程序的不足之处:(1)因为按键消抖程序与部分波形生成产生冲突,所以我去掉了部分按键消抖程序。
(2)退出按键不太灵敏,有时需要多按几下才能生效。
(3)不能同时产生多个波形,也不能改变波的频率。
5.具体运行过程(视频在另外文件夹内)(1)通电后lcd屏幕显示Welcom以及我的学号07180327(2)按下前进按键进入菜单,菜单显示有,a方波,b三角波,c正弦波,d锯齿波(3)按下上行下行按键可以选择你要输出的波形样式,如图为四次点击向下的结果(4)按下前进按键可以让示波器显示对应波形(一下为四种波形显示示例)方波三角波正弦波锯齿波(5)再按下返回按键即可返回菜单6.结论及反思这次装置的设计结合了lcd显示和波形的输出,lcd显示使我们在按键操作的时候有了提示,所以不至于误操作,同时用单片机可以输出四种波形也能满足一般信号发生器的要求。
简易信号发生器设计制作一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法;(3)进一步熟悉电子线路的安装、调试、测试方法。
二、工作原理正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。
下面分别介绍产生这三种信号电路结构和工作原理。
1.正弦信号发生器正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。
图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。
调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。
二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。
如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为:12f RCπ=(7-1) 起振的幅值条件:11f v R A R =+(7-2)图7-1 正弦信号发生器通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。
该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。
2.方波和矩形波发生器方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。
其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下:假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为212Z R v V R R +≈+ (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为212Z R v V R R +'≈-+ (7-4)这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。
模拟电子技术课程设计题目:简易信号发生器系别:电子科学系专业:电子信息科学与技术班级:姓名:学号:指导老师:2011.06.28简易信号发生器设计一、设计目的1、掌握信号发生器的设计方法和测试技术;2、了解单片函数发生器IC8038的工作原理和应用;3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。
二、设计要求与技术指标设计要求1、分析电路组成及工作原理;2、单元电路设计计算;3、采用RC桥式正弦波振荡器4、画出完整电路图;5、调试方法;6、小结与讨论。
技术指标失真度:γ<= 5%频率范围:20Hz~20KHz输出电压:不小于1V有效值(方波VP-P≤24V,三角波VP-P=6V,正弦波VP-P=1V;方波tr小于1uS)。
三、方案提示设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。
如下框图所示。
四、电路设计的一般过程1、总体方案所谓总体方案是用具有一定功能的若干单元电路构成一个整体,以满足课题题目所提出的要求和性能指标,实现各项功能。
方案选择就是按照系统总的要求,把电路划分成若干个功能块,得出能表示单元功能的整机原理框图。
按照系统性能指标要求,规划出各单元功能电路所要完成的任务,确定输出与输入的关系,确定单元电路的结构。
总体方案往往不止一个,应当针对糸统提出的任务、要求和条件,进行广泛调查研究,大量查阅参考文献和有关资料,广开思路,要敢于探索,努力创新,提出若干不同方案,仔细分析每个方案的可行性和优缺点,反复比较,争取方案的设计合理、可靠、经济、功能齐全、技术先进。
框图应能说明方案的基本原理,应能正确反映系统完成的任务和各组成部分的功能,清楚表示出系统的基本组成和相互关系。
方案选择必须注意下面两个问题:(1)要有全局观点,抓住主要矛盾。
(2)在方案选择时要充分开动脑筋,不仅要考虑方案是否可行,还要考虑怎样保证性能可靠,考虑如何降低成本,降低功耗,减小体积等许多实际的问题。
第1章课程设计任务1.1设计目的1、掌握信号发生器的设计方法和测试技术。
2、了解单片函数发生器IC8038的工作原理和应用。
3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。
1.2 设计技术指标与要求1.2.1 设计要求基本要求:A、电路能输出正弦波、方波和三角波等三种波形;B、输出信号的频率要求可调;C、拟定测试方案和设计步骤;D、根据性能指标,计算元件参数,选好元件,设计电路并画出电路图;E、在面包板上或万能板上安装电路;F、测量输出信号的幅度和频率;H、写出设计性报告。
1.2.2 技术指标频率范围:100Hz-1KHz,1KHz-10KHz;输出电压:方波VP-P ≤24V,三角波VP-P=8V,正弦波VP-P =1V;方波tr小于30uS。
1.3 设计提示方案提示:1、设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。
如下框图所示。
2、用单片集成芯片IC8038实现,但这种方案要求幅度和频率都可调,可采用数字电位器加程控放大器实现。
第2章 系统开发过程2.1 函数发生器的组成函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题介绍方波、三角波、正弦波函数发生器的方法。
2.2 正弦波产生电路正弦波振荡电路的振荡条件:或 AF=1在上式中,仍设 a A A ϕ∠=,f F F ϕ∠=,则可得: 1)(=+∠=f a AF AF ϕϕ,即1==AF AF和 πϕϕn f a 2=+,N=0,1,2··· RC 桥式正弦波振荡器(文氏电桥振荡器)图2.1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。
调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。
D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。
电路的振荡频率2πRC 1f O =起振的幅值条件1fR R ≥2 式中R f =R W +R 2+(R 3 // r D ),r D — 二极管正向导通电阻。
100=•=X X X XX X faaf调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。
如不能起振,则说明负反馈太强,应适当加大R f 。
如波形失真严重,则应适当减小R f 。
改变选频网络的参数C 或 R ,即可调节振荡频率。
一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。
图2.1 RC 桥式正弦波振荡器2.3 方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。
图2.2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。
它的特点是线路简单,但三角波的线性度较差。
主要用于产生方波,或对三角波要求不高的场合。
电路振荡频率式中 R 1=R 1'+R W ' R 2=R 2'+R W "方波输出幅值 U om =±U Z三角波输出幅值调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。
如要互不影响,则可通过改变R f (或C f )来实现振荡频率的调节。
Z212cm U R R R U +=)R 2R Ln(1C 2R 1f 12f f o +=图2.2 方波发生器2.4 三角波和方波发生器如把滞回比较器和积分器首尾相接形成正反馈闭环系统,如图 2.3 所示,则比较器A 1输出的方波经积分器A 2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
图2.4为方波、三角波发生器输出波形图。
由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。
图2.3 三角波、方波发生器电路振荡频率 fW f 12O )C R (R 4R R f +=方波幅值 U ′om =±U Z 三角波幅值 Z 21om U R R U =调节R W 可以改变振荡频率,改变比值21R R 可调节三角波的幅值。
图2.4 方波、三角波发生器输出波形图2.5 ICL8038芯片简介及典型应用--FSKICL8038精密函数发生器是采用肖特基势垒二极管等先进工艺制成的单片集成电路芯片,电源电压范围宽、稳定度高、精度高、易于用等优点,外部只需接入很少的元件即可工作,可同时产生方波、三角波和正弦波,其函数波形的频率受内部或外电压控制,可被应用于压控振荡和FSK 调制器。
ICL8038芯片简介 ⑴性能特点具有在发生温度变化时产生低的频率漂移,最大不超过50ppm /℃;具有正弦波、三角波和方波等多种函数信号输出;正弦波输出具有低于1%的失真度;三角波输出具有0.1%高线性度;具有0.001Hz ~1MHz 的频率输出范围;工作变化周期宽,2%~98%之间任意可调;高的电平输出范围,从TTL 电平至28V ;易于使用,只需要很少的外部条件。
⑵、管脚功能图2.5为ICL8038的管脚图,下面介绍各引脚功能。
脚1、12(Sine Wave Adjust ):正弦波失真度调节;脚2(Sine Wave Out ):正弦波输出;脚3(Triangle Out ):三角波输出;脚4、5(Duty Cycle Frequency ):方波的占空比调节、正弦波和三角波的对称调节;脚6(V +):正电源±10V~±18V;脚7(FM Bias ):内部频率调节偏图2.5 ICL8038管脚图⑶、置电压输;脚8(FM Sweep):外部扫描频率电压输入;脚9(Square Wave Out):方波输出,为开路结构;脚10(Timing Capacitor):外接振荡电容;脚11(Vor GND):负电原或地;脚13、14(NC):空脚。
-⑷、基本电路的工作原理:图2.6 ICL8038内部框图其中,振荡电容C由外部接入,它是由内部两个恒流源来完成充电放电过程。
恒流源2的工作状态是由恒流源1对电容器C连续充电,增加电容电压,从而改变比较器的输入电平,比较器的状态改变,带动触发器翻转来连续控制的。
当触发器的状态使恒流源2处于关闭状态,电容电压达到比较器1输入电压规定值的2/3倍时,比较器1状态改变,使触发器工作状态发生翻转,将模拟开关K由B 点接到A点。
由于恒流源2的工作电流值为2I,是恒流源1的2倍,电容器处于放电状态,在单位时间内电容器端电压将线性下降,当电容电压下降到比较器2的输入电压规定值的1/3倍时,比较器2状态改变,使触发器又翻转回到原来的状态,这样周期性的循环,完成振荡过程。
在以上基本电路中很容易获得3种函数信号,假如电容器在充电过程和在放电过程的时间常数相等,而且在电容器充放电时,电容电压就是三角波函数,三角波信号由此获得。
由于触发器的工作状态变化时间也是由电容电压的充放电过程决定的,所以,触发器的状态翻转,就能产生方波函数信号,在芯片内部,这两种函数信号经缓冲器功率放大,并从管脚3和管脚9输出。
适当选择外部的电阻RA 和RB和C可以满足方波函数等信号在频率、占空比调节的全部范围。
因此,对两个恒流源在I和2I电流不对称的情况下,可以循环调节,从最小到最大,任意选择调整,所以,只要调节电容器充放电时间不相等,就可获得锯齿波等函数信号。
正弦函数信号由三角波函数信号经过非线性变换而获得。
利用二极管的非线性特性,可以将三角波信号的上升成下降斜率逐次逼近正弦波的斜率。
ICL8038中的非线性网络是由4级击穿点的非线性逼近网络构成。
一般说来,逼近点越多得到的正弦波效果越好,失真度也越小,在本芯片中N=4,失真度可以小于1。
在实测中得到正弦信号的失真度可达0.5左右。
其精度效果相当满意。
第3章设计与应用要点3.1 函数信号频率和占空比的调节由于ICL8038单片函数发生器有两种工作方式,即输出函数信号的频率调节电压可以由内部供给,也可以由外部供给。
图3.1为几种由内部供给偏置电压调节的接线图。
图3.1 ICL8038典型应用在以上应用中,由于第7脚频率调节电压偏置一定,所以函数信号的频率和占空比由RA 、RB和C决定,其频率为F,周期T,t1为振荡电容充电时间,t2为放电时间。
T=t1+t2f=1/T由于三角函数信号在电容充电时,电容电压上升到比较器规定输入电压的1/3倍,分得的时间为t1=CV/I=(C+1/3·Vcc·R A)/(1/5·Vcc)=5/3RA·C在电容放电时,电压降到比较器输入电压的1/3时,分得的时间为t 2=CV/I=(C+1/3·VCC)/(2/5·VCCRB-1/5·VCC/RA)=(3/5·RA *RB·C)/(2RA-RB)f=1/(t1+t2)=3/{5RAC[1+RB/(2RA-R)]}对图3(a)中,如果RA =RB,就可以获得占空比为50%的方波信号。
其频率f=3/(10RAC)。
3.2 正弦函数信号的失真度调节由于ICL8038单片函数发生器所产生的正弦波是由三角波经非线性网络变换而获得。
该芯片的第1脚和第12脚就是为调节输出正弦波失真度而设置的。
图4为一个调节输出正弦波失真度的典型应用,其中第1脚调节振荡电容充电时间过程中的非线性逼近点,第12脚调节振荡电容在放电时间过程中的非线性逼近点,在实际应用中,两只100K的电位器应选择多圈精度电位器,反复调节,可以达到很好的效果。
图3.2 正弦波失真度调节电路3.3 基于ICL8038的FSK调制电路该电路如图3.3所示.电路中稳压二极管的作用是将振荡频率根据需要设定和1000PF的电容器用来减小扫描引起的占空比变化。
一个中心频率点。
电阻R1利用8038压控振荡的功能,将数据信号通过运算放大器接到第8脚扫描控制端,振荡频率随着数据0电平和1电平而改变。
图3.3 ICL8038的FSK调制电路在实验中,我们用6.2V稳压二极管设定中心频率,振荡电容值选择0.1μf,基带信号0和1电平值为TTL电平,速率为2400bps,经过本调制电路后测试,中心频率为1900Hz,0和1电平对应的输出信号频偏Δf=±400Hz,其幅度没有发生变化,输出正弦波的失真度均不超过1.1%,说明扫描电压引起的失真变化非常小,基本没有寄生成分,输出0和1电平值与输出信号值的对应关系如表1所示。