静止无功发生器SVG简介
- 格式:pdf
- 大小:292.41 KB
- 文档页数:3
静止无功发生器SVG技术在油田抽油机节能方向的应用发布时间:2022-07-20T07:52:31.469Z 来源:《中国电业与能源》2022年5期作者:李军伟徐骥[导读] 随着科技的发展,电力电子技术在电力系统中有非常广泛的应用,李军伟徐骥晨诺电气有限公司中国一拖集团有限公司能源分公司471000摘要:随着科技的发展,电力电子技术在电力系统中有非常广泛的应用,电力系统在通向现代化的进程中,电力电子技术是关键技术之一,近年来出现的静止无功发生器(SVG)新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。
在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。
本文就静止无功发生器SVG在油田抽油机节能方向的应用。
关键词:电力电子技术静止无功补偿发生器,油田抽油机。
1 静止无功补偿发生器概述1.1技术简介静止无功发生器SVG的全称是 static var generator,静止无功发生器是将自换相桥式电路通过电抗器或者直接并联到电网上,调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,使该电路吸收或者发出满足要求的无功功率,实现动态无功补偿的目的。
【1】1.2功能特点(1)功能原理(2)控制原理断路器合闸后,为防止上电时电网对直流母线电容器的瞬间冲击,APF/SVG首先通过软启电阻对直流母线的电容器充电。
当母线电压Udc达到预定值后,主接触器闭合。
直流电容作为储能器件,通过IGBT逆变器和内部电抗器向外输出补偿电流提供能量。
APF/SVG通过外部CT实时采集电流信号送至信号调理电路,然后再送至控制器。
控制器将采样电流进行分解,提取出各次谐波电流、无功电流、三相不平衡电流,将采集到的要补偿的电流成分和APF/SVG已发出的补偿电流比较得到差值,作为实时补偿信号输出到驱动电路,触发IGBT变换器将补偿电流注入到电网中,实现闭环控制,完成补偿功能。
SVG(Static Var Generator,静止无功发生器)是一种用于电力系统中动态补偿无功功率的装置。
其工作原理基于先进的电力电子技术,主要通过自换相桥式电路实现。
1. 基本结构:
SVG的核心部件是采用可关断电力电子器件(如IGBT,绝缘栅双极型晶体管)组成的电压源逆变器(VSI)。
该逆变器经过适当的控制后并联接入电网。
2. 实时监测与控制:
- SVG首先通过外部电流互感器(CT)或其他传感器检测系统的电流、电压等参数。
- 控制系统根据这些信息计算出当前所需的无功功率和相位,并实时调整逆变器输出的交流侧电压幅值和相位。
3. 无功补偿过程:
- 通过快速调节逆变器输出的交流电流,SVG能够在需要时产生或吸收无功功率,精确匹配负载变化,从而改善电网的功率因数,减少线损,稳定电压,提高电能质量。
- 当系统需要无功功率时,SVG会向电网注入滞后90度相位的电流;当系统有过多无功功率需要消耗时,SVG则从电网吸收相同相位的电流。
4. 动态响应能力:
- SVG具有非常快的动态响应速度,可以在毫秒级的时间内完成对无功需求的跟踪和补偿,尤其适用于负荷变化频繁、冲击性大或者谐波含量高的场合。
5. 谐波抑制:
- 高性能的SVG不仅可以补偿基波无功,还可以通过特定算法对谐波进行抵消,有助于改善整个电力系统的电能质量。
总之,SVG通过高级的电力电子技术和数字信号处理技术,实现了对电网无功功率的精准控制和高效补偿,是现代电力系统中不可或缺的重要组成部分之一。
静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或 PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比 SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。
SVG静止型动态无功发生器一、产品概述通过电抗器将自换相桥式变流电路直接并联在点网上,通过调节变流电路交流侧输出电压的幅值和相位,或直接控制其交流电流,使电路吸收或发出要求的无功电流,实现动态无功补偿。
有电压与电流型,目前应用的多为电压型。
如系统电压为Us,SVG输出电压为U I,SVG有以下三种运行模式:二、型号说明kv)kvar)静止性动态无功发生器企业标志(能源通)三、技术参数四、技术特点1、传统无功补偿产品无功在电容器与电抗器之间转换,其无功功率就是元件的功率。
而SVG是通过大功率电子器件的高频率开关(IGBT绝缘栅型双极晶体管)来实现无功能量的转换,所需无功元件功率远小于传统产品,实现了质的飞跃。
2、输出的无功可以是感性也可以是容性,容量无级可调。
3、响应速度快:SVG响应时间最快可小于5ms,可在极短时间内完成从额定容性无功到额定感性无功的相互转换,这种无可比拟的速度可以满足任何冲击性负荷的补偿要求,并有效地抑制电压闪变。
4、安全可靠:无源滤波最大的问题是谐波放大,由于系统的复杂性,精确设计十分困难。
而谐波放大会使设备无法正常运行甚至发生事故。
SVG运行时为电流源,阻抗极高,不存在与系统阻抗发生谐振的可能性,从根本上消除了谐波放大,设备运行可靠性大为提高。
5、谐波含量低:由于采用多重化整流技术和PWM(脉冲调宽技术)加上接入电抗器的作用,谐波含量极低。
6、补偿功能多样化:既可补偿感性无功;可以分相补偿,用以补偿三相不平衡;还可以滤除一定数量的谐波。
7、占地面积小:由于无需大容量的无功器件,SVG占地只有同容量SVC的50%以下。
五、产品应用SVG与PF(无源滤波器),APF(有源滤波器)配合,可应用在不同场合,满足用户对补偿和滤波的不同要求。
(一)、应用领域分析◆提升机、轧机等重工业场合提升机、轧机属于典型的冲击性负荷,主要存在于各矿业生产场合和冶金行业,对电网有如下影响:■无功冲击较大,造成电网电压波动,严重时干扰其他设备运行,降低了生产效率;■功率因数低,每月需要交纳大量的无功罚款;■部分装置产生谐波,危害电网安全。
试简述静止无功发生器(SVG)的基本原理。
与基于晶闸管技术的SVC相比,SVG有哪些更优越的性能?静止无功发生器(Static Var Generator,SVG)是一种用于有功功率和无功功率控制的装置。
其基本原理是通过使用功率电子器件(通常为IGBT)将无功功率通过电容器和电感器装置进行控制和补偿,以实现对电网的无功功率的准确控制。
SVG的基本工作原理如下:1.检测电网的电压和电流,通过控制电子器件(IGBT)的导通和阻断,将电容器和电感器转换为容性负载或感性负载。
2.当电网需求无功功率时,SVG将电容器充电或电感器供电,产生无功功率并注入电网,以帮助电网消耗或吸收无功功率。
3.当电网有多余的无功功率时,SVG将其吸收并存储在电容器中,以减少电网的无功功率,从而维持电网的功率因数在标准范围内。
与基于晶闸管技术的静止无功补偿器(Static Var Compensator,SVC)相比,SVG具有以下更优越的性能:1.更快的响应速度:SVG使用功率电子器件(如IGBT),其开关速度非常快,可以实时响应电网瞬态变化,从而更快地进行无功功率控制和补偿。
2.更高的精确性:SVG使用数字控制技术,使其能够实现对电网功率因数的精确控制。
相比之下,基于晶闸管技术的SVC的控制精度较低。
3.更小的占地面积:SVG采用变流器和电容器构成,空间占用较小。
而基于晶闸管技术的SVC通常由较大的电抗器和电容器构成,需要更大的空间。
4.更高的效率:SVG采用功率电子器件(如IGBT)作为开关装置,具有较低的功耗和较高的转换效率。
相比之下,基于晶闸管技术的SVC由于存在一定的能量损耗,效率较低。
综上所述,静止无功发生器(SVG)相对于基于晶闸管技术的静止无功补偿器(SVC),具有更快的响应速度、更高的精确性、更小的占地面积和更高的效率。
这使得SVG在电力系统中更受青睐,并得到广泛的应用。
1、概述SVG是新一代静止无功发生器,是无功补偿领域最新技术应用的代表。
SVG并联于电网中,相当于一个可变的无功电流源,通过调节逆变器交流侧输出电压的幅值和相位,或者直接控制其交流侧电流的幅值和相位,迅速吸收或者发出所需要的无功功率,实现快速动态调节无功的目的。
当采用直接电流控制时,直接对交流侧电流进行控制,不仅可以跟踪补偿冲击型负载的冲击电流,而且可以对谐波电流也进行跟踪补偿。
该产品可连续、动态的补偿无功功率,平衡三相负荷,抑制电网谐波,在改善电网的电能质量,提高配电网的安全稳定运行和经济运行方面效果显著。
2、型号说明:【注】1.公司代码:QS是求索能源公司代码;2.产品名称:SVG是静止型无功发生器;3.电压等级:400代表400V电压等级,690代表690V电压等级,1140代表1140V电压等级;4.无源单元额定容量:100代表无源容量为100Kvar,单机容量为100~750Kvar;5.有源单元额定容量:100代表有源容量为100A,单机容量为25~400A;3、技术特点:Ø 采用目前国际上最为先进的DSP计算及控制,保证补偿的快速性、准确性,同时具备强大的保护功能。
Ø 响应速度更快,静止无功发生器(SVG)响应时间≤5ms;可在极短的时间之内完成从额定容性无功功率到额定感性无功功率的相互转换,这种无可比拟的响应速度完全可以胜任对冲击性负荷的补偿。
输入电缆根据安装情况确定。
Ø 动态连续平滑补偿,毫秒级的响应速度使对电压闪变的补偿效果更好。
跟随负载变化,动态连续补偿功率因数,可以发无功,也可以吸收无功,彻底杜绝了无功倒送的问题。
满足中华人民共和国国家标准《GB 12326-2000 电能质量电压波动和闪变》的要求。
Ø 补偿功能多样化,使用同一套静止无功发生器(SVG)装置,可以实现不同的多种补偿功能:Ø 谐波含量极低,静止无功发生器(SVG)采用了PWM技术和多重化技术,与TCR型SVC相比,谐波含量极低,对电网不会产生二次污染。
静止无功补偿发生器静止无功发生器,英文描述为:Static V ar Generator,简称为SVG。
又称高压动态无功补偿发生装置,或静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
SVG是目前无功功率控制领域内的最佳方案。
相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。
一、SVG无功补偿装置的应用场合凡是安装有低压变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定),特别是那些功率因数较低的工矿、企业、居民区必须安装。
大型异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、冶炼、轧钢、轧铝、大型交换机、电灌设备、电气机车等尤其需要。
居民区除白炽灯照明外,空调、冷冻机等也都是无功功率不可忽视的耗用对象。
农村用电状况比较恶劣,多数地区供电不足,电压波动很大,功率因数尤其低,加装补偿设备是改善供电状况、提高电能利用率的有效措施。
二、SVG无功补偿装置与目前国内其他产品相比的优势1、补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因素一般在0.8-0.9左右。
SVG采用的是电源模块进行无功补偿,补偿后的功率因素一般在0.98以上,这是目前国际上最先进的电力技术,国内掌握这项技术的目前就我们一家;2、补偿时间:国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。
无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况;3、有级无极:国内的无功补偿装置基本上采用的是3—10级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。
SVG可以从0.1千法开始进行无极补偿,完全实现了精确补偿;4、谐波滤除:国内的无功补偿装置因为采用的是电容式,电容本身会放大谐波,所以根本不能滤除谐波,SVG不产生谐波更不会放大谐波,并且可以滤除50%以上的谐波;5、使用寿命:国内的无功补偿装置一般采用接触器或可控硅控制,造成使用寿命较短,一般在三年左右,自身损耗大而且要经常进行维护。
静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。
SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA和10OMVA的采用GTO晶闸管的SVG。
目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。
与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。
由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。
无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。
另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。
1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。
1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。
调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。
一、概述无功功率补偿技术随着电力系统的出现而出现,并随着电力工业的发展和电力负荷的多样性而不断进步。
电力系统发展到现在已出现三代无功补偿技术;同步发电机补偿、同步调相机补偿、并联电容器补偿、并联电抗器补偿,属于第一代补偿技术;基于自然关断晶闸管技术的SVC (相控电抗器(TCR )、磁控电抗器(MCR ))属于第二代无功补偿技术;基于IGBT 、IGCT 等大功率可控器件的补偿装置SVG 静止型动态无功发生器(STATICVARGENARATOR )属于第三代无功补偿技术,不再采用大容量的电容器、电抗器,而是通过大功率电力电子器件的高频开关(IGBT )实现无功补偿的变换。
二、使用范围SVG 静止型动态无功发生器广泛应用于3KV 、6KV 、10KV 、35KV 、66KV 等级供配电系统及大中型工矿企业变电站。
三、原理和组成1. 原理:SVG 静止型动态无功发生器的基本原理:将电压源型逆变器(VSG ,VOLTAGESOURCEDCONVERTER )经过电抗器与交流电网相并联,通过调节逆变器交流侧输出电压的幅值和相位,迅速吸收或发出所需要的无功功率,实现无功的连续动态补偿。
2. 组成:SVG 静止型动态无功发生器由连接电抗器、充电柜、功率柜、控制柜、断路器等装置组成,其构成示意图如下所示。
1)连接电抗器◆用于连接SVG 静止型动态无功发生器与电网,实现能量的缓冲。
◆减少SVG 静止型动态无功发生器输出电流中的开关纹波,降低共模干扰。
2)充电柜◆通过大功率电阻,实现装置投入过程能量的缓冲。
◆旁路大功率电阻,实现装置正常运行时的快速调节。
3)功率柜◆SVG 静止型动态无功发生器的核心主电路,采用电压源型逆变器,采用直流电容进行电压支撑,DSP 为核心控制器,IGBT 并联实现大功率变换。
◆模块化设计,功率单元的结构和电气性能完全一致,可以互换。
◆先进的热管散热技术,风道散热设计,光纤通讯与控制,提高IGBT 的可靠性。
静止无功发生器 Static Var Generator (SVGSVG的主要功能◆补偿无功功率,提高功率因数,降低线损,节能降耗配电系统中的大量负荷,如异步电动机、感应电炉以及大容量整流设备等,在运行中都表现为感性,在实现有功电能转换的同时,也会消耗大量的无功;同时,输配电网络中的变压器、线路等的阻抗也表现为感性,在流过电流的时候也会消耗无功,导致系统功率因数降低。
对于系统而言,负荷的低功率因数,会增加供电线路上的电能损失和电压损失,降低了电压质量,同时,无功电流也会降低发、输、供电设备的有效利用率;对于电力用户而言,低功率因数会增加电费支出,加大生产成本。
◆抑制电压波动和闪变电压波动和闪变主要是由于负荷急剧变动引起的。
负荷的急剧变动使系统的电压损耗也应快速变化,从而使电气设备的端电压出现波动现象。
电压波动主要是由冲击性的非线性负载的快速变化引起的,典型的非线性负载如电弧炉、轧钢机、电气化铁路等。
当电压变化超过允许值时,就不能满足用户对电压质量的要求,会导致设备运行性能不良,出现过电流、过热、保护装置误动作及设备烧坏等到事故,并且设备性能、生产效率和产品质量都将受到影响。
其不良影响包括:影响产品质量、影响设备使用寿命、造成照明光通量的变化,总之,电压波动和闪变对安全生产及人体健康都是极为不利的。
◆抑制三相不平衡配电网中存在着大量的三相不平衡负载,典型的如电气化铁路牵引负荷和交流电弧炉等。
这类负荷在接入电网后会向系统注入大量的谐波电流,导致系统三相电压不平衡;同时,线路、变压器等输变电设备三相阻抗的不平衡也会导致电压不平衡问题的产生。
三相电压不平衡会对负荷和电网元器件造成很大的危害。
不平衡电压会导致中心点形成较高对地电压,从而使电子设备积累大量的静电,对电子设备造成致命的损坏;负序电流会造成变压器内部磁旋涡,使铁损加大,造成变压器发热,有效容量减小;同时三相负载不平衡运行,将增加输配电线路的损耗。
静止无功补偿发生器SVG/STATCOM介绍静止无功发生器,英文描述为:Static Var Generator,简称为SVG。
又称高压动态无功补偿发生装置,或静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
SVG是目前无功功率控制领域内的最佳方案。
相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。
静止无功补偿技术经历了3代:第1代为机械式投切的无源补偿装置,属于慢速无功补偿装置,在电力系统中应用较早,目前仍在应用;第2代为晶闸管投切的静止无功补偿器(SVC),属无源、快速动态无功补偿装置,出现于20世纪70年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少;第3代为基于电压源换流器的静止同步补偿器(Static Synchronous Compensator,STATCOM),亦称ASVG,属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。
随着大功率全控型电力电子器件GTO、IGBT及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。
静止同步补偿器,作为FACTS家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。
电压型的STATCOM直流侧采用直流电容为储能元件,通过逆变器中电力半导体开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压。
当只考虑基波频率时,STATCOM可以看成一个与电网同频率的交流电压源通过电抗器联到电网上。
一.工作原理STATCOM-的基本原理是利用可关断大功率电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的目的。
静止无功补偿器$静止无功补偿发生器介绍SVC & SVG产品简介SVC静止无功补偿器(Static Var Compensator),是一种无功补偿比较科学的方式,能提高电网的功率因数、滤除负荷的谐波、消除三相不平衡电流、改善电网运行电能质量。
基于DSP的全数字控制系统,具有运算速度快、处理数据量大,实现实时控制量计算。
该装置应用于电网,作用为:能实现调相调压功能,提高线路的输送能力,提高稳定运行水平,改善电能质量,提高供电设备的利用率,提高输电效率,改善供电质量,提高输电安全性。
应用于电气化铁路、冶金、炼钢等工业用户,可进行动态无功功率补偿,电压控制,谐波和负序治理,提高用户的生产工效,提高产品质量和降低能耗。
原理:静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。
它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。
电容器可发出无功功率(容性的),可控电抗器可吸收无功功率(感性的)。
通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。
作用:静止无功补偿器在低压供配电系统中广泛应用于电压调整、改善电压水平、减少电压波动、改善功率因数、抑制电压闪变、平衡不对称负荷,静止无功补偿器配套的滤波器能吸收谐波和减小谐波干扰等。
在超高压输电系统中,静止无功补偿器的作用是提供无功补偿、调整电压,改善系统电压水平,改善电力系统的动态和暂态稳定性,抑制工频过电压等。
SVC目前广泛应用于输电系统和负载无功补偿,其典型代表是晶闸管控制电抗器+固定电容器(TCR+FC)、晶闸管投切电容器(TSC)、以及磁控电抗器+固定电容器(MCR+FC)等。
TCR晶闸管控制电抗器(Thyristor Controlled Reactor),由电抗器及晶闸管等构成,与系统并联并从系统吸收无功功率的静止无功装置。
通过控制晶闸管阀的导通角使其等效感抗连续变化。
SVG工作原理控制系统及关键技术说明SVG,即静止无功发生装置(Static Var Generator),是一种通过改变功率系统中的无功电流来控制电压和无功功率的设备。
在现代电力系统中,SVG被广泛应用于电力负荷控制和电力品质改善等方面。
本文将从SVG的工作原理、控制系统以及关键技术三个方面进行详细说明。
首先,SVG的工作原理是基于功率电子器件的操作。
SVG主要由无功补偿单元、控制单元和电源单元组成。
无功补偿单元是SVG的核心部分,其通过控制与电网并联的静止无功电容器的电流来实现对电压和无功功率的调节。
当电压波动或者无功功率变化时,控制单元会根据电网的状态调整电容器的接入和绝缘,以实现对电压和无功功率的调控。
电源单元则用来提供所需的直流电源。
其次,SVG的控制系统是实现SVG运行目标的关键。
控制系统主要由测量和估计电网状态、调节控制电容器电流以及保护和安全控制等组成。
测量和估计电网状态是通过对电流、电压和功率因素等参数的实时监测和分析来获取的。
调节控制电容器电流主要包括调节电容器的电流大小和相角,以及选择性接入和断开电容器的功能。
保护和安全控制则是保证SVG 在异常情况下的安全运行的关键,包括电容器电流保护、过电压保护和过电流保护等。
最后,SVG的关键技术主要包括电力电子技术、数字信号处理技术和控制算法技术等。
电力电子技术是SVG的基础,包括电力电子器件的选型和设计,以及电力电子变换器的拓扑结构和控制策略等。
数字信号处理技术主要用于电网状态的测量和估计,以及控制系统的实时计算和控制信号的生成。
控制算法技术是将电网状态信号与设定目标进行比较和分析,以实现对电容器电流的调节和控制。
常用的控制算法包括PID控制算法和模糊控制算法等。
综上所述,SVG是一种通过改变功率系统中的无功电流来控制电压和无功功率的设备。
其工作原理是通过控制与电网并联的静止无功电容器的电流来实现对电压和无功功率的调节。
控制系统则是实现SVG运行目标的关键,包括测量和估计电网状态、调节控制电容器电流以及保护和安全控制等。
静止无功发生装置(SVG)
概述:
GRASUN SVG新一代静止无功发生装置SVG,
是无功补偿领域最新技术应用的代表。
SVG并联于电网Array中,相当于一个可变的无功电流源,通过调节逆变器交
流侧输出电压的幅值和相位,或者直接控制其交流侧电
流的幅值和相位,迅速吸收或者发出所需要的无功功率,
实现快速动态调节无功的目的。
当采用直接电流控制时,
直接对交流侧电流进行控制,不仅可以跟踪补偿冲击型
负载的冲击电流,而且可以对谐波电流也进行跟踪补偿。
应用场合:
汽车制造业:大量使用电焊机或激光焊接机,在焊接的短时间隔后紧随着是空载运行,并会产生两个电压阶梯
冶金行业:主要是存在于生产流水线上的轧机
石油行业:主要是频繁快速启动的绞车用电动机、抽油机用提升机、转盘等
轨道交通:大量使用电缆长距离传输、以及因需求特性存在严重的三相不平衡状态货运码头:主要是频繁快速启动的提升机等
产品特点:
1、具备抗谐波功能,更保障系统安全。
SVG是可控电流源,只补偿基波无功电流,系统谐波电流不会造成补偿设备损坏,使其寿命延长、维护工作量少。
同时避免串电抗的电容器组可能造成的谐波放大,防止系统其他设备及补偿设备因谐波过电压而损坏;
2、动态连续平滑补偿,更高速的响应速度使对电压闪变的补偿效果更好。
SVG可跟随负载变化,动态连续补偿功率因数,可以发无功,也可吸收无功,彻底杜绝了
无功倒送的情况;
3、静止无功发生装置能够解决负荷的不平衡问题;
4、不仅不产生谐波,而且能在补偿无功功率的同时动态补偿谐波;
5、电流源特性,输出无功电流不受母线电压影响,传统SVC含阻抗型特性,输出电流随母线电压线性降低。
PHIMIKAPHIMIKA静止无功发生器——(SVG)原理简介深圳市兆晟科技有限公司飞明佳电气科技PHIMIKAPHIMIKA静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
解耦与非解耦控制的静止无功发生器(SVG)原理简介及仿真验证1.SVG概述静止无功发生器,即SVG,是目前无功功率控制领域内的最佳方案。
SVG采用可关断电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流。
迅速吸收或者发出所需的无功功率,实现快速动态调节无功的目的。
2.SVG原理2.1三相SVG原理图1三相SVG控制框图图1所示为SVG的主电路拓扑及控制算法,直流侧电容与直流电压给定值进行比较后进入PI调节器,输出的值作为有功轴的给定值,再通过dq变换将电网电压与并网电流解耦为直流量,其中的d轴代表有功轴,q轴代表无功轴,电压外环的输出值作为d轴电流内环的给定值,而需要的无功补偿量作为q轴电流内环的给定值,经极坐标转换后使其转换为三相调制波,最后进入SPWM模块产生控制开关器件的SPWM脉冲,从而使系统中的无功得到补偿,使电网侧的功率因数为1。
当系统负载为容性无功或者感性无功时,所需要的无功补偿量是不同的。
2.2基于非解耦控制的单相SVG原理2.1中所述三相SVG的控制原理是基于三相解耦控制的,这种控制方法可有效实现有功与无功的调节,不会影响网侧电流的输出。
本节介绍单相SVG的控制原理,该控制方法如图2所示。
图2非解耦的单相SVG控制方法直流侧由恒压源提供(例如蓄电池),由相角检测环节检测出网侧电压与网侧电流的无功功率,计算出相角,然后将需要补偿的相角合入锁相环的输出信号,再送入电流内环进行PI调节,最终起到无功补偿的作用。
这种控制方法在起到无功补偿作用的同时会影响网侧电流的大小,因为电压外环的给定不是自动检测的,而是人为给定的,因此电压外环的输出并非零,这将导致网测电流受到影响。
3.仿真验证为了使大家对SVG有初步的了解,以MATLAB为仿真平台,进行三相解耦控制的SVG建模验证及单相非解耦控制的SVG建模验证。