2019年北师版文数高考一轮复习 第10章 第3节 几何概型
- 格式:doc
- 大小:350.50 KB
- 文档页数:9
第六节几何概型【知识重温】一、必记2个知识点1.几何概型如果每个事件发生的概率只与构成该事件区域的①________(②________或③________)成比例,则称这样的概率模型为几何概率模型,简称为④________。
2.在几何概型中,事件A的概率的计算公式如下:P(A)=⑤______________________________________________________________________ __。
二、必明2个易误点1.计算几何概型问题的关键是怎样把具体问题(如时间问题等)转化为相应类型的几何概型问题.2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)几何概型定义中的区域可以是线段、平面图形或空间几何体.()(3)与面积有关的几何概型的概率与几何图形的形状有关.()(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.()二、教材改编2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()A.错误!B.错误!C。
错误!D。
错误!3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.错误!B.错误!C。
错误! D.错误!三、易错易混4.[2021·福建莆田质检]从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是()A.错误!B.错误!C。
错误!D。
错误!5.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.四、走进高考6.[2017·全国卷Ⅰ]如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A。
第十章概率第三节几何概型A级·基础过关|固根基|1.已知函数f(x)=log2x,x∈[1,8],则不等式1≤f(x)≤2成立的概率是()A。
错误!B。
错误!C.错误!D。
错误!解析:选B区间[1,8]的长度为7,不等式1≤f(x)≤2,即不等式1≤log2x≤2,解得2≤x≤4,对应区间[2,4]的长度为2,由几何概型概率公式可得使不等式1≤f(x)≤2成立的概率是P=错误!.2.已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),该小米落入阴影部分的概率为()A.错误!B。
错误!C.错误!D。
错误!解析:选B由图形的对称性知,所求概率为P=错误!=错误!.故选B。
3.为了测量某阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点,已知恰有200个点落在阴影部分内,据此可以估计阴影部分的面积是() A.4 B.3C.2 D.1解析:选B由投掷的点落在阴影部分的个数与投掷的点的个数比得到阴影部分的面积与正方形的面积比为错误!,所以阴影部分的面积约为9×错误!=3.4.在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD 的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A.1-错误! B.错误!C。
错误!D.1-错误!解析:选D如图,与点O距离等于1的点的轨迹是一个半球面,其体积V=错误!×错误!π×13=错误!.事件“点P与点O距离大于1的概率”对应的区域体积为23-错误!,根据几何概型概率公式得,点P与点O距离大于1的概率P=错误!=1-错误!。
5.(2020届“四省八校联盟”高三联考)在区间[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于()A.错误!B。
错误!C.错误!D。
一、知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=错误!常用结论在几何概型中,如果A是确定事件,(1)若A是不可能事件,则P(A)=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P(A)=0不能推出A是不可能事件.(2)若A是必然事件,则P(A)=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P(A)=1不能推出A是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()解析:选A.因为P(A)=错误!,P(B)=错误!,P(C)=错误!,P(D)=错误!,所以P(A)>P(C)=P(D)>P(B).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为错误!.答案:错误!3.设不等式组错误!表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC及其内部为不等式组表示的平面区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4—π.因此满足条件的概率是错误!.答案:1—错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)与面积有关的几何概型的概率与几何图形的形状有关.()答案:(1)√(2)√(3)√(4)×二、易错纠偏错误!错误!选用的几何测度不准确导致出错.在区间[—2,4]上随机地取一个数x,若x满足|x|≤m的概率为错误!,则m=________.解析:由|x|≤m,得—m≤x≤m.当0<m≤2时,由题意得错误!=错误!,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得错误!=错误!,解得m=3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f(x)=错误!的定义域为D,在区间[—4,5]上随机取一个数x,则x∈D的概率是________.【解析】由6+x—x2≥0,解得—2≤x≤3,则D=[—2,3],则所求概率为错误!=错误!.【答案】错误!错误!与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[—2,2]中随机选取一个实数a,则函数f(x)=4x—a·2x+1+1有零点的概率是()A.错误!B.错误!C.错误!D.错误!解析:选A.令t=2x,函数有零点就等价于方程t2—2at+1=0有正根,进而可得错误!⇒a≥1,又a∈[—2,2],所以函数有零点的实数a应满足a∈[1,2],故P=错误!,选A.2.如图,扇形AOB的圆心角为120°,点P在弦AB上,且AP=错误!AB,延长OP交弧AB于点C,现向扇形AOB内投一点,则该点落在扇形AOC内的概率为________.解析:设OA=3,则AB=3错误!,所以AP=错误!,由余弦定理可求得OP=错误!,∠AOP=30°,所以扇形AOC的面积为错误!,扇形AOB的面积为3π,从而所求概率为错误!=错误!.答案:错误!与面积有关的几何概型(多维探究)角度一与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A.错误!B.错误!C.错误!D.错误!(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x=2交抛物线y2=4x于A,B两点.点A,B在y轴上的射影分别为D,C.从长方形ABCD中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为()A.错误!B.错误!C.错误!D.错误!【解析】(1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32—22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为错误!.故选B.(2)在抛物线y2=4x中,取x=2,可得y=±2错误!,所以S矩形ABCD=8错误!,由阿基米德理论可得弓形面积为错误!×错误!×4错误!×2=错误!,则阴影部分的面积为8错误!—错误!=错误!.由概率比为面积比可得,点位于阴影部分的概率为错误!=错误!.故选B.【答案】(1)B (2)B角度二与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合错误!表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为()A.错误!B.错误!C.错误!D.错误!【解析】因为集合错误!表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB.直线x+y=0与直线x—y=0垂直,故∠AOB=错误!.联立错误!得点A(1,—1),联立错误!得点B(3,3).OA=错误!=错误!,OB=错误!=3错误!,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的错误!圆,即扇形OCD,所以由几何概型得点到坐标原点的距离不大于1的概率P=错误!=错误!=错误!.故选B.【答案】B角度三与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知圆O的面积为π3,正弦曲线y=sin x,x∈[—π,π]与x轴围成的区域记为M,根据图形的对称性得区域M的面积S=2错误!sin x d x=—2cos x错误!=4,由几何概型的概率计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=错误!,故选B.【答案】B角度四与随机模拟相关的几何概型从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的1圆周率π的近似值为()A.错误!B.错误!C.错误!D.错误!【解析】设由错误!构成的正方形的面积为S,x错误!+y错误!<1构成的图形的面积为S′,所以错误!=错误!=错误!,所以π=错误!,故选C.【答案】C错误!求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD和OPQR构成的标靶图形,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕点O旋转,则小华随机向标靶投飞镖射中阴影部分的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.如图,连接OB,OA,可得△OBM与△OAN全等,所以S四边形MONB=S△AOB=错误!×2×1=1,即正方形ABCD和OPQR重叠的面积为1.又正方形ABCD和OPQR构成的标靶图形面积为4+4—1=7,故小华随机向标靶投飞镖射中阴影部分的概率是错误!,故选D.2.(一题多解)如图,线段MN是半径为2的圆O的一条弦,且MN的长为2,在圆O内,将线段MN绕点N按逆时针方向转动,使点M移动到圆O上的新位置,继续将新线段NM绕新点M按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动,…点M的轨迹所围成的区域是图中阴影部分.若在圆O内随机取一点,则该点取自阴影部分的概率为()A.4π—6错误!B.1—错误!C.π—错误!D.错误!解析:选B.法一:依题意,得阴影部分的面积S=6×[错误!(π×22)—错误!×2×2×错误!]=4π—6错误!,所求概率P=错误!=1—错误!,故选B.法二:依题意得阴影部分的面积S=π×22—6×错误!×2×2×错误!=4π—6错误!,所求概率P =错误!=1—错误!,故选B.与体积有关的几何概型(师生共研)已知正三棱锥SABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得V PABC<错误! V SABC的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知,当点P在三棱锥的中截面以下时,满足V PABC<错误!V SABC,故使得V PABC<错误! V SABC的概率:P=错误!=错误!.【答案】B错误!与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥PABCD的所有顶点都在球O的球面上,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2.现在球O的内部任取一点,则该点取自四棱锥PABCD内部的概率为________.解析:把四棱锥PABCD扩展为正方体,则正方体的体对角线的长是外接球的直径R,即2错误!=2R,R=错误!,则四棱锥的体积为错误!×2×2×2=错误!,球的体积为错误!×π(错误!)3=4错误!π,则该点取自四棱锥PABCD内部的概率P=错误!=错误!.答案:错误!2.一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADFBCE内自由飞翔,则它飞入几何体FAMCD内的概率为________.解析:因为V FAMCD=错误!×S四边形AMCD×DF=错误!a3,V ADFBCE=错误!a3,所以它飞入几何体FAMCD内的概率为错误!=错误!.答案:错误![基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=错误!=错误!.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1—错误!B.1—错误!C.1—错误!D.1—错误!解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P 的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为错误!×3×错误!×12=错误!,△ABC的面积S=错误!×22×sin 60°=错误!,则阴影部分的面积S=错误!—错误!,则对应的概率P=错误!=1—错误!.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1—错误!B.错误!C.错误!D.1—错误!解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1—错误!,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD为菱形,C为EF的中点,EC =CF=3,BE=DF=4,BE⊥EF,DF⊥EF.若在几何图形中任取一点,则该点取自Rt△BCE的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D.因为EC=3,BE=4,BE⊥EC,所以BC=5.又由题可知BD=EF=6,AC=2BE =8,所以S△BCE=S△DFC=错误!×3×4=6,S四边形ABCD=错误!AC·BD=24.由几何概型概率公式可得,所求概率P=错误!=错误!,即该点取自Rt△BCE的概率为错误!.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足错误!=错误!=错误!≈0.618,后人把这个数称为黄金分割,把点C称为线段AB的黄金分割点.图中在△ABC中,若点P,Q为线段BC的两个黄金分割点,在△ABC内任取一点M,则点M落在△APQ内的概率为()A.错误!B.错误!—2C.错误!D.错误!解析:选B.所求概率为错误!=错误!=错误!=错误!=错误!—2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y=错误!,y=—错误!,y=x,y=—x及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是错误!.答案:错误!7.已知平面区域Ω={(x,y)|0≤x≤π,0≤y≤1},现向该区域内任意掷点,则该点落在曲线y=sin 2x下方的概率是________.解析:y=sin2x=错误!—错误!cos 2x,所以错误!错误!d x=错误!错误!=错误!,区域Ω={(x,y)|0≤x≤π,0≤y≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y=sin2x下方的概率是错误!=错误!.答案:错误!8.已知O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,则点P到点C的距离大于错误!的概率为________.解析:因为O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,所以错误!如图,不等式组错误!对应的平面区域为正方形OEFG及其内部,|CP|>错误!对应的平面区域为阴影部分.由错误!解得错误!即E错误!,所以|OE|=错误!=错误!,所以正方形OEFG的面积为错误!,则阴影部分的面积为错误!—错误!,所以根据几何概型的概率公式可知所求的概率为错误!=1—错误!.答案:1—错误!9.如图所示,圆O的方程为x2+y2=4.(1)已知点A的坐标为(2,0),B为圆周上任意一点,求错误!的长度小于π的概率;(2)若N(x,y)为圆O内任意一点,求点N到原点的距离大于错误!的概率.解:(1)圆O的周长为4π,所以错误!的长度小于π的概率为错误!=错误!.(2)记事件M为N到原点的距离大于错误!,则Ω(M)={(x,y)|x2+y2>2},Ω={(x,y)|x2+y2≤4},所以P(M)=错误!=错误!.10.已知向量a=(2,1),b=(x,y).(1)若x∈{—1,0,1,2},y∈{—1,0,1},求向量a∥b的概率;(2)若x∈[—1,2],y∈[—1,1],求向量a,b的夹角是钝角的概率.解:(1)设“a∥b”为事件A,由a∥b,得x=2y.所有基本事件为(—1,—1),(—1,0),(—1,1),(0,—1),(0,0),(0,1),(1,—1),(1,0),(1,1),(2,—1),(2,0),(2,1),共12个基本事件.其中A={(0,0),(2,1)},包含2个基本事件.则P(A)=错误!=错误!,即向量a∥b的概率为错误!.(2)设“a,b的夹角是钝角”为事件B,由a,b的夹角是钝角,可得a·b<0,即2x+y<0,且x≠2y.基本事件为错误!所表示的区域,B=错误!,如图,区域B为图中的阴影部分去掉直线x—2y=0上的点,所以,P(B)=错误!=错误!,即向量a,b的夹角是钝角的概率是错误!.[综合题组练]1.(2020·安徽合肥模拟)已知圆C:x2+y2=4与y轴负半轴交于点M,圆C与直线l:x—y +1=0相交于A,B两点,那么在圆C内随机取一点,则该点落在△ABM内的概率为()A.错误!B.错误!C.错误!D.错误!解析:选A.由图可知,由点到直线距离公式得|OC|=错误!=错误!,则|AB|=2错误!=错误!,同理可得|MD|=错误!=错误!,所以S△MAB=错误!|AB|·|MD|=错误!,由几何概型知,该点落在△ABM内的概率为错误!=错误!=错误!,故选A.2.已知P是△ABC所在平面内一点,错误!+错误!+2错误!=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.以PB,PC为邻边作平行四边形PBDC,则错误!+错误!=错误!,因为错误!+错误!+2错误!=0,所以错误!+错误!=—2错误!,得错误!=—2错误!,由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC距离的错误!,所以S△PBC=错误!S△ABC,所以将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为错误!=错误!.3.两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O,建立平面直角坐标系,设两位同学到达的时刻分别为x,y,设事件A表示两位同学能够见面,所构成的区域为A={(x,y)||x—y|≤15},即图中阴影部分,根据几何概型概率计算公式得P(A)=错误!=错误!.答案:错误!4.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O被函数y=3sin 错误!x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y=3sin 错误!x的最小正周期T,又T=错误!=12,所以大圆的面积S=π·错误!错误!=36π,一个小圆的面积S′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P=错误!=错误!=错误!.答案:错误!5.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1—(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为错误!=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x,y米,则基本事件满足错误!,设事件A为“甲比乙跳得远”,则x>y,作出可行域如图中阴影部分所示.所以由几何概型得P(A)=错误!=错误!,即甲比乙跳得远的概率为错误!.6.已知关于x的二次函数f(x)=ax2—4bx+1.(1)设集合P={1,2,3}和Q={—1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域错误!内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.解:(1)因为函数f(x)=ax2—4bx+1的图象的对称轴为x=错误!,要使f(x)=ax2—4bx +1在区间[1,+∞)上为增函数,当且仅当a>0且错误!≤1,即2b≤a.若a=1,则b=—1;若a=2,则b=—1,1;若a=3,则b=—1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P和Q中随机取一个数作为a和b”的个数是15.所以所求事件的概率为错误!=错误!.(2)由(1)知当且仅当2b≤a且a>0时,函数f(x)=ax2—4bx+1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为错误!,构成所求事件的区域为如图所示的三角形BOC部分.由错误!得交点坐标C错误!,故所求事件的概率P=错误!=错误!=错误!.。
第二节 古典概型[考纲传真] 1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率.(对应学生用书第151页)[基础知识填充]1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每个基本事件出现的可能性相等.3.古典概型的概率公式P (A )==.事件A 包含的可能结果数试验的所有可能结果数m n [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( )(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )[答案] (1)× (2)× (3)√ (4)×2.(教材改编)下列试验中,是古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A .0 B .1C .2D .3B [由古典概型的意义和特点知,只有③是古典概型.]3.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )【导学号:00090351】A .B . 81518C .D .115130C [∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =.]1154.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B . 31015C .D .110120C [从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选C .]1105.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________. [甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,13蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.而同色的有(红,红),(白,白),(蓝,蓝),共3种.所以所求概率P ==.]3913(对应学生用书第151页)简单古典概型的概率 (1)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A . B .11015C .D .31025(2)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .B .1312C .D .2356(1)D (2)C [(1)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P ==.102525故选D .(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P ==,故选C .]4623[规律方法] 1.计算古典概型事件的概率可分三步,(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率P .2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.[变式训练1] (1)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A .B .1525C .D .3545(2)(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.(1)C (2) [(1)设正方形的四个顶点分别是A ,B ,C ,D ,中心为O ,从这565个点中,任取两个点的事件分别为AB ,AC ,AD ,AO ,BC ,BD ,BO ,CD ,CO ,DO ,共有10种,其中只有顶点到中心O 的距离小于正方形的边长,分别是AO ,BO ,CO ,DO ,共有4种.所以所求事件的概率P =1-=.41035(2)将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A =“出现向上的点数之和小于10”,其对立事件=“出现向上的点数之和A 大于或等于10”,包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),A 共6种情况.所以由古典概型的概率公式,得P ()==,所以P (A )=1-A 63616=.]1656复杂古典概型的概率 (2016·山东高考)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图1021所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个;②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【导学号:00090352】图1021[解] 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16.3分(1)记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P (A )=,即小亮获得玩具的概率为.5分516516(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P (B )==.8分61638事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).10分所以P (C )=.516因为>,38516所以小亮获得水杯的概率大于获得饮料的概率.12分[规律方法] 1.本题易错点有两个:(1)题意理解不清,不能把基本事件列举出来;(2)不能恰当分类,列举基本事件有遗漏.2.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.[变式训练2] (2017·潍坊质检)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率. 【导学号:00090353】[解] (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,2分故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P ==.5分154513(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.8分根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有{A 1,B 2},{A 1,B 3},共2个.10分因此A 1被选中且B 1未被选中的概率为P =.12分215古典概型与统计的综合应用 (2015·全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图1022①B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(1)在图1022②中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图1022②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.[解] (1)如图所示.4分通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.6分(2)A地区用户的满意度等级为不满意的概率大.8分记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B 地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.11分所以A地区用户的满意度等级为不满意的概率大.12分[规律方法] 1.本题求解的关键在于作出茎叶图,并根据茎叶图准确提炼数据信息,考查数据处理能力和数学应用意识.2.有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,准确从题中提炼信息是关键.[变式训练3] (2018·湘潭模拟)长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图1023所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).(1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值)图1023[解] (1)由题意知,在[400,500)元区间内抽4张,分别记为a,b,c,d,在[500,600]元区间内抽2张,分别记为E,F,2分设“2张小票均来自[400,500)元区间”为事件A,从中任选2张,有以下选法:ab 、ac 、ad 、aE 、aF 、bc 、bd 、bE 、bF 、cd 、cE 、cF 、dE 、dF 、EF ,共15种.4分其中,2张小票均来自[400,500)元区间的有ab 、ac 、ad 、bc 、bd 、cd ,共6种,∴P (A )=.6分25(2)法一:由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元).8分方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元).∵220<228,∴方案一的优惠力度更大.12分法二:由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元).8分方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).10分∵55>47.∴方案一的优惠力度更大.12分。
第二节 古典概型考点高考试题考查内容核心素养2017·全国卷Ⅱ·T11·5分利用古典概型概率公式求解数学运算2017·天津卷·T3·5分利用古典概型概率公式求解数学运算2017·山东卷·T16·12分列出基本事件空间利用古典概型的概率公式求解数学运算2016·全国卷Ⅰ·T3·5分列出基本事件空间利用古典概型的概率公式求解数学运算2016·全国卷Ⅲ·T5·5分列出基本事件空间利用古典概型的概率公式求解数学运算古典概型2015·全国卷Ⅰ·T4·5分列出基本事件空间利用古典概型的概率公式求解数学运算命题分析古典概型是高考常考知识,一般是根据题意列出基本事件空间,然后利用古典概型的概率公式求概率,一般以选择题形式出现,有时候也出在解答题中,难度不大.1.基本事件的特点(1)任何两个基本事件都是__互斥__的;(2)任何事件(除不可能事件)都可以表示成__基本事件__的和.2.古典概型的定义具有以下两个特征的随机试验的数学模型称为古典概型.(1)试验的所有可能结果__只有有限个__,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性__相同__.3.古典概型的概率计算公式P (A )=!!! ###=.事件A 包含的可能结果数试验的所有可能结果数m n 提醒:1.在计算古典概型中试验的所有结果数和事件发生结果时,易忽视它们是否是等可能的.2.基本事件的探求方法(1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的试验结果的探求.另外在确定试验结果时,(x ,y )可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )(3)在古典概型中,如果事件A 中基本事件构成集合A ,所有的基本事件构成集合I ,则事件A 的概率为.( )card (A )card (I )答案:(1)× (2)× (3)√2.(教材习题改编)一个口袋内装有2个白球和3个黑球,则先摸出1个白球后放回的条件下,再摸出1个白球的概率是( )A . B . 2314C . D .2515解析:选C 先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为.253.(2017·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A .B .4535C .D .2515解析:选C 从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P ==.故选C .410254.(教材习题改编)同时掷两个骰子,向上点数不相同的概率为________.解析:1-=.63656答案:56基本事件与古典概型的判断[明技法]一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.[提能力]【典例1】 有两颗正四面体的玩具,其四个面上分别标有数字1、2、3、4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”包含的基本事件;(3)事件“出现点数相等”包含的基本事件.解:(1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).【典例2】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解:(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,111故一次摸球摸到白球的可能性为,511同理可知摸到黑球、红球的可能性均为,311显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.[刷好题]1.袋中有大小、形状相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.解:(1)一共有8种不同的结果,列举如下:(红,红,红)、(红,红,黑)、(红,黑,红)、(红,黑,黑)、(黑,红,红)、(黑,红,黑)、(黑,黑,红)、(黑,黑,黑).(2)记“3次摸球所得总分为5”为事件A .事件A 包含的基本事件为:(红,红,黑)、(红,黑,红)、(黑,红,红),事件A 包含的基本事件数为3.由(1)可知,基本事件总数为8,所以事件A 的概率为P (A )=.382.下列试验中,古典概型的个数为 ( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A .0 B .1 C .2 D .3解析:选B ①中,硬币质地不均匀,不是等可能事件,所以不是古典概型;②④的基本事件都不是有限个,不是古典概型;③符合古典概型的特点,是古典概型.简单的古典概型的概率[明技法]求古典概型概率的基本步骤—第1步算出所有基本事件的个数n ↓—第2步算出事件A 包含的所有基本事件的个数m ↓—第3步代入公式P (A )=mn ,求出P (A )[提能力]【典例】 (1)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A .B .11015C .D .31025解析:选D 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P ==.故选D .102525(2)(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A .B .81518C .D .115130解析:选C 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为,故选C .115[刷好题]如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .31015C .D .110120解析:选C 从1,2,3,4,5中任取3个数有10个基本事件,构成勾股数的只有3,4,5一组,故概率为.110古典概型的交汇问题[析考情]古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题点新颖,考查知识全面,能力要求较高.[提能力]命题点1:古典概型与平面向量相结合【典例1】 已知向量a =(x ,-1),b =(3,y ),其中x 随机选自集合{-1,1,3},y 随机选自集合{1,3,9}.(1)求a ∥b 的概率;(2)求a ⊥b 的概率.解:由题意,得(x ,y )所有的基本事件为(-1,1),(-1,3),(-1,9),(1,1),(1,3),(1,9),(3,1),(3,3),(3,9),共9个.(1)设“a ∥b ”为事件A ,则xy =-3.事件A 包含的基本事件有(-1,3),共1个.故a ∥b 的概率为P (A )=.19(2)设“a ⊥b ”为事件B ,则y =3x .事件B 包含的基本事件有(1,3),(3,9),共2个.故a ⊥b 的概率为P (B )=.29命题点2:古典概型与直线、圆相结合【典例2】(2018·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足≤,a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共2aa 2+b 226+5+4+3+2+1=21种,因此所求的概率等于=.2136712答案:712命题点3:古典概型与函数相结合【典例3】 (2018·成都月考)将一颗骰子抛掷两次,所得向上点数分别为m ,n ,则函数y =mx 3-nx +1在[1,+∞)上为增函数的概率是( )23A .B .1256C .D .3423解析:选B ∵y =mx 3-nx +1,∴y ′=2mx 2-n ,令y ′=0得x =± ,∴x 1=23n2m ,x 2=-是函数的两个极值点,∴函数在上是增函数,则≤1,即n2m n2m [n2m,+∞)n2m n ≤2m .通过建立关于m ,n 的直角坐标系可得出满足n ≤2m 的点有30个,由古典概型公式可得函数y =mx 3-nx +1在[1,+∞)上为增函数的概率是P ==.23303656命题点4:古典概型与统计相结合【典例4】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为.110[悟技法]解决古典概型交汇命题的关注点解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[刷好题]1.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p =(m ,n ),q =(3,6).则向量p 与q 共线的概率为( )A . B . 1314C . D .16112解析:选D 由题意可得:基本事件(m ,n )(m ,n =1,2,…,6)的个数为6×6=36.若p ∥q ,则6m -3n =0,得到n =2m .满足此条件的共有(1,2),(2,4),(3,6)三个基本事件.因此向量p 与q 共线的概率为P ==.3361122.若连续抛掷两次质地均匀的骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A .B .1314C .D .16112解析:选D 该试验会出现6×6=36种情况,点(m ,n )在直线x +y =4上的情况有(1,3),(2,2),(3,1)共三种,则所求概率P ==.3361123.设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A .B .1258C .D .111634解析:选C ∵f (x )=x 3+ax -b ,∴f ′(x )=3x 2+a ,∵a ∈{1,2,3,4},∴f ′(x )>0,∴函数f (x )在区间[1,2]上为增函数.若存在零点,只需满足条件Error!则解得a +1≤b ≤8+2a .因此可使函数在区间[1,2]上有零点的有:a =1,2≤b ≤10,故b =2,b =4,b =8;a =2,3≤b ≤12,故b =4,b =8,b =12;a =3,4≤b ≤14,故b =4,b =8,b =12;a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为.1116。
【关键字】方法第三节几何概型————————————————————————————————[考纲传真] 1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个.(2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P(A)=.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.( )(2)从区间[1,10]内任取一个数,取到1的概率是.( )(3)概率为0的事件一定是不可能事件.( )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( )[答案] (1)√(2)×(3)×(4)√2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A [P(A)=,P(B)=,P(C)=,P(D)=,∴P(A)>P(C)=P(D)>P(B).]3.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A. B.C. D.B [如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为=,故选B.]4.(2017·唐山检测)如图10-3-1所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图10-3-10.18 [由题意知,==0.18.∵S正=1,∴S阴=0.18.]5.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是________.1-[如图所示,区域D为正方形OABC及其内部,且区域D的面积S=4.又阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积S阴=4-π,∴所求事件的概率P==1-.]至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. B.C. D.(2)如图10-3-2所示,四边形ABCD为矩形,AB=,BC=1,在∠DAB内作射线AP,则射线AP与线段BC有公共点的概率为________.【导学号:】图10-3-2(1)B (2) [(1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P==.故选B.(2)以A为圆心,以AD=1为半径作圆弧交AC,AP,AB分别为C′,P′,B′.依题意,点P′在上任何位置是等可能的,且射线AP与线段BC有公共点,则事件“点P′在上发生”.又在Rt△ABC中,易求∠BAC=∠B′AC′=.故所求事件的概率P===.][规律方法] 1.解答几何概型问题的关键在于弄清题中的考查东西和东西的活动范围,当考查东西为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD为测度”计算几何概型的概率,导致错求P=.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比.[变式训练1] (1)(2017·唐山质检)设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径倍的概率是( )A. B. C.D.(2)(2016·山东高考)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y2=9相交”发生的概率为________.(1)B (2) [(1)作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB|>R ,∴P ==.(2)由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3,即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝ ⎛⎭⎪⎫-342=34.]与面积有关的几何概型☞角度1 与随机模拟相关的几何概型(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nmB.2nmC.4mnD.2mnC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4mn.] ☞角度2 与线性规划交汇问题(2017·华师一附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( )A.14 B.316C.916D.34D [由x ,y ∈[0,4]可知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x+2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=2+4×42=12. 故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.]与体积有关的几何概型1111ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6B [设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.] [规律方法] 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.[变式训练2] 如图1033,正方体ABCD A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M ABCD 的体积小于16的概率为________.【导学号:】图103312[设四棱锥M ABCD 的高为h ,由于V 正方体=1. 则13·S ABCD ·h <16, 又S ABCD =1,∴h <12,即点M 在正方体的下半部分, ∴所求概率P =12V 正方体V 正方体=12.][思想与方法]1.古典概型与几何概型的区别在于:前者基本事件的个数有限,后者基本事件的个数无限.2.判断几何概型中的几何度量形式的方法 (1)当题干是双重变量问题,一般与面积有关系.(2)当题干是单变量问题,要看变量可以等可能到达的区域:若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量可以等可能变化的区域.[易错与防范]1.易混淆几何概型与古典概型,两者共同点是试验中每个结果的发生是等可能的,不同之处是几何概型的试验结果的个数是无限的,古典概型中试验结果的个数是有限的.2.准确把握几何概型的“测度”是解题关键.3.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.课时分层训练(六十三) 几何概型A 组 基础达标 (建议用时:30分钟)一、选择题1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25D.15B [在区间[-2,3]上随机选取一个数X ,则X ≤1, 即-2≤X ≤1的概率为P =35.]2.如图1034所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( )图1034A.π3B .πC .2πD .3πD [设阴影部分的面积为S ,且圆的面积S ′=π·32=9π. 由几何概型的概率得S S ′=13,则S =3π.] 3.若将一个质点随机投入如图1035所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )图1035A.π2B.π4C.π6D.π8B [设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4.]4.(2015·山东高考)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34 B.23 C.13D.14A [不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.]5.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC<12V S ABC 的概率是( ) 【导学号:】A.78 B.34 C.12D.14A [当点P 到底面ABC 的距离小于32时,V P ABC <12V S ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.]6.(2017·西安模拟)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )【导学号:】A.34+12π B.12+1πC.12-1πD.14-12πD [|z |=x -12+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分.∵S 圆=π×12=π,S 阴影=π4-12×12=π-24. 故所求事件的概率P =S 阴影S 圆=π-24π=14-12π.]二、填空题7.(2017·郑州模拟)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.【导学号:】3 [由|x |≤m ,得-m ≤x ≤m . 当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m --26=56,解得m =3.] 8.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.23[∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-43p -2≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+5-25=23.] 9.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.1316 [∵去看电影的概率P 1=π·12-π·⎝ ⎛⎭⎪⎫122π·12=34,去打篮球的概率P 2=π·⎝ ⎛⎭⎪⎫142π·12=116, ∴不在家看书的概率为P =34+116=1316.]10.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________. 【导学号:】π120[屋子的体积为5×4×3=60米3, 捕蝇器能捕捉到的空间体积为18×43π×13×3=π2米3,故苍蝇被捕捉的概率是π260=π120.]B 组 能力提升 (建议用时:15分钟)1.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1C.12<p 2<p 1 D .p 1<12<p 2D [如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE (如图①),其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分(如图②),其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.]2.(2017·陕西质检(二))在长方形ABCD 中,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,则取到的点到O 点的距离大于1的概率为( )A.π4 B .1-π8C.π8D .1-π4D [由题意得长方形ABCD 的面积为1×2=2,其中满足到点O 的距离小于等于1的点在以AB 为直径的半圆内,其面积为12×π×12=π2,则所求概率为1-π22=1-π4,故选D.]3.随机地向半圆0<y <2ax -x 2(a 为正数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________.12+1π[由0<y <2ax -x 2(a >0), 得(x -a )2+y 2<a 2, 因此半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.]4.已知关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,则方程有实根的概率为________.【导学号:】23[设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为P (A )=3×2-12×223×2=23.]此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
第三节几何概型[考纲传真] 1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.(对应学生用书第153页)[基础知识填充]1.几何概型向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=G1的面积G的面积,则称这种模型为几何概型.2.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率.(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数的个数N;③计算频率f n(A)=MN作为所求概率的近似值.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.()(2)从区间[1,10]内任取一个数,取到1的概率是110.()(3)概率为0的事件一定是不可能事件.()(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.() [答案](1)√(2)×(3)×(4)√2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A [P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).]3.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A .710 B .58 C .38D .310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B .]4.(2018·石家庄模拟)如图10-3-1所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图10-3-10.18 [由题意知,S 阴S 正=1801 000=0.18.∵S 正=1,∴S 阴=0.18.]5.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是________. 【导学号:00090357】1-π4 [如图所示,区域D 为正方形OABC 及其内部,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π, ∴所求事件的概率P =4-π4=1-π4.](对应学生用书第154页)明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13 B .12 C .23D .34图10-3-2(2)如图10-3-2所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.(3)(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.(1)B (2)13 (3)59 [(1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B .(2)以A 为圆心,以AD =1为半径作圆弧交AC ,AP ,AB 分别为C ′,P ′,B ′.依题意,点P ′在上任何位置是等可能的,且射线AP 与线段BC 有公共点,则事件“点P ′在上发生”.又在Rt △ABC 中,易求∠BAC =∠B ′AC ′=π6.故所求事件的概率P ==π6·1π2·1=13.(3)由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5, ∴P =59.][规律方法] 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD 为测度”计算几何概型的概率,导致错求P =12.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比.[变式训练1] (1)(2017·唐山质检)设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( ) 【导学号:00090358】 A .34 B .12 C .13D .35(2)(2016·山东高考)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.(1)B (2)34[(1)作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB |>2R ,∴P ==12.(2)由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3,即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝ ⎛⎭⎪⎫-342=34.]角度1 与模拟方法相关的几何概型(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4nm B .2nm C .4m n D .2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4m n .]角度2 与线性规划交汇问题(2018·长沙模拟)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为() A .14B .316C .916D .34D [由x ,y ∈[0,4]可知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.][规律方法] 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.[变式训练2] (1)(2017·全国卷Ⅰ)如图10-3-3,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )【导学号:00090359】图10-3-3A .14B .π8C .12D .π4(2)(2018·莆田模拟)从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是()A.π8B.π4C.12D.34(1)B(2)B[(1)不妨设正方形ABCD的边长为2,则正方形内切圆的半径为1,可得S正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S黑=S白=1 2S圆=π2,所以由几何概型知所求概率P=S黑S正方形=π22×2=π8.故选B.(2)任取的两个数记为x,y,所在区域是正方形OABC内部,而符合题意的x,y位于阴影区域内(不包括x,y轴),故所求概率P=14π×121×1=π4.]1111的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A.π12B.1-π12C.π6D.1-π6B[设“点P到点O的距离大于1”为事件A.则事件A发生时,点P位于以点O为球心,以1为半径的半球的外部.∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.][规律方法] 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解. [变式训练3] 如图10-3-4,正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.图10-3-412[设四棱锥M -ABCD 的高为h ,由于V 正方体=1.且13·S ABCD ·h <16, 又S ABCD =1,∴h <12, 即点M 在正方体的下半部分, ∴所求概率P =12V 正方体V 正方体=12.]。