高二上学期期末考试数学试题
- 格式:pdf
- 大小:231.31 KB
- 文档页数:4
2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题一、单选题1.双曲线22132x y -=的渐近线方程是( )A .23y x =± B .32y x =±C .y =D .y = 【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为22132x y -=,所以a b =,所以渐近线方程为b y x a =±=. 故选:D2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos ||||v v μθμ⋅=B .||cos ||||v v μθμ⋅=C .sin |||vv μθμ⋅=∣D .||sin ||||v v μθμ⋅=【答案】D【分析】由线面角的向量求法判断 【详解】由题意得||sin ||||v v μθμ⋅=, 故选:D3.若抛物线C :22x py =的焦点坐标为()0,1,则抛物线C 的方程为( ) A .22x y =- B .22x y =C .24x y =-D .24x y =【答案】D【分析】由已知条件可得12p=,求出p ,从而可求出抛物线的方程. 【详解】因为抛物线C :22x py =的焦点坐标为()0,1,所以12p=,得2p =, 所以抛物线方程为24x y =, 故选:D4.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【分析】设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,根据导函数的图象写出函数的单调区间,再根据极值点的定义即可得出答案.【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x , 当1x x <或23x x x <<或4x x >时,0fx,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增, 在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x , 所以函数()f x 有两个极大值点、两个极小值点. 故选:C .5.已知点1,0A ,直线l :30x y -+=,则点A 到直线l 的距离为( )A .1B .2C D .【答案】D【分析】利用点到直线的距离公式计算即可.【详解】已知点(1,0)A ,直线:30l x y -+=,则点A 到直线l =故选:D .6.已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】利用存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件, 故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.7.已知双曲线22221x y a b -=(a >0,b >0)与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1B .(1C .∞)D .,+∞)【答案】C【分析】根据渐近线的斜率的范围可求离心率的范围. 【详解】因为双曲线的一条渐近线方程为by x a=,由题意得2b a >,所以双曲线的离心率c e a ==故选:C.8.已知()f x 是定义在R 上的偶函数,当0x >时,()()0xf x f x '-<,且()20f -=,则不等式()0f x x>的解集是( ). A .()()2,00,2-⋃ B .()(),22,∞∞--⋃+ C .()()2,02,-+∞ D .()(),20,2-∞-【答案】D 【分析】记()()(),0f x g x x x=≠.判断出()g x 的奇偶性和单调性,即可解不等式. 【详解】记()()(),0f x g x x x=≠.因为()f x 是定义在R 上的偶函数,所以()()f x f x -= 因为()()()()f x f x g x g x x x --==-=--,所以()g x 为奇函数,所以()()()()222222f fg g --==-=--. 因为()20f -=,所以()()220g g -==. 当0x >时,()()()20xf x f x g x x'-'=<,所以()g x 在()0,∞+上单减.因为()g x 为奇函数,图像关于原点对称,所以()g x 在(),0∞-上单减. 不等式()0f x x>即为()0g x >.当0x >时, ()g x 在()0,∞+上单减,且()20g =,所以()0g x >的解集为()0,2; 当0x <时, ()g x 在(),0∞-上单减,且()20g -=,所以()0g x >的解集为(),2-∞-. 综上所述:()0f x x>的解集为()(),20,2-∞-.故选:D二、多选题9.下列导数运算正确的有( )A .211x x '⎛⎫= ⎪⎝⎭B .()(1)x x xe x e '=+C .()222x x e e '=D .()2ln 2x x'=【答案】BC【分析】根据导数的运算法则逐项运算排除可得答案.【详解】对于A ,()12211x x x x --'⎛⎫'==-=- ⎪⎝⎭,故错误;对于B , ()()(1)x x x x xe x e x e x e '''==++,故正确; 对于C , ()()22222x x x e x e e ''==,故正确; 对于D , ()()''11ln 222x x x x==,故错误. 故选:BC.10.设等差数列{}n a 的前n 项和为n S ,其公差1d >,且7916+=a a ,则( ). A .88a = B .15120S = C .11a < D .22a >【答案】ABC【分析】利用等差数列基本量代换,对四个选项一一验证.【详解】对于A :因为7916+=a a ,所以978216a a a +==,解得:88a =.故A 正确; 对于B :()1158151521581512022a a a S +⨯⨯===⨯=.故B 正确;对于C :因为88a =,所以178a d +=,所以187a d =-. 因为1d >,所以11a <.故C 正确;对于D :因为88a =,所以268a d +=,所以286a d =-. 因为1d >,所以22a <.故D 错误. 故选:ABC11.已知曲线1C :函数()nx m f x x m+=-的图像,曲线()()2222:12C x y r -+-=,若1C 的所有对称轴平分2C ,且1C 与2C 有公共点,则r 的值可以等于( ).ABCD .3【答案】BD【分析】先将()f x 整理成()nm mf x n x m+=+-可得()f x 的所有对称轴都经过(),m n ,故可求得1,2m n ==,再计算()f x 上的点到圆心()1,2M 的最短距离即可求得答案【详解】因为()nx m nm mf x n x m x m++==+--,且()f x 是由nm m y x +=向右平移m 个单位长度,向上平移n 个单位长度得到,nm my x+=的所有对称轴都经过()0,0, 所以()nx m nm mf x n x m x m++==+--的所有对称轴都经过(),m n , 因为1C 的所有对称轴平分2C ,所以1C 的所有对称轴经过2C 的圆心()1,2M , 所以1,2m n ==,所以()321f x x =+-, 设函数()f x 图象上的动点3,21P x x ⎛⎫+ ⎪-⎝⎭,则()()2233121611MP x x x x ⎛⎫⎛⎫=-+≥-= ⎪ ⎪--⎝⎭⎝⎭,当且仅当311x x -=-时,取等号, 所以()f x 上的点到圆心()1,2M 的最短距离为6, 若1C 与2C 有公共点,则6r ≥ 故选:BD12.我国知名品牌小米公司今年启用了具备“超椭圆”数学之美的全新Logo .新Logo 将原本方正的边框换成了圆角边框(如图),这种由方到圆的弧度变化,为小米融入了东方哲学的思想,赋予了品牌生命的律动感.设计师的灵感来源于数学中的曲线:1nnC x y +=,则下列有关曲线C 的说法中正.确.的是( ).A .对任意的n ∈R ,曲线C 总关于原点成中心对称B .当0n >时,曲线C 上总过四个整点(横、纵坐标都为整数的点) C .当01n <<时,曲线C 围成的图形面积可以为2D .当1n =-时,曲线C 上的点到原点最近距离为22【答案】ABD【分析】对于A :利用代数法验证;对于B :直接求出曲线C 过四个整点()()()()1,0,1,0,0,1,0,1--,即可判断;对于C :先判断出||||1x y +=与坐标轴围成的面积为2,再判断出1n nx y +=在||||1x y +=内部,即可判断;对于D :表示出距离222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭.令()11x t t -=>-,利用基本不等式求出最小值.【详解】对于A :在曲线:1nnC x y +=中,以x -替换x ,以y -替换y ,方程不变,则曲线C 关于原点成中心对称.故A 正确;对于B,当0n >时,令0x =,得1y =±;令0y =,得1x =±.曲线C 总过四个整点()()()()1,0,1,0,0,1,0,1--.故B 正确;对于C :当01n <<时,由1n nx y +=,得:1,1x y ≤≤,且等号不同时成立. ∴||||||||1n n x y x y +>+=.又||||1x y +=与坐标轴围成的面积为2222⨯=,且1n nx y +=在||||1x y +=内部,则曲线C 围成图形的面积小于2.故C 错误.对于D :当1n =-时,曲线C 的方程为:11||||1x y --+=.不妨令,x y 均大于0,曲线化为111x y +=,即1x y x =-,则222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭. 令()11x t t -=>-,则2222222112(1)2228t t d t t t t t t ++=++=++++≥=,当且仅当221t t =且22t t=,即1t =时等号成立.结合对称性可知,曲线C上点到原点距离的最小值为故D 正确.故选:ABD.三、填空题13.已知{}n a 是公比为2的等比数列,则1234a a a a ++的值为______. 【答案】14##0.25【分析】利用等比数列的通项公式计算即可. 【详解】{}n a 是公比为2的等比数列,121113411123148124a a a a a a a a a a ++∴===++ 故答案为:14.14.设点P是曲线32y x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【答案】20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】求出23'=y xtan α≥α的范围可得答案. 【详解】∵23y x '=≥∴tan α≥ 又∵0απ≤≤, ∴02πα≤<或23a ππ≤< 则角α的取值范围是20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.15.已知数列{}n a 满足()21n a n m n =--,若满足123456a a a a a a <<<<<且对任意[)9,n ∈+∞,都有1n n a a +>,则实数m 的取值范围是______.【答案】1016,1117⎛⎫⎪⎝⎭【分析】由123456a a a a a a <<<<<解出1111m -<,由对任意[)9,n ∈+∞,都有1n n a a +>,解出1117m ->,即可求出实数m 的取值范围. 【详解】因为()21n a n m n =--,若满足123456a a a a a a <<<<<,所以()()()()()()222222111212313414515616m m m m m m --⨯<--⨯<--⨯<--⨯<--⨯<--⨯,解得:1111m -<. 因为对任意[)9,n ∈+∞,都有1n n a a +>,由二次函数的性质可得:()()101910212m m ⎧--<⎪+⎨-<⎪--⎩,解得:1117m ->. 所以1111711m <-<,解得:10161117m <<. 所以实数m 的取值范围为1016,1117⎛⎫⎪⎝⎭.故答案为:1016,1117⎛⎫⎪⎝⎭16.若方程2l e n 1x x ax x -=--存在唯一实根,则实数a 的取值范围是_____.【答案】(]1,01e ⎧⎫-∞+⎨⎬⎩⎭【分析】方程2l en 1xx ax x -=--存在唯一实根,则2ln 1e x x a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,利用导数分析()f x 的单调性,并在同一坐标系中做出y a =与函数()e ln 1x f x xx x +=+的图象,即可求解【详解】方程2l e n 1x x ax x -=--存在唯一实根, 则2ln 1e x x a x x-++=存在唯一实根,令()()2ln 10e ,x x x x xf x -++=>,则()()2221e n e e 2l 1x x x x x x x x x x f x ---⎛⎫-+⋅- +⎪⎭+⎝'= ()222231l e l e n e n x x x x x x x x xx x ----+==-⋅-- 令()()()2211ln e e ln xxx x h x x x x x --⋅=-++⋅=,注意到()10h =,则()10f '=,且当()0,1x ∈时,210,ln 0,0,e 0x x x x >-<><, 所以()()22110,n e el 0x xx x x x x ⋅⋅--<+<,即()0h x <; 当()1,x ∈+∞时,210,ln 0,0,e 0x x x x >->>>, 所以()()22110,n e el 0x xx x x x x ⋅⋅-->+>,即()0h x >; 所以当()0,1x ∈时,0fx,()f x 单调递增;当()1,x ∈+∞时,()0f x '<,()f x 单调递减; 又()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>, 当()1,x ∈+∞时,()0f x >恒成立; 当0x →时,()f x →-∞;所以()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>的大致图象为:由2ln 1e xx a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,由图象可知0a ≤或11ea =+时满足条件,所以方程2l e n 1x x ax x -=--存在唯一实根时, 实数a 的取值范围是(]1,01e a ⎧⎫∈-∞⋃+⎨⎬⎩⎭故答案为:(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭四、解答题17.已知函数321()213f x x x =-++.(1)求()f x 的单调区间;(2)求函数()f x 在区间[]1,2-上的最大值与最小值.【答案】(1)单调递增区间为[]0,4;单调减区间为(),0∞-和()4,+∞;(2)()min 1f x =;()max 193f x =. 【解析】(1)求出导函数,令0fx,求出单调递增区间;令()0f x '<,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解. 【详解】(1)函数()f x 的定义域是R , 2()4f x x x '=-+,令()0f x '≥,解得04x ≤≤ 令()0f x '<,解得>4x 或0x <, 所以()f x 的单调递增区间为[]0,4, 单调减区间为(),0∞-和()4,+∞; (2)由()()1f x 在[)1,0-单调递减,在[]0,2单调递增,所以()()min 01f x f ==,而()81928133f =-++=,()11012133f -=++=, 故最大值是()9231f =. 18.已知抛物线2:2(0)C y px p =>的准线与x 轴交于点()1,0M -.(1)求抛物线C 的方程;(2)若过点M 的直线l 与抛物线C 相切,求直线l 的方程.【答案】(1)24y x =;(2)10x y -+=或10x y ++=【解析】(1)利用准线方程2p x =-求解 (2)设出直线方程,与抛物线方程联立,利用0∆=求解.【详解】(1)2:2(0)C y px p =>的准线2p x =-过()1,0M - 故12p -=-,则2p = 抛物线方程为24y x =(2)设切线方程为1x my =-与抛物线方程联立有2440y my -+=()24160m ∆=-=故1m =±故直线l 的方程为:10x y -+=或10x y ++=【点睛】求抛物线的切线方程的方法:方法一:将抛物线转化为二次函数,然后利用导数求解切线方程,这在开口朝上的抛物线中经常用到。
一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。
永春一中20221-2023学年(上)期末考试高二数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()11,0,1,0,2a b ==- ,,且ka b + 与2a b -互相垂直,则k 的值是()A .1B .15C .35D .752.已知数列{}n a 的前n 项和为n S ,首项11a =,且满足132nn n a a ++=⋅,则11S 的值为()A .4093B .4094C .4095D .40963.已知()()21220222022ln 2f x x xf x '=+-,则()2022f '=()A .2021B .2021-C .2022D .2022-4.如图,在正三棱柱111ABC A B C -中,124AA AB ==,E 是1BB 的中点,F 是11AC 的中点,若过A ,E ,F 三点的平面与11B C 交于点G ,则1A G =()A .73B .279C .273D.5.已知双曲线2222:1(0,0)x y C a b a b-=>>,过点(3,6)P 的直线l 与C 相交于,A B 两点,且AB 的中点为(12,15)N ,则双曲线C 的离心率为()A .2B .32C .355D .526.设等差数列{}n a 的前n 项的和为527,9,16n S a a a =+=,则下列结论不正确的是()A .21n a n =-B .3616a a +=C .2n S n n=+D .数列11n n a a +⎧⎫⎨⎩⎭的前n 和为21nn +7.图1为一种卫星接收天线,其曲面与轴截面的交线为拋物线的一部分,已知该卫星接收天线的口径6AB =,深度2MO =,信号处理中心F 位于焦点处,以顶点O 为坐标原点,建立如图2所示的平面直角坐标系xOy ,若P 是该拋物线上一点,点15,28Q ⎛⎫⎪⎝⎭,则PF PQ +的最小值为()A .4B .3C .2D .18.如图,已知直线:20l x y m ++=与圆22:2O x y +=相离,点P 在直线l 上运动且位于第一象限,过P 作圆O 的两条切线,切点分别是,M N ,直线MN 与x 轴、y 轴分别交于,R T 两点,且ORT 面积的最小值为1625,则m 的值为()A .4-B .9-C .6-D .5-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆22:49O x y +=,直线l 过点(2,6)N ,且交圆O 于,P Q 两点,点M 为线段PQ 的中点,则下列结论正确的是()A .点M 的轨迹是圆B .||PQ 的最小值为6C .若圆O 上仅有三个点到直线l 的距离为5,则l 的方程是43100x y -+=D .使||PQ 为整数的直线l 共有16条10.斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用n a 表示斐波那契数列的第n 项,则数列{}n a 满足:121a a ==,21n n n a a a ++=+,记121nin i aa a a ==++⋅⋅⋅+∑,则下列结论正确的是()A .934a =B .()2233n n n a a a n -+=+≥C .20212202120221i i aa a ==⋅∑D .201920211ii aa ==∑11.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点()3,0F ,椭圆的短轴与半圆的直径重合.若直线()0y t t =>与半圆交于点A ,与半椭圆交于点B ,则下列结论正确的是()A .椭圆的离心率是22B .线段AB 长度的取值范围是(0,32+C .ABF △面积的最大值是)9214+D .OAB 的周长不存在最大值12.在直四棱柱中1111ABCD A B C D -中,底面ABCD 为菱形,160,2,BAD AB AD AA P ∠====为1CC 中点,点Q 满足][()1,0,1,0,1DQ DC DD λμλμ⎡⎤=+∈∈⎣⎦.下列结论正确的是()A .若12λμ+=,则四面体1A BPQ 的体积为定值B .若AQ 平面1A BP ,则1AQ C Q +10310+C .若1A BQ △的外心为O ,则11A B A O ⋅为定值2D .若17A Q =,则点Q 的轨迹长度为23π三、填空题:本题共4小题,每小题5分,16题,第一空答对得2分,共20分.13.在空间直角坐标系O xyz -中,()2,1,1A ,(),0,5B b ,()0,,4C c ,若四边形OABC 为平行四边形,则b c +=________.14.设函数()3221f x x ax bx =+++的导函数为()f x ',若函数()y f x '=的图象的顶点的横坐标为12-,且()10f '=,则ba的值为__________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆交C 于,A B 两点,其中点A 在第一象限,点B 在第三象限,若113AF BF ≤,则C 的离心率的取值范围是__________.16.对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n n x x x ++++=的实根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,则1a =_____;若πsin 2n n n b a =⋅,n S 为{}n b 的前n 项和,则2022S =______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知曲线31:C y x =和22:2,(R)C y ax x a =+-∈.(1)若曲线1C 、2C 在1x =处的切线互相垂直,求a 的值;(2)若与曲线1C 、2C 在0x x =处都相切的直线的斜率大于3,求a 的取值范围.18.(本题满分12分)如图,在平面直角坐标系xoy 中,已知圆22:40C x y x +-=及点),(1,0)(1,2A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||3MN =l的方程;(2)圆C 上是否存在点P ,使得222||||1PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.19.(本题满分12分)如图,在四棱锥P ABCD -中,已知底面ABCD 是正方形,PC ⊥底面ABCD ,且1,PC BC E ==是棱PB 上动点.(1)若过C ,D ,E 三点的平面与平面PAB 的交线是l ,证明://CD l(2)线段PB 上是否存在点E ,使二面角P AC E --的余弦值是23?若存在,求PE PB 的值;若不存在,请说明理由.20.(本题满分12分)已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中,*N n ∈.(1)若12a =,2nn b =.①求数列{}n a 的通项公式;②试求数列{}n n a ⋅的前n 项和.(2)若2n n b a +=,数列{}n a 的前6291项之和为1926,前77项之和等于77,试求前2024项之和是多少?21.(本题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,,F F P 为双曲线C 上一点,12121cos ,24F PF PF PF ∠==,且焦点到渐近线的距离为3(1)求双曲线C 的方程;(2)设A 为双曲线C 的左顶点,点(),0B t 为x 轴上一动点,过2F 的直线l 与双曲线C 的右支交于,M N 两点,直线,AM AN 分别交直线2a x =于,S T 两点,若π02SBT ∠<<,求t 的取值范围.22.(本题满分12分)已知函数2()4f x x =-,设曲线()y f x =在点()(),n n x f x 处的切线与x 轴的交点为()()*1,0n x n +∈N,其中1x 为正实数.(1)用n x 表示1n x +;(2)若14x =,记2lg2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式.(3)若14,2n n x b x ==-,n T 是数列{}n b 的前n 项和,证明:3n T <.。
唐山市2022~2023学年度高二年级第一学期学业水平调研考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2330x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】C 【解析】【分析】当直线的斜率存在时,由直线的方向向量为(,)n x y = ,则yk x=代入计算即可.【详解】因为2330x y +-=,所以23k =-,设直线的方向向量为(,)n x y = ,则23yk x=-=,取3x =,则=2y -,所以直线的一个方向向量为(3,2)n =-.故选:C.2.在等差数列{}n a 中,11a =,923a =-,则5a =()A.-11B.-8C.19D.16【答案】A 【解析】【分析】代入等差数列通项公式求出公差,再代入公式即可求得.【详解】因为数列{}n a 为等差数列,11a =,923a =-,所以91823a a d =+=-,解得3d =-,则51411211a a d =+=-=-.故选:A3.已知向量()0,1,1a =- ,()1,2,b y = ,3a b ⋅=-,则a 与b 的夹角为()A.30︒ B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据题意,先得到b的坐标,然后根据空间向量数量积的坐标运算即可得到结果.【详解】根据题意可得,0231a b y y ⋅=-+=-⇒=-,即()1,2,1b =-则cos ,2a b a b a b⋅<>==-,且[],0,πa b <>∈r r ,所以a 与b的夹角为150︒故选:D4.在正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线1B C 与DE 所成角的余弦值为()A.5B.105-C.4D.4-【答案】A 【解析】【分析】设出正方体的棱长,建立空间直角坐标系,得到各点坐标,表达出1B C 和DE,即可得出异面直线1B C 与DE 所成角的余弦值.【详解】由题意在正方体1111ABCD A B C D -中,E 为11C D 的中点,设正方体的棱长为2a ,建立空间直角坐标系如下图所示,则()10,0,0A ,()12,0,0B a ,()2,2,2C a a a ,()12,2,0C a a ,()0,2,2D a a ,(),2,0E a a ∴()10,2,2B C a a = ,(),0,2DE a a =-,设异面直线1B C 与DE 所成角为θ,1110cos 5B C D B EC DEθ==⋅ ,∴异面直线1B C 与DE 所成角的余弦值为105,故选:A.5.F 为抛物线C :24x y =的焦点,点A 在C 上,点()0,5B ,若AF BF =,则ABF △的面积为()A. B. C.4D.8【答案】B 【解析】【分析】求出焦点F 的坐标,根据两点间距离公式求得BF ,即AF 的长度,根据抛物线定义可求得A 点坐标,进而可求出面积.【详解】解:因为抛物线C :24x y =,所以()0,1F ,准线为:1y =-因为()0,5B ,所以4BF AF ==,设()11,A x y ,根据抛物线定义可知:114y +=,解得13y =,所以()A ±,所以111422ABF S BF x =⋅⋅=⨯⨯= .故选:B6.设直线210x y --=与x 轴的交点为椭圆()222210x y a b a b+=>>的右焦点2F ,过左焦点1F 且垂直x 轴的直线与椭圆交于M ,132F M =,则椭圆的离心率为()A.33B.22C.12D.32【答案】C 【解析】【分析】根据题意可得()21,0F 以及2132b F M a =±=,再结合椭圆,,a bc 的关系,列出方程即可得到结果.【详解】根据题意可得,直线210x y --=与x 轴的交点为()1,0,即()21,0F ,所以1c =,且过左焦点1F 且垂直x 轴的直线与椭圆交于M ,将x c =-代入椭圆方程可得,2by a=±,即2132b F M a =±=,所以232b a =所以2222132c ba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩12c e a ==故选:C7.已知圆O :2216x y +=和点(P ,若过点P 的5条弦的长度构成一个递增的等比数列,则该数列公比的取值范围是()A.(B.(]1,2C.( D.(]0,2【答案】A 【解析】【详解】圆半径4r =,OP r ==,则点P 在圆内,则过点P 的弦长[]2,8d Î=,(乱码,查看原文亦是乱码)故所求公比的取值范围是(乱码,查看原文亦是乱码)1,纟çúçú棼,即(.故选:A8.已知数列{}n a 满足11a =,()121n n n a a a ++=,令1n n n b a a +=,则数列{}n b 的前2022项和2022S =()A.40444045B.20224045C.40434045D.20244045【答案】B 【解析】【分析】化简()121n n n a a a ++=,得1112n na a +-=,可得1n a ⎧⎫⎨⎬⎩⎭是等差数列,求出通项公式,再用裂项相消的方法求数列{}n b 的前2022项和即可.【详解】因为数列{}n a 满足()121n n n a a a ++=,即112n n n n a a a a ++⋅+=,即1112n na a +-=,111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,所以121n n a =-,则121n a n =-,因为1n n n b a a +=,则()()1111(212122121n b n n n n ==-+-+-,数列{}n b 的前2022项和2022111111112022(1(1233522022122022122202214045S =-+-++-=-=⨯-⨯+⨯+ .故选:B【点睛】易错点睛:裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知直线l :y x =+,圆O :222(0)x y r r +=>,且圆O 上至少有三个点到直线l 的距离都等于1,则r 的值可以是()A.1 B.2C.3D.4【答案】CD 【解析】【分析】根据圆的对称性,结合圆心到直线距离列式求解即可.【详解】圆O 到直线的距离2d ==,由圆O 上至少有三个点到直线l 的距离都等于1得13r d r -侈.故选:CD.10.将数列{}n 中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号3个数,第四个括号4个数,…,进行排列:()1,()2,3,()4,5,6,()7,8,9,10,…,则()A.第8个括号内的第一个数是29B.前9个括号内共有45个数C.第10个括号内的数的和比第8个括号内的数的和大136D.2022在第64个括号内【答案】ABD 【解析】【分析】第n 个括号有n 个数,则括号里数的数量满足等差数列,且括号里的数同为等差数列,根据等差数列的通项公式及求和公式逐个判断即可.【详解】对A ,第n 个括号有n 个数,则前7个括号内共有()177282+´=个数,故第8个括号内的第一个数是29,A 对;对B ,前9个括号内共有()199452+⨯=个数,B 对;对C ,由AB 得,第10个括号内的数的和为()4655105052+´=,第8个括号内的数的和为()293682602+´=,故第10个括号内的数的和比第8个括号内的数的和大505260245-=,C 错;对D ,设2022在第()*k k ∈N 个括号内,则有()()()1111202222k k k k +--+<£,解得64k =,D 对.故选:ABD.11.已知双曲线C :2213y x -=的左,右焦点分别为1F ,2F ,P 是C 的右支上一点,则()A.若120PF PF ⋅≤ ,则P 到x 轴的最大距离为32B.存在点P ,满足124PF PF =C.P 到双曲线的两条渐近线的距离之积为34D.12PF F △内切圆半径r 的取值范围是0r <<【答案】ACD 【解析】【分析】利用数量积坐标运算表示120PF PF ⋅≤,解不等式求点P 的纵坐标范围,判断A ,结合双曲线定义判断B ,利用点到直线的距离公式求P 到双曲线的两条渐近线的距离之积判断C ,根据直线与双曲线的位置关系确定12PF F ∠的范围,结合内切圆的性质判断D.【详解】设双曲线的实半轴为a ,虚半轴为b ,半焦距为c ,则双曲线2213y x -=的焦点1F 的坐标为()2,0-,2F 的坐标为()2,0,1,2a b c ===,渐近线方程为y =,设点P 的坐标为(),m n ,则m 1≥,2213n m -=,对于A ,因为()()122,,2,PF m n PF m n =---=--,所以()()222122240PF PF m m n m n ⋅=---+=+≤- 所以221403n n ++-≤,所以3322n -≤≤,所以P 到x 轴的最大距离为32,A 正确;对于B ,由已知124PF PF =,122PF PF -=,所以223PF =,又21PF c a ≥-=,矛盾,B 错误,对于C ,点P223344m n -==,C 正确;对于D ,因为12,,P F F 三点不共线,所以直线1PF 的斜率不为0,可设直线1PF 的方程为()2y k x =+,0k ≠,联立()22132y x y k x ⎧-=⎪⎨⎪=+⎩,消y ,得()222234430k x k x k ----=,方程()222234430kxk x k ----=的判别式()()422216434336360k k k k ∆=----=+>,由已知224303k k--<-,所以23k <,又0k ≠,故0k <<或0k <<,设12PF F △的内切圆的圆心为E ,12PF F △的内切圆与x 轴相切于点M ,因为122PF PF -=,所以122MF MF -=,又124MF MF +=,所以13MF =,设122PF F θ∠=,则π023θ<<,又12PF F △内切圆半径1tan 3tan r MF θθ==,所以0r <<D 正确.故选:ACD.【点睛】本题为双曲线的综合性问题,考查双曲线的定义,直线与双曲线的位置关系,双曲线的性质,难度较大.12.已知正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 内运动(含边界),则()A.存在点P ,使得11D P BC ⊥B.若15D P =BP 的最小值为221C.若11D P B D ⊥,则P 2D.若1A P BD ⊥,直线1A P 与直线1BD 所成角的余弦值的最大值为33【答案】BD 【解析】【分析】A 选项,建立适当空间直角坐标系,利用向量垂直的坐标运算判定即可;B 选项,找出动点P 在正方体底面ABCD 内的运动轨迹,利用点到圆上点的最值求解即可;C 选项,根据立体几何中线面垂直推出线线垂直,可找出动点P 在正方体底面ABCD 内的运动轨迹是线段AC ,即可求解;D 选项:建立适当空间直角坐标系,利用1A P BD ⊥可得出点(),2,0P x x -,再利用空间向量的坐标表示求解即可.【详解】对于A 选项:如图1,以D 为坐标原点建立空间直角坐标系,则()2,2,0B ,()10,2,2C ,()10,0,2D ,设(),,0P x y ,[],0,2x y ∈,则()1,,2D P x y =- ,()12,0,2BC =-,若11D P BC ⊥,则11240D P BC x ×=--=,解得2x =-,不合题意,错误;对于B 选项:如图2,若15D P =DP ,则点P 在以D 为圆心,DP 为半径的圆上,此时点P 的轨迹为 FPE ,又15D P =,12DD =,2211541DP D P DD \=-=-,min 221BP BD DP \=-=,故正确;对于C 选项:如图3,连接1AD ,AC ,BD ,1CD ,11B D ,ABCD 为正方形,则AC BD ⊥,又1DD ⊥Q 平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,1BD DD D = ,1,BD DD ⊂平面11BDD B ,AC ∴⊥平面11BDD B ,1B D ⊂平面11BDD B ,1AC B D ∴⊥,同理可证:11AD B D ⊥,又1AC AD A =I ,1,AC AD ⊂平面1ACD ,1B D ∴⊥平面1ACD ,平面1ACD ⋂平面ABCD AC =,故点P 在正方体底面ABCD 内的运动轨迹是线段AC ,又正方体1111ABCD A B C D -的棱长为2,AC ∴=,故错误;对于D 选项:如图4,以D 为坐标原点建立空间直角坐标系,连接AC ,BD ,1BD ,1A P ,则()2,2,0B ,()12,0,2A ,()10,0,2D ,()0,0,0D ,设(),,0P x y ,[],0,2x y ∈,则()1-2,,2A P x y =- ,()2,2,0BD =--,当1A P BD ⊥,有()122202240A P BD x y x y ×=---+=--+=,则2y x =-,此时(),2,0P x x -,又()12,2,2A P x x =--- ,()12,2,2BD =--,111111cos ,A P BD A P BD A P BD ×\<>==×当2x =时,11cos,A P BD <> 有最大值,此时11cos ,A P BD <>=.故答案选:BD.【点睛】关键点点睛:立体几何中线面垂直的判定定理,动点在立体几何中的轨迹问题,以及利用空间向量法解决立体几何的问题,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.已知正项等比数列{}n a ,若1234a a +=,343a a +=,则4a =______.【答案】2【解析】【分析】由等比数列基本量列方程求得基本量,即可得结果.【详解】由题意,设等比数列的公比()0q q >,则()121314a a a q +=+=,()234113a a a q q +=+=,两式相除得,242q q =⇒=,∴31411,24a a a q ===.故答案为:2.14.正四面体ABCD 中,若M 是棱CD 的中点,AP AM λ= ,1166AB BP AC AD +=+,则λ=______.【答案】13【解析】【分析】根据空间向量线性运算得到1166AC AM AD λλ+= ,证明出共线定理的推论,由,,M C D 三点共线,得到11166λλ+=,求出13λ=.【详解】因为AB BP AP +=,所以1166AP AC AD =+ ,即1166AC A AM D λ+= ,1166AC AM AD λλ+=,下面证明:已知OB xOA yOC =+,若,,A B C 三点共线,则1x y +=,因为,,A B C 三点共线,所以存在非零实数t ,使得AB t AC =,即()OB OA t OC OA -=- ,整理得()1OB tOC t OA =+- ,故1x t =-,y t =,所以1x y +=,因为,,M C D 三点共线,故11166λλ+=,解得:13λ=.故答案为:1315.已知圆1O :221x y +=,圆2O :22(3)(4)100x y -+-=,过圆2O 上的任意一点P 作圆1O 的两条切线,切点为A ,B ,则四边形1PAO B 面积的最大值为______.【答案】【解析】【分析】根据题意分析可得四边形1PAO B面积112△PAO B PAO S S ==,结合圆的性质求1PO 的最大值即可.【详解】圆1O :221x y +=的圆心()10,0O ,半径11r =,圆2O :22(3)(4)100x y -+-=的圆心()23,4O ,半径210r =,四边形1PAO B面积1111222△PAO B PAO S S PA AO PA ==⨯⨯⨯===,∵11221015PO O O r ≤+=+=,∴四边形1PAO B=.故答案为:.16.设双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,点()0,P b ,直线20x y m ++=与C 交于M ,N 两点.若0FM FN FP ++=,则C 的离心率为______.【答案】233【解析】【分析】设()()1122,,,M x y N x y ,(),0F c ,根据0FM FN FP ++=,得到F 为MNP △的重心,利用重心的坐标式得到12123x x cy y b+=⎧⎨+=-⎩,再利用点差法和222c a b =+得到,,a b c 关系求解即可.【详解】设()()1122,,,M x y N x y ,(),0F c ,因为0FM FN FP ++=,所以F 为MNP △的重心,则1212303x x c y y b +⎧=⎪⎪⎨++⎪=⎪⎩,即12123x x c y y b +=⎧⎨+=-⎩,①因为()()1122,,,M x y N x y 在双曲线C :()222210,0x ya b a b-=>>上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得:22221212220x x y y a b ---=,化简得:()()()()12121212220x x x x y y y y a b +-+--=,即()()()()12121222120x x y y y y a b x x ++⋅--=⋅-,②将①代入②得:()()22320b c a b--⋅-=,即()222322bc a c b ==-,解得:2c b =,所以a ==,则233c e a ==,即C 的离心率为233.故答案为:3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知圆心为()3,3C 的圆经过点()1,5A .(1)求圆C 的方程;(2)过点()1,5B -作直线l 与圆C 交于E ,F 两点.若4EF =,求直线l 的方程.【答案】(1)22(3)(3)8x y -+-=(2)1x =或158550x y --=.【解析】【分析】(1)直接将点A 的坐标代入圆的方程,即可得到结果;(2)根据截得的弦长,分l 的斜率不存在与l 的斜率存在分别讨论,结合点到直线的距离公式,列出方程,即可得到结果.【小问1详解】设所求圆C 的方程为222(3)(3)x y r -+-=,因为点()1,5A 在圆C 上,则222(13)(53)r -+-=,解得28r =,所以圆C 的方程为22(3)(3)8x y -+-=.【小问2详解】因为直线l 被圆C 截得的弦长为4,所以圆心到直线l的距离2d ==.当l 的斜率不存在时,直线l 方程为1x =,符合题意.当l 的斜率存在时,设直线l 方程为()51y k x +=-,即50kx y k ---=.则2d =,解得158k =.此时直线l 方程为155(1)8y x +=-,即158550x y --=.综上所述,直线l 的方程为1x =或158550x y --=.18.如图,在直三棱柱111ABC A B C -中,M ,N 分别为AC ,1BB 的中点.(1)证明://MN 平面11A B C ;(2)若CB ⊥平面11ABB A ,2AB BC ==,14BB =,求点A 到平面11A B C 的距离.【答案】(1)证明见解析(2)5【解析】【分析】(1)要证明//MN 平面11A B C ,通过证明平面MHN ∥平面11A B C 即可证得;(2)根据已知条件可以以B 为原点建立空间直角坐标系,求出平面11A B C 的法向量,以及一个方向向量,代入公式计算即可.【小问1详解】证明:取1AA 的中点H ,连接MH ,HN .因为M 为AC 的中点,所以1MH A C ∥.因为MH ⊄平面11A B C ,1AC ⊂平面11A B C ,所以MH ∥平面11A B C .因为H ,N 分别为1AA ,1BB 的中点,所以11HN A B ∥,因为HN ⊄平面11A B C ,11A B ⊂平面11A B C ,所以HN ∥平面11A B C .因为,,MH HN H MH HN ⋂=⊂面MHN ,所以平面MHN ∥平面11A B C .因为MN ⊂平面MHN ,所以//MN 平面11A B C .【小问2详解】因为CB ⊥平面11ABB A ,AB ⊂平面11ABB A ,所以CB AB ⊥.因为三棱柱111ABC A B C -是直三棱柱,所以1BB BC ⊥,1BB AB ⊥.以BA ,1BB ,BC 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系B xyz -,则()0,0,0B ,()2,0,0A ,()10,4,0B ,()12,4,0A ,()0,0,2C ,()10,4,0AA = ,()10,4,2CB =- ,()112,0,0B A =.设平面11A B C 的法向量为(),,n x y z =.由11100CB n B A n ⎧⋅=⎪⎨⋅=⎪⎩,得42020y z x -=⎧⎨=⎩,取()0,1,2n = .所以点A 到平面11A B C 的距离1455AA n d n⋅==.19.已知抛物线C :24y x =的焦点为F ,O 为坐标原点,A ,B 为C 上异于O 的两点,OA OB ⊥.(1)证明:直线AB 过定点;(2)求4AF BF +的最小值.【答案】(1)证明见解析(2)21【解析】【分析】(1)设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,联立抛物线方程,由垂直斜率关系及韦达定理可求得参数m ,进而确定定点;(2)由抛物线定义结合基本不等式求最值.【小问1详解】设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,将直线AB 的方程代入24y x =,得2440y ty m --=.由OA OB ⊥,得121212441y y x x y y ⋅=-=⋅,即1216y y =-,所以416m -=-,4m =,故直线AB :4x ty -=,恒过定点()4,0.【小问2详解】抛物线准线为=1x -,由抛物线的定义,()()121144x x AF BF =++++221254y y =++12521y y ≥+=,当且仅当221248y y ==时等号成立,所以4AF BF +的最小值为21.20.已知数列{}n a 满足11a =,11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .【答案】(1)12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-(2)证明见解析(3)123236n n S n +=⨯--【解析】【分析】(1)根据{}n a 的递推关系式及首项,写出2348,,,,a a a a L ,进而求得1b ,2b ,3b ,4b ,根据推导过程及各项即可猜想其通项公式;(2)因为2n n b a =,所以找到22n a +和2n a 的关系,即1n b +与n b 的关系,对式子进行配凑,可发现{}1n b +是以3为首项,2为公比的等比数列,即可得{}n b 的通项公式;(3)根据2122n n a a +=,可得2112n n a b --=,将2n S 写为()()1321242n n a a a a a a -+++++++ ,再将2112n n a b --=,2n n a b =代入,可得()211123n n n S b b a b b -=+++++ ,将1321n n b -=⨯-代入,再利用等比数列的求和公式即可得2n S .【小问1详解】由题知11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,因为11a =,所以12112b a a ==+=,3224a a ==,24315b a a ==+=,54210a a ==,536111b a a +===,76222a a ==,748123b a a +===,综上:12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-.【小问2详解】由题意,知2122n n a a +=,22211n n a a ++=+,代入得22221n n a a +=+,于是222122n n a a ++=+,即()1121n n b b ++=+,因为113b +=,所以{}1n b +是以3为首项,2为公比的等比数列,故1321n n b -=⨯-.【小问3详解】因为()()2112112122n n n n a a a b ---+-===,()()21321242n n n S a a a a a a -=+++++++()()112112222n n a b b b b b b -=++++++++ ()11213n n b b b b a -=+++++ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()11311122332n n n --⎛⎫ ⎪=+⨯ ⎪⎝⎭----13236n n +=⨯--.21.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PB PD =,PA AC ⊥.(1)证明:PA ⊥平面ABCD ;(2)若PA =PC 上是否存在点M ,使直线AM 与平面PBC 所成角的正弦值为154?若存在,求出点M 的位置;若不存在,请说明理由.【答案】(1)证明见解析(2)不存在,理由见解析【解析】【分析】(1)由线线垂直证BD ⊥平面PAO ,再依次证PA BD ⊥、PA ⊥平面ABCD ;(2)以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,设()01PM PC λλ=≤≤,由向量法建立线面角正弦值的方程,从解的情况即可判断.【小问1详解】证明:连接BD 交AC 于O ,连接PO .因为底面ABCD 是边长为2的菱形,所以BD AO ⊥,因为O 是BD 中点,PB PD =,所以BD PO ⊥.因为AO PO O = ,AO PO ⊂、平面PAO ,所以BD ⊥平面PAO ,因为PA ⊂平面PAO ,所以PA BD ⊥.因为PA AC ⊥,BD AC O ⋂=,BD AC ⊂、平面ABCD ,所以PA ⊥平面ABCD .【小问2详解】如图,取线段BC 的中点H ,连接AH ,易知AH AD ⊥.以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,则()0,0,0A,)1,0B-,)C,(P .()0,2,0BC =uu u r,PC = .设()01PM PC λλ=≤≤,则有(),,,,M M Mx y z λ=,解得),Mλ-,进而),AM λ=.设平面PBC 的法向量为(),,m x y z =.由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩,得200y y =⎧⎪+=,取()1,0,1m = .设直线AM 与平面PBC 所成的角为θ,则154sin cos ,m AM AM m m AMθ==⋅===⋅,化简得,2353070λλ-+=,此方程无解,所以满足条件的点P 不存在.22.已知点()4,0A ,()10B ,,动点P 满足6AB AP PB ⋅=.(1)求动点P 的轨迹C 的方程;(2)设点10,2E ⎛⎫ ⎪⎝⎭,斜率为k 的直线l 与曲线C 交于M ,N 两点.若EM EN =,求k 的取值范围.【答案】(1)22143x y +=(2)1122k -<<【解析】【分析】(1)设动点(),P x y ,分别表示出,,AB AP PB,然后代入计算,化简即可得到结果;(2)根据题意,分0k =与0k ≠两种情况讨论,当0k ≠时,设直线l :y kx m =+,联立直线与椭圆方程,结合韦达定理表示出MN 的中点Q 的坐标,再由条件列出方程,即可得到结果.【小问1详解】设动点(),P x y ,则()3,0AB =- ,()4,AP x y =-,()1,PB x y =--,由已知,得3(4)x --=,化简,得223412x y +=,故动点P 的轨迹C 的方程是22143x y +=.【小问2详解】当0k ≠时,设直线l :y kx m =+,将y kx m =+代入22143x y+=,整理,得()2223484120kxkmx m +++-=,设()11,M x y ,()22,N x y ,()()2222644412340k m m k∆=-⨯-⨯+>,整理,得22430k m +->,①设MN 的中点为Q ,1224234x x km k +=-+,()12122232234k x x m y y mk +++==+,所以2243,3434km m Q k k ⎛⎫-⎪++⎝⎭,由EM EN =,得EQ MN ⊥,即直线EQ 的斜率为1k-,所以22131234434m k km k k-+=-+,化简,得()21432m k =-+,②将②代入①式,解得1122k -<<且0k ≠.当0k =时,显然存在直线l ,满足题设.综上,可知k 的取值范围是1122k -<<.。
2022-2023学年河南省焦作市温县第一高级中学高二上学期期末数学试题一、单选题1.若复数()1i 1i z -=+,则z =( )A B .1 C D .2【答案】B【分析】由复数的除法运算求出复数z ,然后根据复数模长公式即可求解. 【详解】解:因为复数()1i 1i z -=+,所以()21i 1i 2i i 1i 22z ++====-, 所以1z =, 故选:B.2.已知函数()422y x x x =+>-,则此函数的最小值等于( )AB C .4 D .6【答案】D【分析】将函数配凑为4222y x x =-++-,利用基本不等式可求得结果. 【详解】2x >,20x ∴->,44222622y x x x x ∴=+=-++≥=--(当且仅当422x x -=-,即4x =时取等号),()422y x x x ∴=+>-的最小值为6. 故选:D.3.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin4y x =的图象( )A .向左平移12π个单位长度 B .向右平移3π个单位长度 C .向左平移3π个单位长度D .向右平移12π个单位长度 【答案】D【分析】由三角函数图象变换判断.【详解】sin 4sin 4()312y x x ππ⎛⎫=-=- ⎪⎝⎭,因此将函数sin4y x =的图象向右平移12π个单位.故选:D .4.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有 A .180种 B .360种 C .15种 D .30种【答案】B【详解】试题分析:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,利用排列的意义可得:选派方案有46A .详解:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案有46A =360种. 故选B .点睛:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.5.若3262020C C x x ++=,则正整数x 的值是( ) A .2 B .3 C .4 D .2或3【答案】D【分析】直接根据组合数的性质求解即可.【详解】3262020C C x x ++=,326x x ∴+=+或者32620x x +++=,解得2x =或3x =, 经检验,都成立, 故选:D6.已知()212nx n N x *⎛⎫-∈ ⎪⎝⎭的展开式中各项的二项式系数之和为64,则其展开式中3x 的系数为( )A .160B .160-C .60D .60-【答案】B【分析】由二项式系数的性质求出n ,写出二项展开式的通项公式,令x 的指数为3,即可得出答案. 【详解】由展开式中各项的二项式系数之和为64,得264n =,得6n =.∵6212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()626123166r 1C 2(1)C 2(1)rr r r rr r r T x x x ---+⎛⎫=-=- ⎪⎝⎭, 令1233r -=,则3r =,所以其展开式中3x 的系数为()333621160C -=-.故选:B.7.甲,乙两人独立地破解同一个谜题,破解出谜题的概率分别为1223,,则谜题没被破解的概率为( )A .16B .13C .56D .1【答案】A【分析】根据相互独立事件的乘法公式即可得解.【详解】解:设“甲独立地破解出谜题”为事件A ,“乙独立地破解出谜题”为事件B ,()()12,23P A P B ==,故()()12,23P A P B ==,所以()111236P AB =⨯=,即谜题没被破解的概率为16.故选:A.8.某产品的广告费用x 与销售额y 的统计数据如表:根据如表可得回归方程ˆˆˆybx a =+中的b 为7.根据此模型预测广告费用为10万元时销售额为( )万元A .63.6 B .75.5 C .73.5 D .72.0【答案】C【分析】线性回归方程.根据回归方程必过样本中心点,求出回归系数,再将10x =代入,即可得到预报销售额.【详解】解:由题意,3456 4.54x +++==,25304045354y +++==, 由回归方程ˆˆˆybx a =+中的b 为7可得,ˆ357 4.5a =⨯+,解得ˆ 3.5a =, 所以,回归方程为7 3.5ˆyx =+, 所以10x =时,710 3.5 3.ˆ75y=⨯+=元. 故选:C .9.圆22:(1)(1)2C x y -+-=关于直线:1l y x =-对称后的圆的方程为( ) A .22(2)2x y -+= B .22(2)2x y ++= C .22(2)2x y +-= D .22(2)2x y ++=【答案】A【分析】由题可得圆心关于直线的对称点,半径不变,进而即得.【详解】圆22:(1)(1)2C x y -+-=的圆心(1,1),由:1l y x =-得1l k =, 设圆心关于直线对称点的坐标为(,)m n ,则 111111022n m m n -⎧=-⎪⎪-⎨++⎪--=⎪⎩,解得20m n =⎧⎨=⎩, 所以对称圆的方程为22(2)2x y -+=. 故选:A.10.设随机变量X ,Y 满足:31Y X =-,12,3X B ⎛⎫~ ⎪⎝⎭,则()D Y =( )A .4B .5C .6D .7【答案】A【分析】二项分布与n 次独立重复试验的模型.先利用二项分布的数学期望公式求出()D X ,再利用方差的性质求解即可. 【详解】解:因为12,3XB ⎛⎫= ⎪⎝⎭,则()11421339D X ⎛⎫=⨯⨯-= ⎪⎝⎭,又31Y X =-,所以()()()224313349D Y D X D X =-==⨯=.故选:A .11.2022年北京冬奥会的顺利召开,引起大家对冰雪运动的关注.若A ,B ,C 三人在自由式滑雪、花样滑冰、冰壶和跳台滑雪这四项运动中任选一项进行体验,则不同的选法共有( ) A .12种 B .16种 C .64种 D .81种【答案】C【分析】按照分步乘法计数原理计算可得;【详解】解:每个人都可在四项运动中选一项,即每人都有四种选法,可分三步完成, 根据分步乘法计数原理,不同的选法共有44464⨯⨯=种. 故选:C12.某市新冠疫情封闭管理期间,为了更好的保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有( ) A .540种 B .180种 C .360种 D .630种【答案】A【分析】首先将6名志愿者分成3组,再分配到3个社区.【详解】首先将6名志愿者分成3组,再分配到3个社区,可分为3种情况,第一类:6名志愿者分成123++,共有12336533C C C A 360=(种)选派方案,第二类:6名志愿者分成114++,共有1143654322C C C A 90A =(种)选派方案, 第三类:6名志愿者分成222++,共有2223642333C C C A 90A =(种)选派方案, 所以共3609090540++=(种)选派方案, 故选:A.二、填空题13.已知()523450123451x a a x a x a x a x a x -=+++++,则0a =______.【答案】-1【分析】由二项式定理,结合二项式展开式的系数的求法求解即可. 【详解】令0x =,则()50011a =-=-, 故答案为:-1.14.在空间直角坐标系中,已知()2,1,3OA =,()5,1,1OB =-,则AB =_______. 【答案】5【分析】根据题意,求得AB ,再根据空间向量的模的计算公式,即可求得结果. 【详解】因为()2,1,3OA =,()5,1,1OB =-,故可得()3,0,4AB OB OA =-=-, 故235AB ==. 故答案为:5.15.重庆八中某次数学考试中,学生成绩X 服从正态分布()2105,δ.若()1901202P X =,则从参加这次考试的学生中任意选取3名学生,至少有2名学生的成绩高于120的概率是__________. 【答案】532##0.15625 【分析】结合正态分布特点先求出()120P X >,再由独立重复试验的概率公式即可求解. 【详解】因学生成绩符合正态分布()2105,N δ,故()()190120112024P X P X ->==,故任意选取3名学生,至少有2名学生的成绩高于120的概率为23231315C 44432P ⎛⎫⎛⎫=⋅+=⎪ ⎪⎝⎭⎝⎭. 故答案为:53216.设1F ,2F 分别是椭圆()2222:10x y E a b a b+=>>的左右焦点,过点1F 的直线交椭圆E 与A ,B 两点,123AF AF =,2AF x ⊥轴,则椭圆的离心率为___________.【分析】根据椭圆的定义结合123AF AF =,求得21,AF AF ,再利用勾股定理构造齐次式即可得解. 【详解】解:由123AF AF =, 得12242a AF AF AF +==,所以213,22A a F aF A ==, 因为2AF x ⊥轴,所以2222121AF F F AF +=,即2229444a a c +=,所以c a =三、解答题17.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球. (1)求“两球颜色相同”的概率;(2)设ξ表示所取白球的个数,求ξ的概率分布列. 【答案】(1)12 (2)分布列答案见解析【分析】(1)利用独立事件和互斥事件的概率公式可求得所求事件的概率;(2)分析可知随机变量ξ的可能取值有0、1、2,计算出随机变量ξ在不同取值下的概率,可得出随机变量ξ的分布列.【详解】(1)解:从甲中取出黑球的概率为13,取出白球的概率为23,从乙中取出黑球的概率为12,取出白球的概率为12,故“两球颜色相同”的概率1211232213P ⨯+⨯==.(2)解:由题意可得,ξ所有可能取值为0、1、2,()1110326P ξ==⨯=,()11211132322P ξ==⨯+⨯=,()2112323P ξ==⨯=,故ξ的分布列如下表所示:ξ0 12P 16121318.某校所在省市高考采用新高考模式,学生按“3+1+2”模式选科参加高考:“3”为全国统一高考的语文、数学、外语3门必考科目;“1”由考生在物理、历史2门中选考1门科目;“2”由考生在思想政治、地理、化学、生物学4门中选考2门科目,(1)为摸清该校本届考生的选科意愿,从本届750名学生中随机抽样调查了100名学生,得到如下部分数据分布:请在答题卡的本题表格中填好上表中余下的5个空,并判断是否有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关;(2)已选物理方向的甲、乙两名同学,在“4选2”的选科中,求他们恰有一门选择相同学科的概率.附:22(),n ad bcK n a b c d-==+++.【答案】(1)填表答案见解析,有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关(2)2 3【分析】(1)根据题意完善列联表,计算2K,即可得出结论.(2)先求出已选物理方向的甲、乙两名同学,在“4选2”的选科中,所有的基本事件的总数,再求出在“4选2”的选科中,他们恰有一门选择相同学科的事件总数,由古典概率的公式代入即可得出答案. 【详解】(1)根据题意可得,列联表如下:由于2K 的观测值2100(30402010)5016.66710.828406050503k ⨯⨯-⨯==≈>⨯⨯⨯,所以有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关.(2)已选物理方向的甲、乙两名同学,在“4选2”的选科中,所有的基本事件(记为事件Ω)列举如下:(政,地;政,地),(政,地;政,化),(政,地;政,生),(政,地;化,地),(政,地;生,地),(政,地;生,化),(政,化;政,地),(政,化;政,化),(政,化;政,生),(政,化;化,地),(政,化;生,地),(政,化;生,化),(政,生;政,地),(政,生;政,化),(政,生;政,生),(政,生;化,地),(政,生;生,地),(政,生;生,化),(地,化;政,地),(地,化;政,化),(地,化;政,生),(地,化;化,地),(地,化;生,地),(地,化;生,化),(地,生;政,地),(地,生;政,化),(地,生;政,生),(地,生;化,地),(地,生;生,地),(地,生;生,化),(化,生;政,地),(化,生;政,化),(化,生;政,生),(化,生;化,地),(化,生;生,地),(化,生;生,化),共36种,设事件{A =在“4选2”的选科中,他们恰有一门选择相同学科},有24种, 则()242()(Ω)363n A P A n ===.19.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c sin cos C c c A =+. (1)求角A 的大小;(2)若a =ABC ∆ABC ∆的周长.【答案】(1) 3A π=(2) 【详解】试题分析:(1)由正弦定理,将边长转化为正弦,由内角的范围和特殊三角函数值,求出角A ;(2)由余弦定理以及三角形面积公式求出b c +的值,再求出周长.试题解析:(1sin sin sin cos A C C C A =+()0,C π∈,sin 0C ∴≠,1cos A A =+;1sin 62A π⎛⎫∴-= ⎪⎝⎭;5,666A πππ⎛⎫-∈- ⎪⎝⎭,663A A πππ∴-=⇒= (2)()22222cos 312a b c bc A b c bc =+-⇒+-=;1sin 342ABC S bc A bc ∆==⇒=;26b c ∴+=;∴ ABC ∆的周长为2326+20.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在上且.(Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的余弦值. 【答案】(Ⅰ)证明见解析. (Ⅱ)1442【详解】试题分析:(1)以为坐标原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.可得各点坐标,从而可得各向量坐标,根据向量数量积为0则两向量垂直,可得,根据线面垂直的判定定理可证得平面.(2)根据向量垂直数量积等于0可求得平面的一个法向量,由数量积公式可求得两法向量所成角的二面角.两法向量所成的角与二面角的平面角相等或互补,所以观察图像可得所求二面角的平面角为锐角,所以所求二面角的平面角的余弦值等于两法向量余弦值的绝对值. 试题解析:以为坐标原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.依题设,.11(0,2,1),(2,2,0),(2,2,4),(2,0,4)DE DB AC DA ===--= . (1)1122220(4)0,0(2)221(4)0AC DB AC DE ⋅=-⨯+⨯+⨯-=⋅=⨯-+⨯+⨯-= ,11,AC DB AC DE ⊥⊥,即又BD DE D ⋂=,平面. (2)由(1)知1(2,2,4)AC =--为面的一个法向量. 设向量(,,)n x y z =是平面的法向量,则1,n DE n DA ⊥⊥,. 令,则,. 所以1112421(4)(2)14cos ,42||||44161614AC n AC n AC n ⋅-⨯+⨯+-⨯-<>===⋅++⨯++ 观察可知二面角的平面角为锐角,∴二面角的余弦值为.【解析】1线面垂直;2用空间向量法解决立体几何问题.【方法点晴】本题主要考查的是线线垂直、线面垂直、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.用空间向量法解题时一定要注意二面角的余弦值等于两法向量夹角的余弦值或其绝对值,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.21.已知圆221:4C x y +=,圆()222:31C x y -+=,直线l 过点()1,2M .(1)若直线l 被圆1C 所截得的弦长为l 的方程;(2)若直线l 与圆2C 相交于A ,B 两点,求线段AB 的中点P 的轨迹方程.【答案】(1)1x =或3450x y -+=(2)224230x y x y +--+=x y <<<<⎝⎭【分析】(1)根据题意,由直线与圆的位置关系可得圆心1C 到直线l 的距离d ,进而分直线l 的斜率存在与否两种情况讨论,求出直线的方程,综合即可得答案; (2)根据题意,设P 的坐标为(,)x y ,分析可得2C P MP ⊥,则P 在以2C M 为直径上为圆上,据此分析可得答案.【详解】(1)解:根据题意,圆221:4C x y +=,圆心为(0,0),半径2r =,若直线l 被圆1C 所截得的弦长为1C 到直线l 的距离1d ==, 分2种情况讨论:()i 当直线的斜率不存在时,1x =,显然满足题意,()ii 当直线的斜率存在时,可设直线方程2(1)y k x -=-即20kx y k -+-=,则圆心(0,0)到直线20kx y k -+-=的距离d1=,解得34k =,此时直线方程为3450x y -+=, 综上可得满足题意的直线1x =或3450x y -+=,(2)解:根据题意,设P 的坐标为(,)x y ,P 为线段AB 的中点,则有2C P MP ⊥,则P 在以2C M 为直径的圆上,又由圆222:(3)1C x y -+=,其圆心2C 的坐标为(3,0)且(1,2)M ,因为()23,C P x y =-,()1,2MP x y =--,所以2(3)(1)(2)0C P MP x x y y ⋅=--+-=,变形可得224230x y x y +--+=;故P 的轨迹方程为224230x y x y +--+=,显然点P 位于圆2C 内部,由224230x y x y +--+=且22(3)1x y -+=,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P 的轨迹方程为224230x y x y +--+=x y <<<<⎝⎭. 22.已知椭圆C :22221(0)x y a b a b +=>>3122⎛⎫ ⎪⎝⎭,. (1)求椭圆C 的方程.(2)过点()02P ,的直线交椭圆C 于A 、B 两点,求AOB 为原点)面积的最大值. 【答案】(1)2213x y +=【分析】(1)由题意可得2222291144c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a ,b ,即可得出答案. (2)由题意可知直线l 的斜率存在,设直线:2l y kx =+,1(A x ,1)y ,2(B x ,2)y ,联立直线l 与椭圆的方程,结合韦达定理可得12x x +,12x x ,由弦长公式可得||AB ,点到直线的距离公式可得点O 到直线l 的距离d ,再计算AOB 的面积,利用基本不等式,即可得出答案.【详解】(1)解:由题意可得2222291144c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得1a b ==,所以椭圆C 的标准方程为2213x y +=. (2)解:由题意可知直线l 的斜率存在,设直线:2l y kx =+,1(A x ,1)y ,2(B x ,2)y ,联立22213y kx x y =+⎧⎪⎨+=⎪⎩,得22(31)1290k x kx +++=, 222Δ14436(31)36(1)0k k k =-+=->, 所以21k >,即1k >或1k <-, 则121222129,3131k x x x x k k +=-=++, 故2222212226(1)(1)12911()43131k k k AB k x x k k k +-+-+--⨯=++, 点O 到直线l 的距离21d k =+所以AOB 的面积21612k S AB d -=⋅= 设210t k ->,则221k t =+, 故2666343(1)12123t S t t t ===+++23t =时,等号成立, 所以AOB 3。
一、单选题1.在等比数列中,,,则等于( ) {}n a 11a =84a =234567a a a a a a A .32 B .64 C .128 D .256【答案】B【分析】根据等比数列下标和性质计算可得. 【详解】解:在等比数列中,,, {}n a 11a =84a =则,273645184a a a a a a a a ====所以.7323456464a a a a a a ==故选:B2.双曲线上的点到左焦点的距离为9,则点到右焦点的距离为( )22:1916x y C -=P P A .3 B .15 C .15或3 D .10【答案】C【分析】由双曲线的定义求解即可.【详解】设双曲线的左焦点为,右焦点为,1F 2F因为双曲线方程为,所以,,,22:1916x y C -=3a =4b =5c ==由双曲线的定义得,则, 122PF PF a -=126PF PF -=126PF PF -=±又因为,所以或,19PF =215PF =3由双曲线的性质可知,到焦点距离的最小值为, P 5323c a -=-=<故选:C3.设函数在点处的切线方程为,则( )()f x (1,(1))f 43y x =-()()11lim x f x f x∆→+∆-=∆A . B .C .D .4213-【答案】A【分析】根据导数的几何意义可知,再根据导数值的定义即可选出答案. (1)f '【详解】由导数值的定义,,根据导数的几何意义,,即()()11lim(1)x f x f f x∆→+∆-'=∆(1)4f '=.()()11lim4x f x f x∆→+∆-=∆故选:A4.数列满足,,则( ) {}n a 111n na a +=-13a =2023a =A .3B .C .D .12-5223【答案】A【分析】根据递推公式求得数列中的前几项,从而得到数列的周期,由此即可求得的值. 2023a 【详解】因为,, 111n na a +=-13a =所以,1132111111111111111111111n n n n n n n n n n n a a a a a a a a a a a +++++++------=======---------所以数列是以3为周期的周期数列, {}n a 故. 20231367413a a a +⨯===故选:A.5.已知抛物线,直线l 过定点P (0,1),与C 仅有一个公共点的直线l 有( )条 2:4C y x =-A .1 B .2 C .3 D .4【答案】C【分析】过抛物线外一定点的直线恰好与该抛物线只有一个交点,则分两种情况分别讨论,(0,1)P 一是直线与抛物线的对称轴平行,二是直线与抛物线相切,根据这两种情况进而求解.【详解】过点的直线与抛物线仅有一个公共点,则该直线可能与抛物线的对称(0,1)P l 2:4C y x =-l 轴平行,也可能与抛物线相切,下面分两种情况讨论:当直线与抛物线的对称轴平行时,则直线的方程为:,满足条件;l l 1y =当直线与抛物线相切时,由于点在轴上方,且在抛物线外,则存在两条直线与抛物线相l (0,1)P x 切,易知:是其中一条,0x =不妨设另一条直线的方程为,联立直线与抛物线方程可得:,则l 1y kx =+l 22(24)10k x k x +++=有,解得:,22(24)40k k ∆=+-=1k =-所以过点的直线的方程为:或或, (0,1)P l 1y =0x =1y x =-+故选:.C 6.已知,,则数列的通项公式是( )12a =()1+=-n n n a n a a {}n a n a =A .n B . C .2nD .1n +1nn n +⎛⎫⎪⎝⎭【答案】C【分析】根据题意可得,再利用累乘法计算可得; 11n n a n a n++=【详解】解:由,得, ()1+=-n n n a n a a ()11n n n a na ++=即, 11n n a n a n++=则,,,…,,11n n a n a n -=-1212n n a n a n ---=-2323n n a n a n ---=-2121a a =由累乘法可得,因为,所以,1na n a =12a =2n a n =故选:C .7.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”( ) A .6天 495人 B .7天 602人 C .8天 716人 D .9天 795人【答案】B【分析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数{}n a 165a =列,解方程可得所求值.【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且n n a {}n a ,,123216a a a =++21300n n n a a a --++=∴,, 13002161723n a a ++==107n a =∴天 1177n a a n -=+=则目前派出的人数为人,()17776022a a S +==故选:B .8.已知圆和两点,若圆上存在点,使得()()22:5121C x y -+-=(0,),(0,)(0)A m B m m ->C P ,则的最小值为( )90APB ∠= m A .14 B .13 C .12 D .11【答案】C【分析】将问题转化为以为直径的圆与圆有公共点的问题来列不等式,解不等式求得的AB O C m 取值范围,由此求得的最小值.m【详解】解:以为直径的圆的方程为,圆心为原点,半径为.圆AB O 222x y m +=1r m =的圆心为,半径为.()()22:5121C x y -+-=()5,12C 21r =要使圆上存在点,使得,则圆与圆有公共点, C P 90APB ∠=︒O C所以,即,1212r r OC r r -≤≤+1m +所以, 11313113113113113m m m m m ⎧-≤-≤-≤⎧⎪⇒⎨⎨+≥+≤-+≥⎪⎩⎩或⇒12141212m m m -≤≤⎧⎨≤-≥⎩或又,所以,所以的最小值为. 0m >1214m ≤≤m 12故选:C二、多选题9.已知等差数列则( ) 10,7,4,, A .该数列的通项公式为 313n a n =-+B .是该数列的第13项 25-C .该数列的前5项和最大D .设该数列为,则 {}n a 1238||||||||48a a a a ++++= 【答案】AD【分析】根据首项和公差求出和,利用和计算可得答案.n a n S n a n S 【详解】依题意,所以,故A 正确; 110,3a d ==-1(1)103(1)313n a a n d n n =+-=--=-+由,得,故B 不正确; 31325n a n =-+=-38133n =≠由,得,由,得,所以该数列的前4项和最大,故C 不3130n a n =-+≥4n ≤3130n a n =-+<5n ≥正确;,(1)10(3)2n n n S n -=+⨯-23232n n-+= 123812345678||||||||()a a a a a a a a a a a a ++++=+++-+++ 482S S =-,故D 正确. 223423438238222-⨯+⨯-⨯+⨯=⨯-48=故选:AD10.已知圆,则下列说法正确的是( )22230M x y x +--=:A .点(2,0)在圆M 内B .圆M 关于对称10x y +-=CD .直线与圆M 的相交所得弦长为10x +=【答案】ABD【分析】根据点的坐标与圆的方程的关系判断A ,判断点与直线的位置关系,判断M 10x y +-=B ;配方后得到圆的半径,判断C ;利用弦长公式求弦长判断D. 【详解】整理得:,22230x y x +--=()2214x y -+=因为,时,∴点在圆M 内,A 正确; 2x =0y =222330x y x +--=-<()2,0因为圆心在直线上,所以圆M 关于对称,B 正确; ()1,0M 10x y +-=10x y +-=因为圆M 半径为2,故C 错误;∵圆心到直线的距离为,()1,0M 10x +=1d ==所以直线与圆M 的相交所得弦长为,D 正确. 10x +==故选:ABD.11.已知数列满足,其中,Sn 为数列{}的前n 项{}n a ()12321n a a n a n +++-= ()21nn a b n =+n b和,则下列四个结论中,正确的是( ) A .B .数列{}的通项公式为: 11a =n a 121n a n =+C .数列{}为递减数列 D .若对于任意的都有,则 n a *N n ∈n S λ<12λ≥【答案】ACD【分析】令可求;利用已知求的方法求数列通项公式;根据递减数列的定义判断1n =1a n S n a {}n a 数列的单调性,利用裂项相消法求数列的前n 项和,由条件求的范围. {}n b λ【详解】因为,()12321n a a n a n +++-= 所以当时,, 2n ≥()1213231n a a n a n -+++-=- 两式相减得,所以, ()211n n a -=121n a n =-又因为当时,满足上式,1n =11a =所以数列的通项公式为:,故A 正确,B 错误, {}n a 121n a n =-因为,,所以, 121n a n =-N n *∈()()1112021212121n n a a n n n n +-=-=-<+-+-所以,所以数列为递减数列,故C 正确;1n n a a +<{}n a ,()()()111121212122121n n a b n n n n n ⎛⎫===- ⎪+-+-+⎝⎭所以 12n n S b b b =+++ , 11111111111232352212124221n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭ 因为对于任意的都有,所以,其中,*N n ∈n S λ<max 21n n λ⎛⎫< ⎪+⎝⎭*N n ∈又,所以,故D 正确. 1121221n n n =<++12λ≥故选:ACD.12.已知、分别为双曲线的左、右焦点,点在直线l 上,过点1F 2F 222:1(0)4x yC b b-=>(4,0)M -2F 的直线与双曲线的右支交于A 、B 两点,下列说法正确的是( )A .若直线l 与双曲线左右两支各一个交点,则直线l 的斜率范围为)(,)22b b-B .点2F C .若直线AB垂直于x 轴,且△ABM 为锐角三角形,则双曲线的离心率取值范围为 D .记的内切圆的半径为r 1,的内切圆的半径为,若,则12AF F △1I 12BF F △2I 2r 124r r =b =【答案】ACD【分析】设出直线的方程,与双曲线方程联立,根据题意,两交点的横坐标异号,利用韦达定理l 即可求解,判断选项;求出右焦点到渐近线的距离为,进而判断选项;要使为锐角三A bB ABM :角形,则,所以,进行等量代换求出离心率的取值即可判断选项;根据三245AMF ∠<︒24b c a +>C 角形内切圆的特点先求出两圆的内心在上,然后利用三角形相似求出的值,进而求出,即x a =c b 可判断选项.D 【详解】对于,由题意知:直线的斜率存在,设直线的方程为:, A l l (4)y k x =+设直线与双曲线左右两支的交点分别为,,l 11(,)P x y 22(,)Q x y 联立方程组,整理可得:,22214(4)x y b y k x ⎧-=⎪⎨⎪=+⎩222222(4)326440b k x k x k b ----=则,也即,解得:,故选项正确; 22122264404k b x x b k --⋅=<-2240b k ->22b b k -<<A 对于,设右焦点为,双曲线的渐近线方程为:,由点到直线的距离公式可得:B 2(,0)F c 0bx ay ±=点到双曲线渐近线的距离错误;2F d b ==≠B 对于,若直线AB 垂直于x 轴,则直线的方程为:,设点,,要使C AB x c =2(,)bA c a2(,b B c a-为锐角三角形,由双曲线的对称性可知:,ABM :245AMF ∠<︒则,即,所以,22F M AF >24b c a+>24b ac a <+又因为,则,也即,整理可得:,则2a =2242b ac a ac a <+=+2222c a ac a -<+2230c ac a --<, 230e e --<e <1e >所以,故选项正确; e ∈C 对于,过分别作的垂线,垂足为,D 1I 1212,,AF AF F F ,,DE F则,因为,1122,,AD AE F D F F F F F E ===122AF AF a -=则,又因,1212()()2AD DF AE EF F F F F a +-+=-=12122F F F F F F c =+=则,所以,即在直线上,同理也在直线上,所以11FF OF OF a c =+=+OF a =1I x a =2I x a =轴,12I I x ⊥因为,1212122221,I F A I F F I F B I F F ∠=∠∠=∠则,所以, 1221212121222I F I F I F F I F F F I A B I ∠∠∠∠∠++==22190I F I ∠=︒由可知:,则,也即,1222I FF F FI :::1222I F F F F FI F=2212IF I F FF ⋅=212()r r c a ⋅=-因为,,所以,,故选项正确,2a =124r r =4c =b ==D故选:.ACD三、填空题13.已知直线l 1,若,则实数a =______. ()210130x ay l a x y +-=+++=:,:12l l ⊥【答案】##12-0.5-【分析】根据若,则,运算求解. 12l l ⊥12120A A B B +=【详解】若,则,解得.12l l ⊥()1110a a ⨯++⨯=12a =-故答案为:.12-14.已知函数,则=______. 2()ln 31f x x x x =+-1f '()【答案】7【分析】求出的导数,再将代入,即可得答案. ()f x ()f x '1x =【详解】解:因为, 2()ln 31f x x x x =+-所以,1()ln 6ln 61f x x x x x x x'=+⋅+=++所以. (1)ln16117f '=+⋅+=故答案为:715.设椭圆的左、右焦点分别为、,点M 、N 在C 上(M 位于第一象2222:1(0)x y C a b a b+=>>1F 2F 限),且点M 、N 关于原点O 对称,若,则C 的离心率为______.12290,2||||MF N MF NF ︒∠==【分析】根据几何分析确定四边形为矩形,根据勾股定理构造齐次式即可求出离心率. 12MF NF 【详解】依题意,作图如下,因为点关于原点对称,所以为的中点,,M N O O MN且为的中点,,所以四边形为矩形,O 12F F 190N MF ︒∠=12MF NF 由,设 222MF NF =21,2,MF x MF x ==由椭圆的定义知,解得: 212,MF MF a +=2124,,33a a MF MF ==所以()22224233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭整理得:,因为, 259e =01e <<所以 e =四、双空题16.已知数列满足,,则______;高斯是德国著名的数学家,近代数学{}n a 11a =12n n a a n ++=3a =奠基者之一,享有“数学王子”的称号,设,用表示不超过的最大整数,称为x ∈R []x x ()[]f x x =高斯函数.设,且数列的前项和为,则______. []1g n n b a ={}n b n n T 2022T =【答案】34956【分析】根据递推公式一一计算即可求出,再归纳出的通项,最后结合高斯函数的定义并项3a {}n a 求和计算可得.【详解】解:因为,, 11a =12n n a a n ++=当时,则, 1n =122a a +=21a =当时,则, 2n =324a a +=33a =当时,则, 3n =346a a +=43a =当时,则,4n =548a a +=55a =,由此可归纳得,当为奇数时,当为偶数时,n n a n =n 1n a n =-显然当时成立,假设当(为奇数)时成立,即,则,即1n =11a =n k =k k a k =12k k a a k ++=也成立,1k a k +=假设当(为偶数)时成立,即,则,即也成立,故归纳成n k =k 1k a k =-12k k a a k ++=11k a k +=+立;因为,[]1g n n b a =当时,则, 110n ≤≤19n a ≤≤[]1g 0n n b a ==当时,则, 11100n ≤≤1199n a ≤≤[]1g 1n n b a ==当时,则, 1011000n ≤≤101999n a ≤≤[]1g 2n n b a ==当时,则,10012022n ≤≤10012021n a ≤≤[]1g 3n n b a ==()232320220101(1010)2(1010)3202210T ∴=⨯+⨯-+⨯-+⨯- 190290031022=⨯+⨯+⨯.4956=故答案为:,.34956五、解答题17.在数列{}中,n a ()*11534N n n a a a n +==-∈,(1)求证:是等比数列: {}2n a -(2)求数列{}的前n 项和. n a n S 【答案】(1)证明过程见详解(2)3(31)22n n S n -=+【分析】(1)根据递推公式和等比数列的定义即可使问题得证; (2)利用等比数列的求和公式,分组求和即可求解.【详解】(1)由题意知:,所以, 134n n a a +=-12362(2)n n n a a a +-=-=-即,又, 1222n n a a +-=-1230a -=≠所以数列是以3为首项,以3为公比的等比数列.{}2n a -(2)由(1)可知:,所以,23n n a -=23nn a =+所以1221n n n S a a a a a -=+++++1231(2+2+2++2+2)(33333)n n -=++++++ 3(13)213n n -=+-. 3(31)22n n -=+18.如图,正方体ABCD —的棱长为2,P 、Q 分别为BD 、的中点.1111D C B A 1CD(1)证明:PQ 平面;:11BCC B (2)求直线与平面所成角的大小. 1CD 11ABC D 【答案】(1)证明见详解 (2) π6【分析】(1)建系,利用空间向量证明线面平行;(2)先求平面的法向量,再利用空间向量求线面夹角. 11ABC D 【详解】(1)如图,以D 为坐标原点建立空间直角坐标系,则,()()()()()()12,0,0,2,2,0,0,2,0,,1,1,0,0,1,10,0,2A B C D P Q 可得,平面的法向量,()1,0,1PQ =-u u u r11BCC B ()0,1,0n = ∵,且平面,1001100PQ n ⋅=-⨯+⨯+⨯=u u u r rPQ ⊄11BCC B ∴PQ 平面.:11BCC B (2)由(1)可得:, ()()()110,2,0,2,0,2,0,2,2AB AD CD ==-=-设平面的法向量为,则, 11ABC D (),,m x y z = 120220m AB y m AD x z ⎧⋅==⎪⎨⋅=-+=⎪⎩令,则,故,1x =0,1y z ==()1,0,1m =∵,1111cos ,2m CD m CD m CD ⋅===u r u u u ru r u u u ru r u u u r 故直线与平面所成角的正弦值为,则其大小为. 1CD 11ABC D 12π619.已知抛物线上一点到抛物线焦点的距离为,()2202C y px p =<<:1P p ⎛ ⎝32(1)求抛物线的方程:C (2)若直线(为参数)与抛物线C 交于两点,且,求直线的方程 :l y x m =+m ,A B OA OB ⊥l 【答案】(1) 22y x =(2) 2y x =-【分析】(1)利用抛物线的定义,列方程求出即可;p (2)联立直线和抛物线方程,设出,,然后用韦达定1122(,),(,)A x y B x y 12120OA OB x x y y ⊥⇔+=理求解.【详解】(1)根据抛物线的定义,到焦点的距离等于到准线的距离,即,结合题干条P 3122pp =+件,解得,故抛物线方程为:02p <<1p =22y x =(2)设,依题意:1122(,),(,)A x y B x y ()()112212120,,00OA OB OA OB x y x y x x y y ⊥⇔⋅=⇔⋅=⇔+=,联立直线和抛物线:,得到,,解得,由韦达定22y x y x m⎧=⎨=+⎩2220y y m -+=480m ∆=->12m <理:,在抛物线上,故,于是,于是122y y m =1122(,),(,)A x y B x y 21122222y x y x ⎧=⎨=⎩22212124y y x x m ==,解得或,但时,其中一点和重合,不符题意,时,220m m +=0m =2m =-0m =,A B O 2m =-符合判别式条件.综上可知,,此时直线方程为:2m =-2y x =-20.已知数列的前n 项和为,且,______.请在①:②{}n a n S 11n n n S S a +=++*()N n ∈3914a a +=,,成等比数列:③,这三个条件中任选一个补充在上面题干中,并解答下面问2a 5a 11a 844S =题.注:如果选择多个条件分别解答,按第一个解答计分. (1)求数列的通项公式; {}n a (2)若,设数列{}的前n 项和,求证: 2nn n a b =n b n T 13n T ≤<*()N n ∈【答案】(1) 1n a n =+(2)证明见解析【分析】(1)先根据推出数列为等差数列,公差.若选①,根据等差中项11n n n S S a +=++{}n a 1d =求出,再求出,根据和可得通项公式;若选②,根据等比中项列式求出,可得;若6a 1a 1a d 1a n a 选③,根据等差数列求和公式列式求出,可得. 1a n a (2)利用错位相减法求出,根据为正数,得,根据为递增数列,可得. n T 32n n +3nT <n T 11n T T =≥【详解】(1)由,得,得, 11n n n S S a +=++11n n n S S a +-=+11n n a a +-=所以数列为等差数列,公差.{}n a 1d =若选①,因为,所以,, 3914a a +=6214a =67a =所以,, 6157a a d =+=12a =所以,1(1)211n a a n d n n =+-=+-=+若选②,因为,,成等比数列,所以,2a 5a 11a 25211a a a =所以,所以,2111(4)()(10)a d a d a d +=++2111(4)(1)(10)a a a +=++所以,所以. 12a =1(1)211n a a n d n n =+-=+-=+若选③,因为,所以, 81878442S a ⨯=+=12a =所以, 1(1)211n a a n d n n =+-=+-=+(2)由(1)知,,则, 1n a n =+12n nn b +=则, 12323412222n nn T +=++++ , 23411234122222n n n T ++=++++ 所以,23411111111222222n n n n n T T ++-=+++++- 所以, 1111(1)1142112212n n n n T -+-+=+--所以,因为为正数,所以, 332n n n T +=-32nn +3n T <因为, 11433322n n n nn n T T ++++-=--+112642022n n n n n +++--+==>所以,所以数列为递增数列, 1n n T T +>{}n T 所以, 14312n T T ≥=-=综上所述:.13n T ≤<*()N n ∈21.在平面五边形中(如图1),是梯形,,,ABCDE ABCD //AD BC 22AD BC ==AB =,是等边三角形.现将沿折起,连接,得四棱锥90ABC ∠=ADE V ADE V ADEB EC E ABCD-(如图2)且EC =(1)求证:平面平面; EAD ⊥ABCD (2)在棱上有点,满足,求二面角的余弦值. EB F 13EF EB=E AD F --【答案】(1)证明见解析【详解】(1)在图1中,取的中点,连,依题意得,,如图:AD O ,OC OE OC OA ⊥OE OA ⊥则 OC AB ==2OE ==折叠后,在图2中,,如图:OE AD ⊥在中,,所以, COE :OC =OE =EC 222EC OC OE =+OE OC ⊥由,,,平面,平面, OE AD ⊥OE OC ⊥OC AD O = OC ⊂ABCD AD ⊂ABCD 得平面,又平面, OE ⊥ABCD OE ⊂EAD 所以平面平面。
高二上学期数学期末测试题The document was prepared on January 2, 2021高 二 上 学 期 数 学 期 末 测 试 题一、选择题:1.不等式212>++x x 的解集为 A.()()+∞-,10,1 B.()()1,01, -∞- C.()()1,00,1 - D.()()+∞-∞-,11, 2.0≠c 是方程 c y ax =+22 表示椭圆或双曲线的 条件 A .充分不必要B .必要不充分C .充要D .不充分不必要3.若,20πθ≤≤当点()θcos ,1到直线01cos sin =-+θθy x 的距离为41,则这条直线的斜率为 B.-1 C.23 D.-334.已知x 的不等式01232>+-ax ax 的解集是实数集 R ,那么实数a 的取值范围是A.0,916 B.0, 916 C.916,0 D.⎪⎭⎫⎢⎣⎡38,0 5.过点2,1的直线l 被04222=+-+y x y x 截得的最长弦所在直线方程为: A. 053=--y x B. 073=-+y x C. 053=-+y x D. 013=+-y x6.下列三个不等式:①;232x x >+②2,0,≥+≠∈ba ab ab R b a 时、;③当0>ab 时,.b a ba +>+其中恒成立的不等式的序号是 A.①② B.①②③ C.① D.②③7.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y xD .041222=+--+y x y x8.圆C 切y 轴于点M 且过抛物线452+-=x x y 与x 轴的两个交点,O 为原点,则OM 的长是 A .4 B . C .22 D .29.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x10.抛物线x y 42-=上有一点P,P 到椭圆1151622=+y x 的左顶点的距离的最小值为A .32B .2+3C .3D .32-11.若椭圆)1(122>=+m y mx与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 A .4B .2C .1D .12.抛物线px y 22=与直线04=-+y ax 交于两点AB,其中点A坐标为1,2,设抛物线焦点为F,则|FA |+|FB |= A.7 B.6 C.5 D.4二、填空题13. 设函数,2)(+=ax x f 不等式6|)(|<x f 的解集为-1,2,则不等式()1≤x f x的解集为 14.若直线)0,0(022>>=+-b a by ax 始终平分圆014222=+-++y x y x 的圆周,则ba11+的最小值为______ 15.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 . 16.抛物线x y 22-=上的点M 到焦点F 的距离为3,则点M 的坐标为____________. 三、解答题: 18.已知椭圆)0(1:2222>>=+b a by a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.Ⅰ求椭圆C 的方程;Ⅱ已知直线l 与圆3222=+y x 相切,求证:OA ⊥OBO 为坐标原点;Ⅲ以线段OA,OB 为邻边作平行四边形OAPB,若点Q 在椭圆C 上,且满足OP OQ λ=O 为坐标原点,求实数λ的取值范围.19.已知圆C y 轴对称,经过抛物线x y 42=的焦点,且被直线x y =分成两段弧长之比为1:2,求圆C 的方程.20. 平面内动点Px,y 与两定点A-2, 0, B2,0连线的斜率之积等于-1/3,若点P 的轨迹为曲线E,过点Q (1,0)-作斜率不为零的直线CD 交曲线E 于点C D 、.1求曲线E 的方程; 2求证:AC AD ⊥;3求ACD ∆面积的最大值.21.已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程. 22、设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆与x 轴正半轴Q P 、两点,且PQ AP 58=I 求椭圆离心率e ;II 若过A,F,Q 三点的圆恰好与直线033:=++y x l 相切,求椭圆方程答案一、ABDB A CD D A A C A 二、13. {x|x>21或52≤x }; 14. 4 ; 15.0,±3; 16.-5,25±. 三、17.解:由062322<--+-x x x x ,得0)2)(3()2)(1(<+---x x x x 18.Ⅰ椭圆方程为2212x y +=;Ⅱ见解析Ⅲ22λ-<<且0λ≠.解析试题分析:Ⅰ由已知离心率为22,可得等式222b a =;又因为椭圆方程过点(1M 可求得21b =,22a =,进而求得椭圆的方程; Ⅱ由直线l 与圆2223x y +=相切,可得m 与k 的等式关系即222(1)3m k =+,然后联立直线l 与椭圆的方程并由韦达定理可得122412kmx x k +=-+,21222212m x x k -=+,进而求出=21y y 222212m k k -+,所以由向量的数量积的定义可得→→⋅OB OA 的值为0,即结论得证;Ⅲ由题意可分两种情况讨论:ⅰ当0m =时,点A 、B 原点对称;ⅱ当0m ≠时,点A 、B不原点对称.分别讨论两种情形满足条件的实数λ的取值范围即可.试题解析:Ⅰ222c e a b c a==+离心率,222a b ∴= 222212x y b b ∴+=椭圆方程为,将点(12M ,代入,得21b =,22a =∴所求椭圆方程为2212x y +=.Ⅱ因为直线l 与圆2223x y +=相切,所以=即222(1)3m k =+ 由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412kmx x k +=-+,21222212m x x k -=+,所以1212()()y y kx m kx m =++=221212()k x x km x x m +++=222212m k k -+,所以1212OA OB x x y y ⋅=+=222212m k -++222212m k k -+=22232212m k k --+=0,故OA OB ⊥, Ⅲ由Ⅱ可得121222()212my y k x x m k +=++=+, 由向量加法平行四边形法则得OA OB OP +=,OP OQ λ=,OA OB OQ λ∴+= ⅰ当0m =时,点A 、B 原点对称,则0λ= 此时不构成平行四边形,不合题意. ⅱ当0m ≠时,点A 、B 不原点对称,则0λ≠,由OA OB OQ λ+=,得12121(),1().Q Q x x x y y y λλ⎧=+⎪⎪⎨⎪=+⎪⎩ 即224,(12)2.(12)Q Qkm x k m y k λλ-⎧=⎪+⎪⎨⎪=⎪+⎩点Q 在椭圆上,∴有222242[]2[]2(12)(12)km mk k λλ-+=++, 化简,得222224(12)(12)m k k λ+=+.2120k +≠,∴有2224(12)m k λ=+. ①又222222164(12)(22)8(12)k m k m k m ∆=-+-=+-,∴由0∆>,得2212k m +>. ②将①、②两式,得2224m m λ>0m ≠,24λ∴<,则22λ-<<且0λ≠.综合ⅰ、ⅱ两种情况,得实数λ的取值范围是22λ-<<且0λ≠.19.解:设圆C 的方程为)(2a y x -+22r =, 抛物线x y 42=的焦点()0,1F221r a =+∴ ①又直线x y =分圆的两段弧长之比为1:2,可知圆心到直线x y =的距离等于半径的,21即22r a = ②解①、②得2,12=±=r a 故所求圆的方程为 2)1(22=±+y x20.1223144x y +=(2)x ≠±;2略;31. 解析试题分析:1根据题意可分别求出连线PA ,PB 的斜率PA k ,PB k ,再由条件斜率之积为13列出方程,进行化简整理可得曲线E 的方程,注意点P 不与点,A B 重合.根据斜率的计算公式可求得2PA y k x ,2PB yk x ,所以12223y yx x x ,化简整理可得曲线E 的方程为223144x y +=(2)x ≠±; 2若要证AB AC ,只要证0AB AC ,再利用两个向量数量积为零的坐标运算进行证明即可.那么由题意可设直线BC 的方程为1myx ,1122,,,C x y D x y ,联立直线与椭圆的方程消去x ,可得y 的一元二次方程032)3(22=--+my y m ,由违达定理知33,32221221+-=+=+m y y m m y y ,则12122623x x m y y m ,()()21212243113m x x my my m -+⋅=--=+,又112,ACx y ,222,AD x y ,所以()()()121212*********AC AD x x y y x x x x y y ⋅=+++=++++=,从而可以证明AB AC ;3根据题意可知122111223ACDS AQ y y m △=⋅-=⨯=+,=故当0m =时,ACD △的面积最大,最大面积为1.试题解析:1设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:1223y y x x ⋅=--+,化简得223144x y +=, 故曲线E 的方程为223144x y +=(2)x ≠±. 4分说明:不写2x ≠±的扣1分 2CD 斜率不为0,所以可设CD 方程为1+=x my ,与椭圆联立得:032)3(22=--+my y m 设),(),,(2211y x D y x C , 所以33,32221221+-=+=+m y y m m y y ,. 6分 01323)1(31)()1(),2(),2(2222212122211=+++++-=++++=+⋅+m m m m y y m y y m y x y x ,所以AC AD ⊥ 8分3ACD ∆面积为2222221)3(334394||21+-+=++=-m m m m y y , 10分 当0=m 时ACD △的面积最大为1. 12分考点:1.椭圆的方程;2.向量法证明两直线垂直;3.三角形面积的计算.21.解:直线l 与x 轴不平行,设l 的方程为 a my x += 代入双曲线方程 整理得而012≠-m ,于是122--=+=m amy y y B A T 从而 12--=+=m a a my x T T 即 )1,1(22mam am T -- 点T 在圆上 012)1()1(22222=-+-+-∴mam a m am 即22+=a m ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=m 或 122+=a m当0=m 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a m 时,由①得 1=a l m ∴±=,3的方程为13+±=y x . 故所求直线l 的方程为2-=x 或 13+±=y x22.解:I ),()、)(,(),由,(设b A b a c c F x Q 000220-=- 知),(),,(0b x AQ b c FA -==. cb x b cx AQ FA 2020,0,==-∴⊥ .设PQ AP y x P 58),,(11=由,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+==+=b b yc b x x 135581,138581581201 因为点P 在椭圆上,所以1)135()138(22222=+bb ac b 整理得ac c a ac b 3232222=-=)(,即 02322=-+⇒e e .21=⇒e II 由I,a c a c a c b ac b 21,21;23,3222====得由得 于是AQF a Q a F ∆-),0,23(),0,21(的外接圆圆心为)0,21(a ,半径.21a FQ r ==因为这个圆与直线033:=++y x l 相切,所以a a =+2|321|,解得a =2, ∴c=1,b=3,所求椭圆方程为13422=+y x。
2024北京西城高二(上)期末数 学2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y −+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz −中,点()4,2,8A −到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.13D.36.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b−=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D −中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y −+−=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡−−⎣C.22⎡−−−⎣D.22⎡−+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A −且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+−m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D −中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;②不存在符合条件的点F ,使得BF DE ⊥;③异面直线1A D 与1EC 所成角的余弦值为5; ④三棱锥1F A DE −的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C −中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A −−的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y −+=上.(1)求C 的方程; (2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P 的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y −+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率; (2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD −中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知.条件①:PB BD =;条件②:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值. 21.(本小题15分) 设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.参考答案一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB m AB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r ,则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩ 所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C的离心率3c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=. 所以MQ ===. 因为[]13,3x ∈−,所以当195x=时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,55⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD =====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP nd n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BM n BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AMk x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−−()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()12120120220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。
天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
2022-2023学年江苏省南通市如皋市高二上学期期末数学试题一、单选题1.已知平面α的一个法向量()13,0,n λ=,平面β的一个法向量()22,1,6n =,若αβ⊥,则λ=( ) A .92B .4C .1-D .1【答案】C【分析】根据题意,由面面垂直可得法向量也相互垂直,结合空间向量的坐标运算,代入计算即可得到结果.【详解】因为αβ⊥,则可得12n n ⊥, 且()13,0,n λ=,()22,1,6n =, 则可得660λ+=,解得1λ=- 故选:C2.若直角三角形三条边长组成公差为2的等差数列,则该直角三角形外接圆的半径是( ) A .52B .3C .5D .152【答案】C【分析】根据题意,设中间的边为a ,由等差数列的定义,结合勾股定理即可得到a 的值,从而得到结果.【详解】由题意设中间的边为a ,则三边依次为2,,2-+a a a 由勾股定理可得()()22222a a a +=-+,解得8a =或0a =(舍) 即斜边为210a +=,所以外接圆的半径为1052= 故选:C3.已知P 为双曲线22:133x y C -=与抛物线22y x =的交点,则P 点的横坐标为( )A .3B .2CD .1-【答案】A【分析】根据给定条件,联立方程组并求解判断作答.【详解】依题意,220x y =≥,则由22223y x x y ⎧=⎨-=⎩解得3x y =⎧⎪⎨=⎪⎩ 所以P 点的横坐标为3.故选:A4.若直线340x y m ++=与圆2220x y y +-=相切,则实数m 取值的集合为( ) A .{}1,1- B .{}9,1- C .{}1 D .{}8,2-【答案】B【分析】根据题意,由直线与圆相切可得d r =,结合点到直线的距离公式,代入计算,即可得到结果.【详解】由圆2220x y y +-=可得()2211x y +-=,表示圆心为()0,1,半径为1的圆,则圆心到直线340x y m ++=的距离d =因为直线340x y m ++=与圆2220x y y +-=相切,所以d r =1=,解得1m =或9m =-,即实数m 取值的集合为{}9,1- 故选:B5.已知数列{}n a 首项为2,且112n n n a a ++-=,则n a =( ) A .2n B .121n -+ C .22n - D .122n +-【答案】D【分析】由已知的递推公式,利用累加法可求数列通项.【详解】由已知得112n n n a a ++-=,12a =,则当2n ≥时,有12111221()()(222)n n n n n n n a a a a a a a a -----=-+-++-=+++,()12121121222222222212n n n n n n n a a --+-=++++=++++==--经检验当1n =时也符合该式.∴122n n a +=-.故选:D6.如图,在直三棱柱111ABC A B C 中,CA CB =,P 为1A B 的中点,Q 为棱1CC 的中点,则下列结论不正确的是( )A .1PQ AB ⊥ B .AC //平面1A BQ C .1PQ CC ⊥D .PQ //平面ABC【答案】B【分析】A 选项可以利用三线合一证明垂直关系,B 选项可利用“线面平行时,直线无论怎么平移不会和平面相交”的性质来判断.C 选项先通过类似A 选项的证明得到线线垂直,结合AC 的结论得到线面垂直后判断,D 选项可以构造平行四边形,结合线面平行的判定证明, 【详解】不妨设棱柱的高为2h ,AC CB x ==.B 选项,根据棱柱性质,11AC //AC ,而11A C ⋂平面11A BQ A =,若AC //平面1A BQ ,无论怎样平移直线AC ,都不会和平面1A BQ 只有一个交点,于是得到矛盾,故B 选项错误;A 选项,计算可得,221QA QB x h ==+P 为1A B 的中点,故1PQ A B ⊥(三线合一),A 选项正确;C 选项,连接11,,QB QA AB ,根据平行四边形性质,1AB 过P ,计算可得,221QA QB x h =+P 为1AB 的中点,故1PQ AB ⊥(三线合一),结合A 选项,1PQ A B ⊥,11AB A B P =,11,AB A B ⊂平面11ABB A ,故PQ ⊥平面11ABB A ,由1AA ⊂平面11ABB A ,故PQ ⊥1AA ,棱柱的侧棱1AA //1CC ,故1PQ CC ⊥,C 选项正确;D 选项,取AB 中点E ,连接,PE CE ,结合P 为1A B 的中点可知,PE 为1ABA △中位线,故PE //1AA ,且112PE AA =,即PE //CQ ,且PE CQ =,故四边形PECQ 为平行四边形,故PQ //CE ,由PQ ⊄平面ABC ,CE ⊂平面ABC ,故PQ //平面ABC ,D 选项正确. 故选:B7.在数列{}n a 中,若存在不小于2的正整数k 使得1k k a a -<且1k k a a +<,则称数列{}n a 为“k -数列”.下列数列中为“k -数列”的是( ) A .n b n = B .2n n b =C .9n b n n=+ D .123n b n =- 【答案】C【分析】利用“k -数列”定义逐项判断可得答案.【详解】对于A ,n b n =,11n b n +=+,1110+=+-=>-n n b b n n ,数列{}n b 是单调递增数列, 所以数列{}n b 不是“k -数列”,故A 错误;对于B , 2nn b =,112++=n n b ,112220++-=-=>n n n n n b b ,数列{}n b 是单调递增数列,所以数列{}n b 不是“k -数列”,故B 错误;对于C ,对于函数()()90f x x x x=+>,令123x x >>,()()()121212129--=-x x f x f x x x x x , 因为123x x >>,所以12120,9->>x x x x ,()12121290-->x x x x x x ,所以()()12f x f x >, ()f x 在()3,x ∈+∞上为单调递增函数,令2103<<<x x ,()()()121212129--=-x x f x f x x x x x , 因为2103<<<x x ,所以12120,09-><<x x x x ,()12121290x x x x x x --<,所以()()12f x f x <,()f x 在()0,3x ∈上为单调递减函数,所以对于9n b n n=+,当23n ≤≤时,有1n n b b -<,当3n ≥时,有1n n b b +<,存在3k =使得数列{}n b 是“k -数列”,故C 正确;对于D ,11b =-,2n ≥时,因为{}23n -的单调递增数列,123⎧⎫⎨⎬-⎩⎭n 是单调递减数列,所以不存在不小于2的正整数k 使得1k k a a -<且1k k a a +<,所以数列{}n b 不是“k -数列”,故D 错误. 故选:C.8.已知O 为坐标原点,A 点坐标为()2,0,P 是抛物线21:2C y x =在第一象限内图象上一点,M 是线段AP 的中点,则OM 斜率的取值范围是( ) A .10,4⎛⎤ ⎥⎝⎦B .[)2,+∞C .10,2⎛⎤ ⎥⎝⎦D.⎛ ⎝⎦【答案】A【分析】设()()22,0>P y y y ,可得()221=+OM y k y ,再利用基本不等式可得答案.【详解】设()()22,0>P y y y ,所以21,2⎛⎫+ ⎪⎝⎭y M y ,所以()22112141212===≤+⎛⎫++ ⎪⎝⎭OMyy k y y y y ,当且仅当1y y=即1y =时等号成立, 则OM 斜率的取值范围是10,4⎛⎤⎥⎝⎦.故选:A.二、多选题9.已知正四面体的棱长均为1,分别以四个顶点中的两个点作为向量的起点与终点,在这些向量中两两的数量积可能是( ) A .0 B .12C .2 D【答案】AB【分析】由[]cos ,cos ,1,1a b a b a b a b ⋅=⨯⨯=∈-,排除C 、D ;取,a AD b BC ==,求出0a b ⋅=;取,a AD b AC ==,求出12a b ⋅=.即可判断A 、B. 【详解】在正四面体ABCD 中,棱长均为1.任意以四个顶点中的两个点作为向量的起点与终点,得到的向量的模长为1. 任取两个向量,a b ,则1a b ==.所以[]cos ,cos ,1,1a b a b a b a b ⋅=⨯⨯=∈-.故C 、D 错误; 取,a AD b BC ==.设BC 中点为E ,连接,AE DE . 因为ABCD 为正四面体,所以,AE BC DE BC ⊥⊥. 因为AEDE E =,AE ⊂面ADE ,DE ⊂面ADE ,所以BC ⊥面ADE .因为AD ⊂面ADE ,所以BC AD ⊥,所以,90a b =︒. 所以cos ,cos900a b a b ⋅==︒=.故A 正确; 取,a AD b AC ==,则,60a b =︒. 所以1cos ,cos602a b a b ⋅==︒=.故B 正确. 故选:AB10.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,左,右焦点分别为1F ,2F ,P 为椭圆上一点(异于左,右顶点),且12PF F △的周长为6,则下列结论正确的是( ) A .椭圆C 的焦距为1B .椭圆C 的短轴长为3C .12PF F △3D .椭圆C 上存在点P ,使得1290F PF ∠=【答案】BC 【分析】根据12e =,226a c +=解得,,a b c 可判断AB ;设()00,P x y ,由1212012PF F S F F y =知当P 点为椭圆的上顶点或下顶点时面积最大,求出面积的最大值可判断C ;假设椭圆C 上存在点P ,设12,PF m PF n ==,求出m n +、mn ,,m n 可看作方程2460x x -+=,求出判别式∆可判断D. 【详解】由已知得12c e a ==,226a c +=,解得2,1a c ==,2223b a c =-=, 对于A ,椭圆C 的焦距为22c =,故A 错误; 对于B ,椭圆C 的短轴长为223b =,故B 正确; 对于C ,设()00,P x y ,12120012==PF F SF F y c y ,当P 点为椭圆的上顶点或下顶点时面积的最大,此时03==y b ,所以12PF F △面积的最大值为3,故C 正确;对于D ,假设椭圆C 上存在点P ,使得1290F PF ∠=,设12,PF m PF n ==, 所以24m n a +==,22216244m n mn c +=-==,6mn =,所以,m n 是方程2460x x -+=,其判别式16240∆=-<,所以方程无解,故假设不成立,故D 错误. 故选:BC.11.在棱长为2的正方体1111ABCD A B C D -中,下列结论正确的是( ) A .异面直线1AB 与CD 所成角的为45 B .异面直线11A B 与1AC 所成角的为45 C .直线1AC 与平面11ABB A 所成角的正弦值为33D .二面角1C AD B --的大小为45 【答案】ACD【分析】利用异面直线所成角的定义可判断AB 选项;利用线面角的定义可判断C 选项;利用二面角的定义可判断D 选项. 【详解】如下图所示:对于A 选项,//CD AB ,则1AB 与CD 所成的角为145BAB ∠=,A 对;对于B 选项,11//AB A B ,所以,1AC 与11A B 所成角为1BAC ∠或其补角,因为2AB =,1BC =1AC ==22211AB BC AC ∴+=,则1AB BC ⊥,所以,11tan BC BAC AB∠==145BAC ∠≠,B 错; 对于C 选项,11B C ⊥平面11AA B B ,故直线1AC 与平面11ABB A 所成角为11B AC ∠, 1AB ⊂平面11AA B B ,则111B C AB ⊥,所以,11111sin B C B AC AC ∠== 因此,直线1AC 与平面11ABB AC 对; 对于D 选项,AD ⊥平面11CC D D ,CD 、1C D ⊂平面11CC D D ,则AD CD ⊥,1AD C D ⊥,所以,二面角1C AD B --的平面角为145CDC ∠=,D 对. 故选:ACD.12.已知数列{}n a 的前n 项和2n S n =,数列{}n b 是首项和公比均为2的等比数列,将数列{}n a 和{}n b 中的项按照从小到大的顺序排列构成新的数列{}n c ,则下列结论正确的是( ) A .1216c = B .数列{}n c 中n b 与1n b +之间共有12n -项 C .22n n b a = D .121n n n b c -+-=【答案】AB【分析】根据题意可得:数列{}n a 是以1为首项,2为公差的等差数列,则21n a n =-,2nn b =,然后根据数列的性质逐项判断即可求解.【详解】由题意可知:数列{}n a 的前n 项和2n S n =,当1n =时,111a S ==;当2n ≥时,121n n n a S S n -=-=-;经检验,当1n =时也满足,所以21n a n =-;又因为数列{}n b 是首项和公比均为2的等比数列,所以2nn b =.则数列{}n c 为:1,2,3,4,5,7,8,9,11,13,15,16,17,19,21,23,,所以1216c =,故选项A 正确;数列{}n a 是由连续奇数组成的数列,1,n n b b +都是偶数,所以n b 与1n b +之间包含的奇数个数为112222n nn +--=,故选项B 正确;因为2nn b =,则222n n b =为偶数,但1222121n n n a +=⨯-=-为奇数,所以22n n b a ≠,故选项C 错误;因为2nn b =,前面相邻的一个奇数为21n -,令2121n k a k =-=-,解得:12n k -=,所以数列{}n c 从1到2n 共有12n n -+,也即122n nn n c b -+==,故选项D 错误,故选:AB三、填空题13.已知等差数列{}n a 前3项的和为6,前6项的和为21,则其前12项的和为______. 【答案】78【分析】先求得等差数列{}n a 的首项和公差,然后求得前12项和. 【详解】设等差数列的公差为d ,则1133661521a d a d +=⎧⎨+=⎩,解得11a d ==,所以前12项的和为1126678a d +=. 故答案为:7814.以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.已知双曲线C 的共轭双曲线的离心率为3,则双曲线C 的离心率为______.【分析】不妨设双曲线C 的实轴长为2a ,虚轴长为2b ,焦距为2c ,根据双曲线的离心率公式可得出b =,进而可求得双曲线C 的共轭双曲线的离心率.【详解】不妨设双曲线C 的实轴长为2a ,虚轴长为2b ,焦距为2c ,则3c a =,可得b =, 所以,双曲线C 的共轭双曲线的实轴长为2b ,虚轴长为2a,焦距为2c =,因此,双曲线C的共轭双曲线的离心率为c b. 15.已知轴截面为正三角形的圆锥顶点与底面均在一个球面上,则该圆锥与球的体积之比为______. 【答案】932##0.28125【分析】根据圆锥、球的体积公式求得正确答案. 【详解】画出轴截面如下图所示, 圆锥的轴截面为正三角形ABC ,设球心为O ,圆锥底面圆心为1O ,球的半径为R ,则圆锥的高为1322R R R +=,底面半径为32R ,所以圆锥与球的体积之比为23133π32294π323R R R ⎛⎫⨯⨯⨯ ⎪⎝⎭=⨯. 故答案为:932四、双空题16.摆线是一类重要的曲线,许多机器零件的轮廓线都是摆线,摆线的实用价值与椭圆、抛物线相比毫不逊色.摆线是研究一个动圆在一条曲线(基线..)上滚动时,动圆上一点的轨迹.由于采用不同类型的曲线作为基线,产生了摆线族的大家庭.当基线是圆且动圆内切于定圆作无滑动的滚动时,切点P 运动的轨迹就得到内摆线.已知基线圆O 的方程为()2220x y RR +=>,半径为1的动圆M 内切于定圆O 作无滑动的滚动,切点P 的初始位置为(),0R .若4R =,则PO 的最小值为______;若2R =,且已知线段MP 的中点N 的轨迹为椭圆,则该椭圆的方程为______. 【答案】 2 2219144x y += 【分析】根据圆、摆线、椭圆的知识求得正确答案. 【详解】当4R =时,PO 的最小值为21422R -⨯=-=.当2R =时,N 初始位置为3,02⎛⎫⎪⎝⎭,圆O 的四分之一弧长为12π2π4⨯⨯=,圆M 的半周长为12π1π2⨯⨯=, 所以N 的轨迹过点10,2N ⎛⎫' ⎪⎝⎭, 所以31,22a b ==,椭圆焦点在x 轴上, 所以椭圆方程为2219144x y +=. 故答案为:2;2219144x y +=五、解答题17.如图,PA 是三棱锥-P ABC 的高,线段BC 的中点为M ,且AB AC ⊥,2AB AC PA ===.(1)证明:BC ⊥平面PAM ;(2)求A 到平面PBC 的距离.【答案】(1)证明见解析23【分析】(1)根据已知条件证明BC AM ⊥,PA BC ⊥,由直线与平面垂直的判定定理即可证明. (2)法一:在平面PAM 中,过A 点作AH PM ⊥,证明AH ⊥平面PBC ,再求值即可;法二:A 到平面PBC 的距离,是三棱锥A PBC -的高,利用等体积法求解.【详解】(1)因为AB AC =,线段BC 的中点为M ,所以BC AM ⊥.因为PA 是三棱锥-P ABC 的高,所以PA ⊥平面ABC ,因为BC ⊂平面ABC ,所以PA BC ⊥.因为PA ⊂平面PAM ,AM ⊂平面PAM ,PA AM A =,所以BC ⊥平面PAM(2)法一:(综合法)在平面PAM 中,过A 点作AH PM ⊥,如图所示,因为BC ⊥平面PAM ,AH ⊂平面PAM ,所以BC AH ⊥.因为AH PM ⊥,BC ⊂平面PBC ,PM ⊂平面PBC ,PMBC M =,所以AH ⊥平面PBC . 在Rt BAC 中,22111442222AM BC AB AC ==++=所以在Rt PAM 中,22426PM PA AM =++ 所以22236PA AM AH PM ⨯==A 到平面PBC 23法二:(等体积法)设A 到平面PBC 的距离为d ,则在Rt BAC 中,22111442222AM BC AB AC ==++在Rt PAM 中,22426PM PA AM ++= 因为PA 是三棱锥-P ABC 的高,所以11142223323P ABC ABC V S PA -=⨯=⨯⨯⨯⨯=△, 11142263323P ABC PB PBC C A V V S d d --==⨯=⨯⨯=△,解得23d =, 所以A 到平面PBC 23. 18.已知等比数列{}n a 的首项为2,前n 项和为n S ,且234230S S S -+=.(1)求n a ;(2)已知数列{}n b 满足:n n b na =,求数列{}n b 的前n 项和n T .【答案】(1)2n n a =(2)()1122n n T n +=-⋅+【分析】(1)根据题意,由234230S S S -+=可得公比q ,再由等比数列的通项公式即可得到结果;(2)根据题意,由错位相减法即可求得结果.【详解】(1)设等比数列{}n a 的公比为q ,因为234230S S S -+=,所以()234320S S S S -+-=,所以342a a =,所以2q ,所以112n n n a a q -==.(2)由(1)得,2n n b n =⨯,所以212222n n T n =⨯+⨯++⨯,……① 所以()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,……②①-②,得()()21112122222212212n n n n n n T n n n +++⨯--=+++-⨯=-⨯=-⨯--, 所以()1122n n T n +=-⋅+.19.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,右焦点F 到32x =的距离为12. (1)求双曲线C 的方程;(2)若直线1y x =-与双曲线C 交于M ,N 两点,求MNF 的面积.【答案】(1)2213y x -= (2)32【分析】(1)由双曲线实轴长为2可得1a =,再利用右焦点F 到32x =的距离为12可得2c =,即可求得双曲线C 的方程;(2)联立直线和双曲线方程容易解出M ,N 两点坐标即可求得MNF 的面积.【详解】(1)设双曲线C 的焦距为()20c c >,因为双曲线C 的实轴长为2,所以22a =,解得1a =.因为右焦点F 到32x =的距离为12,所以3122c -=,解得1c =或2c =. 因为c a >,所以2c =.可得222413b c a =-=-=,所以双曲线C 的方程为2213y x -=. (2)设()11,M x y ,()22,N x y , 联立直线和双曲线22113y x y x =-⎧⎪⎨-=⎪⎩可得()223130x x ---=, 即220x x +-=,1x =或2x =-不妨设11x =,22x =-,所以2130,y y ==-. 所以2121113132222MNF S MF y c x y =⨯=-⨯=⨯⨯=△. 即MNF 的面积为3220.已知数列{}n a 的首项为1,前n 项和为n S ,且满足______.①22a =,22n n a a +-=;②()21n n S n a =+;③()12n n nS n S +=+.从上述三个条件中选一个填在横线上,并解决以下问题:(1)求n a ;(2)求数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)n a n = (2)13112212n T n n ⎛⎫=-- ⎪++⎝⎭【分析】(1)当选①时,分n 为奇数,偶数时,分别计算即可得到结果;当选②时,根据n S 与n a 的关系,即可得到结果;当选③时,根据条件得到()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是常数数列,从而得到结果; (2)根据题意,由裂项相消法即可得到结果.【详解】(1)选①因为22n n a a +-=,所以当n 为奇数时,1122n n a a n -=+⨯=; 同理,当n 为偶数时,2222n n a a n -=+⨯=. 所以n a n =.选②因为()21n n S n a =+,(*)所以当2n ≥时,112n n S na --=,(**)(*)-(**),得()11n n n a na --=,即11n n a a n n -=-, 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为1的常数列, 所以n a n =.选③因为()12n n nS n S +=+,所以()()()1211n n S S n n n n +=+++,所以数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是首项为12的常数列, 所以()12n n n S +=,所以当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 当1n =时,也符合上式.所以n a n =.(2)由(1)得,()211111222n n a a n n n n +⎛⎫==- ⎪++⎝⎭, 所以111111111311123243522212n T n n n n ⎛⎫⎛⎫=-+-+-++-=-- ⎪ ⎪+++⎝⎭⎝⎭ 21.三棱柱111ABC A B C 中,112AB AB AA AC ====,120BAC ∠=,线段11A B 的中点为M ,且BC AM ⊥.(1)求证:AM ⊥平面ABC ;(2)点P 在线段11B C 上,且11123B P BC =,求二面角11P B A A --的余弦值. 【答案】(1)证明见解析313【分析】(1)由AB AM ⊥、BC AM ⊥根据线面垂直的判定定理可得AM ⊥平面ABC ; (2)以A 为原点,以、、AN AC AM 所在的直线为x y z 、、建立空间直角坐标系,求出平面11B AA 、平面1PB A 的一个法向量由二面角的向量求法可得答案.【详解】(1)三棱柱111ABC A B C 中,11//AB A B ,在11AB A △中,11AB AA =,线段11A B 的中点为M ,所以11A B AM ⊥,所以AB AM ⊥; 因为BC AM ⊥,BC ⊂平面ABC ,AB ⊂平面ABC ,AB BC B ⋂=,AB BC ⊂、平面ABC ,所以AM ⊥平面ABC ;(2)做AN AC ⊥交BC 于N 点,以A 为原点,以、、AN AC AM 所在的直线为x y z 、、建立空间直角坐标系, 则()0,0,0A,)1,0B -,112B -⎝, ()0,2,0C,(M .所以13122AB ⎛=- ⎝,()BC =-,(AM =, 因为111222,033B P B C BC ⎛⎫===⎪ ⎪⎝⎭,所以32P ⎛⎝, 所以32AP ⎛=- ⎝,设平面11B AA 的一个法向量()1111,,n x y z =,则11111113102230n AB x yn AM z ⎧⋅=-+=⎪⎨⎪⋅==⎩,解得10z =,令1y 11x =,所以()11,3,0n =,设平面1PB A 的一个法向量()2222,,n x y z =,则222221222306231022n AP y n AB y ⎧⋅=-+=⎪⎪⎨⎪⋅=-=⎪⎩,令2y 23x =,21z =-,所以()23,1n =-,设二面角11P B A A --的平面角为()0180θθ≤≤,则1212126cos cos ,2n n n n n nθ⋅====⨯ 由图知二面角11P B A A --的平面角为锐角,所以二面角11P B A A --22.已知31,2P ⎛⎫ ⎪ ⎪⎝⎭为椭圆()2222:10x y E a b a b +=>>上一点,上、下顶点分别为A 、B ,右顶点为C ,且225a b +=.(1)求椭圆E 的方程;(2)点P 为椭圆E 上异于顶点的一动点,直线AC 与BP 交于点Q ,直线CP 交y 轴于点R .求证:直线RQ 过定点.【答案】(1)2214x y += (2)证明见解析【分析】(1)根据已知条件求得22,a b ,从而求得椭圆E 的方程.(2)设出直线BP 的方程,求得点Q 的坐标,联立直线BP 的方程和椭圆E 的方程,求得P 点坐标,进而求得直线PC 的方程,从而求得R 点的坐标,由此求得直线RQ 的方程并确定定点坐标.【详解】(1)因为3P ⎛ ⎝⎭为椭圆()2222:10x y E a b a b +=>>上一点,所以221314a b +=. 因为225a b +=,所以2213154b b +=-,整理得42419150b b -+=,解得21b =或2154b =. 当2154b =时,254a =,与a b >矛盾.所以21b =,24a =. 椭圆E 的方程为2214x y +=. (2)设直线BP 的斜率为k ,则:1BP l y kx =-.因为1:12AC l y x =-+, 由1112y kx y x =-⎧⎪⎨=-+⎪⎩解得421Q x k =+,2121Q k y k -=+. 因为22114y kx x y =-⎧⎪⎨+=⎪⎩,所以()224140x kx +--=,整理得()221480k x kx +-=, 所以2841P k x k =+,224141P k y k -=+. 所以2222241412141888242241PCk k k k k k k k k k --++===--+---+,所以()21:242PC k l y x k +=---. 令0x =,得2121R k y k +=-. 所以()()222221212121822121414144421212121RQ k k k k k k k k k k k k k k k +--+---+--====-----+++, 所以221:2121RQ k k l y x k k +=-+--. 所以()242:12212121RQ k k k l y x x k k k +=-+=-----. 所以直线RQ 过定点2,1.。
2022-2023学年贵州省遵义市高二上学期期末数学试题一、单选题110y -+=的倾斜角为( )A .π4B .π6C .π3D .2π3【答案】C【分析】根据斜率与倾斜角的关系即可求.【详解】10y -+=为1y =+,所以直线的斜率k =θ,则tan θ0πθ≤<,π3θ∴=. 故选:C.2.抛物线24y x =的准线方程为 A .1x = B .2x = C .=1x - D .2x =-【答案】C【分析】由抛物线标准方程知p =2,可得抛物线准线方程. 【详解】抛物线y 2=4x 的焦点在x 轴上,且2p=4,2p=1, ∴抛物线的准线方程是x =﹣1. 故选C .【点睛】本题考查抛物线的标准方程、抛物线的简单性质等基础知识,属于基础题. 3.已知向量(1,),(2,1)a x b =-=,若a b ⊥,则x 的值为( ) A .-2 B .-1 C .1 D .2【答案】D【分析】根据题意可得0a b ⋅=,进而求出x 的值. 【详解】因为a b ⊥,所以0a b ⋅=, 即1210x -⨯+⋅=,解得2x =, 故选:D.4.已知正实数a 、b 满足1a b +=,则12a b+的最小值为( )A .3+B .3C .2+D .4【答案】A【分析】利用基本不等式“1”的妙用,可得答案.【详解】由0,0a b >>,则()12122123b aa b a b a b a b⎛⎫+=++=+++≥+ ⎪⎝⎭当且仅当2b aa b=,即1,2a b ==- 故选:A.5.若0.53log 10,3,ln10a b c ===,则( ) A .a b c >> B .c a b >>C .a c b >>D .b a c >>【答案】B【分析】将3log 10、0.53与2比较可得a b >,将ln10、3log 10用换底公式变换后构造函数,研究其单调性比较即可.【详解】∵33log 10log 92a =>=,0.532b ===,∴a b >, 又∵1ln10lg e =,31log 10lg3=,0lge lg3<<, ∴11lg e lg 3>,即:3ln10log 10>,∴c a >, ∴c a b >>. 故选:B.6.已知两条直线1:10l ax y +-=和2:10(R)l x ay a ++=∈,下列不正确的是( ) A .“a =1”是“12l l ∥”的充要条件B .当12l l ∥C .当2l 斜率存在时,两条直线不可能垂直D .直线2l 横截距为1 【答案】D【分析】由直线平行关系可以判断A 正确;利用平行线间距离公式可以判断B 正确;利用垂直关系可以判断C 正确;令0y =可以求出直线2l 得横截距. 【详解】当12l l ∥时,11a a ⋅=⨯,则1a =±, 当1a =-时,直线1l 与2l 重合,故舍去,所以A 正确;当1a =时,12l l ∥,1:10l x y +-=和2:10(R)l x y a ++=∈间的距离为2211211d --==+,所以B 正确;若12l l ⊥,则110a a ⋅+⋅=,则0a =, 又当2l 斜率存在时,0a ≠,所以C 正确;2:10(R)l x ay a ++=∈,令0y =得=1x -,所以直线2l 横截距为-1,所以D 错误. 故选:D.7.已知函数()f x 的图象如下图所示,则(|1|)f x +的大致图象是( )A .B .C .D .【答案】A【分析】先由函数()f x 的图象变换得到偶函数()f x 的图象,再根据平移变换得到(|1|)f x +的图象. 【详解】在y 轴左侧作函数()f x 关于y 轴对称的图象,得到偶函数()f x 的图象, 向左平移一个单位得到(|1|)f x +的图象. 故选:A.8.投掷一枚均匀的骰子,记事件A :“朝上的点数大于3”,B :“朝上的点数为2或4”,则下列说法正确的是( ) A .事件A 与事件B 互斥 B .事件A 与事件B 对立 C .事件A 与事件B 相互独立 D .()56P A B +=【答案】C【分析】根据互斥事件以及对立事件的概念结合事件A 与事件B 的基本事件可判断A ,B ;根据独立事件的概率公式可判断C ;求出事件A B +的概率可判断D.【详解】对于A ,B ,事件A :“朝上的点数大于3”,B :“朝上的点数为2或4”,这两个事件都包含有事件:“朝上的点数为4”,故事件A 与事件B 不互斥,也不对立,A ,B 错误; 对于C ,投掷一枚均匀的骰子,共有基本事件6个,事件A :“朝上的点数大于3”包含的基本事件个数有3个,其概率为1()2P A =, B :“朝上的点数为2或4”,包含的基本事件个数有2个,其概率为1()3P B =, 事件AB 包含的基本事件个数有1个,其概率为1()6P AB =, 由于()()()P AB P A P B =,故事件A 与事件B 相互独立,C 正确;对于D ,事件A B +包含的基本事件个数有朝上的点数为2,4,5,6共4个, 故()4263P A B +==,D 错误, 故选:C二、多选题9.已知函数()221f x x x =+,则( ) A .函数f (x )为偶函数B .函数f (x )的定义域为(,0)(0,)-∞+∞C .函数f (x )的最小值为2D .函数f (x )在(0,+∞)单调递减 【答案】ABC【分析】对于A :根据偶函数的定义即可判断;对于B :分母不为0即可判断;对于C :根据基本不等式即可判断;对于D :求导即可判断.【详解】对于A :()f x 的定义域为(,0)(0,)-∞+∞,关于原点对称,而()()222211()()f x x x f x x x-=-+=+=-,所以()f x 为偶函数.故A 正确; 对于B :20,0x x ≠∴≠,()f x ∴的定义域为(,0)(0,)-∞+∞.故B 正确;对于C :()2212f x x x =+≥,当且仅当221x x =,即1x =±时,等号成立,故()f x 的最小值为2.故C 正确;对于D :433222()2x f x x x x-'=-=,当0x >时,令()0,f x '>即4220x ->,解得1x >,令()0,f x '<即4220x -<,解得01x <<,()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增.故D 错误.故选:ABC.10.已知函数()1sin22f x x x =,则( )A .函数f (x )的最小正周期为πB .将函数f (x )的图象向右平移3π个单位后的图象关于y 轴对称 C .函数f (x )的一个对称中心为,06π⎛⎫⎪⎝⎭D .函数f (x )在区间,62ππ⎛⎫⎪⎝⎭上单调递减【答案】AD【分析】运用辅助角公式化简、图象平移变换,再研究其周期性、奇偶性、对称性及单调性即可.【详解】1π()sin 22sin(2)23f x x x x ==+,对于A 项,2π2ππ|||2|T ω===,故A 项正确; 对于B 项,()f x 的图象向右平移π3个单位后为πππ()sin(2())sin(2)333g x x x =-+=-, 所以ππ()sin(2)sin(2)()33g x x x g x -=--=-+≠,所以图象不关于y 轴对称.故B 项错误;对于C 项,因为πππ2π362k x k x +=⇒=-+,Z k ∈,所以()f x 的对称中心为ππ(,0)62k -+,Z k ∈,当πππ626k -+=时,2Z 3k =∉,所以π(,0)6不是()f x 的对称中心.故C 项错误; 对于D 项,因为ππ(,)62x ∈,则π2π4π2(,)333x +∈,π()sin(2)3f x x =+,令π23t x =+,则sin y t =,2π4π(,)33t ∈,因为sin y t =在2π4π(,)33上单调递减,所以()f x 在ππ(,)62上单调递减.故D 项正确.故选:AD.11.已知直线l :10x y ++=,点P 为⊙M :()()22122x y -+-=上一点,则( ) A .直线l 与⊙M 相离B .点P 到直线l 距离的最小值为1C .与⊙M 关于直线l 对称的圆的方程为()()22322x y +++=D .平行于l 且与⊙M 相切的两条直线方程为2210x y ++=和2250x y +-= 【答案】AC【分析】利用圆心()1,2M 到直线l 的距离d与半径r =A 正确;点P 到直线l 距离的最小值为d r -,判断B 错误;求出圆心()1,2M 关于直线l 对称点()3,2N --,进而求出圆的方程,判断C 正确;利用圆心()1,2M 到直线的距离d r =,求出其切线方程,判断D 错误. 【详解】⊙M :()()22122x y -+-=,圆心()1,2M,半径r =圆心()1,2M 到直线l :10x y ++=的距离为:d r ==>,所以直线l 与⊙M 相离,故A 正确;点P 到直线l距离的最小值为d r -=,故B 错误; 设圆心()1,2M 关于直线l 对称点为()00,N x y ,则00001110222(1)11x y y x ++⎧++=⎪⎪⎨-⎪⨯-=--⎪⎩,解得()3,2N --,则与⊙M 关于直线l 对称的圆的方程为()()22322x y +++=,故C 正确; 设平行于l 且与⊙M 相切的直线方程为0x y c ++=,则d r =='1c =-或5c =-,平行于l 且与⊙M 相切的两条直线方程为10x y +-=和50x y +-=,故D 错误. 故选:AC.12.双曲线C :22145x y -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线右支交于A 、B 两点,12AF F △和12BF F △内切圆半经分别为1r 和2r ,则( )A .双曲线C的渐近线方程为20x = B .1AF B △面积的最小值为15C .12AF F △和12BF F △的内切圆圆心的连线与x 轴垂直D .12r r ⋅为定值 【答案】BCD【分析】A20y ±=;B :1121212AF BSF F y y =-,联立方程,找到面积的表达式,函数解析式找到最小值,在垂直时取到; CD:画图,设圆1O 切1AF 、2AF 、12F F 分别于点M 、N 、G ,推导出点G 、1O 、2O 的横坐标为a ,证得12O O x ⊥轴,12122O GF O F O △∽△,可得出()212rr c a =-,得证;【详解】选项A :双曲线的渐近线方程为25x =化简成一般式为 520x y ±=,错误;选项B :设1122(,),(,)A x y B x y 则1121212AF BSF F y y =-; 设过点2F 的直线为l 显然与y 轴不垂直,设l :3x my =+,()11,A x y ,()22,B x y ,联立223145x my x y =+⎧⎪⎨-=⎪⎩()225430250m y my ⇒-++=, 故()2Δ40010m =+>,12212230542554m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩, 由于A ,B 均在双曲线右支,故1221221221212224()60054020363()9054m y y x x m x x m m y y m y y m -⎧++=>⎪+>⎧⎪-⇔⎨⎨⋅>--⎩⎪+++=>⎪-⎩, 解得2045m ≤<,1121212AF BS F F y y =-带入得: ()()1212121212342AF BSc y y y y y y =⨯⨯-=+-代入韦达定理得122604510AF Bm Sm +⎫≤⎪⎝<⎭, 22311m t t ⎛+=≤< ⎝⎭,则1296035605195AF Bt S t t t t⎛==≤< -⎝⎭-,易知95t t-随t 的增大而减小,则当1t =时,()1min15AF BS=,综上:1AF BS的面积的最小值为15,正确;选项C :(如图所示) 过2F 的直线与双曲线的右支交于A 、B 两点,由切线长定理可得AM AN =,11FM FG =,22F G F N =, 所以()()()21212121AF F F AF AN F N FG F G AM F M +-=+++-+ 222222F N F G F G c a =+==-,则2F G c a =-,所以点G 的横坐标为()c c a a --=. 故点1O 的横坐标也为a ,同理可知点2O 的横坐标为a ,故12O O x ⊥轴,正确; 选项D :由C 可知圆1O 和圆2O 均与x 轴相切于(),0G a ,圆1O 和圆2O 两圆外切. 在122O O F △中,()122122221211902O F O O F G O F G AF F BF F ∠=∠+∠=∠+∠=,122O O F G ⊥, 12212GO F F O O ∴∠=∠,1212290O GF O F O ∠=∠=,所以,12122O GF O F O △∽△,所以,1121212O G O FO F O O =,则212112O F O G O O =⋅, 所以22222121112112F G O F O G O G O O O G O G O G =-=⋅-=⋅,即()2121r r c a =-=,正确; 故答案为:BCD【点睛】方法点睛:双曲线中的面积最值问题的处理方法:设出直线方程y kx b =+,设出交点坐标11(,)x y ,22(,)x y ,直线方程代入双曲线方程后应用韦达定理得1212,x x x x +,可根据交点情况得出参数范围,利用点的坐标求出面积,代入韦达定理的结果后面积可化为所设参数的函数,从而再利用函数知识、不等式知识求得最值.三、填空题13.若复数12z i =+,则|z |=___.【分析】根据复数的模长的计算公式,可得答案.【详解】由题意,复数12z i =+的实部为1,虚部为2,则z =14.若sin 0,2παα⎛⎫∈ ⎪⎝⎭,则tan 2α=___.【答案】【分析】方法1:运用特殊角的三角函数值计算即可.方法2:运用同角三角函数的平方关系与商式关系及二倍角公式计算即可.【详解】方法1:∵π(0,)2α∈,sin α=∴π3α=,∴2πtan 2tan3α==方法2:∵π(0,)2α∈,∴1cos 2α==,∴sin tan cos ααα==∴22tan tan 21tan ααα===-故答案为:15.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,若P A =2,AB =1,BC =,则三棱锥P -ABC 外接球的表面积为___. 【答案】8π【分析】由题意结合球心的性质确定三棱锥-P ABC 的外接球的球心的位置,求得球的半径,即可求外接球的表面积【详解】由题意,在三棱锥-P ABC 中,PA ⊥平面ABC ,,AC BC ⊂平面ABC , 所以PA AC ⊥,PA BC ⊥,又AB BC ⊥,AB PA A =,,AB PA ⊂平面PAB , 所以BC ⊥平面PAB ,PB ⊂平面PAB ,所以BC PB ⊥, 设PC 的中点为O ,因为PA AC ⊥,所以OP OC OA ==, 因为BC PB ⊥,所以OCOP OB ,所以O 为三棱锥-P ABC 外接球的球心,因为AB BC ⊥,1,AB BC ==2AC =,因为PA AC ⊥,2AC =,2PA =,所以OP =设三棱锥-P ABC 外接球的为R ,所以R =所以三棱锥的外接球的表面积为()224π4π28πS R ==⨯=.故答案为:8π.16.已知函数2ln ,0()43,0x x f x x x x ⎧>=⎨++≤⎩,若方程()f x m =有四个不相等的实数根1x 、2x 、3x 、4x ,且1234x x x x <<<,则()()341211x x x x +-的取值范围是___.【答案】11,43⎛⎤⎥⎝⎦.【分析】画出()y f x =的图象可得m 的范围,341x x =,124x x +=-,210x -<≤,代入所求式子转化为求函数222123y x x =--+在(1,0]-上的值域即可.【详解】()y f x =的图象如图所示,∵方程()f x m =有四个不相等的实根, ∴03m <≤,又∵34ln ln x x m -==,1222+=-x x , ∴341x x =,124x x +=-,210x -<≤,∴34212222211(1)(1)(41)(1)23x x x x x x x x ==+---+---+,又∵22223y x x =--+在(1,0]-上单调递减,∴2223234x x ≤--+<,∴2221114233x x <≤--+,∴3412(1)(1)x x x x +-的取值范围为11,43⎛⎤⎥⎝⎦.故答案为:11,43⎛⎤ ⎥⎝⎦.四、解答题17.2022年卡塔尔世界杯正赛在北京时间11月21日-12月18日进行,赛场内外,丰富的中国元素成为世界杯重要的组成部分,某企业为了解广大球迷世界杯知识的知晓情况.在球迷中开展了网上测试,从大批参与者中随机抽取100名球迷,他们测试得分(满分100分)数据的频率分布直方图如图所示:(1)根据频率分布直方图,求a 的值;(2)若从得分在[75,90]内的球迷中用分层抽样的方法抽取6人作世界杯知识分享,并在这6人中选取2人担任分享交流活动的主持人,求选取的2人中至少有1名球迷得分在[80,85)内的概率. 【答案】(1)0.04.(2)35.【分析】(1)根据所有频率之和为1列式解方程即可.(2)根据分层抽样的抽样比相同抽取人数,用列举法解决古典概型. 【详解】(1)50.010.070.060.02)1a ⨯=(++++,解得:0.04a =. (2)由分层抽样可知,从得分在[75,80)内的球迷中抽取0.06630.060.040.02⨯=++人,分别记为1a 、2a 、3a ,从得分在[80,85)内的球迷中抽取0.04620.060.040.02⨯=++人,分别记为1b 、2b ,从得分在[85,90)内的球迷中抽取0.02610.060.040.02⨯=++人,记为c .所以从这6人中选取2人的基本事件有12(,)a a 、13(,)a a 、11()a b ,、12()a b ,、1(,)a c 、23(,)a a 、21()a b ,、22()a b ,、2(,)a c 、31()a b ,、32()a b ,、3(,)a c 、12()b b ,、1(,)b c 、2(,)b c ,共有15个,两人中至少有1名球迷得分在[80,85)内的基本事件有11()a b ,、12()a b ,、21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b ,、1(,)b c 、2(,)b c ,共有9个.所以两人中至少有1名球迷得分在[80,85)内的概率为93155P ==. 18.已知M 的圆心在直线y x =上,且过点(0,3),(1,0)P Q -. (1)求M 的方程;(2)若N :()()22113+++=x y ,求M 与N 公共弦的长度. 【答案】(1)22(1)(1)5x y -+-=【分析】(1)求出PQ 的垂直平分线的方程,联立方程求得圆心坐标,继而求得半径,即可得答案; (2)求出两圆的公共线的方程,求得(1,1)M 到该直线的距离,根据圆的弦长的求法可得答案. 【详解】(1)由题意知M 的圆心在直线y x =上,且过点(0,3),(1,0)P Q -, 则PQ 的垂直平分线方程为311()232y x -=-+,即340x y +-=, 联立340y x x y =⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,即圆心为(1,1),故M 的方程为22(1)(1)5x y -+-=(2)因为||MN故M 和N 相交,将()()22113+++=x y 和22(1)(1)5x y -+-=相减可得22+10x y +=, 点(1,1)M 到直线22+10x y +==,故M 与N 公共弦的长度为19.如图,正四棱柱1111ABCD A B C D -中,M 为11C D 中点,且124AA AB ==.(1)证明:1//AD 平面11BCC B ;(2)求DM 与平面I AMD 所成角的正弦值. 【答案】(1)证明见解析. (2)48585.【分析】(1)根据线面平行的判定定理即可证明结论;(2)作1DP AD ⊥,证明DP ⊥平面1AMD ,找到DM 与平面I AMD 所成角,求出相关线段的长,解直角三角形即可求得答案.【详解】(1)证明:如图,连接1BC ,因为1111,AB D C AB D C =∥ ,所以四边形11ABC D 为平行四边形, 故11AD BC ∥ ,又1AD ⊄平面11BCC B ,1BC ⊂平面11BCC B , 故1//AD 平面11BCC B . (2)作1DP AD ⊥,垂足为P ,因为11C D ⊥平面11ADD A , M 为11C D 中点,1MD ⊥平面11ADD A ,PD ⊂平面11ADD A ,故1MD DP ⊥,11111,AD MD D AD MD =⊂,平面1AMD ,故DP ⊥平面1AMD ,连接MP ,则DMP ∠为 DM 与平面I AMD 所成角, 在1Rt ADD中,11DD AD PD AD ⋅===而DM 故在Rt DPM △中,sin PD DMP MD ∠===,即DM 与平面I AMD20.在①()(sin sin )()sin b c B C b a A -+=-;②(2)cos cos 0b a C c B -+=这两个条件中选择一个,补充在下面问题中并解答.问题:在△ABC 中,A ,B ,C 所对边分别为a ,b ,c ,___________. (1)求C ;(2)若a =1,b =2,D 在线段AB 上,且满足25AD AB =,求线段CD 的长. 注:如果选择多个条件分别作答,则按第一个解答计分. 【答案】(1)π3【分析】(1)选择条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;选择条件②,先用正弦定理将边转化为角的关系,再由两角和的正弦公式结合诱导公式即可求解; (2)先利用余弦定理求出AB =π2ABC ∠=,再由题意求出BD ,再根据勾股定理即可求得CD .【详解】(1)选择条件①()(sin sin )()sin b c B C b a A -+=-, 依题意由正弦定理得()(+)()b c b c b a a -=-,即222a b c ab +-=, 又由余弦定理得2221cos 22a b c C ab +-==,且()0,πC ∈,得π3C =,选择条件②(2)cos cos 0b a C c B -+=,依题意由正弦定理得(sin 2sin )cos sin cos 0B A C C B -+=, 即()2sin cos sin cos sin cos sin sin A C B C C B B C A =+=+=, 又(),0,πA C ∈,则sin 0A >,所以1cos 2C =,得π3C =,(2)结合(1)由余弦定理得22222cos 3AB c a b ab C ==+-=,即3AB =, 则222b a c =+,所以π2ABC ∠=, 又25AD AB =,即22355AD AB ==,则335BD =, 则在Rt △CBD 中,2222233521525CD BC BD ⎛⎫=+=+= ⎪ ⎪⎝⎭,得2135CD =. 21.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,P A ⊥平面ABCD ,点H 为线段PB 上一点(不含端点),平面AHC ⊥平面P AB .(1)证明:PB AC ⊥;(2)若1AB AC ==,四棱椎P -ABCD 的体积为13,求二面角P -BC -A 的余弦值.【答案】(1)见解析 6【分析】(1)利用面面垂直性质定理与线面垂直性质定理,结合公理2,可得线面垂直,可得答案; (2)根据二面角的平面角定义作图,利用等面积法以及棱锥体积公式,求得边长,结合直角三角形的性质,可得答案.【详解】(1)PA ⊥平面ABCD ,且C ∈平面ABCD ,∴过点C 所有垂直于PA 的直线都在平面ABCD 内,平面AHC ⊥平面ABP ,且C ∈平面AHC ,∴存在一条过C 的直线l ⊥平面ABP ,且l ⊂平面AHC ,PA ⊂平面ABP ,l PA ∴⊥,则l ⊂平面ABCD ,平面ABCD ⋂平面AHC AC =,l ∴与AC 为同一条直线,即AC ⊥平面ABP ,PB ⊂平面ABP ,AC PB ∴⊥.(2)在平面ABCD 内,过A 作AE BC ⊥,且AE BC E ⋂=,连接PE ,作图如下:PA ⊥平面ABCD ,且BC ⊂平面ABCD ,PA BC ∴⊥,同理可得PA AE ⊥,AE BC ⊥,AE PA A =,,AE PA ⊂平面PAE ,BC ∴⊥平面PAE ,PE ⊂平面PAE ,PEA ∴∠为二面角P BC A --的平面角,在Rt ABC △中,1122ABCS AB AC AE BC =⋅⋅=⋅⋅,且222BC AB AC +2AE =, 在四棱锥P ABCD -中,底面ABCD 的面积1S AB AC =⋅=,则其体积1133V PA S =⋅⋅=,解得1PA =,在Rt PAE 中,226cos PA PEA PE PA AE∠===+ 故二面角P BC A --6. 22.已知椭圆C 2222:1(0)x y a b a b +=>>的左顶点为()22,0A -2.(1)求C 的方程;(2)过椭圆C 的右焦点F 作两条相互垂直的直线1l 、2l ,M 为1l 与C 两交点的中点,N 为2l 与C 两交点的中点,求△FMN 面积的最大值. 【答案】(1)22184x y +=(2)49【分析】(1)由已知顶点坐标求出a ,由离心率求出c ,进一步运算得出椭圆的方程;(2)设出直线1l 、2l 的方程,与椭圆C 方程联立,得出M ,N 的纵坐标,表示△FMN 的面积,求其最大值.【详解】(1)由左顶点为()22,0A -,得22a =2,即2c a =2c =,222b a c -=,所以椭圆C 的方程为22184x y +=;(2)由已知1l 、2l 斜率都存在且不为0,设1l 与C 交于()11,P x y ,()22,Q x y ,右焦点()2,0F ,设直线1l :2x my =+,联立222184x my x y =+⎧⎪⎨+=⎪⎩,得()222440m y my ++-=,所以1l 与椭圆C 两交点的中点M 的纵坐标122222M y y my m +==-+,同理2l 与椭圆C 两交点的中点N 的纵坐标22222112Nm m y m m -=-=+⎛⎫-+ ⎪⎝⎭, 所以△FMN的面积()()()2221122221M N m S MF m m y m NF +=+==+ ()()()22222222211121m m m m mm m m +=+=++++, 不妨设0m >,令 21m t m +=,2t ≥, 则212S t t=+,因为12y t t =+,212y t'=-, 因为2t ≥,所以函数12y t t =+在区间[)2,+∞上单调递增,当2t =时,12y t t =+有最小值92,△FMN面积有最大值,最大值为49.。
2022-2023学年北京市师大附中高二上学期数学期末试题一、单选题1.已知向量,且,那么( )(1,2,1),(3,,)a b x y =-= a bxy =A . B .9 C . D .1818-9-【答案】D【分析】,则,使得,据此计算即可.a bR λ∃∈a b λ= 【详解】依题意,由可知,,使得,于是,解得a b R λ∃∈a b λ= 1321x y l l l ì-=ïï=íï=ïî1363x y l ì=-ïïï=-íï=-ïïî于是. 18xy =故选:D.2.已知为原点,点,以为直径的圆的方程为( ) O ()2,2A -OA A . B . ()()22112x y -++=()()22118x y -++=C . D .()()22112x y ++-=()()22118x y ++-=【答案】A【分析】求圆的圆心和半径,根据圆的标准方程即可求解﹒ 【详解】由题知圆心为,半径()11-,r ∴圆的方程为﹒ 22(1)(1)2x y -++=故选:A ﹒3.已知双曲线的渐近线方程为,则实数m 的值为( )221x y m-=12y x =±A . B .4 C . D .144-14-【答案】B【分析】利用双曲线方程得出,再利用渐近线定义得,解方程求出值.0m >12y x =±=m 【详解】已知方程表示的曲线为双曲线,所以,221x y m-=0m >该双曲线的渐近线为,又,得出12y x =±=0m > 4m =4.若抛物线的焦点与椭圆的一个焦点重合,则该抛物线的准线方程为22(0)y px p =>22195x y +=( ) A . B .C .D .=1x -1x =2x =2x =-【答案】D【分析】先求出椭圆的焦点坐标即是抛物线的焦点坐标,即可求出准线方程.【详解】∵椭圆的右焦点坐标为,22195x y +=(2,0)∴抛物线的焦点坐标为, (2,0)∴抛物线的准线方程为, 2x =-故选:D.5.已知直线l 过点,且与直线垂直,则直线l 的一般式方程为( ) (3,1)A -230x y -+=A . B .C .D .230x y ++=250x y ++=210x y +-=220x y +-=【答案】B【分析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线l 20x y m ++=()3,1-m 方程【详解】因为直线与直线垂直,所以设直线方程为, l 230x y -+=l 20x y m ++=因为直线过点,所以,得, l ()3,1-610m -++=5m =所以直线方程为, l 250x y ++=故选:B.6.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的棱长为1,则点A 到平面的距离是( )QGCA .B .C D 1412【分析】建立空间直角坐标系,求平面的法向量,用点到平面的距离公式计算即可. QGC 【详解】建立空间直角坐标系如图所示:则,,,,,,设平(0,2,0)C ()1,0,2Q (0,0,2)G (1,1,0)A (1,2,2)QC =--(1,0,0),(1,1,0)QG AC =-=- 面的法向量为,则,即,则平面的一个法向量为QGC (,,)n x y z = 00n QC n QG ⎧⋅=⎪⎨⋅=⎪⎩0220x x y z -=⎧⎨-+-=⎩QGC ,(0,1,1)n =则点A 到平面的距离QGC d 故选:C7.如图,在正方体中,E 是棱CD 上的动点.则下列结论不正确的是()1111ABCD A B C D -A .平面 1//D E 11AB BA B .11EB AD ⊥C .直线AE 与所成角的范围为 11B D (,42ππD .二面角的大小为11E A B A --4π【答案】C【分析】由平面平面,平面,即可判断A ;建立空间直角坐标系计11//CDD C 11A B BA 1D E ⊂11CDD C 算即可判断选项B ;求的范围即可判断选项C ;先找出二面角的平面角为11EB AD ⋅11|cos(,)|AE B D 即可判断选项D ,进而可得正确选项.1DA A ∠【详解】对于选项A :因为平面平面,平面, 11//CDD C 11A B BA 1D E ⊂11CDD C 所以平面,故选项A 正确;1//D E 11A BBA如图建立空间直角坐标系,设正方体的棱长为1,则,,(1,0,0)A (0,,0),01E m m ≤≤,,,对于选项B :,,1(1,1,1)B 1(0,0,1)D 1(1,0,1)A 1(1,1,1)EB m =- 1(1,0,1)AD =-因为,所以,即, 11(1,1,1)(1,0,1)1010EB AD m ⋅=-⋅-=-++=11EB AD ⊥ 11EB AD ⊥故选项B 正确;对于选项C :,,设直线与所成角为,(1,,0)AE m =- 11(1,1,0)B D =--AE 11B D θ则,11cos |cos ,|AE B D θ=〈〉=当,此时最小为,0m =θ4π当时最小等于0,此时最大为,所以, 1m =cos θθ2π,42ππθ⎡⎤∈⎢⎥⎣⎦即直线与所成角的范围为,故选项C 不正确;AE 11B D ,42ππ⎡⎤⎢⎥⎣⎦对于选项D :二面角即二面角, 11E A B A --11D A B A --因为,,111DA A B ⊥111AA A B ⊥平面,平面, 1DA ⊂11EA B 1AA ⊂11AA B 所以即为二面角的平面角,1DA A ∠11E A B A --在正方形中,,所以二面角的大小为,11ADD A 14DA A π∠=11E A B A --4π故选项D 正确, 故选:C.8.设是首项为正数的等比数列,公比为q ,则“”是“对任意正整数n ,”的{}n a 0q <212n n a a ->( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义判断.【详解】是首项为正数的等比数列,若公比,则数列中奇数项为正,偶数项为负,一定{}n a 0q <有,充分性满足,212n n a a ->但是时,数列各项均为正,,也就是说时,得不出,不必01q <<2212n n n a a q a -=<221n n a a -<0q <要. 故选:A .9.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,xoy C 228150x y x +-+=2y kx =+使得以该点为圆心,半径为1的圆与圆有公共点,则的最小值是( ) C k A .B .C .D .43-54-35-53-【答案】A【分析】化圆的方程为,求出圆心与半径,由题意,只需与直线C 22(4)1x y -+=22(4)4x y -+=有公共点即可.2y kx =+【详解】解:圆的方程为,整理得:,即圆是以为圆 C 228150x y x +-+=22(4)1x y -+=C (4,0)心,1为半径的圆;又直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,2y kx =+C 只需圆与直线有公共点即可.∴22:(4)4C x y '-+=2y kx =+设圆心到直线的距离为, (4,0)C 2y kx =+d则,即,2d =234k k -….403k ∴-…的最小值是.k ∴43-故选:.A 【点睛】本题考查直线与圆的位置关系,将条件转化为“与直线有公共22(4)4x y -+=2y kx =+点”是关键,考查学生灵活解决问题的能力,属于中档题.10.已知曲线,点,下面有四个结论: 2:||44C x x y +=F ①曲线C 关于x 轴对称;②曲线C 与y 轴围成的封闭图形的面积不超过4;③曲线C 上任意点P 满足;||2PF ≥④曲线C 与曲线有5个不同的交点. (22)(22)0x y x y --+-=则其中所有正确结论的序号是( ) A .②③ B .①④C .①③④D .①②③【答案】D【分析】根据点对称即可判断①;根据椭圆的几何性质可判断②;根据双曲线和椭圆上的点到的距离可做出判断③;由直线与曲线的关系可判断④.)F【详解】①:在上时,也在上,曲线关于轴对称,故①对;(),x y C (),x y -C ∴C x ②:当 ,此时曲线是椭圆的右半部分.矩形的面积为封闭图形面积不220,44x x y >+=ABCD 4,∴超过故②对;4,③:当时 ,,0x ≥2214x y +=)02PF x ===≤≤ ,当时,2x =min 2PF =当 时,,综上,可知曲线上任意点满足,故③对.0x <2214x y -=2PF >C P 2PF ≥④:与曲线相交于点,与曲线相交于点, 220x y --=(2,0),(0,1)-220x y +-=(2,0),(0,1)当 时,,此时双曲线的渐近线方程为,与,0x <2214x y -=12y x =±220x y --=220x y +-=平行,故不会有交点.所以共有3个交点,故④错. 故选:D.二、填空题11.已知等比数列中,,则数列的前5项和____________. {}n a 1231,27a a a =={}n a 5S =【答案】121【分析】设等比数列的公比为q ,由条件结合等比数列通项公式列方程求 q ,利用等比数列求{}n a 和公式求.5S 【详解】设等比数列{an }的公比为q ,因为,,所以,解得, 181a =2327a a =23127q ⨯=3q =则数列的前5项和.{}n a ()5511312113S -==-故答案为:.12112.已知圆,若直线与圆C 相交得到的弦长为22:(1)(1)4C x y -++=1y kx =+k =____________. 【答案】##-0.7534-【分析】根据圆的标准方程求出圆心坐标和半径,利用点到直线的距离公式和几何法求出圆的弦长,列出关于k 的方程,解之即可.【详解】由圆,得圆心,半径, 22:(1)(1)4C x y -++=(1,1)C -2r =则圆心到直线即的距离为(1,1)C -1y kx =+10kx y -+=, d 222d r +=有,解得.21=34k =-故答案为:.34-13.已知椭圆的两个焦点分别为,点在椭圆上,若22219x y b +=(03)b <<12,F F P ,则的面积为____________. 120PF PF ⋅=12PF F △【答案】3【分析】根据已知可得,,.根据椭圆的定义有,根据3a =c =12F F =126PF PF +=有.即可求出,进而求出三角形的面积.120PF PF ⋅= 221224PF PF +=126PF PF ⋅=【详解】由已知可得,,,所以,3a =c e a ==c =12F F =因为点在椭圆上,由椭圆的定义可得,, P 126PF PF +=所以.()222121212236PF PF PF PF PF PF +=++⋅=又,所以为直角三角形,则,120PF PF ⋅= 12PF F △222121224PF PF F F +==所以,所以. 126PF PF ⋅=1212132PF F S PF PF =⋅=△故答案为:3.14.已知正方体的棱长为2,点M ,N 分别是棱BC ,C 1D 1的中点,点P 在平面1111ABCD A B C D -内,点Q 在线段A 1N 上,若,则PQ 长度的最小值为____.1111D C B A PM =1 -【分析】取的中点,连接,得到,求得,得到点在以11B C O ,OM OP MO OP ⊥11A N OP ==P O 为圆心,1为半径的半圆上,在平面图形中,求得,结合,即可求解. 1111D C B A 1A NO S 11322A N OH ⋅=【详解】如图所示,取的中点,连接,则平面,所以, 11BC O ,OM OP MO ⊥1111D C B A MO OP ⊥因为的棱长为2,是的中点, PM =1111ABCD A B C D -N 11D C所以,11A N OP ==所以点在以为圆心,1为半径的位于平面内的半圆上,P O 1111D C B A单独画出平面及相关点、线,如图所示, 1111D C B A 所以点到的距离减去半径就是长度的最小值, O 1A N PQ 连接,作交于, 1,A O ON 1OH A N ⊥1A N H 则,11113221111212222A NO S =⨯-⨯⨯-⨯⨯-⨯⨯= 所以,解得11322A N OH ⋅=OH =所以.PQ1. 1三、双空题15.角谷猜想又称冰雹猜想,是指任取一个正整数,如果它是奇数,就将它乘以3再加1;如果它是偶数,则将它除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1421→→→.如取正整数,根据上述运算法则得出,共需要经过86m =63105168421→→→→→→→→个步骤变成1(简称为8步“雹程”),已知数列满足:(m 为正整数),{}n a 1a m =①若,则使得至少需要_______步雹程;②若;则1,,231,,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时13m =1n a =91a =m 所有可能取值的和为_______. 【答案】 9 385【分析】根据题目所给的步骤逐步计算即可.【详解】m =13,依题意, , 314020105168421m +=→→→→→→→→共9共 步骤;若, , 或,91a =872,4a a ==68a =61a =若, 68a =2143215214321128,25632,6421,421620,405,103,6a a a a a a a a a a a a a ⎧==⎧==⎨⎪==⎪⎩=⎨==⎧⎪==⎨⎪==⎩⎩若,61a =132********8,1652,41,2,4a a a a a a a a a ⎧=⎧==⎨⎪===⎨⎩⎪===⎩ 的集合为 ,其和为385;1a {}256,42,40,6,32,5,4故答案为:9,385.四、解答题16.已知公差不为零的等差数列的前项和为,若,且成等比数列. {}n a n n S 10110S =124,,a a a (1)求数列的通项公式; {}n a (2)若,求数列的前项和.1(1)(1)n n n b a a =-+{}n b n n T 【答案】(1);(2) 2n a n =11(1221n -+【分析】(1)根据为等差数列,前项和为,,且成等比数列.利用公式{}n a n n S 10110S =124,,a a a 即可求解公差和首项,可得数列的通项公式;{}n a (2)将的带入求解的通项公式,利用“裂项求和”即可得出. n a {}n b 【详解】(1)根据为等差数列,.{}n a 0d ≠前项和为,且,即,…①n n S 10110S =11101045a d =+∵成等比数列.可得:.∴…②124,,a a a 2214a a a =⋅2111()(3)a d a a d +=+由①②解得:,∴数列的通项公式为122a d =⎧⎨=⎩{}n a 2n a n =(2)由,()()n n 111n b a a =-+即=.()()12n 12n 1n b =-+11122n 12n 1⎛⎫- ⎪-+⎝⎭那么:数列的前项和{}n b n12n n T b b b =+++ 111111(123352121n n =-+-++--+ . 11(1)221n =-+【点睛】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.17.如图.在正方体中,E 为的中点.1111ABCD A B C D -1DD(1)求证:平面ACE ;1//BD (2)求直线AD 与平面ACE 所成角的正弦值.【答案】(1)证明见详解【分析】(1)连连接BD 与AC 交于点O ,根据中位线定理可知,然后根据线面平行的判1//OE BD 定定理可得. (2)建立空间直角坐标系,计算,平面的一个法向量,然后根据空间向量的夹角公式计AD ACE 算即可.【详解】(1)如图所示:,连接BD 与AC 交于点O ,因为O ,E 为中点,所以,又平面,平面,1//OE BD OE ⊂ACE 1BD ⊄ACE所以平面;1//BD ACE (2)建立如图所示的空间直角坐标系令,所以2AB =()()()()0,0,0,0,2,0,2,2,,0,0,2,1A D C E()()()0,2,0,2,2,0,0,2,1AD AC AE === 设平面的一个法向量为ACE (),,n x y z = 所以,令 2200200x y n AC y z n AE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩1,1,2y x z =-==所以,()1,1,2n =- 所以直线AD 与平面ACE18.如图,在三棱柱中,平面,是边长为的正三角形,111ABC A B C -1AA ⊥ABC ABC 2分别为 的中点.13,,AA D E =,AB BC(1)求证:平面.CD ⊥11AA B B (2)求二面角的余弦值.1B AE B --【答案】(1)证明见解析【分析】(1)证明,,进而根据判定定理即可证明;CD AB ⊥1AA CD ⊥(2)取的中点为,连接,证明,,进而建立如图所示的11A B F DF DF AB ⊥CD AB CD DF ⊥⊥,空间直角坐标系D -xyz ,利用坐标法求解即可;【详解】(1)解:在三棱柱中,因为平面,平面, 111ABC A B C -1AA ⊥ABC CD ⊂ABC 所以.1AA CD ⊥又为等边三角形,为的中点,ABC D AB 所以.CD AB ⊥因为平面,11,,AB AA A AB AA =⊂ 11AA B B 所以平面 .CD ⊥11AA B B (2)解:取的中点为,连接,11A B F DF 因为在三棱柱中,四边形为平行四边形,分别为的中点, 111ABC A B C -11AA B B ,D F 11,AB A B 所以,1//DF AA 因为平面,平面,1AA ⊥ABC AB ⊂ABC 所以1AA AB ⊥所以.由(1)知,DF AB ⊥CD AB CD DF ⊥⊥,故建立如图所示的空间直角坐标系D -xyz ,由题意得111(1,0,0),(1,0,0),(1,3,0),(1,3,0),,2A B C A B E ⎛--- ⎝所以,.13,(2,3,0)2AE AB ⎛=-=- ⎝设平面的法向量, 1AB E (,,)n x y z =则,令,则. 1302230n AE x z n AB x y ⎧⋅=-=⎪⎨⎪⋅=-+=⎩ 1x=2,3y z==21,3n ⎛= ⎝ 由题意可知,平面的一个法向量BAE 1(0,3,0).AA = 因为.111cos ,AA n AA n AA n ⋅===⋅ 由已知可得二面角为锐角, 1B AE B --所以二面角 1B AE B --19.已知椭圆:的离心率为,且经过点, C ()222210x y a b a b+=>>1231,2⎛⎫-- ⎪⎝⎭(1)求椭圆的标准方程;C (2)过点作直线与椭圆相较于,两点,试问在轴上是否存在定点,使得两条不同直()1,0l A B x Q线,恰好关于轴对称,若存在,求出点的坐标,若不存在,请说明理由.QA QB x Q 【答案】(1);(2)存在,使得两条不同直线,恰好关于轴对称. 22143x y +=(4,0)Q QA QB x 【解析】(1)将点坐标代入方程,结合离心率公式及,即可求出,进而可222a b c =+2,a b ==求得椭圆的标准方程;C (2)设直线l 的方程为,与椭圆联立,可得,的表达式,根据题意可得,直1x my =+12y y +12yy 线,的斜率互为相反数,列出斜率表达式,计算化简,即可求出Q 点坐标.QA QB 【详解】(1)有题意可得,解得, 22222191412a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩2,1a b c ===所以椭圆的方程为. C 22143x y +=(2)存在定点,满足直线,恰好关于x 轴对称,(4,0)Q QA QB 设直线l 的方程为,由, 1x my =+221143x my x y =+⎧⎪⎨+=⎪⎩联立得,,22(43)690m y my ++-=22(6)4(43)(9)0m m ∆=-⨯+⨯->设,定点,由题意得,1122(,),(,)A x y B x y (,0)Q t 12,t x t x ≠≠所以, 12122269,4343m y y y y m m +=-=-++因为直线,恰好关于x 轴对称,QA QB 所以直线,的斜率互为相反数,QA QB 所以,即, 12120y y x t x t+=--1221()()0y x t y x t -+-=所以,即,11221)1()(0y y my t my t +-++-=1212(1)()02y y t y m y +-+=所以,即, 22962()(1)(04343m m t m m ⋅-+--=++6(4)0m t --=所以当时,直线,恰好关于x 轴对称,即.4t =QA QB (4,0)Q 综上,在轴上存在定点,使直线,恰好关于x 轴对称.x (4,0)Q QA QB 【点睛】本题考查椭圆的方程及几何性质,考查直线与椭圆的位置关系问题,解题的关键是将条件:直线,恰好关于x 轴对称,转化为直线,的斜率互为相反数,再根据韦达定理QA QB QA QB 及斜率公式,进行求解,考查分析理解,计算求值的能力,属中档题.20.已知抛物线E :x 2=2py (p >0)的焦点为F ,A (2,y 0)是E 上一点,且|AF |=2.(1)求E 的方程;(2)设点B 是E 上异于点A 的一点,直线AB 与直线y =x -3交于点P ,过点P 作x 轴的垂线交E 于点M ,证明:直线BM 过定点.【答案】(1)x 2=4y ;(2)证明见解析.【解析】(1)利用抛物线的定义与性质求得的值,即可写出抛物线方程;p (2)设点、,由直线的方程和抛物线方程联立,消去,利用韦达定理和()11,B x y ()22,M x y BM y 、、三点共线,化简整理可得的方程,从而求出直线所过的定点.A PB BM BM 【详解】(1)由题意得,解得, 002224p AF y py ⎧=+=⎪⎨⎪=⎩021p y =⎧⎨=⎩所以,抛物线的标准方程为.E 24x y =(2)证明:设点、,设直线的方程为,()11,B x y ()22,M x y BM y kx b =+联立,消去得, 24y kx b x y=+⎧⎨=⎩y 2440x kx b --=由韦达定理得,,124x x k +=124x x b =-由轴以及点在直线上,得,MP x ⊥P 3y x =-()22,3P x x -则由、、三点共线,得, A P B 21214122x kx b x x -+-=--整理得,()()()12121241260k x x k x b x b ---++--=将韦达定理代入上式并整理得,()()12230x k b -+-=由点的任意性,得,得,B 230k b +-=32b k =-所以,直线的方程为,即直线过定点.BM ()2323y kx k k x =-+=-+BM ()2,3【点睛】本题考查了抛物线的性质,直线和抛物线的位置关系,以及直线过定点的应用问题,利用韦达定理处理由、、三点共线是解第二问的关键,是中档题.A PB 21.已知有限数列为单调递增数列.若存在等差数列,对于A 中任意12:,,,m A a a a 121:,,,m B b b b + 一项,都有,则称数列A 是长为m 的数列.i a 1i i i b a b +≤<Ω(1)判断下列数列是否为数列(直接写出结果):Ω①数列1,4,5,8;②数列2,4,8,16.(2)若,证明:数列a ,b ,c 为数列;(,,)a b c a b c R <<∈Ω(3)设M 是集合的子集,且至少有28个元素,证明:M 中的元素可以构成一{|063}x N x ∈≤≤个长为4的数列.Ω【答案】(1)①数列,,,是数列;②数列,,,是数列;(2)证明见解1458Ω24816Ω析;(3)证明见解析.【分析】(1)由数列的新定义,可直接判定,得到答案;(2)分当,和三种情况讨论,结合数列的新定义,即可求解; b a c b -=-b a c b -<-b a c b ->-(3)假设中没有长为的数列,先考虑集合,得到存在一个,使M 4Ω{16,161,,1615}k M k k k =++L k 得中没有一个元素属于,再考虑集合,得到k M M ,{164,1641,k j M k j k j =+++1642,1643}k j k j ++++存在一个,使得中没有一个元素属于,进而证得集合中至多有个元素,即可得到结j ,k j M M M 27论.【详解】(1)由数列的新定义,可得数列,,,是数列;数列,,,是数列. 1458Ω24816Ω(2)①当时,令,,,,b ac b -=-1b a =2b b =3b c =42b c b =-所以数列,,,为等差数列,且,1b 2b 3b 4b 1234b a b b b c b <<<≤≤≤所以数列,,为数列.a b c Ω②当时,令,,,,b ac b -<-12b b c =-2b b =3b c =42b c b =-所以数列,,,为等差数列,且.1b 2b 3b 4b 1234b a b b b c b <<<≤≤≤所以数列,,为数列.a b c Ω③当时,令,,,, b a c b ->-1b a =22a c b +=3b c =432c a b -=所以数列,,,为等差数列,且.1b 2b 3b 4b 1234b a b b b c b <<<≤≤≤所以数列,,为数列.a b c Ω综上,若,数列,,为数列.a b c <<a b c Ω(3)假设中没有长为的数列,M 4Ω考虑集合,,,,.{16,161,,1615}k M k k k =++L 0k =123因为数列,,,,是一个共有5项的等差数列,016324864所以存在一个,使得中没有一个元素属于.k k M M 对于其余的,k 再考虑集合,,,,.,{164,1641,1642,1643}k j M k j k j k j k j =+++++++0j =123因为,,,,是一个共有5项的等差数列, 164k j +1644k j ++1648k j ++16412k j ++16416k j ++所以存在一个,使得中没有一个元素属于.j ,k j M M 因为中个数成等差数列,所以每个中至少有一个元素不属于.,k j M 4,k j M M 所以集合中至少有个元素不属于集合.{|063}x x ∈N ≤≤16431937+⨯+⨯=M 所以集合中至多有个元素,这与中至少有个元素矛盾.M 643727-=M 28所以假设不成立.所以中的元素必能构成长为4的数列.M Ω【点睛】1、数列新定义问题的特点:通过给出一个新的数列概念,或约定一种新运算,或给出几个新模型来创设全新的问题情境,要求考生再阅读理解的基础上,以及题目提供的信息,联系所学知识和方法,实现信息的迁移,达到灵活解题的目的;2、遇到数列的心定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.。
第 1 页共 4 页莆田一中2022-2023学年第一学期期末试卷高二数学第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知f (x )=alnx −12x 2+x ,且f ′(1)=3,则a =( )A .4B .3C .2D .12.直线l 1:ax +y −1=0,l 2:(a −2)x −ay +1=0,则“a =−2”是“12//l l ”的( )条件 A .必要不充分 B .充分不必要 C .充分必要D .既不充分也不必要3.已知圆的方程为2260x y x +−=,过点(1,2)的直线被该圆所截得的最短弦长为( ) A .1B .2C .3D .44.等差数列{a n }中,公差12d =,且1359960a a a a ++⋅⋅⋅+=,则123100a a a a +++⋅⋅⋅+=( ) A .145B .150C .170D .1205.在正项等比数列{a n }中,a 3、a 7是函数f (x )=13x 3−4x 2+4x −1的极值点,则a 5=( ) A .2−或2B .2−C.D .26.已知1F 、2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .47.已知8ln 6a =,7ln 7b =,6ln 8c =,则a 、b 、c 的大小关系为( ) A .b c a >> B .c b a >>C .a c b >>D .a b c >>第 2 页 共 4 页8.法国数学家加斯帕尔·蒙日发现:与椭圆22221(0)x y a b a b+=>>相切的两条互相垂直的直线的交点轨迹是以椭圆中心为圆心的圆2222x y a b +=+,我们通常把这个圆称为该椭圆的蒙日圆.若圆()22:()()4R C x a y a −+=∈上存在点P ,使得过点P 可作两条互相垂直的直线与椭圆2213x y +=相切,则实数a 的取值范围为( )A . []0,4B .[]4,4−C .[]0,2D . []22−,二、多选题:本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的. 全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列{}n a 的通项公式为a n =(−1)n ,n S 为数列{}n a 的前n 项和,则下列数列一定成等比的有( ) A .数列{}1n n a a ++ B .数列{}2n a C .232,,n n n n n S S S S S −−D .数列{}1n n a a +⋅10.任取一个正整数,若是奇数,将该数乘以3再加上1;若是偶数,将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1,这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等). 如:取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:数列{a n }满足:1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时.若a 2=m (m 为正整数),a 6=1,则m 所有可能的取值为( ) A .2B .5C .16D .3211.椭圆22:14x C y +=的左、右焦点分别为F 1、F 2,O 为坐标原点,则下列说法错误..的是( )A .过点2F 的直线与椭圆C 交于A ,B 两点,则△ABF 1的周长为4 B .椭圆C 的离心率为12C .P 为椭圆C 上一点,Q 为圆221x y +=上一点,则点P ,Q 的最大距离为3D .椭圆C 上不存在点P ,使得120PF PF ⋅=第 3 页共 4 页12.已知函数()2ln 2f x x x mx =−,则下列说法正确..的是( ) A .当0m ≤或12em =时,()f x 有且仅有一个零点 B .当0m ≤或14m =时,()f x 有且仅有一个极值点 C .若()f x 为单调递减函数,则14m > D .若()f x 与x 轴相切,则12em =第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l 经过点P (2,−2),其纵截距为正,且纵截距比橫截距大1,则直线l 的方程为 .14.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,过1F 且倾斜角为30的直线与过2F 的直线2l 交于P 点,1290F PF ∠=,且点P 在椭圆上.则椭圆C 的离心率=e __________.15.点P 是曲线x x y ln 2−=上任意一点,且点P 到直线y =x +a 的距离的最小值是√2,则实数a 的值是 .16.已知点(,)P m n 在圆22:(2)(2)9C x y −+−=上运动,则m +n 的最大值为 ,的取值范围为 .四、解答题:本题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(1) 已知圆22110C x y +=:与圆22222140C x y x y +++−=:.证明圆1C 与圆2C 相交;并求两圆公共弦所在直线的方程;(2) 求圆心既在第一象限又在直线3x −y =0上,与x 轴相切,且被直线x −y =0截得的弦长为2√7的圆的方程.第 4 页 共 4 页18.(12分) 设函数f(x)=x +ax 2+blnx ,曲线y =f(x)过点P(1,0),且在P 点处的切线斜率为2.(1) 求a 、b 的值; (2) 证明:f(x)≤2x -2.19.(12分) 设{}n a 是公比不为1的等比数列,1a 为2a 、3a 的等差中项.(1) 求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.20. (12分) 设首项为2的数列{}n a 的前n 项和为n S ,前n 项积为n T ,且满足_________. 条件①:111n n a a n n +=++; 条件②:23n nn S a +=; 条件③:12n n n n T a T n ++=. 请在以上三个条件中,选择一个补充在上面的横线处,并解答以下问题: (注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)求证:数列13n n S ⎧⎫+⎨⎬⎩⎭的前n 项和34nM <. (参考公式....:22221123(1)(21)6n n n n ++++=++)21.(12分) 已知点A(−2,0)、B(2,0),动点M(x,y)满足直线AM 与BM 的斜率之积为43−.记M 的轨迹为曲线C .(1) 求C 的方程,并说明C 是什么曲线;(2) 经过点P(−1,0)的直线l 与曲线C 交于C 、D 两点. 记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1−S 2|的最大值.22.(12分) 已知函数()e 1,R x f x ax a =−−∈. (1)求函数()f x 的极值;(2)若1是关于x 的方程()()2R f x bx b =∈的根,且方程2()f x bx =在(0,1)上有实根,求b 的取值范围.莆田一中2022-2023学年第一学期期末考试高二数学姓名: 班级: 考场/座位号:正确填涂缺考标记注意事项1.答题前请将姓名、班级、考场、准考证号填写清楚。
2022-2023学年北京市东城区高二上学期期末考试数学试题一、单选题1.已知向量()8,2,1a =-,()4,1,b k =-,且//a b ,那么实数k 的值为( ) A .12B .12-C .2-D .2【答案】B【分析】根据平行关系可知b a λ=,由向量坐标运算可构造方程求得结果.【详解】//a b ,()b a λλ∴=∈R ,4812k λλλ-=⎧⎪∴=-⎨⎪=⎩,解得:12k =-.故选:B.2.已知直线0x y --=的倾斜角为( )度 A .45 B .135 C .60 D .90【答案】A【分析】根据给定的直线方程,求出其斜率,再求出倾斜角作答.【详解】直线0x y --=的斜率为1,所以直线0x y --=的倾斜角为45度. 故选:A3.抛物线22y x =-的准线方程是( ) A .12y =B .1y =-C .12x =D .1x =【答案】C【分析】根据抛物线方程可直接求得结果. 【详解】由抛物线方程可知其准线方程为:2142x -=-=. 故选:C.4.2021年9月17日,北京2022年冬奥会和冬残奥会主题口号正式对外发布——“一起向未来”(英文为:“Together for a Shared Future ”),这是中国向世界发出的诚挚邀约,传递出14亿中国人民的美好期待.“一起向未来”的英文表达是:“Together for a Shared Future ”,其字母出现频数统计如下表:合计频数为24,那么字母“e ”出现的频率是( )A .18B .16C .112 D .14【答案】B【分析】用字母“e ”出现的频数除以总数就是所求频率.【详解】由图中表格可知,字母“e ”出现的频数为4,合计总频数为24,所以字母“e ”出现的频率为41246=. 故选:B5.设n S 为数列{}n a 的前n 项和,已知13a =,12nn n S S +=+,那么3a =( )A .4B .5C .7D .9【答案】A【分析】由332a S S =-可直接求得结果.【详解】由12n n n S S +=+得:12n n n S S +-=,233224a S S ∴=-==.故选:A.6.已知在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,那么直线1A C 与平面11AA D D 所成角的正弦值为( )A 6B 35C 3D 6【答案】A【分析】由长方体性质易知1CA D ∠为1A C 与面11AA D D 所成的角,进而求其正弦值即可. 【详解】根据长方体性质知:CD ⊥面11AA D D , 故1CA D ∠为1A C 与面11AA D D 所成的角, 222112,11126AA AB AD CA ===⇒=++所以116sin 6A CA D CD C =∠=. 故选: A7.如图,点O 是正方形ABCD 两条对角线的交点.从这个正方形的四个顶点中随机选取两个,那么这两个点关于点O 对称的概率为( )A .15B .14C .13D .12【答案】C【分析】先求出事件的基本总数,再求出满足条件的基本事件数,利用古典概型计算即可.【详解】从四个顶点选两个的情况数为:24C 6=,选的两个点关于中心O 对称的情况有:,A C 与,B D 两种, 所以所求概率为:2163P ==, 故选:C. 8.圆心为1,2,半径3r =的圆的标准方程为( )A .()()22129x y -++= B .()()22129x y ++-= C .()()22123x y -++= D .()()22123x y ++-=【答案】B【分析】根据圆的标准方程的形式,由题中条件,可直接得出结果. 【详解】根据题意,圆心为1,2,半径3r =圆的标准方程为()()22129x y ++-=;故选:B .9.已知正四棱锥P ABCD -的高为4,棱AB 的长为2,点H 为侧棱PC 上一动点,那么HBD △面积的最小值为( )A .2B .32C .23D .423【答案】D【分析】根据正四棱锥的性质得到PO ⊥平面ABCD ,OH BD ⊥,然后根据4PO =,2OC =,得到OH 的范围,最后根据三角形面积公式求面积的最小值即可.【详解】取BD 中点O ,连接OH 、PO 、OC ,因为四棱锥P ABCD -为正四棱锥,所以PO ⊥平面ABCD ,DH BH =, 因为O 为BD 中点,所以OH BD ⊥, 因为OC ⊂平面ABCD ,所以PO OC ⊥,因为2AB =,4PO =,所以22BD =2OC = 在直角三角形POC 中,当OH PC ⊥时,OH 2424342⨯=+,当点H 和点P 重合时,OH 最大,最大为4,所以4,43OH ⎡⎤∈⎢⎥⎣⎦,12222HBD S OH OH =⨯=,所以当43OH =时,HBD △42.故选:D.10.抛掷一枚质地均匀的骰子两次,将第一次得到的点数记为x ,第二次得到的点数记为y ,那么事件“216x y +≤”的概率为( ) A .19B .536 C .16D .13【答案】C【分析】由已知先列举出事件总数,然后解出不等式,找出满足条件的事件数,结合古典概率计算即可.【详解】由题意第一次得到的点数记为x ,第二次得到的点数记为y , 记为(),x y ,则它的所有可能情况为:()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,()()()()()()2,1,2,2,2,3,2,4,2,5,2,6, ()()()()()()3,1,3,2,3,3,3,4,3,5,3,6,()()()()()()4,1,4,2,4,3,4,4,4,5,4,6, ()()()()()()5,1,5,2,5,3,5,4,5,5,5,6,()()()()()()6,1,6,2,6,3,6,4,6,5,6,6共36种,由216x y +≤,即422x y +≤,由2x y =在R 单调递增, 所以4x y +≤,所以满足条件的(),x y 有:()()()1,1,1,2,1,3,()()2,1,2,2,()3,1共6种,所以事件“216x y +≤”的概率为:61366P ==, 故选:C.11.地震预警是指在破坏性地震发生以后,在某些区域可以利用“电磁波”抢在“地震波”之前发出避险警报信息,以减小相关预警区域的灾害损失.根据Rydelek 和Pujol 提出的双台子台阵方法,在一次地震发生后,通过两个地震台站的位置和其接收到的信息,可以把震中的位置限制在双曲线的一支上,这两个地震台站的位置就是该双曲线的两个焦点.在一次地震预警中,两地震台A 站和B 站相距10km .根据它们收到的信息,可知震中到B 站与震中到A 站的距离之差为6km .据此可以判断,震中到地震台B 站的距离至少为( ) A .8km B .6kmC .4kmD .2km【答案】A【分析】设震中为P ,根据双曲线的定义以及||||||10PA PB AB +≥=可求出结果.【详解】设震中为P ,依题意有||||6PB PA -=<||10AB =,所以点P 的轨迹是以,A B 为焦点的双曲线靠近A 的一支,因为||||||10PA PB AB +≥=,当且仅当,,A P B 三点共线时,取等号, 所以||6||10PB PB -+≥,所以||8PB ≥, 所以震中到地震台B 站的距离至少为8km . 故选:A12.对于数列{}n a ,若存在正数M ,使得对一切正整数n ,都有n a M ≤,则称数列{}n a 是有界的.若这样的正数M 不存在,则称数列{}n a 是无界的.记数列{}n a 的前n 项和为n S ,下列结论正确的是( ) A .若1n a n=,则数列{}n a 是无界的 B .若sin n a n n =,则数列{}n a 是有界的 C .若()1nn a =-,则数列{}n S 是有界的 D .若212n a n =+,则数列{}n S 是有界的 【答案】C【分析】根据1n a ≤可知A 错误;由sin n a n n =可知n a 不存在最大值,即数列{}n a 无界;分别在n 为偶数和n 为奇数的情况下得到n S ,由此可确定1n S ≤,知C 正确;采用放缩法可求得22221n S n n ⎛⎫≤-+ ⎪+⎝⎭,由21,213n n ⎡⎫-∈+∞⎪⎢+⎣⎭可知D 错误.【详解】对于A ,111n a n n==≤恒成立,∴存在正数1M =,使得n a M ≤恒成立,∴数列{}n a 是有界的,A 错误;对于B ,sin sin n a n n n n ==,sin 1n ≤,n a n ∴≤,即随着n 的增大,不存在正数M ,使得n a M ≤恒成立,∴数列{}n a 是无界的,B 错误;对于C ,当n 为偶数时,0n S =;当n 为奇数时,1n S =-;1n S ∴≤,∴存在正数1M =,使得n S M ≤恒成立,∴数列{}n S 是有界的,C 正确;对于D ,()()22144114421212121n n n n n n ⎛⎫=≤=- ⎪-+-+⎝⎭, 2221111111121241233352121n S n n n n n ⎛⎫∴=++++⋅⋅⋅≤+-+-+⋅⋅⋅+- ⎪-+⎝⎭ 182241222212121n n n n n n n ⎛⎫⎛⎫=+-=+=-+ ⎪⎪+++⎝⎭⎝⎭;221y x x =-+在()0,∞+上单调递增,21,213n n ⎡⎫∴-∈+∞⎪⎢+⎣⎭, ∴不存在正数M ,使得n S M ≤恒成立,∴数列{}n S 是无界的,D 错误.故选:C.【点睛】关键点点睛:本题考查数列中的新定义问题,解题关键是理解数列有界的本质是对于数列中的最值的求解,进而可以通过对于数列单调性的分析来确定数列是否有界.二、填空题13.已知空间向量()1,1,0a =-,(),1,1m b =-,若a b ⊥,则实数m =_____. 【答案】1【分析】根据空间向量数量积的坐标表示公式进行求解即可. 【详解】因为a b ⊥,所以0101a b m m ⋅=⇒-=⇒=, 故答案为:114.在等差数列{}n a 中,12a =,426a a =+,则n a =______. 【答案】*31,(N )n n -∈【分析】利用已知条件求出公差,利用等差数列通项公式求解即可. 【详解】设等差数列的公差为d , 由12a =,426a a =+,所以11633a a d d d +=+⇒=+,所以*1(1)2(1)331,(N )n a n a n d n n +-=+⨯=-∈=-,故答案为:*31,(N )n n -∈.15.两条直线1:3420l x y --=与2:3480l x y -+=之间的距离是______. 【答案】2【分析】根据平行直线间距离公式可直接求得结果. 【详解】由平行直线间距离公式可得:12,l l 之间的距离2d ==.故答案为:2.16.试写出一个中心为坐标原点,焦点在坐标轴上,渐近线方程为2y x =±的双曲线方程___________.【答案】2214y x -=(或其它以2y x =±为渐近线的双曲线方程)【分析】根据题意写出一个即可.【详解】中心为坐标原点,焦点在坐标轴上,渐近线方程为2y x =±的双曲线方程为()2204y x λλ-=≠ 故答案为:2214y x -=(或其它以2y x =±为渐近线的双曲线方程)17.已知点P 是曲线221ax by +=(其中a ,b 为常数)上的一点,设M ,N 是直线y x =上任意两个不同的点,且MN t =.则下列结论正确的是______. ①当0ab >时,方程221ax by +=表示椭圆; ②当0ab <时,方程221ax by +=表示双曲线; ③当124a =,18=b ,且4t =时,使得MNP △是等腰直角三角形的点P 有6个;④当124a =,18=b ,且04t <<时,使得MNP △是等腰直角三角形的点P 有8个.【答案】②③④【分析】对①②,根据方程221ax by +=表示的曲线可以是圆,椭圆,双曲线,直线判断;对③④,求出点P 到直线y x =的距离d 的取值范围,对点P 是否为直角顶点进行分类讨论,确定d ,t 的等量关系,综合可得出结论.【详解】方程221ax by +=中当0a b =>时可表示圆,当0ab <时,221ax by +=表示双曲线,故①错误,②正确;在③④中:椭圆方程为221248x y +=,椭圆与直线l 均关于原点对称,设点,)P θθ,则点P 到直线l 的距离为π4sin [0,4].3d θ⎛⎫===-∈ ⎪⎝⎭ 对③:4t =时,(1)若P 为直角顶点,如图1,则||4MN t ==,4d =,满足MNP △为等腰直角三角形的点P 有四个,图1(2)若P 不是直角顶点,如图2,则||4MN t ==,4d =,满足PMN 是等腰直角三角形的非直角顶点P 有两个,图2故4t =时,使得MNP △是等腰直角三角形的点P 有6个,③正确; 对④:04t <<时,(1)若P 为直角顶点,如图1,则||MN t =,42td =<,满足MNP △为等腰直角三角形的点P 有四个.. (2)若P 不是直角顶点,如图3,则||MN t =,4d t =<,满足MNP △是等腰直角三角形的非直角顶点P 有四个,图3故04t <<时,使得MNP △是等腰直角三角形的点P 有8个,④正确; 故答案为:②③④.【点睛】椭圆的参数方程是cos ,sin x a y b θθ==,对于有关椭圆上点的横纵坐标问题的题目可以转化为三角函数问题求解,比如求23z x y =+的最大值,求点到直线的距离范围等问题都可以使用椭圆的参数方程来解决.三、双空题18.某单位组织知识竞赛,按照比赛规则,每位参赛者从5道备选题中随机抽取3道题作答.假设在5道备选题中,甲答对每道题的概率都是23,且每道题答对与否互不影响,则甲恰好答对其中两道题的概率为______;若乙能答对其中3道题且另外两道题不能答对,则乙恰好答对两道题的概率为______. 【答案】4935【分析】(1)甲能够答对X 道题目,则2~(3,)3X B ,根据二项分布的概率即可进一步求解;(2)设乙能够答对Y 道题目,根据超几何分布即可求出答案. 【详解】解设甲能够答对X 道题目,2~(3,)3X B ,所以()2322242C 1339P X ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭, 解设乙能够答对Y 道题目,则()123235C C 32C 5P Y ⋅===. 故答案为:49;35.四、解答题19.某超市有A ,B ,C 三个收银台,顾客甲、乙两人结账时,选择不同收银台的概率如下表所示,且两人选择哪个收银台相互独立.(1)求a ,b 的值;(2)求甲、乙两人在结账时都选择C 收银台的概率; (3)求甲、乙两人在结账时至少一人选择C 收银台的概率. 【答案】(1)0.4a =,0.4b =(2)0.12(3)0.58【分析】(1)根据甲在三个收银台结账的概率和为1求a 值,同理求b 的值;(2)“甲选择C 收银台”与“乙选择C 收银台”是相互独立事件,利用独立事件的概率公式求解;(3)利用对立事件求解.【详解】(1)由表可知,甲选择A 收银台的概率为10.20.40.4a =--=,乙选择B 收银台的概率为10.30.30.4b =--=(2)设事件A 为“甲选择C 收银台”,事件B 为“乙选择C 收银台”,事件C 为“甲,乙两人在结账时都选择C 收银台”.根据题意,()0.4,()0.3P A P B ==,事件,A B 相互独立.所以()()0.40.30.12P C P AB ==⨯=.(3)设事件D 为“甲,乙两人在结账时至少一人选择C 收银台”,()1()10.60.70.58P D P AB =-=-⨯=.20.在四棱雉P ABCD -中,底面ABCD 是正方形,Q 为棱PD 的中点,PA AD ⊥,2PA AB ==,再从下列两个条件中任选一个作为已知,求解下列问题.条件①:平面PAD ⊥平面ABCD ;条件②:PA AB ⊥.(1)求证:PA ⊥平面ABCD ;(2)求平面ACQ 与平面ABCD 夹角的余弦值;(3)求点B 到平面ACQ 的距离.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析;323【分析】(1)条件①利用面面垂直的性质定理可证得;条件②利用线面垂直的判定定理可证得;(2)建立空间直角坐标系,利用空间向量法求面面夹角;(3)利用空间向量求点到面的距离.【详解】(1)条件①:平面PAD ⊥平面ABCD证明:因为平面PAD ⊥平面ABCD ,PA AD ⊥,PA ⊂平面PAD ,平面PAD ⋂平面ABCD AD =,所以PA ⊥平面ABCD .条件②:PA AB ⊥证明:因为PA AD ⊥,PA AB ⊥,且,AB AD ⊂平面ABCD ,AB AD A ⋂=,所以PA ⊥平面ABCD .(2)由(1)知PA ⊥平面ABCD ,AB AD ⊥,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 分别所在的直线为,,x y z 轴,建立如图空间直角坐标系,则()002P ,,,()0,0,0A ,()0,1,1Q ,()2,2,0C , 所以()2,2,0AC =,()0,1,1AQ =由(1)知平面ABCD 的法向量()0,0,2AP =,设平面ACQ 的法向量为(),,n x y z =,则2200n AC x y n AQ y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 即00x y y z +=⎧⎨+=⎩,令1y =,则()1,1,1n =--, 设平面ACQ 与平面ABCD 夹角的为θ,则cos cos ,2AP nAP n AP n θ⋅-====⨯⋅所以平面ACQ 与平面ABCD (3)由已知得()2,0,0B ,()2,0,0AB =,所以点B 到平面ACQ 的距离为23AB nn -⋅==21.已知圆22:2440C x y x y +-+-=,圆()()221:314C x y -+-=及点()3,1P .(1)判断圆C 和圆1C 的位置关系;(2)求经过点P 且与圆C 相切的直线方程.【答案】(1)相交(2)1y =或125410x y +-=【分析】(1)根据两圆方程可确定圆心和半径,由圆心距与两圆半径之间的关系可确定两圆位置关系;(2)易知切线斜率存在,则可设其为()13y k x -=-,利用圆心到直线距离等于半径可构造方程求得k ,进而得到切线方程.【详解】(1)圆C 方程可整理为:()()22129x y -++=,则圆心()1,2C -,半径3r =; 由圆1C 方程可知:圆心()13,1C ,半径12r =; ()()221132113CC =-+--15r r +=,11r r -=,1112r r CC r r ∴-<<+,∴圆C 和圆1C 相交.(2)当过()3,1P 的直线斜率不存在,即为3x =时,其与圆C 不相切,∴可设所求切线方程为:()13y k x -=-,即310kx y k --+=,∴圆心C 到切线的距离23231kd k -=+,即()229932k k +=-, 解得:0k =或125k =-, ∴切线方程为:1y =或()12135y x -=--,即1y =或125410x y +-=.22.已知椭圆()2222:10x y E a b a b +=>>()0,1A . (1)求椭圆E 的方程;(2)若过点A 的直线l 与椭圆E 的另一个交点为B,且AB =B 的坐标. 【答案】(1)2212x y += (2)41,33⎛⎫±- ⎪⎝⎭【分析】(1)根据椭圆中,,a b c 的关系求解即可;(2)先利用AB =B 的轨迹方程,然后求点B 的轨迹方程与椭圆2212x y +=的交点即可,求值的时候一定要注意变量范围. 【详解】(1)由题可知c a 1b =,又因为222a b c =+,解得211a b c =⎧⎪=⎨⎪=⎩所以椭圆E 的方程为2212x y += (2)设(),B x y,因为AB =()223219x y +-=, 则点B 为椭圆2212x y +=与圆()223219x y +-=的交点, 联立()2222321912x y x y ⎧+-=⎪⎪⎨⎪+=⎪⎩,解得13y =-或53y =-(舍去,因为11y -≤≤) 所以有4313x y ⎧=⎪⎪⎨⎪=-⎪⎩或4313x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故点B 的坐标为41,33⎛⎫±- ⎪⎝⎭ 23.已知无穷数列{}n y 满足公式112,02122,12n n n n n y y y y y +⎧≤<⎪⎪=⎨⎪-≤≤⎪⎩,设()101y a a =≤≤. (1)若14a =,求3y 的值; (2)若30=y ,求a 的值;(3)给定整数()3M M ≥,是否存在这样的实数a ,使数列{}n y 满足:①数列{}n y 的前M 项都不为零;②数列{}n y 中从第1M +项起,每一项都是零.若存在,请将所有这样的实数a 从小到大排列形成数列{}n a ,并写出数列{}n a 的通项公式;若不存在,请说明理由.【答案】(1)31y = (2)10,1,2=a (3)存在这样的a ,2121,1,2,3,,22---==M n M n a n ,理由见解析【分析】(1)根据1y ,求出23,y y ;(2)30=y ,(i )当2102≤<y 时,可得20y =,由1y 的范围可得与2y 的关系可得a ; (ii )当2112≤<y 时,由3222=-y y 得2y ,再分1102≤<y 、1112≤≤y 根据2y 与1y 可得答案 (3)存在这样的a ,根据10,0+=≠M M y y 和(2)可知111,2-==M M y y ,分2102-≤<M y 、2112-≤≤M y 讨论,根据1-M y 与2-M y 关系类推,可得答案.,【详解】(1)因为114==y a ,所以213212,2212===-=y y y y ; (2)因为30=y ,(i )当2102≤<y 时,322y y =,所以20y =, 此时,若1102≤<y ,则211,02===y y a y ; 若1112≤≤y ,则211,122=-==y y a y . (ii )当2112≤<y 时,3222=-y y ,所以21y =, 此时,若1102≤<y ,则21111,0,222⎡⎫==∉⎪⎢⎭=⎣y y a y ; 若1112≤≤y ,则2111,222=-==y y a y . 综上所述,10,1,2=a ; (3)存在这样的a ,因为10,0+=≠M M y y ,由(2)可知111,2-==M M y y , (i )当2102-≤<M y 时,122--=M M y y ,所以214-=M y , (ii )当2112-≤≤M y 时,1222--=-M M y y ,所以234-=M y ,以此类推,()111111113521,,,,2222--------==M M M M M M M y y , 所以数列{}n a 的通项公式为2121,1,2,3,,22---==M n M n a n .【点睛】关键点点睛:解答本题的关键是由递推关系可得数列的结果,寻找规律,本题考查数列的递推关系的应用,考查了学生推理能力、运算能力.。
一、单选题1.已知点,则直线的倾斜角是( ) ()(1,0,A B AB A . B .C .D .60 120 30 150 【答案】A【分析】求出直线的斜率,根据倾斜角的范围可得答案.AB 【详解】因为点,所以,()(1,0,AB AB k ==设直线的倾斜角为,则, AB α0180α<< 所以. 60α= 故选:A.2.“”是“方程表示椭圆”的57m <<22175x y m m +=--A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【详解】 由题意,方程表示一个椭圆,则,解得且, 22175x ym m +=--705075m m m m ->⎧⎪->⎨⎪-≠-⎩57m <<6m ≠所以“”是“方程”的必要不充分条件,故选C.57m <<22175x y m m +=--点睛:本题考查了椭圆的标准方程,其中熟记椭圆的标准的形式,列出不等式组是解答关键,此类问题解答中容易忽视条件导致错解,同时注意有时椭圆的焦点的位置,做到分类讨论.75m m -≠-3.在棱长为1的正方体中,( ) 1111ABCD A B C D -1AB CB CB -+=A .1 BC D .2【答案】B【分析】根据向量的线性运算得,即可得结果.11AB CB CB AB -+=【详解】. 11AB CB CB AB BC CB AC -+=++=+ 故选:B .4.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是 ()A .B .1(1)1n n a -=-+2,0,n n a n ⎧=⎨⎩为奇数为偶数C . D .2sin2n n a π=cos(1)1n a n π=-+【答案】C【分析】令,2,3,4分别代入验证:即可得出答案.1n =【详解】解:令,2,3,4分别代入验证:可知,因此不成立. 1n =3:2C a =-故选:.C 【点睛】本题考查了数列的通项公式,考查了推理能力与计算能力,属于基础题.5.在空间四边形中,,点在上,且,为的中OABC ,,OA a OB b OC c === M OB 3OM MB =N AC 点,则( )NM =A .B .131242a b c -+- 121232a b c -++C .D .131242a b c ++ 121232a b c -+ 【答案】A【分析】利用空间向量加减法运算即可得到答案.【详解】.()()31311314242242NM OM ON OB OA OC b a c a b c =-=-+=-+=-+-故选:A6.双曲线22221(0,0)x y a b a b -=>>A .B .C .D . y =y =y =y =【答案】A【详解】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴因为渐近线方程为,所以渐近线方程为,选A.by x a=±y =点睛:已知双曲线方程求渐近线方程:.22221(,0)x y a b a b-=>22220x y by x a b a -=⇒=±7.若直线(,)平分圆,则的最小值是( ) 10ax by +-=0a >0b >()()22114x y -+-=12a b+A .2B .5C .D .【答案】C【分析】直线平分圆,得到a ,b 关系,再根据基本不等式,即可求解. 【详解】解:直线平分圆,则直线过圆心,即,1a b +=所以(时,取等号) ()1212233b a a b a b a b a b⎛⎫+=++=++≥+ ⎪⎝⎭b =故选:C.8.已知点是抛物线上不同的两点,为抛物线的焦点,且满足,弦的,M N 24y x =F 23MFN π∠=MN 中点到直线的距离记为,若不等式恒成立,则的取值范围( ) P 1:16l y =-d 22λ≥MN d λA . B . (-∞(],2-∞C . D .(,1-∞(],3-∞【答案】D【分析】令,利用余弦定理表示出弦的长,再利用抛物线定义结合梯形中位||,||MF a NF b ==MN 线定理表示出,然后利用均值不等式求解作答.d 【详解】在中,令,由余弦定理得MFN △||,||MF a NF b ==, 222||||||2||||cos MN MF NF MFNF MFN =+-⋅∠则有, 222||MN a b ab =++显然直线是抛物线的准线,过作直线的垂线,垂足分别为,如1:16l y =-24y x =,,M P N l ,,A B C 图,而为弦的中点,为梯形的中位线,由抛物线定义知,P MN PB MACN ,11||(||||)()22d PB MA NC a b ==+=+因此, 22222222||4444443222MN a b ab ab a b d a b ab a b ab b a ++=⋅=-=-≥=++++++当且仅当时取等号,又不等式恒成立,等价于恒成立,则,a b =22λ≥MN d 22MN dλ≤3λ≤所以的取值范围是. λ(,3]-∞故选:D【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.二、多选题9.若是等差数列,则下列数列中仍为等差数列的是( ) {}n a A . {}n a B .{}1n n a a +-C .(为常数) {}n pa q +,p q D . {}2n a n +【答案】BCD【分析】根据等差数列的定义逐一进行检验即可求解.【详解】对于选项A ,数列是等差数列,取绝对值后不是等差数列,故选项A 不符合题1,1,3-1,1,3意;对于选项B ,若为等差数列,根据等差数列的定义可知:数列为常数列,故{}n a 1{}n n a a +-为等差数列,故选项B 符合题意;1{}n n a a +-对于选项C ,若为等差数列,设其公差为,则为常数{}n a d 11()n n n n pa q pa q p a a pd +++--=-=列,故为等差数列,故选项C 符合题意;{}n pa q +对于选项D ,若为等差数列,设其公差为,则为常数,故{}n a d 121221n n a n a n d +++--=+为等差数列,故选项D 符合题意, {2}n a n +故选:BCD.10.圆和圆的交点为A ,B ,则有( )221:20x y x O +-=222:240O x y x y ++-=A .公共弦AB 所在直线方程为 0x y -=B .公共弦ABC .线段AB 中垂线方程为10x y +-=D .P 为圆上一动点,则P 到直线AB 2O 1+【答案】AC【分析】A 选项,两圆方程作差即可求出公共弦方程;B 选项,求出一个圆的圆心到公共弦的距离,利用垂径定理计算即可;C 选项,线段AB 的中垂线即为两圆圆心的连线,利用点斜式求解即可;D 选项,求出到公共弦的距离,加上半径即可求出最值.2O 【详解】因为圆:和圆:的交点为A ,B , 1O 2220x y x +-=2O 22240x y x y ++-=作差得,440x y -=所以圆与圆的公共弦AB 所在的直线方程为,故A 正确; 1O 2O 0x y -=因为圆心,,所在直线斜率为, 1(1,0)O 2(1,2)O -12O O 2111=---所以线段AB 的中垂线的方程为,即,故C 正确;0(1)y x -=--10x y +-=圆:的圆心为,半径,圆心到直线的距离2O 22240x y x y ++-=2(1,2)O -2r =2(1,2)O -0x y -=P 到直线AB 与圆的公共弦AB 的长d 1O 2O为B,D 错误. =故选:AC.11.某颗人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,如图所示,已知它的近地F 点(离地面最近的点)距地面千米,远地点(离地面最远的点)距地面千米,并且A mB n 三点在同一直线上,地球半径约为千米,设该椭圆的长轴长、短轴长、焦距分别为F A B 、、R ,则222a b c 、、A .B .C .D .a c m R -=+a c n R +=+2a m n =+b =【答案】ABD【分析】根据条件数形结合可知,然后变形后,逐一分析选项,得到正确答案.m a c Rn a c R=--⎧⎨=+-⎩【详解】因为地球的中心是椭圆的一个焦点,并且根据图象可得 ,(*)m a c Rn a c R=--⎧⎨=+-⎩ ,故A 正确;a c m R ∴-=+,故B 正确;a c n R +=+(*)两式相加,可得,故C 不正确;22m n a R +=-22a m n R =++由(*)可得 ,两式相乘可得 m R a c n R a c +=-⎧⎨+=+⎩()()22m R n R a c ++=- ,222a c b -=,故D 正确.()()2b m R n R b ∴=++⇒=故选ABD【点睛】本题考查圆锥曲线的实际应用问题,意在考查抽象,概括,化简和计算能力,本题的关键是写出近地点和远地点的方程,然后变形化简.12.如图,棱长为2的正方体中,分别为棱的中点,为面对角线1111ABCD A B C D -,E F 111,A D AA G 上一个动点,则( )1B CA .三棱锥的体积为定值1A EFG -B .线段上存在点,使平面//平面1B C G EFG 1BDCC .当时,直线与平面134CG CB = EG ABCDD .三棱锥1A EFG -【答案】ACD【分析】A 选项,使用等体积法,面面平行进行证明; B 选项,建立空间直角坐标系,利用空间向量进行证明;C 选项,根据先求出的坐标,然后利用向量的夹角公式计算;134CG CB =G D 选项,找到外接球的球心,表达出半径,求出最大值.【详解】对于A 选项,因为平面//平面,而平面,故//平面11ADD A 11BCC B 1B C ⊂11BCC B 1B C ,11ADD A 因为点为面对角线上一个动点,故点到面距离不变,为, G 1B C G 11ADD A 2因为分别为棱的中点,故为定值,,E F 111A D AA 、1111122A EF S =⨯⨯=A 故三棱锥,而三棱锥的体积,A 选项正确;1112313G E A F F A E S V -⨯⨯==A 11A EFG G EFA V V --=对于B 选项,如图1,以为坐标原点,所在直线为轴,所在直线为轴,所在直D DA x DC y 1DD 线为轴建立空间直角坐标系,z 则,,,,,设(),()2,2,0B ()0,0,0D ()10,2,2C ()1,0,2E ()2,0,1F (),2,G m m 02m ≤≤平面的法向量为,则,令,则,,则1BDC ()1111,,n x y z = 1111111220220n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩11y =11x =-11z =-,()1111n ,,=--设平面的法向量,则,令,则EFG ()2222,,n x y z = ()()222222202210n EF x z n FG m x y m z ⎧⋅=-=⎪⎨⋅=-++-=⎪⎩ 21x =,, 21z =2322my -=所以, 2321,,12m n -⎛⎫= ⎪⎝⎭若平面//平面,则存在,使得,即,解得:,EFG 1BDC k 12n kn = ()321,1,11,,12m k -⎛⎫--= ⎪⎝⎭1k =-,52m =因为,故不合题意,02m ≤≤所以线段上不存在点,使平面//平面,B 选项错误;1B C G EFG 1BDC 对于C 选项,,,,若,即,解得(),2,G m m (0,2,0)C 1(2,2,2)B 134CG CB = ()()3,0,2,0,24m m =, 32m =此时,又,,显然平面的一个法向量,33,2,22G ⎛⎫⎪⎝⎭()1,0,2E 11,2,22EG ⎛⎫=- ⎪⎝⎭ ABCD (0,0,1)a =设直线与平面所成角为,则C 选项正确;EG ABCD θsin cos ,a θ=对于D 选项,如图2,连接,交EF 于点J ,则为EF 的中点,1A D J 1A J =的外接球球心的投影为,1A EFG -J 过点作于点,则平面,,找到球心位置,连接,则G 1GH A D ⊥H GH ⊥11ADD A 2GH =O 1,OA OG 为外接球半径,1OA OG =过点作于点,则,,设(),O OK GH ⊥K OK JH =OJ HK =OK JH a ==0a ≤≤,OJ HK h ==由勾股定理得:,,从而2222211OA OJ A J h =+=+()2222OG h a =-+()22222h h a +=-+,解得:,2724a h +=要想半径最大,则只需最大,即最大,当最大为,此时半径的最大值为h 2a a =h2,故D 正确. =故选:ACD三、双空题13.已知数列的通项公式为:,则的最小值为_____,此时的值为_____. {}n a 103n a n =-n a n 【答案】133【分析】分类讨论去绝对值,即可根据通项公式的单调性判断求值.【详解】,已知先减后增,且. 10,4103103,43n n n a n n n ⎧-<⎪⎪=-=⎨⎪-≥⎪⎩n a 3413a a =<故的最小值为,此时的值为3.n a 13n 故答案为:;3.13四、填空题14.在等差数列中,前n 项和记作,若,则______. {}n a n S ()15265k S a a a =++k =【答案】16【分析】根据等差数列前项和公式及下标和性质以及通项公式计算可得; n 【详解】解:因为,所以,即()15265k S a a a =++()()115261552k a a a a a +=++,所以,所以()82615252k a a a a ⨯=++8263k a a a a =++,所以;()()()()826111113375151k a a a a a d a d a d a d a k d =-+=+-+++=+=+-16k =故答案为:1615.已知,分别是双曲线的左、右焦点,过的直线与双曲线E 的左、1F 2F ()222:103x yE a a -=>1F 右两支分别交于A ,B 两点,若,则的面积为__________. 22::5:12:13BF AB AF =2ABF△【答案】##2.4 125【分析】根据双曲线的定义以及焦点三角形即可根据勾股定理求解,由直角三角形的面积公22a =式即可得解. 【详解】如图,因为,所以. 22::5:12:13BF AB AF =2AB BF ⊥设,,得,25BF x =12AB x =213AF x =由,得 1221BF BF AF AF -=-1112||513||x AF x x AF +-=-所以,则,13AF x =115BF x =由,得,2221212BF BF F F +=222504x c =又 ,所以,,, 12221023BF BF x a c a ⎧-==⎨=+⎩22a =25c =2225x =故的面形. 2ABF △221123025S AB BF x ===故答案为:125五、双空题16.已知数列满足,,则数列的通项公式为_____________,若数{}n a 14a =()121n n na n a +=+{}n a 列的前项和,则满足不等式的的最小值为_____________.{}(1)(2)na n n ++n n S 30n S ≥n 【答案】 612n n a n +=⋅【分析】根据给定递推公式变形构造新数列即可得解;利用裂项相消法求出,再借助数列单调性n S 计算得解.【详解】在数列中,,由得:,而, {}n a 14a =()121n n na n a +=+121n n a a n n +=⋅+141a=于是得数列是以4为首项,2为公比的等比数列,则,即,{}n a n 142n n a n-=⋅12n n a n +=⋅所以数列的通项公式为;{}n a 12n n a n +=⋅显然,,121212(1)2(2)222(1)(2)(1)(2)(1)(2)21n n n n n n a n n n n n n n n n n n +++++⋅+⋅-+⋅===-++++++++则,324354121222222222222))))2324354121(((((2n n n n n n S n n n n n ++++-+-+-++-+-=+=-+++ 由得:,即,令,则,即数列是递增30n S ≥222302n n +-≥+22322n n +≥+222n n b n +=+12(2)13n n b n b n ++=>+{}n b 数列,由,得,而,因此,,从而得,, 22322n n +≥+32n b ≥632b =6n b b ≥6n ≥min 6n =所以满足不等式的的最小值为6.30n S ≥n 故答案为:;612n n a n +=⋅六、解答题17.已知直线,.()():12360m a x a y a -++-+=:230n x y -+=(1)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程;0a =l m n l (2)若坐标原点O 到直线的距离为1,求实数的值.m a 【答案】(1)或,120x y -+=370x y -=(2)或 1a =132a =-【分析】(1)先求出直线与的交点,然后设出直线的方程,求出直线在两坐标轴上的截距,m n l l 由截距相反列方程可求出直线的斜率,从而可求出直线的方程;l (2)利用点到直线的距离公式列方程可求出实数的值.a 【详解】(1)当时,直线, 0a =:360m x y -++=由,解得, 360230x y x y -++=⎧⎨-+=⎩219x y =-⎧⎨=-⎩所以直线与的交点为,m n (21,9)--由题意可知直线的斜率存在,设直线的方程为,l l 9(21)y k x +=+当时,,0x =219y k =-当时,, 0y =921x k=-因为直线在两坐标轴上的截距相反,l 所以,即, 9219210k k-+-=271030k k -+=解得或, 1k =37k =所以直线的方程为或, l 921y x +=+39(21)7y x +=+即或,120x y -+=370x y -=(2)因为坐标原点O 到直线的距离为1,直线,m ()():12360m a x a y a -++-+=,1=化简得,解得或. 2211130a a +-=1a =132a =-18.如图在边长是2的正方体中,E ,F 分别为AB ,的中点.1111ABCD A B C D -1AC(1)求异面直线EF 与所成角的大小.1CD (2)证明:平面. EF ⊥1ACD 【答案】(1);(2)证明见解析.60︒【分析】(1)通过建立空间直角坐标系,利用可得解; 111cos ,EF CD EF CD EF CD ⋅= (2)利用和,可证得线线垂直,进而得线面垂直. 10EF DA ⋅= 0EF DC ⋅= 【详解】据题意,建立如图坐标系.于是:,,,,,(0,0,0)D 1(2,0,2)A (0,2,0)C (2,1,0)E (1,1,1)F 1(0,0,2)D ∴,,,.(1,0,1)EF =- 1(0,2,2)CD =- 1(2,0,2)DA = (0,2,0)DC = (1), 11cos ,2EF CD = ∴1,60EF CD ︒= ∴异面直线EF 和所成的角为.1CD 60︒(2)11200120EF DA ⋅=-⨯+⨯+⨯= ∴,即1EF DA ⊥ 1EF DA ⊥,1002100EF DC ⋅=-⨯+⨯+⨯=∴即.EF DC ⊥ EF DC ⊥又∵,平面且1DA DC ⊂1DCA 1DA DC D ⋂=∴平面. EF ⊥1ACD 19.记为数列的前项和,. n S {}n a n 1122n n n S a --=()*n N ∈(1)求;1n n a a ++(2)令,证明数列是等比数列,并求其前项和.2n n n b a a +=-{}n b n n T 【答案】(1);(2)证明见解析,. 12n -11122n n T +=-【分析】(1)运用数列的递推式:时,,时,,化简变形可得1n =11a S =2n ≥1n n n a S S -=-,进而得到所求答案. 1112n n n a a --+=-(2)由(1)的结论,将n 换为n +1,两式相减,结合等比数列的定义和求和公式,即可得到答案.【详解】(1)由,可得时,,即; 1122n n n S a --=1n =1121S a -=11a =当时,,2n ≥1n n n a S S -=-由,, 1122n n n S a --=112122n n n S a ----=两式相减可得:,即:. 11211222n n n n n a a a ----+=-1112n n n a a --+=-即有. 112n n na a ++=-(2)由(1)可得,即有, 112n n n a a ++=-21112n n n a a ++++=-两式相减可得,即. 2112n n n a a ++-=112n n b +=则,可得数列是首项为,公比为的等比数列. 1122122n n n n b b +++=={}n b 1412所以. 1111114212212n n n T +⎛⎫- ⎪⎝⎭==--【点评】本题考查数列的递推式的运用,考查等比数列的定义、通项公式和求和公式的运用,考查方程思想和化简运算能力,属于中档题.20.已知:圆过点,,,是直线上的任意一点,直线C ()0,1D ()2,1E -(F -P 1:2l y x =-与圆交于、两点.2:1=+l y x C A B(1)求圆的方程;C (2)求的最小值.22PA PB +【答案】(1);(2).22210x y x ++-=13【分析】(1)设圆的一般方程为,即可根据题意列出三个方程,解出C 220x y Dx Ey F ++++=,即可得到圆的方程; ,,D E F C (2)联立直线的方程和圆的方程可得、两点的坐标,设,再根据两点间的距离公2l C A B (),P x y 式表示出,消去,可得关于的二次函数,即可求出最小值. 22PA PB +y x 【详解】(1)设圆的一般方程为,依题意可得,C 220x y Dx Ey F ++++=.1025030E F D E F D F ⎧++=⎪-+++=⎨⎪-+==⎩2,0,1D E F ⇒===-所以圆的方程为:.C 22210x y x ++-=(2)联立或, 221002101y x x x y x y ⎧--==⎧⇒⎨⎨++-==⎩⎩21x y =-⎧⎨=-⎩不妨设,,则,(0,1),(2,1)A B --(),P x y 2y x =-∴. 222222221||||(1)(2)(1)44144132PA PB x y x y x x x ⎛⎫+=+-++++=-+=-+ ⎪⎝⎭故的最小值为.22PA PB +13【点睛】本题主要考查圆的方程的求法,直线与圆的交点坐标的求法,以及两点间的距离公式的应用,意在考查学生的数学运算能力,属于基础题.21.如图,在三棱锥中, ,为的中点,. A BCD -AB AD =O BD OA CD ⊥(1)证明:平面平面;ABD ⊥BCD(2)若是边长为1的等边三角形,点在棱上,,三棱锥OCD A E AD 2DE EA =B ACD -,求平面BCD 与平面BCE 的夹角的余弦值.【答案】(1)证明见解析【分析】(1)根据线面垂直的判定定理先证明平面BCD ,又平面ABD ,从而由面面垂OA ⊥OA ⊂直的判定定理即可得证;(2)取的中点,因为为正三角形,所以,过作与交于点OD F OCD A CF OD ⊥O //OM CF BC M ,则,又由(1)知平面BCD ,所以,,两两垂直,以点为坐标原OM OD ⊥OA ⊥OM OD OA O 点,分别以,,为轴,轴,轴建立空间直角坐标系,然后求出所需点的坐标,进OM OD OA x y z 而求出平面的法向量,最后根据向量法即可求解.【详解】(1)证明:因为,为的中点,AB AD =O BD 所以,又且,OA BD ⊥OA CD ⊥BD CD D ⋂=所以平面BCD ,又平面ABD , OA ⊥OA ⊂所以平面平面; ABD ⊥BCD(2)解:由题意,, 1112OCD S =⨯⨯=A BCD S =A 由(1)知平面BCD ,OA ⊥所以,所以OA =2, 1133B ACD A BCD BCD V V S OA --=⋅⋅==A 取的中点,因为为正三角形,所以,OD F OCD A CF OD ⊥过作与交于点,则,所以,,两两垂直,O //OM CF BC M OM OD ⊥OM OD OA以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系如图所示,O OM OD OA x yz则,,,,,1,,A (0,0,2),, (0B 1-0)1,0)2C (0D 0)14(0,,)33E 因为平面,所以平面的一个法向量为, OA ⊥BCD BCD (0,0,1)m = 设平面的法向量为,又, BCE (,,)n x y z =344,0),(0,,)233BC BE == 所以由,得,令,, 00n BC n BE ⎧⋅=⎨⋅=⎩30244033x y y z +=⎪+=⎪⎩x =1y =-1z =所以,1,1)n =-所以 |||cos ,|||||m n m n m n⋅<>= 所以平面BCD 与平面BCE22.在平面直角坐标系中,椭圆2. ()2222:10x y C a b a b +=>>(1)求椭圆C 的方程;(2)动直线A 、B 两点,D 是椭圆C 上一点,直线OD 的斜率为,且:l y mx =n 12mn =.T 是线段OD 的半径为,OP ,OQ 是的两条切T A DT T A 线,切点分别为P ,Q ,求的最大值.QOP ∠【答案】(1); 22132x y +=(2)最大值为.QOP ∠3π【分析】(1)根据焦距易得; 1c =(2)将直线与椭圆联立得到方程组,利用弦长公式得到的表达式,再利用AB |||DT AB =,则可得到,即圆半径的表达式,根据,则,则将直线的方程与椭圆方程DT r 12mn =12n m =OD 联立,得到的表达式,利用,将上述表达式代入,利用换元法结合二次函OD sin2||QOP r r OD ∠=+数最值得到的最值,最终得到的最大值. sin 2QOP ∠QOP ∠【详解】(1)由题意得,, 22c =1c =又c e a = a ∴=b ∴=椭圆方程为:. ∴22132x y +=(2)设,, ()11,A x y ()22,B x y 联立,22132x y y mx ⎧+=⎪⎪⎨⎪=⎪⎩()2281290m x +--=,()2227203681211522880m m m ∆=++=+>, 12x x +=129128x x m -=+2||AB x -==, |r AB =,直线的方程为:, 12n m=∴OD 12yx m =联立得,,2213212x y y x m ⎧+=⎪⎪⎨⎪=⎪⎩2222483m x m =+22683y m =+ ||OD ==,1sin ||2||1QOP r OD r OD r ∠==++,OD r ==令,,且, 223m t +=()2123m t =-2t>110,2t ⎛⎫∈⎪⎝⎭则ODr==1=≥=当且仅当,,即,时等号成立, 1114t =14t =22314m +=2m =±,因此, 1sin 22QOP ∠≤π26QOP ∠≤的最大值为, QOP ∴∠π3综上所述,的最大值为,此时. QOP ∴∠π32m =±【点睛】本题第二问计算量与思维量较大,对于弦长公式要做到熟练运用,角度最值转化为在一定角度范围内的角的正弦值的最值,最终结合换元法,配方法等求解函数表达式的最值,从而得到角度的最值.。
一、单选题1.在空间直角坐标系中,已知点,则点P 关于x 轴的对称点的坐标是( ) (1,3,5)P A . B . (1,3,5)--(1,3,5)--C . D .()1,3,5--()1,3,5---【答案】C【分析】直接根据空间点关于轴对称的结论即可得到答案.x 【详解】根据空间点关于轴对称,则轴上坐标不变,轴上坐标取相反数, x x ,y z 故点P 关于x 轴的对称点的坐标是. ()1,3,5--故选:C.2.已知直线,且,则实数a 的值为( ) ()1: 4 10 l x a y +-+=2: 5 50l a x y ++=12//l l A .5 B .1 C .5或 D .1-1-【答案】D【分析】根据给定条件,列出方程求解,再验证判断作答.【详解】直线,,由解得或, ()1: 4 10 l x a y +-+=2: 5 50l a x y ++=(4)50a a --=5a =1a =-当时,直线与重合,不符合题意, 5a =1: 10 l x y ++=2: 5 5 50l x y ++=当时,直线与平行, 1a =-1: 5 10 l x y -+=2: 5 50l x y --=所以实数a 的值为. 1-故选:D3.电子设备中电平信号用电压的高与低来表示,高电压信号记为数字1,低电压信号记为数字0,一串由0和1组成的不同排列代表不同的电平信号,所用数字只有0和1,例如001100就是一个信息.某电平信号由6个数字构成,已知其中至少有四个0,则满足条件的电平信号种数为( ) A .42 B .22 C .20 D .15【答案】B【分析】根据给定的信息,利用组合知识分类列式求解作答.【详解】依题意,求电平信号种数可以有3类办法,电平信号的6个数字中有4个0,有种, 46C 电平信号的6个数字中有5个0,有种,电平信号的6个数字中有6个0,有种,56C 66C 由分类加法计数原理得满足条件的电平信号种数为.456666C C C 156122++=++=故选:B4.已知P (B )=0.3,,,则=( ) ()0.9P BA =∣(0.2PB A =∣()P A A .B .C .D .671713110【答案】A【分析】根据已知利用全概率公式得,即可求解. ()()()()()||P B P A P B A P A P B A =⋅+⋅()P A 【详解】由全概率公式可得: ()()()()()||P B P A P B A P A P B A =⋅+⋅可得,解得:. ()()()0.30.910.2P A P A =⨯+-⨯()17P A =则. 6()7P A =故选:A.5.已知每门大炮击中目标的概率都是0.5,现有10门大炮同时对某一目标各射击一次.记恰好击中目标3次的概率为A ;若击中目标记2分,记10门大炮总得分的期望值为B ,则A ,B 的值分别为( ) A .,5 B .,10 C .,5 D .,10 15128151281525615256【答案】B【分析】根据题意得其机种次数和期望符合二项分布,利用其期望公式即可得到值,再利用其概B 率公式计算值即可.A 【详解】设10门大炮击中目标的次数为,则根据题意可得,X ()1~10,2X B 门大炮总得分的期望值为,10∴1102102B =⨯⨯=, 373101115(3)C 122128A P X ⎛⎫⎛⎫∴===⨯⨯-=⎪ ⎪⎝⎭⎝⎭故选:B.6.羽毛球单打实行“三局两胜”制(无平局).甲乙两人争夺比赛的冠军.甲在每局比赛中获胜的概率均为,且每局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为34( ) A .B .C .D .13252345【答案】A【分析】求出甲获胜的概率、甲获得冠军且比赛进行了三局的概率,利用条件概率公式求概率即可.【详解】由甲获胜的概率为,33133313274444444432⨯+⨯⨯+⨯⨯=而甲获得冠军且比赛进行了三局,对应概率为,133313944444432⨯⨯+⨯⨯=所以在甲获得冠军的条件下,比赛进行了三局的概率为. 927132323÷=故选:A7.3D 打印是快速成型技术的一种,通过逐层打印的方式来构造物体.如图所示的笔筒为3D 打印的双曲线型笔筒,该笔筒是由离心率为3的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该笔筒的上底直径为6cm ,下底直径为8cm ,高为8cm (数据均以外壁即笔筒外侧表面计算),则笔筒最细处的直径为( )A B C D 【答案】C【分析】画出笔筒的轴截面,建立平面直角坐标系,设出双曲线的方程,根据题意写出点的坐标,把点的坐标代入双曲线方程即可求解.【详解】该塔筒的轴截面如图所示,以为笔筒对应双曲线的实轴端点, C 以所在直线为轴,过点且与垂直的直线为轴, OC x O OC y 建立平面直角坐标系,设与分别为上,下底面对应点. A B 由题意可知,设,则,3,4,8A B A B x x y y ==-=()3,A m ()4,8B m -设双曲线的方程为,因为双曲线的离心率为22221(0,0)x y a b a b -=>>3=所以,所以方程可化简为,b =()22288*x y a -=将和的坐标代入式可得,解得, A B ()*()222272812888m a m a ⎧-=⎪⎨--=⎪⎩12m a ⎧=⎪⎪⎨⎪⎪⎩则笔筒最细处的直径为. 2a =故选:C.8.已知,,满足,则的最小值为( ) ()0,0O ()3,0A (),P a b2PO PA =214a b +-A B .C .D .4210-【答案】D【分析】由可整理得到点轨迹方程,设,,可将所求式子化2PO PA =P 42cos a θ=+2sin b θ=,由此可得最小值.()10θϕ+-【详解】由得:,整理可得:, 2PO PA =()222243a b a b ⎡⎤+=-+⎣⎦()2244a b -+=则可令,,,42cos a θ=+2sin b θ=[)0,2πθ∈(其中), ()21442cos 4sin10a b θθθϕ∴+-=+++-1tan 2ϕ=则当时,()sin 1θϕ+=min 21410a b +-=-故选:D.二、多选题9.已知方程,其中,则( ) 221mx ny +=220m n +≠A .时,方程表示椭圆 0mn >B .时,方程表示双曲线 0mn <C .时,方程表示抛物线0n =D .时,方程表示焦点在轴上的椭圆 0n m >>x 【答案】BD【解析】当时,表示双曲线,时表示焦点在x 轴上的双曲线,0mn <22+111x y m n =0,0m n ><表示焦点在y 轴上的双曲线;当时表示焦点在y 轴上的椭圆,当时表0,0m n <>0m n >>0n m >>示焦点在x 轴上的椭圆.【详解】若,则不表示椭圆,故A 错误;0,0m n <<221mx ny +=若,则表示焦点在x 轴上的双曲线,若,则表示焦0,0m n ><22111x y m n -=-0,0m n <>22111y x n m -=-点在y 轴上的双曲线,故B 正确;当时,若,则方程表示两条垂直于x 轴的直线,若则不表示任何图形,故C 错0n =0m ≠0m =误;时,,表示焦点在x 轴上的椭圆,D 正确. 0n m >>110n m<<22111x y m n +=故选:BD【点睛】本题考查圆锥曲线的标准方程,由标准方程判断焦点的位置,属于基础题. 10.下列四个关系式中,一定成立的是( )A .3477C C =B .222334100101C C C C ++⋅⋅⋅+=C .()111A A m m n n n +++=D .若m ,,且,则 *n ∈N 2023m n <≤20232023C C m n<【答案】AC【分析】根据组合数性质与排列数性质判断.【详解】由组合数性质知一定成立,A 正确;3477C C =,B 错;222222223341003341033041001401+111C C C C C C C C C C C ++⋅⋅⋅+++⋅⋅⋅+++⋅⋅⋅=-=-=+=- ,C 正确;()()()()()()()()111A 11111111A m m n n n n n n n m n n n n m ++⎡⎤+=+--+=+-+-++=⎣⎦ 由组合数性质知且,当时,递增,当时,递*n ∈N 2023n ≤11012n ≤≤2023C n 10122023n ≤≤2023C n减,因此D 错. 故选:AC .11.若随机变量服从两点分布,其中,,分别为随机变量的均值与X ()103P X ==()E X ()D X X 方差,则下列结论正确的是( ) A . B . ()()1P X E X ==()324E X +=C . D . ()324D X +=()49D X =【答案】AB【分析】根据随机变量服从两点分布推出,根据公式先计算出、,由此X 2(1)3P X ==()E X ()D X 分别计算四个选项得出结果.【详解】随机变量服从两点分布,其中,,X 1(0)3P X ==2(1)3P X ∴==,122()01333E X =⨯+⨯=,2221222()(0)(1)33339D X =-⨯+-⨯=在A 中,,故A 正确;(1)()P X E X ==在B 中,,故B 正确; 2(32)3()23243E X E X +=+=⨯+=在C 中,,故C 错误; 2(32)9()929D X D X +==⨯=在D 中,,故D 错误. 2()9D X =故选:AB .12.已知正方体中,AB =2,P 为正方体表面及内部一点,且,1111ABCD A B C D -1AP AB AD λμ=+其中,,则( )[0,1]λ∈[0,1]μ∈A .当时,PD 1λμ+=B .当时,存在点P ,使得 21λμ+=AP BD ⊥C .当时,直线AP 与平面ABCD 所成角正切值的取值范围是 12μ=1,12⎡⎤⎢⎥⎣⎦D .当时,三棱锥的体积为定值 12λ=1P BC D -【答案】ABD【分析】当时,点P 在上,求出的最小值判断A ,取的中点,连接1λμ+=1BD PD AB K ,是上的动点,平面,可判断B ,取的中点分别为111,,KD AC AC P 1KD BD ⊥11ACC A11,AD BC ,N M ,当时,点P 的轨迹是NM 上的动点,可求直线AP 与平面ABCD 所成角正切值的取值范围12μ=判断C ,取AB ,的中点G ,H ,当时,点P 的轨迹是GH 上的动点,可证平面11D C 12λ=//GH ,判断D.1BC D 【详解】当时,点P 在上,如图,1λμ+=1BD在中,1BD DA 111sin DD D BD BD ∠===时,取得最小值为A 正确;1PD BD ∴⊥PD 1sin BD D BD ⨯∠==取的中点,连接,,AB K 111,,KD AC AC 2AB AK ∴=112AP AB AD AK AD λμλμ∴=+=+ 当时,是上的动点,在正方体中平面,故存在点为 21λμ+=P1KD BD ⊥11ACC A P 平面与的交点时,使,故B 正确; 11ACC A 1KD AP BD ⊥如图,取的中点分别为,当时,点P 的轨迹是NM 上的动点,易得平面11,AD BC ,N M 12μ=//MN ABCD ,故P 到平面的距离为定值1,设直线AP 与平面ABCD 所成角为,当P 点在N 时AP 的α投影最小,最大,此时,当点P 在N时AP 的投影最大,最小,此时αtan 1NFAFα==αAP 与平面ABCD 所成角正切值的取值范围是,故C tan ME AE α===⎤⎥⎦错误;取AB ,的中点G ,H ,当时,点P 的轨迹是GH 上的动点,易得平面11D C 12λ=1//,GH BC GH ⊄,平面,平面,故点P 到平面的距离为定值,三棱锥1BC D 1BC ⊂1BC D //GH ∴1BC D 1BC D ∴的体积为定值,故D 正确.1P BC D -故选:ABD三、填空题13.已知随机变量X 服从正态分布,且,,则()2,N μσ()200.5P X >=()300.24P X >=______.(1030)P X ≤≤=【答案】0.52##1325【分析】先根据对称性得到,结合求出答案.20μ=()300.24P X >=【详解】由对称性可知,,故. 20μ=(1030)12(30)120.240.52P X P X ≤≤=->=-⨯=故答案为:0.5214.如图是一座抛物线型拱桥,拱桥是抛物线的一部分且以抛物线的轴为对称轴,当水面在l 时,拱顶离水面2米,水面宽4米.当水位下降,水面宽为6米时,拱顶到水面的距离为______米.【答案】4.5##92【分析】建立平面直角坐标系,设抛物线方程为,求出抛物线的方程,再代点的坐标即得2x my =解.【详解】如图,建立平面直角坐标系,设抛物线方程为, 2x my =将代入,得,所以. ()2,2A -2x my =2m =-22x y =-设,代入,得. ()03,B y 092y =-0 4.5y =-所以拱桥到水面的距离为. 4.5m 故答案为:4.5.15.在正六棱柱中,若底面边长为1,高为3,则BC 到平面的距离111111ABCDEF A B C D E F -11ADC B 为______.【分析】取的中点,证明平面,平面平面,再11,,AD BC B C ,,O M N //BC 11ADC B OMN ⊥11ADC B 求出斜边上的高作答.Rt OMN △【详解】在正六棱柱中,取的中点,连接111111ABCDEF A B C D E F -11,,AD BC B C ,,O M N ,如图,,,MN OM ON,平面,平面,则平面, 11////B C BC AD BC ⊄11ADC B AD ⊂11ADC B //BC 11ADC B 平面,则平面,平面, 11//,MN BB BB ⊥ABCDEF MN ⊥ABCDEF AD ⊂ABCDEF 即,而,即有,,平面, MN AD ⊥OM BC ⊥OM AD ⊥OM MN M = ,OM MN ⊂OMN 则平面,又平面,因此平面平面, AD ⊥OMN AD ⊂11ADC B OMN ⊥11ADC B 在平面内过作于,而平面平面, OMN M MH ON ⊥H OMN 11ADC B ON =于是平面,线段长即为BC 到平面的距离,MH ⊥11ADC B MH 11ADC B,中,,1cos30OM =⨯=3MN =Rt OMN △ON ==所以BC 到平面的距离11ADC BOM MN MH ON ⋅===四、双空题16.如图,我们把由半椭圆和半椭圆合成的曲线称作“果圆”.()2210169y x x +=≤()22102516x y x +=>,,是相应半椭圆的焦点,则的周长为______,直线与“果圆”交于,两1F 2F 3F 123F F F A yt =A B 点,且中点为,点的轨迹方程为______.AB M M【答案】8+()221016y x x +=>【分析】根据各半椭圆方程可得,,的坐标,再根据两点间距离公式求得距离及周长;分1F 2F 3F 别表示点,的坐标,利用中点公式表示,消参即可得到点,得轨迹方程.A B M M 【详解】由,,是相应半椭圆的焦点, 1F2F 3F 可得,,, (1F (20,F ()33,0F 所以,,,12F F =134F F==234F F ==故所求周长为;448++=+设,(),Mx y 联立直线与,得,y t =()2210169y x x +=≤x =即点,A t ⎛⎫ ⎪⎝⎭联立直线与,得 y t =()22102516x y x +=>x 即点,且不重合,即,B t ⎫⎪⎭,A B 4t ≠又为中点,M AB 所以2x t ty t ⎧⎪==⎪⎨⎪+==⎪⎩即,整理可得,,x =0x >22116y x +=0x >故答案为:,.8+()221016y x x +=>五、解答题17.已知的展开式中,所有项的系数之和是512.3nx ⎛ ⎝(1)求展开式中含项的系数;3x (2)求的展开式中的常数项.11(21)nx x ⎛⎫+- ⎪⎝⎭【答案】(1)27 (2) 17【分析】(1)利用赋值法得所有项的系数和,求解n ,然后利用二项式展开式通项公式求解即可;(2)把式子化简为,然后分别利用二项式展开式通项公式求解常数项即可.()()992121x x x--+【详解】(1)因为的展开式中,所有项的系数之和是512.3nx ⎛ ⎝所以令,得,所以, 1x =2512n =9n =所以的展开式通项公式为, 3nx ⎛ ⎝()()13991922199C 3C 31rr rr rr r r T x x x ----+⎛⎫=-=- ⎪⎝⎭令,解得,所以展开式中含项为, 3932r -=8r =3x ()8813399C 3127T x x =-=所以展开式中含项的系数为27.3x (2)由(1)知,,从而, 9n =()()()9921112121n x x x x x -⎛⎫+-=-+⎪⎝⎭因为的展开式的通项为,()921x -()()919C 21rrrr T x -+=-所以的常数项为,()921x -()()099109C 211T x =-=-又的常数项为,()921x x-()()98889C 2118x x--=所以的展开式中的常数项为.()91121x x ⎛⎫+- ⎪⎝⎭11817-+=18.已知抛物线经过点,为抛物线的焦点,且. 2:2(0)C y px p =>(),P a a ()0a >F 5PF =(1)求抛物线的标准方程;C (2)过点的直线与抛物线相交于,两点,求面积的最小值(为坐标原点) ()4,0M l C A B ABO A O 【答案】(1) 24y x =(2)16【分析】(1)首先求出抛物线的焦点坐标与准线方程,将点坐标代入抛物线方程求出,P 2a p =再根据焦半径公式计算可得;(2)分直线的斜率不存在与存在两种情况讨论,当直线的斜率存在时,设直线的方程AB AB AB 为,,,联立直线与抛物线方程,消元,列出韦达定理,根据()()40y k x k =-≠()11,A x y ()22,B x y 面积公式计算可得.【详解】(1)抛物线的焦点为,准线方程为,()2:20C y px p =>,02p F ⎛⎫ ⎪⎝⎭2p x =-由抛物线经过点,,()2:20C y px p =>(),P a a ()0a >可得,即, 22a pa =2a p =又,可得, 5PF =52pa +=解得,,2p =4a =故抛物线的标准方程为.C 24y x =(2)当直线的斜率不存在时,直线方程为,AB 4x =由,解得,此时,所以的面积.244y x x ⎧=⎨=⎩4y =±8AB =ABO A 184162S =⨯⨯=当直线的斜率存在时,设直线的方程为.AB AB ()()40y k x k =-≠由得,. ()244y k x y x ⎧=-⎨=⎩24160ky y k --=216640k ∆=+>设,,由根与系数的关系得,, ()11,A x y ()22,B x y 124y y k+=1216y y =-所以 1212ABO AOM BOM S S S OM y y =+=⋅-△△△12OM =, 16=>综上所述,面积的最小值为.ABO A 1619.年是共青团建团一百周年,为了铭记历史、缅怀先烈、增强爱国主义情怀,某学校组织2022了共青团团史知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,已知甲回答正确的概率为,甲、丙两人都回答正确的概率是,乙、丙两人都回答正确的概2312率是.每个人回答是否正确互不影响. 14(1)若规定三名同学都需要回答这个问题,求甲、乙、丙三名同学中至少人回答正确的概率; 1(2)若规定三名同学需要抢答这道题,已知甲抢到答题机会的概率为,乙抢到答题机会的概率为2515,丙抢到的概率为,求这个问题回答正确的概率. 25【答案】(1) 1718(2) 1930【分析】(1)根据独立事件概率乘法公式可求得乙、丙回答正确的概率,结合对立事件概率公式可求得结果;(2)根据全概率公式直接计算即可.【详解】(1)记甲回答正确为事件,乙回答正确为事件,丙回答正确为事件,则事件A B C 相互独立; ,,A B C 由题意知:,,,()23P A =()12P AC =()14P BC =,, ()()()132243P AC P C P A === ()()()114334P BC P B P C ∴===则甲、乙、丙三名同学中至少人回答正确的概率.1()213171111133418p P ABC ⎛⎫⎛⎫⎛⎫=-=--⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)记该问题回答正确为事件,甲、乙、丙抢到答题机会分别为事件, D 123,,A A A 则,,,,,, ()125P A =()215P A =()325P A =()123P A A =()213P B A =()334P C A =.()()()()()()()112233P D P A A P A P B A P A P C A P A ∴=++2211321935354530=⨯+⨯+⨯=20.如图,已知直角梯形,,,,,四边形ABCD //AB CD AD DC ==2AB DC =90ADC ∠=︒为正方形,且平面⊥平面.AFCE ACFE ABCD(1)求证:⊥平面;BC ACFE (2)点M 为线段的中点,求直线与平面所成角的正弦值. EF BF MAB 【答案】(1)证明见解析【分析】(1)由余弦定理得到,再由勾股定理逆定理得到,结合面面垂直得到24BC =BC AC ⊥线面垂直;(2)建立空间直角坐标系,利用空间向量求解线面角的正弦值.【详解】(1)已知直角梯形ABCD ,,,//AB CD AD DC =,所以为等腰直角三角形,90ADC ∠=︒ADC △可得,,,2AC ==45CAB ∠=︒AB =所以在中,由余弦定理得, CAB △28422cos 454BC =+-⨯⋅︒=所以,得.222AB AC BC =+BC AC ⊥因为平面平面ABCD ,平面平面,平面, ACFE ⊥ACFE ⋂ABCD AC =BC ⊂ABCD 所以⊥平面.BC ACFE (2)根据(1)中所证可得:两两垂直,,,CA CB CF 故以C 为坐标原点,分别为轴建立如图所示空间直角坐标系: ,,CA CB CF ,,x y z 则,,,.()2,0,0A ()0,2,0B ()1,0,2M ()0,0,2F ,,,(2,2,0)AB =- (1,2,2)BM =-(0,2,2)BF =-设为平面MAB 的一个法向量,(),,m x y z =由,取,则, ()()()(),,2,2,0220,,1,2,2220m AB x y z x y m BM x y z x y z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅-=-+=⎪⎩ 2x =2,1==y z 故,(2,2,1)m =设直线与平面所成角为,BF MAB θ则.||sin cos ,||||m BF m BF m BF θ⋅=〈〉==⋅即直线与平面 BF MAB 21.新冠疫情不断反弹,各大商超多措并举确保市民生活货品不断档,超市员工加班加点工作.某大型超市为答谢各位员工一年来的锐意进取和辛勤努力,拟在年会后,通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有5种面值奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.(1)若箱子中所装的5种面值的奖券中有2张面值为100元,其余3张均为50元,试比较员工获得100元奖励额与获得150元奖励额的概率的大小;(2)公司对奖励总额的预算是7万元,预定箱子中所装的5种面值的奖券有两种方案:第一方案是3张面值30元和2张面值130元;第二方案是3张面值50元和2张面值100元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.【答案】(1)员工获得100元奖励额的概率小于获得150元奖励额的概率 (2)应选择第二种方案,理由见解析【分析】(1)根据超几何分布求出员工获得100元奖励额与获得150元奖励额的概率,比较大小即可得出答案;(2)分别求出选择方案一和方案二的分布列,进而求出对应的数学期望和方差,比较方差和期望的大小即可得出答案.【详解】(1)用表示员工所获得的奖励额.X 因为,, ()2325C 3100C 10P X ===()112325C C 63150C 105P X ====所以,()()100150P X P X =<=故员工获得100元奖励额的概率小于获得150元奖励额的概率. (2)第一种方案:设员工所获得的奖励额为,则的分布列为1X 1X 1X 60 160 260P 310 35110所以的数学期望为, 1X ()13316016026014010510E X =⨯+⨯+⨯=的方差为; 1X ()2221331(60140)(160140)(260140)360010510D X =-⨯+-⨯+-⨯=第二种方案:设员工所获得的奖励额为,则的分布列为2X 2X 2X 100 150 200P 310 35110所以的数学期望为, 2X ()233110015020014010510E X =⨯+⨯+⨯=的方差为, 2X ()2222331(100140)(150140)(200140)90010510D X =-⨯+-⨯+-⨯=又因为(元),()()1250050070000E X E X ==所以两种方案奖励额的数学期望都符合要求,但第二种方案的方差比第一种方案的小, 故应选择第二种方案.22.已知椭圆的短轴长为,且过点.()2222:10y x C a b a b+=>>4()1,3A (1)求椭圆的标准方程;C (2)直线与椭圆相交于、两点,以为直径的圆过点,求点到直线距离的最大值.C P Q PQ A A l【答案】(1)221124y x +=【分析】(1)根据椭圆过点,结合短轴长列方程,解方程即可;A (2)法一:当直线斜率不存在时,设点与的坐标,根据,解方程可得直线方程,当P Q AP AQ ⊥斜率存在时,设直线方程为,联立直线与椭圆,结合韦达定理及,可得y kx m =+AP AQ ⊥,即可得直线过定点,进而确定距离的最值.法二:将椭圆方程转化为322k m =+,设直线方程为,与椭圆联立构造齐()()()()2236331610y y x x -+-+-+-=()()131m x n y -+-=次式得,所以则,是方()()233616663011y y n m m m x x --⎛⎫+++++= ⎪--⎝⎭11131AP y k k x -==-22231AQ y k k x -==-程的两个根,则,即,代入直线方程,可得直线过定点,进而确定1263161m k k n +⋅==-+332m n =--距离的最值.【详解】(1)椭圆的短轴长为,所以,, C 424b =2b =代入点,得,所以 ()1,3A 29114a +=212a =椭圆的方程为;C 221124y x +=(2)法一:当直线斜率不存在时,则有、,直线的方程为:, l ()11,P x y ()11,Q x y -l 1x x =因为以直径的圆过点,所以,PQ A AP AQ ⊥, ()()()()()221111111133190AP AQ x x y y x y ⋅=-⋅-+---=-+-= 又,可得,解得或(舍去),22111124y x +=211210x x --=112x =-11x =当直线斜率存在时,设直线的方程为:,l l y kx m =+设点,()11,P x y ()22,Q x y 联立,得,221124y kx m y x =+⎧⎪⎨+=⎪⎩()22232120k x kmx m +++-=由韦达定理得,,12223km x x k -+=+2122123m x x k -=+()()()()12121133AP AQ x x y y ⋅=-⋅-+--()()()()12121133x x kx m kx m =-⋅-++-+-()()()()22121213113k x x m k x x m =++--+++-⎡⎤⎣⎦()()()222221221311333m km k m k m k k --=++--++-⎡⎤⎣⎦++, ()()()222222992233033k mk m m k m k m k k ---+---++-===++点点不在直线上,所以,则有,经检验,此时,满足题意, ()1,3A l 30k m +-≠230k m -+=0∆>所以直线的方程为,直线过定点l 13132222y kx m kx k k x ⎛⎫=+=++=++ ⎪⎝⎭l 13,22⎛⎫- ⎪⎝⎭综上,直线恒过定点,记作l 13,22⎛⎫- ⎪⎝⎭13,22M ⎛⎫- ⎪⎝⎭则当时,点到直线距离最大,最大值为AM l ⊥A l AM ==法二:齐次化构造椭圆的标准方程为,即221124y x +=22312y x +=变形为, ()()223331112y x ⎡⎤⎡⎤-++-+=⎣⎦⎣⎦即, ()()()()2236331610y y x x -+-+-+-=设直线的方程为 l ()()131m x n y -+-=与椭圆方程联立构造齐次式为()()()()()()()()2236313316113y y m x n y x x m x n y ⎡⎤⎡⎤-+--+-+-+--+-⎣⎦⎣⎦ ()()()()()()()2261366136310n y m n x y m x =+-++--++-=即: ()()233616663011y y n m n m x x --⎛⎫+++++= ⎪--⎝⎭设点,()11,P x y ()22,Q x y则,是方程的两个根, 11131AP y k k x -==-22231AQ y k k x -==-又因为, AP AQ ⊥所以,即 1263161m k k n +⋅==-+332m n =--代入直线方程得:,()()336210n x y x -+--+=故直线过定点,记作记作l 13,22⎛⎫- ⎪⎝⎭13,22M ⎛⎫- ⎪⎝⎭则当时,点到直线距离最大,最大值为AM l ⊥A l AM ==【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.。
广东省东莞市2021-2022学年高二上学期期末考试数学试题一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1.数列,,1,3,5,的一个通项公式为( )A. B. C. D.2.已知双曲线,则双曲线的渐近线方程为( )A. B. C. D.3.如图,在平行六面体中,( )A. B. C. D.4.已知直线l过点,且其方向向量,则直线l的方程为( )A. B. C. D.5.如图,已知二面角平面角的大小为,其棱l上有A,B两点,AC,BD分别在这个二面角的两个半平面内,且都与AB垂直.已知,,则( )A. 5B. 13C.D.6.过抛物线的焦点F的直线l与抛物线交于P,Q两点,若以线段PQ为直径的圆与直线相切,则( )A. 8B. 7C. 6D. 57.设P,Q分别为直线与上任意一点,则PQ的最小值为( )A. 3B. 4C. 5D. 68.定义焦点相同,且离心率互为倒数的椭圆和双曲线为一对相关曲线.已知,是一对相关曲线的焦点,P 是这对相关曲线在第一象限的交点,则点P与以为直径的圆的位置关系是( )A. 在圆外B. 在圆上C. 在圆内D. 不确定二、多选题(本大题共4小题,共20分。
在每小题有多项符合题目要求)9.设等差数列的前n项和为,且,,则下列结论正确的是( )A. B. C. D.10.若,则方程可能表示下列哪些曲线( )A. 椭圆B. 双曲线C. 圆D. 两条直线11.已知圆,直线,P为直线l上的动点,过点P作圆M的切线PA,PB,切点为A,B,则下列结论正确的是( )A. 四边形MAPB面积的最小值为4B. 四边形MAPB面积的最大值为8C. 当最大时,D. 当最大时,直线AB的方程为12.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2020年底全县的绿地占全县总面积的从2021年起,市政府决定加大植树造林、开辟绿地的力度,预计每年能将前一年沙漠的变成绿地,同时,前一年绿地的又被侵蚀变成沙漠.则下列说法正确的是( )A. 2021年底,该县的绿地面积占全县总面积的B. 2023年底,该县的绿地面积将超过全县总面积的C. 在这种政策之下,将来的任意一年,全县绿地面积都不能超过D. 在这种政策之下,将来的某一年,绿地面积将达到全覆盖三、填空题(本大题共4小题,共20分)13.在空间直角坐标系中,点关于原点的对称点为点B,则__________.14.在数列中,,,则数列的前6项和为__________.15.曲线围成的图形的面积为__________.16.已知双曲线的左,右焦点分别为,,过右焦点且倾斜角为直线l与该双曲线交于M ,N两点点M位于第一象限,的内切圆半径为,的内切圆半径为,则为__________.四、解答题(本大题共6小题,共70分。
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。