函数极小值
- 格式:doc
- 大小:59.00 KB
- 文档页数:7
极小值原理(一)极小值什么是极小值?•极小值是数学中的一个概念,用于描述函数的最小值或局部最小值。
•在函数的定义域中,如果一个点的函数值比其周围任意点的函数值都要小或相等,那么这个点就被称为极小值点。
•极小值点是函数图像中的一个相对低谷。
极小值定理•极小值定理是研究函数极值的一个重要定理,可以帮助我们判断函数的极值点。
•极小值定理可以分为费马定理和魏尔斯特拉斯定理两种。
–费马定理:如果函数在某一点处有极值,且该点处可导,则导数值为0。
–魏尔斯特拉斯定理:如果函数在某一闭区间内连续,那么一定会在该区间内取到最大值和最小值。
寻找极小值的方法1.导数法–对于可导函数,可以通过判断导数的零点来确定极值点。
–导数为0的点可能是函数的极小值点,但不一定。
–还需要通过二阶导数或其他方法来进行进一步的判断。
2.区间法–如果函数在某一闭区间内连续,那么一定会在该区间内取到最大值和最小值。
–可以通过将区间等分,逐个求函数值,找到最小值所在的区间。
3.迭代法–通过迭代计算,逐步接近极小值点。
–可以使用梯度下降等优化算法进行迭代计算。
4.其他方法–如果函数具有特殊的性质或特定的定义域,可以运用专门的方法来求解极小值。
极小值的应用•在数学领域中,极小值的研究是重要的。
–极小值可以帮助我们了解函数的性质和行为。
–极小值的存在性和唯一性问题是函数论和变分法中的关键问题。
•在其他领域中,极小值也具有广泛的应用。
–在优化问题中,求解极小值可以帮助我们寻找最优解。
–在经济学和管理学中,极小值可以帮助我们进行决策和优化资源分配。
–在机器学习和深度学习中,极小值是优化模型参数的目标。
总结•极小值是数学中的一个重要概念,用于描述函数的最小值或局部最小值。
•极小值定理可以帮助我们判断函数的极值点。
•寻找极小值的方法包括导数法、区间法、迭代法和其他方法。
•极小值具有广泛的应用,不仅在数学领域,还在其他领域中发挥着重要作用。
当我们研究函数的极值时,常常关注的是极小值。
【学习目标】1.理解极大值、极小值的概念.2.能够运用判别极大值、极小值的方法来求函数的极值.3.掌握求可导函数的极值的步骤【重点与难点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤【学法提示】讲练结合【课前预习】用导数法求下列函数的单调区间.(1) 2()2f x x x =-- (2)311433y x x =-+1.极大值:2.极小值:3.极大值与极小值统称为极值取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
请注意以下几点: (ⅰ)极值是一个局部概念由定义,并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即函数在某区间上或定义域内极大值或极小值可以不止一个 (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值5. 求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数/()f x(2)求方程/()f x =0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查/()f x 在方程根左右的值的符号,若左正右负,那么f (x )在这个根处取得极大值;若左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值【能力交流】例1求y =31x 3-4x +31的极值【课堂小结】【课堂巩固】1.求下列函数的极值.(1)y =x 2-7x +6(2)y =x 3-27x2.求ln ,(0,2)y x x x =-∈的极值【学后反思】。
函数最大值和最小值的求法
函数最大值和最小值的求法是数学中一个重要的概念,它可以帮助我们更好地理解函数的特性。
函数最大值和最小值是指函数在某一区间内的最大值或最小值。
一般来说,要求函数的最大值和最小值,可以通过求解函数的极值来实现。
极值是指函数在某一区间上取得极大值或极小值的点,这些点称为极值点。
求解函数的极值需要使用微积分的方法,具体的求解步骤是:
1. 对函数求导,并求出导函数的值;
2. 将导函数的值等于零,求出极值点;
3. 将极值点代入原函数,求出最大值和最小值。
最后,要注意的是,有时候函数可能不存在最大值和最小值,这时候就需要使用其他的方法来求解。
函数最大值和最小值的求法是一个重要的数学概念,可以帮助我们更好地理解函数的特性。
通过求解函数的极值,我们可以找到函数的最大值和最小值,但也要注意函数可能不存在最大值和最小值的情况。
第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。
怎么用函数求出最大值最小值在数学中,寻找函数的最大值和最小值是一个常见的问题。
通过计算函数的导数可以找到函数的极值点,进而确定最大值和最小值。
以下是一些常见的方法和步骤来解决这个问题。
寻找最大值和最小值的一般步骤1.求导数:首先,对给定的函数进行求导。
导数表示了函数在不同点的变化率,极值点一般对应导数为0的点。
2.解导数为0的方程:找到导数等于0的方程,并解出其根,这些根就是函数可能的极值点。
3.排除无关点:对于导数等于0的点,需要验证其是否确实是极值点。
排除掉在潜在的极值点处二阶导数不等于0的点。
4.确定最大值和最小值:对剩余的点,通过比较函数在这些点上的取值,确定最大值和最小值。
通常,最大值对应极大值点,最小值对应极小值点。
示例:使用函数求出最大值和最小值假设有一个函数f(x)=x2+3x+2,我们来求解其最大值和最小值。
1.求导数:计算f′(x)=2x+3。
2.解导数为0的方程:解方程2x+3=0,得到 $x = -\\frac{3}{2}$,这是一个极值点。
3.排除无关点:计算二阶导数f″(x)=2,在 $x = -\\frac{3}{2}$ 处二阶导数不等于0,说明这是一个极值点。
4.确定最大值和最小值:分别计算 $f(-\\frac{3}{2})$ 和 $f(-\\infty),f(\\infty)$ 的取值,比较得到最小值和最大值。
因此,函数f(x)=x2+3x+2在 $x = -\\frac{3}{2}$ 处取得最小值为$\\frac{1}{4}$,无最大值。
总结通过对函数进行求导,找到导数为0的点,再通过二阶导数的符号来排除无关点,最终确定函数的最大值和最小值。
这一过程是数学分析中常见的一种方法,可以帮助我们在解决实际问题时准确找到函数的极值点。
极大值极小值知识点-概述说明以及解释1.引言1.1 概述极值问题是数学分析中的一个重要内容,它在数学、物理、经济等领域都有着广泛的应用。
极大值和极小值是函数在一定区间内取得的最大值和最小值,它们是优化问题中的关键概念。
本文将从极值的基本概念出发,介绍如何求解极值,以及极值在实际问题中的应用。
让我们一起深入了解极值的知识,掌握求解极值的方法,从而更好地应用于实际问题中。
1.2 文章结构文章结构部分是对整篇文章的框架和内容进行概述和介绍。
在这一部分,我们将简要介绍本文的章节安排和各个部分的主要内容。
第一部分是引言部分,包括概述本文要讨论的内容、文章结构和目的。
在引言部分,我们将简要介绍极大值和极小值的概念,以及为什么学习这些知识点是重要的。
第二部分是正文部分,包括极大值的概念、求解极大值的方法和极小值的概念。
在这一部分,我们将详细讨论极大值和极小值的含义,以及如何通过不同的方法来求解极值的问题。
第三部分是结论部分,包括总结极值概念、应用实例和展望。
在结论部分,我们将对本文所讨论的内容进行总结,并展示极大值和极小值在实际问题中的应用和未来的发展方向。
通过这样的文章结构,读者可以清楚地了解到本文的主要内容和各个部分的重点,帮助他们更好地理解极值的知识点。
1.3 目的目的部分的内容:本文旨在系统地介绍极大值和极小值的概念,以及求解极值的方法,从而帮助读者更全面地理解这一数学知识点。
同时,通过应用实例的分析,读者能够更好地理解极值在实际问题中的应用,并对未来在相关领域的研究和实践提供一定的启发和参考。
最终,期望本文能够为读者提供一个清晰的极值概念框架,帮助他们更有效地应用这一知识,解决实际问题。
2.正文2.1 极大值的概念极大值是在函数曲线上某一点附近的最大函数值。
具体来说,对于函数f(x),如果存在一个区间[a, b],使得在该区间内,当x不等于a或b时,f(x)小于等于f(a)或f(b),那么f(x)在该区间内的最大值就是极大值。
§2-6 函数的极大(小)值和最大(小)值1.函数的极大(小)值 一个函数在它有定义的区间上可能没有最大(小)值,但它在某个部分区间上可能会有最大(小)值,即局部最大值或局部最小值.函数的局部最大值或局部最小值,又称为函数的极大值或极小值.具体地说,设函数)(x f 在点),(0b a x ∈连续.若有足够小的正数δ,使)||0()()(00δ<-<<x x x f x f (图2-21) 则称函数)(x f 在点0x 取到极大值)(0x f ,并称点0x 为函数)(x f 的极大值点.同理,使 )||0()()(11δ<-<>x x x f x f (图2-21) 则称函数)(x f 在点1x 取到极小值)(1x f ,并称点1x 为函数)(x f 的极小值点.函数的极大值和极小值统称为函数的极值,而函数的极大值点和极小值点统称为函数的极值点. 因为函数的极值是函数在小范围内的最大值或最小值,根据定理2-1,我们就有下面的结论:若函数()f x 在某区间内的点0x 处取到极值且有导数'0()f x ,则'=0()0f x .因此,0()0f x '=是可微函数....在点0x 取到极值的必要条件,但它不是可微函数取到极值的充分条................件.! 例如函数3)(x x f =,尽管有0)0(='f ,但0不是它的极值点(图2-22).以后,就把使0()0f x '=的点0x 称为函数)(x f 的驻点(可能不是极值点.......).需要指出,不能把上面的结论简单说成“函数取到极值的必要条件”.例如,函数()f x x =(图2-23),它在点0有极小值(也是最小值),可是它在点0没有导数.因此,函数在区间内部的极值点只可能是它的驻点或没有导数的点.它们合在一起称为函数的临界点.一般情形下,求连续函数)(x f 在开区间),(b a 内的极值时,一般步骤是:第一步,求出)(x f 在区间),(b a 内的所有临界点(即驻点或没有导数的点);第二步,对于每一个临界点,再用下面的判别法验证它是否为极值点;第三步,求出函数在极值点处的函数值(即函数的极大值或极小值).判别法Ⅰ 设0x 为连续函数)(x f 在区间),(b a 内的临界点(驻点或没有导数的点).若有足够小的正数δ,使(见图2-24)⑴)(x f 在),(00x x δ-内是增大的且在),(00δ+x x 内又是减小的,则)(0x f 是极大值; 图2-23x图2-21[或] [或]⑵)(x f 在),(00x x δ-内是减小的且在),(00δ+x x 内又是增大的,则)(0x f 是极小值;[或0)(<'x f ] [或0)(>'x f ]⑶)(x f 在),(00δδ+-x x 内是增大的或是减小的,则)(0x f 不是极值.当0x 为函数)(x f 的驻点且0)(0≠''x f 时,就用下面的判别法Ⅱ.判别法Ⅱ 设0x 为函数)(x f 在区间),(b a 内的驻点[即0)(0='x f ].若有二阶导数0)(0≠''x f ,则⑴ 当0)(0<''x f 时,)(0x f 是极大值; ⑵ 当0)(0>''x f 时,)(0x f 是极小值.[当0)(0=''x f 时,函数)(x f 在点0x 是否取到极值,需要做进一步的讨论]证 根据例22(§2-5),则有222200000011()()()()()()()()22f x h f x f x h f x h o h f x f x h o h '''''+=+++=++于是得 20001()()[()(1)]2f x h f x f x o h ''+-=+ 因为0)(0≠''x f ,所以当||h 足够小时,)]1()([0o x f +''与)(0x f ''同符号.因此,有正数δ,使当0||h δ<≤时,0()f x h +0()f x -=000,()00,()0f x f x ''<<⎧⎨''>>⎩ 这就是要证的结论.例23 求函数1323-+=x x y 的极值.解 2363(2)y x x x x '=+=+,666(1)y x x ''=+=+由0='y 得驻点122,0x x =-=.因为2060,60x x y y =-=''''=-<=>,所以31)2(3)2(232=--+-=-=x y 是极大值; 01x y ==-是极小值.【注】若函数()f x 在点0x 没有导数或二阶导数0()0f x ''=,就去用上面的判别法Ⅰ.2.函数的最大(小)值(又称为绝对极值) 函数的最大(小)值是指函数在定义域或定义域中某个区间上的最大(小)值.求连续函数)(x f 在闭区间],[b a 上的最大值和最小值时,方法更简单:第一步,先求出)(x f 在开区间),(b a 内的临界点;并求出)(x f 在所有临界点上的函数值.(1) 0图2-24 (2)(3)第二步,把以上函数值与区间端点上的函数值)(a f 和)(b f 放在一起做比较,其中最大者就是函数)(x f 在闭区间],[b a 上的最大值,最小者就是函数)(x f 在闭区间],[b a 上的最小值.非闭区间上的连续函数可能没有最大值或最小值.在这种情形下,就要根据具体问题,经过分析后才能确定某个函数值是最大值或最小值.例如,⑴ 函数)(x f 在区间),[b a 上增大(减小)时,)(a f 就是最小值(最大值);⑵ 函数)(x f 在区间],(b a 上增大(减小)时,)(b f 就是最大值(最小值);⑶ 设有点),(b a c ∈. 若函数)(x f 在区间],(c a 上增大且又在区间),[b c 上减小,则)(c f 就是最大值;若函数)(x f 在区间],(c a 上减小且又在区间),[b c 上增大,则)(c f 就是最小值.例24 证明不等式:)0(1e >+>x x x .证 令)0()1(e )(≥+-=x x x f x ,则)(x f 在),0[+∞上是连续函数.因为)0(01e )(>>-='x x f x [即函数()f x 是增函数]所以(0)0f =是最小值.因此,()0(0)f x x >>,即)0(1e >+>x x x .例25 证明:函数)10()(<<-=αααx x x f 在区间),0(+∞内有最大值α-=1)1(f . 由此再证明近代数学中著名的赫尔窦(H ölder)不等式:11110,0,0,0;1p q ab a b a b p q p qp q ⎛⎫≤+>>>>+= ⎪⎝⎭ 证 由0)1()(11=-=-='--αααααx x x f 得驻点1=x . 因为 当10<<x 时, 0)1()(1>-='-ααx x f [即)(x f 增大],当+∞<<x 1时, 0)1()(1<-='-ααx x f [即)(x f 减小],所以α-=1)1(f 是最大值.其次,令q p b a x p ==-,1α,则111qp p p p p q p q q q a a a f ab a b b b p b p --⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭ 而根据上述结论,即α-≤1)(x f ,则得不等式111(1)11q p q p aba b f p p q α---≤=-=-= 两端同乘q b ,并注意1=-p q q ,则得要证的不等式q p b qa p ab 11+≤. 在非闭区间上求一个函数的最大(小)值问题,常常出现在实际应用问题中.解这类问题时,首先需要根据问题本身,运用几何学或物理学或其他有关科学中的知识,列出“目标函数”(即要求它的最大值或最小值的函数)的函数式.这样,问题就变成求目标函数的最大值或最小值.例如, “当矩形周长l 为定值时,它的长和宽为何值时面积最大?”或“当矩形面积S 为定值时,它的长和宽为何值时周长最小?”设矩形的一边长为x ,则前一个问题的目标函数就是(矩形面积)()2l S x x x ⎛⎫=- ⎪⎝⎭ 02l x ⎛⎫<< ⎪⎝⎭ 而后一个问题的目标函数就是(矩形周长)()2S l x x x ⎛⎫=+ ⎪⎝⎭ )0(+∞<<x 这样,问题就变成求函数)(x S 的最大值或求函数)(x l 的最小值.例26 设有闭合电路如图2-25. 它由电动势E 、内阻r 和纯电阻负载E 所构成.若E 和r 是已知常数,问负载R 为何值时,电流的电功率最大?解 根据电学的知识,闭合电路中电流的电功率为R I P 2=(I 为电流强度)而根据闭合电路的欧姆定律,电流强度R r E I +=. 因此,电功率为 22)(R r R E P += (自变量为R ) 由0='P ,即由0)()()()(2)(324222=+-=++⋅-+⋅='R r R r E R r R r R E R r E P 得r R =. 因此,当负载r R =(内阻)时,电功率取到最大值r E P 4/2=.例27 由材料力学的知识,横截面为矩形的横梁的强度是2h x k =ε(k 为比例系数,x 为矩形的宽,h 为矩形的高)今要将一根横截面直径为d 的圆木,切成横截面为矩形且有最大强度的横梁,那么矩形的高与宽之比应该是多少?解 如图2-26,因为222x d h -=,所以22()(0)kx d x x d ε=-<<.令0='x ε,即22222()2(3)0x k d x x k d x ε'=--=-=⎡⎤⎣⎦ 则得驻点x d=根据实际问题的提法,当矩形的宽/x d =强度ε取到最大值.此时,因为d dd x d h 32)3(2222=-=-= 所以2/=x h .图2-26在实际工作中,技术人员是按下面的几何方法设计的:把圆木的横截面(圆)的直径AB 分成三等份(如图2-27),再分别自分点C 和D 向相反方向作直径AB 的垂线,交圆周后做成图中那样的矩形.这个矩形的长边与短边的比值就是2.例28 已知某工厂生产x 件产品的成本为21()2500020040C x x x =++(元) 问:⑴ 要使平均成本最小,应生产多少件产品? ⑵ 若产品以每件500元售出,要获得最大利润,应生产多少件产品?最大利润是多少? 解 ⑴ 平均成本为x x x x C x C 40120025000)()(++==(元/件) 让040125000)(2=+-='x x C ,则得1000=x (件).因此,生产1000件产品时平均成本最小. ⑵ 售出x 件产品时,收入为x 500(元),而利润为=)(x L (收入)x 500-(成本))40120025000(500)(2x x x x C ++-= 212500030040x x =-+- 让020300)(=-='x x L ,则得6000=x (件).因此,生产6000件产品并全部售出时,获得的利润最大.最大利润为900000)6000(=L (元). 习 题1.求下列函数的极值(极大值或极小值):求连续函数在定义区间内的极值时,应先找出导数等于零的点(驻点)和没有导数的点,然后按上面指出的判别法,去判别函数在这些点上是否取到极大值或极小值.⑴x x x f -=3)(; ⑵242)(x x x f -=; ⑶122)(2-+-=x x x x f ;⑷()f x x = ⑸x x x f -=e )(; ⑹x x x f ln )(=; ⑺x x x f -+=e )1()(3; ⑻3231)1()(x x x f -=.答案:⑴max minf f ⎛= ⎝;⑵1)1(,0)0(m in m ax -=±=f f ; ⑶2)2(,2)0(m in m ax =-=f f ;⑷min 34f ⎛⎫= ⎪⎝⎭;⑸1m ax e )1(-=f ;⑹12m in e 2)e (---=f ;⑺2m ax e 27)2(-=f ;⑻max min 1(1)03f f ⎛⎫= ⎪⎝⎭. 2.求下列函数在指出区间上的最大值和最小值:⑴];2,2[,1823-+--=x x x y ⑵];1,1[,15-++=x x y⑶];2,1[,13--=x x y ⑷511,,1;12y x x ⎡⎤=-⎢⎥++⎣⎦ ⑸211,1,12x y x +⎡⎤=-⎢⎥+⎣⎦. 答案:⑴;11,27203-⑵;1,3-⑶;443,23-⑷;31,1532⑸0,2242-. 3.设n a a a <<< 21. 当x 为何值时,函数∑=-=ni i a x x f 12)()(取最小值?答案:n a a a x n +++=21(算术平均值). 4.设.0>a 求函数||11||11)(a x x x f -+++=的最大值. 提示:把区间),(+∞-∞分成三个区间(,0),(0,),(,)a a -∞+∞. 答案:21a a++. 5.证明下面的不等式: ⑴ );01(2)1ln(2<<--<+x x x x ⑵ 12ln 1(0);21x x x ⎛⎫+>> ⎪+⎝⎭ ⑶ );0(arctan 33><<-x x x x x ⑷ 1e 1(0)x x x -≥>. 6.设有方程033=+-c x x (c 为常数).问:当c满足什么条件时,方程有:⑴三个实根,⑵两个实根,⑶一个实根? [提示:分别研究下图⑴,⑵,⑶]答案:⑴22<<-c ;⑵2±=c ;⑶2-<c 或2>c .7.在什么条件下,方程()300x px q pq ++=≠有:⑴一个实根,⑵三个实根?提示:参考上一题的做法. 答案:⑴042723>+q p ;⑵042723<+q p . 8.确定下列各方程实根的个数,并指出只含有一个实根的区间:⑵ 第6题图⑴ 0109623=-+-x x x ; ⑵ 020********=-+--x x x x ;⑶ )0(ln ≠=k kx x ; ⑷2e (0)x ax a =>.答案:⑴一个实根,在)5,4(内;⑵两个实根,32,1221<<-<<-x x ;⑶当0<k 时有一个实根,在)1,0(内;当1e0-<<k 时有两个实根,+∞<<<<21e ,e 1x x ; 当1e -=k 时有一个实根e =x ;当1e ->k 时没有实根.⑷当4e 02<<a 时有一个实根,在)0,(-∞内;当4e 2>a 时有三个实根, 1230,02,2x x x -∞<<<<<<+∞.9.设有二阶导数)(a f ''. 证明:⑴ 若函数)(x f 在点a 取到极大值,则0)(≤''a f ;⑵ 若函数)(x f 在点a 取到极小值,则0)(≥''a f .10.设函数21()22sin (0),(0)2f x x x f x ⎛⎫=-+≠= ⎪⎝⎭. 证明:)(x f 有最大值2)0(=f ,但)(x f 在点0的左旁附近不是增大的,而且在点0的右旁附近不是减小的(这说明判别法Ⅰ中的条件不是必要的).11.应用题 ⑴设两正数x 与y 的和等于常数a (a y x =+).求)0,0(>>n m y x n m 的最大值.⑵设两正数x 与y 的乘积等于常数a (a xy =).求)0,0(>>+n m y x n m 的最小值.⑶在有一定体积的所有正圆柱体中,当底圆半径与高之比为何值时,它有最小的表面积?⑷用薄钢板做一个容积为定值v 的无盖圆柱形桶.假若不计钢板厚度和剪裁时的损耗,问桶底半径r 与高h 各为多少时,用料最省?⑸从半径为R 的圆上切掉一个扇形后,把余下部分卷成一个漏斗.问余下部分扇形的圆心角θ为何值时,卷成漏斗的容积最大?第11⑸题图⑵ ⑴ 第11⑹题图x⑹(反射定律) 如图示,由点A 经点B ,再到点C . 证明:当入射角α等于反射角β时,折线ABC 的长度最短.⑺一商家销售某种商品的价格为x p 2.07-=(万元/T),其中x 为销售量(单位:T);商品的成本为13+=x C (万元).(i )若每销售一吨商品,政府要征税t 万元,求商家获最大利润时的销售量;(ii )t 为何值时,政府税收的总额最大?答案:⑴n m n m n m n m n m a +++)(;⑵n m n m mn n m a n m +⎪⎪⎭⎫ ⎝⎛+1)(;⑶1∶2;⑷r h ==⑸2θ=弧度);⑺(i )t x 5.210-=;(ii )2=t .。
函数极小值
极小值,也称为最小值,是数学中用以描述函数最低点或某一元素的最小值的概念,是最重要的局部极值,即函数做某些变化时他的增长率为零的点。
它也是极限值的一种,但极小值的域范围有限于它的定义域内,而极大值可能不存在。
最小值的解决方法有很多,包括梯度下降法,拟牛顿法和二次插值方法等。
梯度下降法是由一个方程,即函数的导数及其多元函数的偏导数,按照它们的梯度在变化,用来寻找函数极小值的方法。
拟牛顿法通过拟合在斜率梯度和二次,可以让算法来找到极小值。
而二次插值则是在执行梯度下降法和拟牛顿法之前,找极小值所必须要做的步骤,这样可以有效地降低搜索空间,从而加快找出极小值的过程。
极值的求解可用于很多领域,有助于数学建模、最优化等领域的研究。
比如在优化投资方面,借助极小值确定最佳投资组合;在机器学习和计算机视觉领域,极小值的求解可用于监督学习,用以提取代表特征。
总之,极小值是搜索最优解的重要步骤,这一点已经被广泛应用到了不同的领域。
函数极小值的求解算法具有非常复杂的数学原理,但我们可以借助这些算法求解、诊断和解决各种实际问题,从而取得最优解。
先求导,然后让导数等于0,得出可能极值点,然后通过判断导数的正负来判断单调性,最后再得出极值,然后再计算端点值,比较大小,最大就是最大值,最小就是最小值。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。
寻找已知的函数在某点的导数或其导函数的过程称为求导。
扩展资料:极值是一个函数的极大值或极小值。
如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。
如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。
该点就相应地称为一个极值点或严格极值点。
函数的极值通过其一阶和二阶导数来确定。
对于一元可微函数f (x),它在某点x0有极值的充分必要条件是f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(X0)=0,f"(x0)≠0,那么:1)若f"(x0)<0,则f在x0取得极大值;2)若f"(x0)>0,则f在x0取得极小值。
一般的,函数最值分为函数最小值与函数最大值。
最小值:设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≥M。
②存在x0∈I。
使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。
最大值:设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≤M。
②存在x0∈I。
使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最大值。
求函数最小值的方法
求函数最小值的方法有以下几种:
1. 导数法:对给定的函数求导并令导数等于零,解得的点即为函数的驻点。
然后可以通过二阶导数判断驻点是极大还是极小值。
若二阶导数大于零,则驻点为函数的极小值点。
2. 配方法:将给定函数转化成一些平凡的形式,如二次函数(配方法)、分式函数(消去分式等)。
通过转化后的形式,可以直接得到函数的最小值。
3. 定义法:对于闭区间上的连续函数,根据最大最小值定理可以得到函数在该区间上的最小值存在,可以通过对区间的各点进行计算和比较,找到函数的最小值。
4. 图像法:通过绘制函数的图像,观察函数图像的形状和特点,可以估计函数的最小值所在位置。
5. 数值计算法:通过数值方法,如牛顿法、黄金分割法、弦截法等,逐步逼近函数的极小值点,找到函数的最小值。
极大值极小值的判断
极大值极小值的判断:对于函数,先增后减产生极大值,先减后增产
生极小值;对于导函数,先负后正产生极大值,先正后负产生极小值。
一
个给定的区间内,可以有多个极大值和极小值,其中最大的为最大值,最
小的为最小值。
设0是f()的(局部)极值点,且f()的导数存在,则f()的导数为0,但f()的导数为零并不意味着0是极值点。
简单的说,如果是闭区间,那
么在这个闭区间上,可以取到最小(最大)的那个值,那么叫做最小值
(最大值)。
但是如果是开区间的话,就取不到那个最小值(最大值),这时候就
要引入导数的概念,来定义极小值(极大值)。
简介
极值是变分法的一个基本概念。
泛函在容许函数的一定范围内取得的
最大值或最小值,分别称为极大值或极小值,统称为极值。
使泛函达到极
值的变元函数称为极值函数,若它为一元函数,通常称为极值曲线。
极值
也称为相对极值或局部极值。
极值是“极大值”和“极小值”的统称。
如果函数在特定点的值大于
或等于在该点附近任何其他点的函数值,则称函数在该点的值为函数的
“极大值”。
如果函数在特定点的值小于或等于在该点附近任何其他点的
函数值,则称函数在该点的值为函数的“极小值”。
以上内容参考:。
极小值原理
极小值原理是数学分析中一个重要的概念。
它指出,如果一个函
数在局部区域的某点取得极小值,那么在该点的导数必须为零或不存在。
这一原理可以帮助我们研究函数的极小值以及局部极值点的性质。
具体而言,设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导。
如果f(x)在某点x0处取得极小值,那么f'(x0) = 0或者
f'(x0)不存在。
这是因为在极小值点处的导数为零或不存在,否则在
导数不为零的点附近将会存在更小的函数值。
利用极小值原理,我们可以通过求解导数为零或不存在的方程来
找到函数的极小值点。
此外,极小值原理还有助于我们确定函数的最
小和最大值的存在性。
总而言之,极小值原理是一条重要的数学原理,可以帮助我们研
究函数在局部区域内的极小值和极值点的性质。
求函数极小值求函数的极小值是数学中的一个重要问题。
在实际应用中,我们经常会遇到需要找到函数极小值的情况,例如在优化问题中,我们希望找到某个目标函数的最小值,从而得到最优解。
因此,研究如何求函数的极小值具有重要的理论和实际意义。
要求函数的极小值,首先需要明确函数的定义域和取值范围。
只有确定了这些限制条件,我们才能进行后续的求解过程。
一般来说,我们将函数的定义域限定在一个确定的区间内,这样可以简化问题的复杂性。
一种常用的方法是使用导数来求函数的极小值。
导数可以描述函数在某一点的变化率,通过研究导数的符号和零点,可以找到函数的极值点。
具体来说,如果函数在某一点的导数为零,那么该点可能是函数的极值点。
此外,还需要研究导数的符号变化,通过对导数的正负性进行分析,可以确定函数在极值点的取值情况。
除了使用导数的方法外,还可以利用二次函数的性质来求函数的极小值。
对于一个二次函数,它的图像是一个抛物线。
通过分析二次函数的开口方向和顶点坐标,我们可以得到函数的极值点的位置和取值。
在实际应用中,求函数极小值的过程可能会比较复杂。
有时候我们需要使用数值计算的方法来求解,例如使用数值优化算法或者数值微分方法。
这些方法可以通过迭代的方式逐步逼近函数的极小值。
求函数的极小值是数学中一个重要的问题,它涉及到导数、二次函数等数学概念和方法。
通过研究函数的导数和二次函数的特性,我们可以找到函数的极值点和极小值。
在实际应用中,求函数极小值的过程可能会比较复杂,需要使用数值计算的方法进行求解。
因此,研究如何求函数的极小值具有重要的理论和实际意义。
基本概念
遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术之一。
遗传算法的基本运算过程如下:
1)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
2)个体评价:计算群体P(t)中各个个体的适应度。
3)选择运算:将选择算子作用于群体。
选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的。
4)交叉运算:将交叉算子作用于群体。
所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。
遗传算法中起核心作用的就是交叉算子。
5)变异运算:将变异算子作用于群体。
即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
6)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
以上操作过程可以用图1来表示。
图1 遗传算法流程图
利用遗传算法求Rosenbrock 函数的极小值
求解该问题遗传算法的构造过程:
(1)确定决策变量和约束条件;
(2)建立优化模型;
(3)确定编码方法
用长度为15位的二进制编码串来分别表示两个决策变量x1,x2。
10位二进制编码串可以表示从0到2^15-1之间的个2^15不同的数,故将x1,x2的定义域离散化为1023个均等的区域,包括两个端点在内共有1024个不同的离散点。
从离散点-100到离散点100 ,分别对应于从000000000000000(0)到111111*********(1023)之间的二进制编码。
将x1,x2分别表示的两个15位长的二进制编码串连接在一起,组成一个30位长的二进制编码串,它就构成了这个函数优化问题的染色体编码方法。
使用这种编码方法,解空间和遗传算法的搜索空间就具有一一对应的关系。
例如 x :000000000110111 000001101110001 表示一个个体的基因型,其中前10位表示x1,后10位表示x2
4)确定解码方法:解码时需要将30位长的二进制编码串切断为两个15位长的二进制编码串,然后分别将它们转换为对应的十进制整数代码,分别记为y1和y2。
依据个体编码方法和对定义域的离散化方法可知,将代码y 转换为变量x 的解码公式为 )2,1(1001
15^2200=--⨯=i yi xi 例如,对个体x :00000000110111 000001101110001 它由两个代码所组成
上述两个代码经过解码后,可得到两个实际的值239.722,247.891=-=x x
(5) 确定个体评价方法:由于Rosenbrock 函数的值域总是非负的,并且优
化目标是求函数的最小值,故可将个体的适应度直接取为对应的目标函数值,即
选个体适应度的倒数作为目标函数
(6)设计遗传算子:选择运算使用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。
(7)确定遗传算法的运行参数:群体大小M=40,终止进化代数G=500,交叉⎩⎨⎧=≤≤--+-=)2,1(100100)1()(100),(212221212i x x x x x x f i 881
,5521==y y )
,()(21x x f x F =)(1)(x F x J =
概率Pc=(0.7~0.1),变异概率Pm=0.5。
上述七个步骤构成了用于求函数极小值的优化计算基本遗传算法。
采用上述方法进行仿真,经过100步迭代,最佳样本
0493.12,0100.11==x x 时,Rosenbrock 函数具有极小值,极小值为0.0852。
仿真的程序为:
MAIN
%标准遗传算法
%优化函数为21222
1212)1()(100),(x x x x x f -+-=,其中,-100<=x<=100 %编码长度为15位,编码精度为0.195
%种群规模设为40,遗传算子分别为比例选择,单点交叉和单点变异。
%最大进化代数为500代,保优操作。
clear all ;
close all ;
Size=80;
G=500;
CodeL=15;
maxize=100;
minize=-100;
Qun=round(rand(Size,2*CodeL));
for k=1:1:G
time(k)=k;
for s=1:1:Size
m=Qun(s,:);
y1=0;y2=0;
m1=m(1:1:CodeL);
for i=1:1:CodeL
y1=y1+m1(i)*2^(i-1);
end
x1=(maxize-minize)*y1/2^15+minize;
m2=m(CodeL+1:1:2*CodeL);
for i=1:1:CodeL
y2=y2+m2(i)*2^(i-1);
end
x2=(maxize-minize)*y2/2^15+minize;
F(s)=100*(x1^2-x2)^2+(1-x1)^2;
end
Ji=1./F;
BestJ(k)=max(Ji);
fi=F;
[Oderfi,Indexfi]=sort(fi);
Bestfi=Oderfi(1);
BestS=Qun(Indexfi(1),:);
bfi(k)=Bestfi;
fi_sum=sum(fi);
P=fi/fi_sum;
Q(1)=P(1); %求每个染色体的累积频率
for i=2:1:Size
Q(i)=Q(i-1)+P(i);
end
kk=1;
U=rand(Size,1);
%轮盘选择开始
for i=1:1:Size
for j=1:1:Size-1
if U(i,1)>Q(j)
TempE(kk,:)=Qun(j+1,:); kk=kk+1;
break
elseif U(i,1)<=Q(1)
TempE(kk,:)=Qun(1,:);
kk=kk+1;
end
end
end%相邻两个染色体单点交叉
pc=0.60;
n=ceil(20*rand);
for i=1:2:(Size-1)
temp=rand;
if pc>temp
for j=n:1:20
TempE(i,j)=Qun(i+1,j);
TempE(i+1,j)=Qun(i,j);
end
end
end
TempE(Size,:)=BestS;
Qun=TempE;
pm=0.1;
for i=1:1:Size
for j=1:1:2*CodeL
temp=rand;
if pm>temp
if TempE(i,j)==0
TempE(i,j)=1;
else
TempE(i,j)=0;
end
end
end
end
TempE(Size,:)=BestS;
Qun=TempE;
end
Min_Value=Bestfi
BestS
x1
x2
figure(1);
plot(time,BestJ);
xlabel('Times');ylabel('BestJ');
figure(2);
plot(time,bfi);
xlabel('times');ylabel('BestF');
运算结果
Min_Value =
0.0657
BestS =
Columns 1 through 17
1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0
Columns 18 through 30
1 0 1 1 1 1 0 0 0 0 0 0 1
x1 =
1.2146
x2 =
1.4893。