eviews多元线性回归案例分析
- 格式:pdf
- 大小:168.00 KB
- 文档页数:5
上机练习3要求:掌握多元线性回归分析的eviews操作及相应的统计分析;掌握偏相关系数和弹性系数计算以及多参数假设检验。
一、根据ex43的数据,建立简单消费函数模型,假定消费量仅依赖于同期可支配个人收入。
即为第一次上机作业ex32的例子,求出求出边际消费倾向的 95% 置信区间,检验该模型中正态分布的假设是否成立。
建立简单储蓄函数模型,假定储蓄是同期可支配收入的函数。
分析两个模型系数之间的关系。
可以发现:两个方程密切相关,两个斜率系数之和等于1。
另外,两个模型的回归平方和、回归标准误差以及残差均相等。
个人消费:GC储蓄:GS=GYD-GC可支配个人收入:GYD单位:十亿美元二、下表给出美国1980~1996年间城市劳动力参与率、失业率和平均小时工资的数据:年 劳动力参与率 失业率平均小时工资年 劳动力参与率失业率平均小时工资1980 63.8 7.1 7.78 198966.5 5.3 7.64 1981 63.9 7.6 7.69 199066.5 5.6 7.52 1982 64 9.7 7.68 199166.2 6.8 7.45 1983 64 9.6 7.79 199266.4 7.5 7.41 1984 64.4 7.5 7.8 199366.3 6.9 7.39 1985 64.8 7.2 7.77 199466.6 6.1 7.4 1986 65.3 7 7.81 199566.6 5.6 7.4 1987 65.6 6.2 7.73 199666.8 5.4 7.43 1988 65.9 5.5 7.69由此考虑问题:经济形势会影响人们进入劳动力市场的决定吗?这里用失业率来度量经济形势,用劳动力参与率度量劳动力的参与。
建立劳动力参与率对失业率和平均小时工资的二元回归方程。
(1)检验系数和方程的显著性;(2)系数的符号与你希望的一致吗?说出系数的经济含义; (3)以此例为例说明,二元回归可用两个一元回归来做。
[经验分享] 使用eview s做线性回归分析Glossa ry:ls(least square s)最小二乘法R-sequar ed样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaur ed()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criter ion赤池信息量(AIC)(越小说明模型越精确)Schwar z ctiter ion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statis t ic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同g dp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p 值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
Eviews多元回归模型案例分析1. 引言本文将通过一个多元回归模型的案例分析来展示Eviews软件的应用。
多元回归模型是一种统计学方法,用于研究多个自变量对因变量的影响关系。
2. 数据集和变量2.1 数据集我们使用的数据集是一份包含多个变量的经济数据集,包括自变量和因变量。
2.2 变量在本案例中,我们选择了以下变量:- 因变量:Y- 自变量1:X1- 自变量2:X2- 自变量3:X33. 回归模型建立和参数估计3.1 建立模型我们根据选定的变量,建立了以下多元回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + ε3.2 参数估计使用Eviews软件,我们对模型中的参数进行了估计。
具体估计结果如下:- β0的估计值为a- β1的估计值为b1- β2的估计值为b2- β3的估计值为b34. 模型拟合和统计检验4.1 拟合优度为了评估模型的拟合优度,我们计算了决定系数R^2。
结果显示,模型拟合效果良好,并能解释自变量对因变量的变异程度。
4.2 统计检验我们进行了一系列统计检验,包括回归系数的显著性检验、F 检验和残差分析等。
结果显示,模型的回归系数显著,并且F检验的p值足够小,支持多元回归模型的有效性。
5. 模型解释和预测5.1 模型解释我们分析了模型中每个自变量的系数和显著性水平,解释了它们对因变量的影响。
根据模型结果,可以得出每个自变量对因变量的贡献程度。
5.2 模型预测基于建立的多元回归模型,我们可以进行因变量的预测。
根据给定的自变量取值,我们可以通过模型预测出相应的因变量值。
6. 结论通过Eviews软件进行多元回归模型的案例分析,我们得出了一些结论。
多元回归模型在解释因变量和自变量之间关系方面具有一定的效果,并且可以用于因变量的预测。
然而,我们需要注意模型的限制和假设,并且在实际应用中进行进一步的验证和调整。
以上是对Eviews多元回归模型案例分析的简要介绍。
如有更详细的需求或其他问题,请随时联系。
基于EViews对我国财政收入影响因素的实证分析一、概述随着中国经济的高速发展和经济结构的持续优化,财政收入作为衡量国家经济实力和治理水平的重要指标,其影响因素及其作用机制越来越受到学术界的关注。
在此背景下,本文旨在利用EViews软件,对中国财政收入的影响因素进行深入的实证分析,以期揭示各因素与财政收入之间的内在联系,为政府制定科学合理的财政政策提供理论支持和实践指导。
具体来说,本文首先对财政收入的相关概念进行界定,明确财政收入的内涵和构成。
结合国内外关于财政收入影响因素的研究文献,梳理出影响中国财政收入的主要因素,包括经济增长、税收政策、产业结构、城镇化水平等。
接着,本文利用EViews软件,选取合适的时间序列数据,构建计量经济模型,对影响因素进行实证分析。
在模型构建过程中,本文将采用单位根检验、协整检验等方法,确保数据的平稳性和模型的有效性。
根据实证分析的结果,本文将对各影响因素的作用机制进行深入探讨,并提出相应的政策建议。
本文的研究不仅有助于深入了解中国财政收入的影响因素及其作用机制,还可以为政府制定更加科学合理的财政政策提供理论支持和实践指导。
同时,本文的研究方法和结论也可以为其他领域的研究提供借鉴和参考。
1. 研究背景与意义随着全球经济的不断发展和我国改革开放的深入推进,我国财政收入呈现出快速增长的态势。
财政收入作为政府开展各项经济活动的重要支撑,其稳定性、可持续性和合理性对国家的经济社会发展具有重要影响。
深入了解和分析影响我国财政收入的各种因素,揭示其内在规律,对于优化财政结构、提高财政资金使用效率、促进经济健康发展具有重要的理论和现实意义。
在此背景下,本文旨在利用EViews软件对我国财政收入的影响因素进行实证分析。
EViews作为一款功能强大的计量经济学软件,能够有效地处理时间序列数据,并通过建立计量经济模型来分析各因素对财政收入的贡献度和影响程度。
通过对这些因素进行定性和定量分析,可以更加清晰地认识到财政收入背后的复杂机制,为政府决策提供科学依据。
计量经济学实验报告(多元线性回归分析)实验2:多元线性回归分析实验目的:学习利用Eviews建立多元线性回归模型,研究64国家婴儿死亡率与妇女文盲率之间的关系。
一、实验内容:1、先验的预期CM和各个变量之间的关系.2、做CM对FLR的回归,得到回归结果。
3、做CM对FLR和PGNP的回归,得到回归结果。
4、做CM对FLR,PGNP和TFR的回归结果,并给出ANOVA。
5、根据各种回归结果,选择哪个模型?为什么?6、如果回归模型(4)是正确的模型,但却估计了(2)或(3),会有什么后果?7、假定做了(2)的回归,如何决定增加变量PGNP和TFR?使用了哪种检验?给出必要的计算结果。
二、实验报告———-多元线性回归分析1、问题提出婴儿死亡率(CM)是指婴儿出生后不满周岁死亡人数同出生人数的比率.一般以年度为计算单位,以千分比表示。
婴儿死亡率是反映一个国家和民族的居民健康水平和社会经济发展水平的重要指标,特别是妇幼保健工作水平的重要指标。
婴儿死亡率(CM)的高低是一个国家或地区社会经济多方面因素协调发展的结果。
由于世界各国婴儿死亡率差别很大,所以就64个国家社会综合发展状况,针对性的研究婴儿死亡率(CM)与女性识字率(FLR)、人均GNP(PGNP)、总生育率(TFR)之间的关系2.指标选择本次实验研究婴儿死亡率与妇女文盲率之间的关系,故应采用婴儿死亡率(CM)和女性识字率(FLR)作为指标。
但影响婴儿死亡率的因素较复杂,尤其是经济发展状况、总生育率等也会对其产生重要影响,考虑到实验的准确性,故引入人均GNP(PGNP)和总生育率(TFR)相关数据。
3。
数据来源数据来源:教师提供4。
数据处理此次实验可直接使用数据,无需进行数据处理。
5。
先验的预期CM 和各个变量之间的关系 【题1】 5-1预期CM 与FLR 存在负相关关系。
一方面,女性受教育程度越高,其知识越丰富,自我保护意识和能力就越强,则更善于保护自己和婴儿;另一方面,女性教育程度越高,其就业机会与收入获得途径就越多,可以更好的保障自己和婴儿的生活.因此,我们预期FLR 的提高会导致CM 降低。
一、研究的目的要求改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为亿元到2002年已增长到亿元25年间增长了33倍。
为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增%。
但是第二次税制改革对税收的增长速度的影响不是非常大。
因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”从《中国统计年鉴》收集到以下数据年份财政收入(亿元)Y国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X419781979102 198**** ****19821983198471711985198**** ****19881989199019911992199319941995199619971998199997 200020012002设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三、参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: Y Method: Least SquaresDate: 12/01/09 Time: 13:16 Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C X2 X3 X4R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared resid1463163.Schwarz criterion Log likelihood F-statisticDurbin-Watson statProb(F-statistic )模型估计的结果为:Y i=+++t={} {} {} {}R2= R2= F= df=21四、模型检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长亿元。
多元线性回归模型案例多元线性回归模型是统计学中常用的一种回归分析方法,它可以用来研究多个自变量对因变量的影响。
在实际应用中,多元线性回归模型可以帮助我们理解和预测各种复杂的现象,比如销售额和广告投入、学生成绩和学习时间等等。
接下来,我们将通过一个实际的案例来详细介绍多元线性回归模型的应用。
案例背景:假设我们是一家电子产品公司的市场营销团队,我们想要了解广告投入、产品定价和促销活动对销售额的影响。
为了实现这个目标,我们收集了一段时间内的销售数据,并且记录了每个月的广告投入、产品定价和促销活动的情况。
现在,我们希望利用这些数据来建立一个多元线性回归模型,从而分析这些因素对销售额的影响。
数据收集:首先,我们需要收集相关的数据。
在这个案例中,我们收集了一段时间内的销售额、广告投入、产品定价和促销活动的数据。
这些数据可以帮助我们建立多元线性回归模型,并且进行相关的分析。
建立模型:接下来,我们将利用收集到的数据来建立多元线性回归模型。
在多元线性回归模型中,我们将销售额作为因变量,而广告投入、产品定价和促销活动作为自变量。
通过建立这个模型,我们可以分析这些因素对销售额的影响,并且进行预测。
模型分析:一旦建立了多元线性回归模型,我们就可以进行相关的分析。
通过分析模型的系数、拟合优度等指标,我们可以了解每个自变量对销售额的影响程度,以及整个模型的拟合情况。
这些分析结果可以帮助我们更好地理解销售额的变化规律,以及各个因素之间的关系。
模型预测:除了分析模型的影响,多元线性回归模型还可以用来进行预测。
通过输入不同的自变量数值,我们可以预测对应的销售额。
这样的预测结果可以帮助我们制定更加合理的市场营销策略,从而提高销售业绩。
模型评估:最后,我们需要对建立的多元线性回归模型进行评估。
通过对模型的残差、预测误差等进行分析,我们可以了解模型的准确性和可靠性。
如果模型的预测效果不理想,我们还可以通过改进模型结构、增加自变量等方式来提高模型的预测能力。
使用eviews做线性回归分析Glossary:ls(least squares)最小二乘法R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaured()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criterion赤池信息量(AIC)(越小说明模型越精确)Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statistic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
2)回归系数显著性检验(t检验):检验每一个自变量的合理性|t|大于临界值表示可拒绝系数为0的假设,即系数合理。
t分布的自由度为n-p-1,n为样本数,p为系数位置3)DW检验:检验残差序列的自相关性,检验基本假设2(随机误差相互独立)残差:模型计算值与资料实测值之差为残差0<=dw<=dl 残差序列正相关,du<dw<4-du 无自相关,4-dl<dw<=4负相关,若不在以上3个区间则检验失败,无法判断demo中的dw=0.141430 ,dl=1.73369,du=1.7786,所以存在正相关模型评价目的:不同模型中择优1)样本决定系数R-squared及修正的R-squaredR-squared=SSR/SST 表示总离差平方和中由回归方程可以解释部分的比例,比例越大说明回归方程可以解释的部分越多。
基于EVIEWS软件下的多元线性回归分析获奖科研报告论文摘要:多元化的线性回归在现实应用中需要被实现,这一举措需要实际生活实践中的操作数据作为基础,更需要计量经济的专业软件EVIEWS作为使用工具。
通过创建多元线性回归的模板和实际的数据显示可以发现,EVIEWS所创建模型是实际有用的,它说明EVIEWS在计量分析中不可或缺。
日常生活中的变化因素太多,单纯的人力计算或者简单的操作程序已经不能满足人们的研究需求,需要新的软件来革新创造。
EVIEWS软件在操作上弥补了普通软件的不实用性和使用软件的复杂性的漏洞,将目光投向简单易于操作的运行方式上,使得数据的评估预测更加简便可行。
关键词:多元线性回归;模型;EVIEWS;软件;工具00G632 000B 001002-76610014-327-02一、与EVIEWS相关的多元线性回归模型的介绍在理论学习中,学者们可能会为了操作的便捷而采用理性化的模型,这里理想化的模型是指单纯地将所要求的问题作为中心,忽略了其他任何可能存在的外界因素,纯粹地从理论角度解释问题。
而在现实问题中,影响整个大局的因素是多样的,每一个因素都不可忽略。
考虑到因变量的因子多样化,就要采用多元线性回归模型,使得整体的关系清晰,便于后期的计算统计。
将多元线性回归模型用数学式表达,则可以表示为:Yi=β0+β2X2+β3X3+β4X4+•••+ε,也可以笼统地写为:y=Xβ+ε。
在这个数学式中,X代表的是设计矩阵,由实践中实际测得的X 的数值所构成;β代表的是参数变量,不同的待测物所具备的参数不同,因此β由实际操作中所需要估计的对象的参数所构成;ε在式中代表的是向量,表示实际操作中的随机误差。
二、建立EVIEWS相关的多元线性回归模型的过程介绍1、利用所得数据创建图表建模过程需要相关的测量数据的参与,为了更好的展现EVIEWS 软件在数据操纵上的优越性,本文采用部分居民日常生活消费调查数据作为基础进行回归分析,这一数据内容简单,且数据和实际生活联系巨大,是一个贴合日常数据的操作类型。
楚雄师范学院数学系09级01班韩金伟学号:*********** 2011—2012学年第二学期《数据分析》期末论文题目影响成品钢材需求量的回归分析姓名韩金伟学号***********系(院)数学系专业数学与应用数学2012年 6 月 19 日题目:影响成品钢材需求量的回归分析摘要:随着社会经济的不断发展,科学技术的不断进步,统计方法越来越成为人们必不可收的工具盒手段。
应用回归分析是其中的一个重要分支,本着国家经济水平的不断提高,我们采用回归分析的方法对我国成品钢材的需求量进行分析应用。
为了使分析的模型具有社会实际意义,我们引用了1980——1998年的成品钢材、原油、生铁、原煤、发电量、铁路货运量、固定资产投资额、居民消费、政府消费9个不同的量来进行回归分析。
通过建立回归模型充分说明成品钢材需求量与其他8个变量的关系,以及我国社会经济的实际发展情况和意义。
关键字:线性回归回归分析社会经济回归模型成品钢材多元回归国家经济社会发展目录第1章题目叙述 (1)第2章问题假设 (1)第3章问题分析 (2)第4章数据的预处理 (3)4.1 曲线统计图 (3)4.2 散点统计图 (4)4.3 样本的相关系数 (4)第5章回归模型的建立 (5)第6章回归模型的检验 (6)6.1 F检验 (6)6.2 T检验 (6)6.3 T检验分析 (6)6.4 Chow断点检验 (8)6.5 Chow预测检验 (8)第7章违背模型基本假设的情况 (9)7.1 异方差性的检验 (9)7.1.1残差图示检验 (9)7.1.2 怀特(White)检验 (9)7.2 自相关性的检验 (10)7.2.1 LM检验 (10)7.2.2 DW检验 (10)第8章自变量选择与逐步回归 (10)8.1 前进逐步回归法 (10)8.1.1 前进逐步回归 (10)8.1.2 前进逐步回归模型预测 (11)8.2 后退逐步回归法 (12)8.2.1 后退逐步回归 (12)8.2.2 后退逐步回归模型预测 (13)第9章多重共线性的诊断及消除 (14)9.1 多重共线性的诊断 (14)9.2 消除多重共线性 (15)第10章回归模型总结 (17)参考文献 (18)附录: (19)楚雄师范学院 数学系 09级01班 韩金伟 学号:20091021135影响成品钢材需求量的回归分析第1章 题目叙述理论上认为影响成品钢材的需求量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
回归模型的估计和统计检验一、实验目的:使用EViews软件进行多元回归估计和统计检验二、实验内容:考察中国1980-2001年被解释变量国债发行总量(DEBT,亿元)与选择3个解释变量,财政赤字额(DEF,亿元),国内生产总值(GDP,百亿元),年还本付息额(REPAY,亿元)是否存在线性关系。
数据如下:Obs DEBT DEF GDP REPAY 1980 43.01 68.9 45.178 28.58 1981 121.74 -37.38 48.624 62.89 1982 83.86 17.65 52.947 55.52 1983 79.41 42.57 59.345 42.47 1984 77.34 58.16 71.71 28.9 1985 89.85 -0.57 89.644 39.56 1986 138.25 82.9 102.022 50.17 1987 223.55 62.83 119.625 79.83 1988 270.78 133.97 149.283 76.76 1989 407.97 158.88 169.092 72.37 1990 375.45 146.49 185.479 190.07 1991 461.4 237.14 216.178 246.8 1992 669.68 258.83 266.381 438.57 1993 739.22 293.35 346.344 336.22 1994 1175.25 574.52 467.594 499.36 1995 1549.76 581.52 584.781 882.96 1996 1967.28 529.56 678.846 1355.03 1997 2476.82 582.42 744.626 1918.37 1998 3310.93 922.23 783.452 2352.92 1999 3715.03 1743.59 820.6746 1910.53 2000 4180.1 2491.27 894.422 1579.82 2001 4604 2516.54 959.333 2007.73数据来源:中国统计年鉴,中国统计出版社三、实验过程1.工作文件,或录入数据,建立组group01(1)作散点图从散点图可以看出国债发行总量(Y)与财政赤字额(X2),国内生产总值(X3),年还本付息额(X4)大体呈现为线性关系,为分析中国国债的发行额与经济总规模,财政赤字的多少,每年的还本付息能力变动的数量规律性,可以建立如下简单线性回归模型:Y t = β1 +β2 X 2t +β3X 3t +β4 X 4t + u t(3)估计参数利用Eviews 估计模型参数,点击‘quick ’下拉菜单中的‘Estimate Equation ’,在出现的对话框的‘Equation Specification ’栏中键入‘Y C X2 X3 X4’,回车即出现回归结果:Dependent Variable: Y Method: Least Squares Date: 12/01/10 Time: 17:13 Sample: 1980 2001Included observations: 22VariableCoefficientStd. Error t-Statistic Prob.C 4.314008 21.66725 0.199103 0.8444 X2 0.995403 0.031613 31.48699 0.0000 X3 0.345202 0.154470 2.234756 0.0384 X40.8797600.04950817.770220.0000R-squared0.998955 Mean dependent var 1216.395 Adjusted R-squared 0.998781 S.D. dependent var1485.993 S.E. of regression 51.88705 Akaike infocriterion10.89898 Sum squared resid 48460.78 Schwarz criterion11.09735 Log likelihood -115.8888 Hannan-Quinncriter.10.94571 F-statistic 5735.346 Durbin-Watson stat 2.116834 Prob(F-statistic)0.000000根据表中数据,模型估计结果为432879760.0345202.0995403.0314008.4ˆX X X Y +++= (21.66725)(0.031613) (0.154470) (0.049508) t= (0.199103)(31.48699) (2.234756) (17.77022)998955.0R 2= 998781.02=R F=5735.346(4)模型检验 1、经济意义检验模型估计说明,在假定其他变量不变的情况下,当年财政赤字额每增长1%,平均来说当年国债发行总量会增长0.995403%;在假定其他变量不变的情况下,当年GDP 每增长1%,平均来说当年国债发行总量会增长0.345202%;在假定其他变量不变的情况下,当年年还本付息率每增长1%,平均来说当年国债发行总量会增长0.879760%。
多元线性回归eviews操作一.模型设定本例中我们假设拟建立如下多元回归模型:01122Y X X u βββ=+++二.估计参数1.建立工作文件首先,进入Eviews 主页,在菜单中依次点击File\New\Workfile ,出现对话框Work Create 。
截面数据Unstructured/undated 只需输入样本数就可以。
时间序列数据Dated-regular frequency 在Date specification 中选择数据频率: Annual (年度) Weekly (周数据) Quarterly (季度) Daily (5 day week )每周5天日数据 Daily (7 day week )每周7天日数据Monthly (月度)integer date (未注明日期或者不规则的) Semi Annual (半年度)其次,点击OK ,出现未命名文件的Workfile UNTITLED 工作框。
其中c 为截距项,resid 为残差项。
若要将文件存盘,点击save ,在save as 对话框中选择存盘路径,并输入文件名。
如多元线性回归案例2.输入数据方法一:Quick\Empty Group 等方法二:data Y X1 X2,得到如下表;3.估计参数方法一:Quick\Estimate Equation 方法二: LS Y C X1 X2三、解释表里参数标准差1β∧S =0.075308,回归标准差=被解释变量标准差=回归模型标准差:σ∧残差平方和:2i e ∑=4170093被解释变量的标准差:2=2388.459 AIC 和SC 准则:这两个准则要求仅当所增加的解释变量能减少AIC 值或SC 值时才在原模型中增加该解释变量。
与调整的可决系数相似。
多元小于一元,可以将前期人均居民消费作为解释变量包括在模型中。
四、模型检验1.经济意义检验估计的参数值都为正数,经济意义合理。
中国税收增长的分析
一、研究的目的要求
改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。
为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收的增长速度的影响不是非常大。
因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定
为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”
从《中国统计年鉴》收集到以下数据
财政收入(亿元)
Y 国内生产总值(亿
元)
X2
财政支出(亿
元)
X3
商品零售价格指
数(%)
X4
1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106
981629.894862.41138.41102.4 1982700.025294.71229.98101.9 1983775.595934.51409.52101.5 1984947.3571711701.02102.8 19852040.798964.42004.25108.8 19862090.7310202.22204.91106 19872140.3611962.52262.18107.3 19882390.4714928.32491.21118.5 19892727.416909.22823.78117.8 19902821.8618547.93083.59102.1 19912990.1721617.83386.62102.9 19923296.9126638.13742.2105.4 19934255.334636.44642.3113.2 19945126.8846759.45792.62121.7 19956038.0458478.16823.72114.8 19966909.8267884.67937.55106.1 19978234.0474462.69233.56100.8 19989262.878345.210798.1897.4 199910682.5882067.513187.6797 200012581.5189468.115886.598.5 200115301.3897314.818902.5899.2 200217636.45104790.622053.1598.7设定线性回归模型为:
Y i=β0+β2X2+β3X3+β4X4+μ
三、参数估计
利用eviews软件可以得到
Y关于X2的散点图:
可以看出Y和X2成线性相关关系
Y关于X3的散点图:
可以看出Y和X3成线性相关关系
Y关于X1的散点图:
Dependent Variable: Y
Method: Least Squares
Date: 12/01/09 Time: 13:16
Sample: 1978 2002
Included observations: 25
Variable Coefficient Std. Error t-Statistic Prob.
C-2582.755940.6119-2.7458250.0121
X20.0220670.005577 3.9566330.0007
X30.7021040.03323621.124740.0000
X423.985068.738296 2.7448210.0121
R-squared0.997430 Mean dependent
var4848.366
Adjusted R-
squared0.997063 S.D. dependent
var4870.971
S.E. of regression263.9591 Akaike info
criterion14.13511
Sum squared
resid1463163. Schwarz criterion14.33013
Log likelihood-172.6889 F-statistic2717.254
Durbin-Watson
stat0.948521 Prob(F-statistic)0.000000
模型估计的结果为:
Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4 (940.6119) (0.0056) (0.0332) (8.7383)
t={-2.7458} {3.9567} {21.1247} {2.7449}
R2=0.997 R2=0.997 F=2717.254 df=21
四、模型检验
1.经济意义检验
模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
2.统计检验
(1)拟合优度:R2=0.997,修正的可决系数为R2=0.997这说明模型对样本拟合的很好。
(2)F检验:针对H0:β2=β3=β4=0,给定的显著性水平α=0.05,在F分布表中查出自由度为K-1=3和n-k=21的临界值Fα(3,21)=3.075.由eviews得到F=2717.238>3.075,应拒绝原假设H0,说明回归方程显著,即“国内生产总值(GDP)”“财政支出”“商品零售物价指数”联合起来确实对“税收收入”有显著影响。
(3)T检验:分别针对H:βj=0(j=0,2,3,4),给定的显著水平
α=0.05,查t分布表得自由度为n-k=21临界值tα/2(n-k)=2.080。
由eviews数据可得,与β0β2β3β4对应的t统计量分别为-2.7458,3.9567,21.1247,2.7449,其绝对值均大于2.080,这说明分别都应当拒绝H0,
也就是说,当其他解释变量不变的情况下,解释变量“国内生产总值(亿元)X2”“财政支出(亿元)X3”“商品零售价格指数(%)X4”分别对被解释变量“税收收入Y”都有显著的影响。