推荐-四川省成都市2018届高中毕业班第一次诊断性检测题(数学文) 精品
- 格式:doc
- 大小:667.95 KB
- 文档页数:13
2018年四川省成都市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=R,集合A={x|x≤﹣2},B={x|x≥﹣1},则∁U(A∪B)=()A.(﹣2,﹣1)B.[﹣2,﹣1]C.(﹣∞,﹣2]∪[﹣1,+∞)D.(﹣2,1)2.(5分)已知平面向量=(1,1),=(t+1,1).若⊥,则实数t的值为()A.﹣2B.0C.2D.﹣13.(5分)空气质量指数AQI是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天的空气质量指数AQI,根据得到的数据绘制出如图所示的折线图.则下列说法错误的是()A.该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI持续增大D.该地区的空气质量指数AQI与这段日期成负相关4.(5分)在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.(5分)“更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k的值分别为4,6,1,则输出的k的值为()A.2B.3C.4D.56.(5分)若关于x的不等式x2+2ax+1≥0在[0,+∞)上恒成立,则实数a的取值范围为()A.(0,+∞)B.[﹣1,+∞)C.[﹣1,1]D.[0,+∞)7.(5分)已知tanα=,α∈(0,π),则cos(α+)的值为()A.B.C.D.8.(5分)如图,已知双曲线E:﹣=1(a>0,b>0),长方形ABCD的顶点A,B 分别为双曲线E的左,右焦点.且点C,D在双曲线E上,若AB=6,BC=,则双曲线E的离心率为()A.B.C.D.9.(5分)已知三棱锥P﹣ABC中,P A⊥底面ABC,∠BAC=60°,P A=2,,若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A.B.C.8πD.12π10.(5分)已知定义在R上的奇函数f(x)的图象关于直线x=1对称,且当x∈[0,1]时,f(x)=log2(x+1),则下列不等式正确的是()A.f(log27)<f(﹣5)<f(6)B.f(log27)<f(6)<f(﹣5))C.f(﹣5)<f(log27)<f(6)D.f(﹣5)<f(6)<f(log27)11.(5分)设函数f(x)=sin(2x+).若x1x2<0,且f(x1)+f(x2)=0,则|x2﹣x1|的取值范围为()A.(,+∞)B.(,+∞)C.(,+∞)D.(,+∞)12.(5分)若关于x的方程有三个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.718为自然对数的底数,则的值为()A.e B.1﹣m C.1+m D.1二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知复数z=(i为虚数单位),则|z|=.14.(5分)若实数x,y满足线性约束条件,则x+2y的最大值为.15.(5分)如图,在直角梯形ABDE中,已知∠ABD=∠EDB=90°,C是BD上一点,AB=3﹣,∠ACB=15°,∠ECD=60°,∠EAC=45°,则线段DE的长度为.16.(5分)已知正方形ABCD的边长为2,对角线AC,BD相交于点O,动点P满足||=1,若=m+n,其中m,n∈R .则的最大值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(12分)已知等差数列{a n}的前n项和为S n,a2=3,S4=16,n∈N*.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.18.(12分)某部门为了解一企业在生产过程中的用水量情况,对每天的用水量作了记录,得到了大量该企业的日用水量的统计数据.从这些统计数据中随机抽取12天的用水量的数据作为样本,得到的统计结果如表:[70,80)[80,90)[90,100]日用水量(单位:吨)频数36m频率n0.5p(1)求m,n,p的值;(2)已知样本中日用水量在[80,90)内的这六个数据分别为83,85,86,87,88,89.从这六个数据中随机抽取两个,求抽取的两个数据中至少有一个大于86的概率.19.(12分)如图,在四面体P ABC中,P A=PC=AB=BC=5,AC=6,PB=4,线段AC,AP的中点分别为O,Q.(1)求证:平面P AC⊥平面ABC;(2)求四面体P﹣OBQ的体积.20.(12分)已知椭圆的右焦点为,长半轴长与短半轴长的比值为2.(1)求椭圆C的方程;(2)设经过点A(1,0)的直线l与椭圆C相交于不同的两点M,N.若点B(0,1)在以线段MN为直径的圆上,求直线l的方程.21.(12分)已知函数f(x)=(x﹣1)e x﹣mx2+2,其中m∈R,e=2.71828…为自然对数的底数.(1)当m=1时,求函数f(x)的单调区间;(2)当常数m∈(2,+∞)时,函数f(x)在[0,+∞)上有两个零点x1,x2(x1<x2),证明:x2﹣x1>ln.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分。
2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x (3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x (3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,由AM∥BC,得M到BC的距离为,∴S△BCM==2,∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),水秀中华∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.。
成都市2018届高中毕业班第一次诊断性检测题数学(文科)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k 次的概率:P n (k )=C n k P k (1-P )n -k球的表面积公式:S =4πR 2(其中R 表示球的半径)正棱台、圆台的侧面积公式:S 台侧=12(c '+c )l (其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长)球的体积公式:V 球=43πR 3(其中R 表示球的半径)一、 选择题:本大题共有12个小题,每小题5分;在每小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在机读卡的指定位置上. 1.已知全集U ={0,1,3,5,7,9},U A ={0,5,9},B ={3,5,7},那么A ∩U B = A .{5}B .{1}C .ΦD .{1,5,7}解:A ={1,3,7},U B ={0,1,9},∴A ∩U B ={1}.选B 2.已知A ={-1,1},映射f :A →A ,则对x ∈A ,下列关系式中错误的是 A .f (x )=x B .f (x )=-1C .f (x )=x 2D .f (x )=x +2答案:D 3.若f (x )=⎩⎨⎧k (x <6)log 2x (x ≥6),则f (-1)的值为A .1B .2C .3D .4解:f (-1)=f (2)=f (5)=f (8)=log 28=3.选C 4.若数列{a n }是等比数列,则数列{a n +a n +1} A .一定是等比数列 B .可能是等比数列,也可能是等差数列 C .一定是等差数列D .一定不是等比数列解:a n =a 1q n -1,故a n +a n +1=a 1q n -1(1+q ),当q =-1时,{a n +a n +1}恒为0,是等差数列但不是等比数列;当q ≠-1(且q ≠0)时,{a n +a n +1}是公比为q 的等比数列.选B 5.不等式1x -1≥1x 2-1的解集是A .(1,+∞)B .[0,+∞)C .[0,1)∪(1,+∞)D .(-1,0]∪(1,+∞)解:1x -1≥1x 2-1 ⇒ x x 2-1≥0 ⇒ ⎩⎨⎧x ≠±1x (x -1)(x +1)≥0 ⇒ -1≤x ≤0或x >1.选D6.对于平面M 与平面N ,有下列条件:①M 、N 都垂直于平面Q ;②M 、N 都平行于平面Q ;③M 内不共线三点到N 的距离相等;④l 、m 是M 内的两条直线,且l ∥N ,m ∥N ;⑤l 、m 是异面直线,且l ∥M ,l ∥N ,m ∥M ,m ∥N .则可以判定平面M 与平面N 平行的条件的个数是 A .1B .2C .3D .4解:只有②⑤能判定M ∥N .选B 7.若α、β为锐角,且满足cos α=45,cos (α+β)=35,则sin β的值是A .725B .15C .1725D .35解:∵0<α<π2,0<β<π2,∴0<α+β<π又cos (α+β)=35>0,故0<α+β<π2由同角关系式,有sin α=35,sin (α+β)=45∴sin β=sin [(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α =45×45-35×35=725.选A8.把直线x -2y +λ=0向左平移1个单位,再向下平移2个单位后,与曲线x 2+y 2+2x -4y =0正好相切,则实数λ的值为 A .-13或3B .13或-3C .13或3D .-13或-3解:平移后的直线方程为(x +1)-2(y +2)+λ=0,即x -2y +λ-3=0 圆的方程为(x +1)2+(y -2)2=5 于是|-1-4+λ-3|5=5,解得λ=13或3.选C9.已知向量a →=(8,12 x ),b →=(x ,1),其中x >0,若(a →-2b →)∥(2a →+b →),则x 的值为A .4B .8C .0D .2解:a →-2b →=(8-2x ,12x -2),2a →+b →=(16+x ,x +1)由(a →-2b →)∥(2a →+b →),得(8-2x ,12x -2)=λ(16+x ,x +1)即⎩⎨⎧8-2x =λ(16+x )12x -2=λ(x +1) ⇒ x =4.选A10. 某单位有15名成员,其中男性10人,女性5人,现要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层中按比例随机抽样,则此考察团的组成方法种数是 A .C 118C 53B .C 118C 52C .C 156D .A 118A 52解:设男性选x 人,女性选y 人,由已知有x 10=y 5=615 ⇒ ⎩⎨⎧x =4y =2.选B 11. 同时具有以下性质:“①最小正周期实π;②图象关于直线x =π3对称;③在[-π6,π3]上是增函数”的一个函数是 A .y =sin (x 2+π6)B .y =cos (2x +π3)C .y =sin (2x -π6)D .y =cos (2x -π6)解:由性质①排除A ,由性质②排除D ,由性质③排除B ,选C .12. 若点M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,那么过点M 的最长弦所在的直线方程是A .2x -y -6=0B .2x +y -6=0C .x +y -3=0D .x -y -3=0解:圆心为O 1(4,1),最长弦即为直线MO 1与圆相交所得的弦(直径),而直线MO 1的方程为x -y -3=0. 选D二、 填空题:本大题共有4个小题,每小题4分,共计16分. 13. 二项式(3x -2x)15展开式中的常数项是第___________项. 解:T r +1=C 15r(-2x1132)(rx -)15-r =C 15r(-2)r x 532r r --由5-r 3-r2=0,得r =6故展开式中的常数项是第7项.14. 求值:sin (θ+75º)+cos (θ+45º)-3cos (θ+15º)=___________.解:令θ+15º=α则原式=sin (α+60º)+cos (α+30º)-3cos α=sin αcos 60º+cos αsin 60º+cos αcos 30º-sin αsin 60º-3cos α =12sinα+32cos α+32cos α-12sinα-3cos α=0.15. 培植A 、B 两种药剂都需要甲、乙两种原料,用料要求如右表所示(单位:克).如果药剂A 、B 至少各配一剂,且药剂A 、B 每剂售价分别为2元、3元,现有原料甲20克,原料乙25克,那么可以获得的最大销售额为___________.解:设药剂A 、B 分别配制x 剂、y 剂,目标函数为z =2x +3y则⎩⎪⎨⎪⎧2x +4y ≤204x +3y ≤25x ≥1y ≥1,作出可行域如图中阴影部分平行移动直线l :2x +3y =t (t 为参数)经过点A (4,3)时,z max =2×4+3×3=17(元)16. 给出下列命题:①若命题p :“x >1”是真命题,则命题q :“x ≥1”是真命题;②函数y =2-x (x >0)的反函数是y =-log 2x (x >0);③如果一个简单多面体的所有面都是四边形,那么F =V -2(其中,F 为面数,V 为顶点数);④“a ≠1或b ≠5”的充分不必要条件是“a +b ≠6”.其中所有的真命题序号是_________________.解:①为真;②为假;因为反函数定义域应为x ∈(0,1);③为真,由2E =4F 代入V +F -E =2可得.④为真,考察其逆否命题即可.综上,应填①③④.三、 解答题:本大题共有6个小题,共计74分.解答应写出文字说明、证明过程或推演步骤. 17. (11分)在△ABC 中,已知sin 2Asin 2B =34,tanAtanB =3,求角C .解:∵sin 2Asin 2B =34,∴sinAsinBcosAcosB =316 ……① ……3'由A 、B ∈(0,π),知sinAsinB >0,∴cosAcosB >0 又tanAtanB =3,即sinAsinBcosAcosB=3 ……② ……6'由①②得:⎩⎪⎨⎪⎧sinAsinB =34cosAcosB =14∴cosC =-cos (A +B )=-cosAcosB +sinAsinB =12而C ∈(0,π),∴C =π3.18. (12分)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,点E 为CC 1的中点,点F 为BD 1的中点.(1)求证:EF 为BD 1与CC 1的公垂线; (2)求异面直线BE 与C 1F 所成的角. 解:设AB =1,则AA 1=2, (1)证法一:连结ED 1,CF , 在Rt △BCE 中,BE =2在Rt △EC 1D 1中,ED 1=2,故△BED 1是等腰三角形 而F 是BD 1的中点,故EF ⊥BD 1.同理可得△CFC 1也是等腰三角形,E 是CC 1中点,A 11故EF ⊥CC 1.∴EF 为BD 1与CC 1的公垂线.证法二:∵F 是BD 1中点,即F 为长方体的中心, 故F 也是AC 1的中点,连结AC ,有EF ∥AC 在长方体AC 1中,AC ⊥CC 1,故EF ⊥CC 1.而BD 1在底面ABCD 上的射影为BD ,且底面ABCD 为正方形,故AC ⊥BD 由三垂线定理,得AC ⊥BD 1,即EF ⊥BD 1 ∴EF 为BD 1与CC 1的公垂线.证法三:分别以DA ,DC ,DD 1为x 轴,y 轴,z 轴建立空间直角坐标系, ∴B (1,1,0),C (0,1,0),C 1(0,1,2),D 1(0,0,2) ∵E 、F 分别为CC 1和BD 1的中点,可得E (0,1,1),F (12,12,1)∴EF →=(12,-12,0),CC 1→=(0,0,2),BD 1→=(-1,-1,2)于是:EF →·CC 1→=12×0+(-12)×0+0×2=0,EF →·BD 1→=12×(-1)+(-12)×(-1)+0×2=0即EF ⊥CC 1,且EF ⊥BD 1. ∴EF 为BD 1与CC 1的公垂线.(2)解法一:取BD 中点O ,连结EO 、BO ∵F 是长方体的中心,∴C 1F ∥EO ,故∠BEO 就是异面直线BE 与C 1F 所成的角(或其补角) 于是,BE =2,EO =C 1F =62,BO =22cos ∠C 1FG =BE 2+EO 2-BO22BE ·EO=2+32-122×2×62=323=32 ∠C 1FG =π6,即异面直线BE 与C 1F 所成的角为π6.解法二:∵BE →=(-1,0,1),C 1F →=(12,-12,-1)∴BE →·C 1F →=(-1)×12+0×(-12)+1×(-1)=-32∴cos <BE →,C 1F →>=BE →·C 1F →|BE →||C 1F →|=-322·62=-32∴<BE →,C 1F →>=5π6即BE 与C 1F 所成的角为π6.19. (12分)已知函数f (x )的图象与函数h (x )=13x 3+x 2+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax ,且g (x )在(-∞,+∞)上为增函数,求实数a 的取值范围. 解:(1)设P (x ,y )为f (x )图象上任一点,则点P 关于点A 的对称点为Q (-x ,2-y ),由已知条件知点Q 在h (x )的图象上,……2' ∴2-y =13(-x )3+(-x )2+2,即y =13x 3-x 2∴f (x )=13x 3-x 2 …………5'(2)∵g (x )=f (x )+ax =13x 3-x 2+x∴g '(x )=x 2-2x +a …………7' ∵g (x )在R 上为增函数,∴x 2-2x +a ≥0在R 上恒成立……9' 只需a ≥-x 2+2x 恒成立,即只需a ≥(-x 2+2x )max =-1即可 ∴a 的取值范围是[1,+∞) …………12'20. (12分)袋中有4个白球,6个红球,在抽取这些球的时候谁也无法看到球的颜色.现先由甲取出3个球,并且取出的球不再放回袋中,再由乙取出4个球,若规定取得白球多者获胜,试求甲获胜的概率. 解:甲获胜包含以下三个事件: (1)甲取得三个白球必胜.其概率为P 1=C 44C 410=130; ……3' (2)甲取出两个白球,而乙取出一白三红或四个红球,则甲也获胜,其概率为P 2=C 42C 61(C 21C 53+C 51)C 103C 71=314; ……6'(3)甲取出一个白球,而乙取出四个红球,甲也获胜,其概率为P 3=C 41C 62C 44C 103C 71=170 ……9'由于这三个事件互斥,所以甲获胜的概率为P 1+P 2+P 3=130+314+170=1142. ……12'21. (13分)已知等差数列{a n }的公差大于0,且a 3,a 5是方程x 2-14x +45=0的两根,数列{b n }的前n 项和为S n ,且S n =1-12b n .(1)求数列{a n }、{b n ]的通项公式; (2)记c n =a n b n ,求证:c n +1≤c n .解:(1)因为a 3,a 5是方程x 2-14x +45=0的两根,且数列{a n }的公差d >0, ∴a 3=5,a 5=9,从而d =9-55-3=2∴a n =a 5+(n -5)d =2n -1 ……3' 又当n =1时,有b 1=S 1=1-12 b 1,∴b 1=23当n ≥2时,有b n =S n -S n -1=12(b n -1-b n )∴b n b n -1=13(n ≥2) ∴数列{b n }是等比数列,且b 1=23,q =13∴b n =b 1q n -1=23n ; ……8'(2)由(1)知:c n =a n b n =2(2n -1)3n ,c n +1=2(2n +1)3n +1 ……10' ∴c n +1-c n =2(2n +1)3n +1-2(2n -1)3n =8(1-n )3n +1≤0 ∴c n +1≤c n . ……13'22. 如图,在面积为18的△ABC 中,AB =5,双曲线E 过点A ,且以B 、C 为焦点,已知AB →·AC →=27,CA →·CB→=54.(1)建立适当坐标系,求双曲线E 的方程;(2)是否存在过点D (1,1)的直线l ,使l 与双曲线交于不同的两点M 、N ,且DM →+DN →=0.如果存在,求出直线l 的方程;如果不存在,请说明理由.解:(1)以BC 所在直线为x 轴,线段BC 的中点O 为原点,线段BC 的中垂线为y 轴建立如图所示坐标系 设∠BAC =α,∠ACB =β,|AC |=m ,|BC |=n ……2'则⎩⎨⎧AB →·AC →=5mcos α=27S △ABC =12·5msin α=18⇒ ⎩⎨⎧5mcos α=275msin α=36 两式平方相加得:m =9 ……4' 又⎩⎨⎧CA →·CB →=9ncos β=54S △ABC =12·9nsin β=18⇒ ⎩⎨⎧9ncos β=549nsin β=36 两式平方相加得:n =213 ……6' 设双曲线方程为x 2a 2-y 2b2=1有双曲线的定义,有2a =||AC |-|AB ||=|m -5|=4 即a =2 又2c =n =213 ⇒ c =13 ∴b 2=c 2-a 2=9∴双曲线E 的方程为x 24-y 29=1 ……8'(2)架设存在满足条件的直线l ,使l 与双曲线E 交于不同的两点M 、N , 并设M (x 1,y 1),N (x 2,y 2)且x 1≠x 2 由DM →+DN →=0知点D 是线段MN 的中点,∴x 1+x 2=2,y 1+y 2=2 ……9' 由于点M 、N 都在双曲线E 上 ∴⎩⎪⎨⎪⎧x 124-y 129=1x 224-y 229=1,将两式相减得:(x 1+x 2)(x 1-x 2)4-(y 1+y 2)(y 1-y 2)9=0 ⇒ y 1-y 2x 1-x 2=94即直线l 的斜率为94此时直线l 的方程为y -1=94(x -1),即9x -4y -5=0 ……12'但由⎩⎨⎧x 24-y 29=19x -4y -5=0 ⇒ 45x 2-90x +160=0 ⇒ △<0∴不存在满足条件的直线l . ……14'。
四川省成都市2018届高中毕业班第一次诊断性检测四川省成都市2018届高中毕业班第一次诊断性检测本试卷分第I卷(阅读题)和第卷(表达题)两部分,共8页。
满分150分,考试时间150分钟。
第I卷阅读题(共70分)一、现代文阅读(35分)(一)阅读下面的文字。
完成1~3题。
(9分)购物狂欢度量治理格局盛玉雷双11来临之际,消费者、商家、快递公司、相关行政部门已经热起身来,积极准备。
历经数年发展演变,如今的购物狂欢更趋有条不紊,社会也多了一份从容自信。
从促销日到狂欢节,从一家独唱到百花齐放,随着时间的推移,双11的滚雪球效应愈加显著。
背后的社会心态,也历经了从惊喜到挑剔、从紧张到平静的嬗变。
双11概念初创之时,参与促销的商户仅有20多家,但活动所迸发的火花,却点燃了公众的消费激情,第二年就遭遇了快递瘫痪的尴尬。
人们在实践中逐步懂得,线上购物节不只是一手交钱、一手交货那样简单,而是一项需要各方协同参与的治理课题。
以双11为时间节点,梳理这些年来电商等行业的成绩与问题,能够清晰感受到社会治理层面发生的变迁。
当双11成为现象级活动,它不仅是一种经济现象,也成为一次综合大考。
这场考试考核电商平台的经营水平,考验物流企业的承载能力,考评政府部门的管理绩效,也考查参与者的社会诚信。
如今,快递瘫痪等情形也会发生,但应对已不像当初那般无力:物流业装上预警雷达,可巧借大数据手段排兵布阵;多部门主动作为,对消费陷阱强化监管……过去8年的双11,仅天猫平台交易额就实现了从5000万元到1200多亿元的跃升,这很大程度上得益于不断成长的社会共治力量。
如果说双11发展至今形成的可观影响,有赖于对问题和挑战的及时破解,那么在新时代赢得消费市场,尤其需要社会各方面携手加强治理,积极主动谋划。
从一定意义上讲,双11映照着社会运行机制的健康度,也度量着治理体系和治理能力现代化的水平。
十九大提出打造共建共治共享的社会治理格局,要求提高社会治理社会化、法治.化、智能化、专业化水平。
2018—2018学年度四川省成都市高中毕业班第一次诊断性检测数学试题(理科)注意事项:全卷满分为150分,完成时间为120分钟.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=P (A )+P (B ) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式如果事件A 在一次试验中发生的概率是P , 334R V π=那么n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()( 其中R 表示球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共计60分。
在每小题列出的4个选项中,只有一项是符合题目要求的,把正确选项代号涂在机读卡的相应位置上.1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那从高三学生中抽取的人数应为 ( ) A .10 B .9 C .8 D .7 2.已知集合U=R ,集合)},3lg(|{},,2|{x y x N R x y y M x-==∈==集合则=N M( )A .{}3|≥t tB .{}1|<t tC .{}31|<≤t tD .3.已知向量),1,1()1,(xb x a =-=与向量则不等式0≤⋅b a 的解集为 ( )A .{}11|≥-≤x x x 或B .{}101|≥<≤-x x x 或C .{}101|≤≤-≤x x x 或D .{}101|≤<-≤x x x 或4.在ABC ∆中,“0>⋅”是“ABC ∆为锐角三角形”的( )UA .充分不必要条件B .必要不充分条件C .充要条件D .既非充分又非必要条件5.已知l 、m 是不重合的直线,α、β、γ是两两不重合的平面,给出下列命题:①若l m //,,α⊥m 则α⊥l ;②若αα//,//,//l m l m 则;③若l =βα ,n m l n m ////,则==αγγβ ;④若且,,//,,//αββα⊂⊂m m l l 直线l 、m 为异面直线,则.//βα ( )A .①②B .①③C .①④D .②④6.已知函数)(x f 的部分图象如图所示,则)(x f 的解析式可能为 ( ) A .)62sin(2)(π-=x x f B .)44cos(2)(π+=x x fC .)32cos(2)(π-=x x fD .)64sin(2)(π+=x x f7.已知无穷等比数列{}n a 的公比为n S R q q q ),,1|(|∈<为其前n 项和)(*N n ∈,又n n S a a a a a a ∞→=⋅⋅=++lim ,641,87321321则的值为( )A .21 B .21- C .81D .18.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:如果A 、B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有( )A .192种B .144种C .96种D .72种9.如图,设地球半径为R ,点A 、B 在赤道上,O 为地心,点C 在北纬30°的纬线(O '为其圆心)上,且点A 、C 、D 、O '、O 共面,点D 、O '、O 共线.若90=∠AOB ,则异面直线AB 与CD 所成角的余弦值为 ( )A .46 B .46-C .426+ D .426- 10.已知函数13)(-+=x ax x f 的反函数为)(),(1x g y x f =-若函数的图象与函数)1(1+=-x f y 的图象关于直线x y =对称,且27)3(=g ,则实数a 的值为( )A .2B .1C .-1D .2111.若函数⎪⎩⎪⎨⎧≤+->=)1(2)24(),1()(x x ax a x f x 是R 上的单调函数,则实数a 取值范围为( )A .(1,∞+)B .(1,8)C .(4,8)D .[)8,412.已知抛物线)0(2≠++=a c bx ax y 的对称轴在y 轴的左侧,其中}3,2,1,0,1,2,3{,,---∈c b a ,在这些抛物线中,记随机变量||"b a -=ξ的取值,"则ξ的数学期望值ξ( )A .98B .53C .52 D .31第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在题中横线上. 13.已知=+-=-=++)3tan(,31)6tan(,21)6tan(παπβπβα则 . 14.已知88332210832)1()1()1()1(x a x a x a x a a x x x x +++++=++++++++ ,则8321a a a a ++++ = .15.在等差数列{}n a 中,.4,274-==a a 现从{}n a 的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为 (用数字作答).16.定义在(-1,1)上的函数0)1()1(,sin 5)(2>-+-+-=a f a f x x x f 如果,a 则实数的取值范围为 . 三、解答题:(本大题共6小题,共74分)解答应写出文字说明、证明过程或推演步骤. 17.(本小题满分12分) 已知函数.3sin 23cos 3sin32)(2xx x x f -= (Ⅰ)若],,0[π∈x 求函数)(x f 的值域;(Ⅱ)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若,,1)(2ac b C f ==且求.sin 的值A18.(本小题满分12分)如图,已知四棱锥P —ABCD 的底面是正方形,P A ⊥底面ABCD ,且P A=AD=2,点M 、N 分别在侧棱PD 、PC 上,且.,21MD PM NC PN ==. (Ⅰ)求证:PC ⊥AM ;(Ⅱ)求证:PC ⊥平面AMN ; (Ⅲ)求二面角B —AN —M 的大小.19.(本小题满分12分)已知二次函数),(2)(2R c b c bx x x f ∈++=满足0)1(=f ,且关于x 的方程0)(=++b x x f 的两个实数根分别在区间(-3,-2),(0,1)内.(Ⅰ)b 求实数的取值范围;(Ⅱ)若函数)(log )(x f x F b =在区间(-1-c ,1-c )上具有单调性,求实数c 的取值范围.20.(本小题满分12分)某商场以100元/件的价格购进一批衬衣,以高于进价的价格出售,销售有淡季旺季之分.通过市场调查发现:①销售量)(x r (件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:1)(b kx x r +=;在销售淡季近似地符合函数关系:12,0,)(b k b kx x r <+=其中、k b 且02>、1b 、2b 为常数;②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中0)(=x r 时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题:(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元才合适? 21.(本小题满分12分)已知向量,0,,,)(,1(),1,1(,//2>∈+=-+=a R y x c a y ax q c x p q p 且其中)1c x -≠,把其中y x ,所满足的关系式记为).(x f y =若函数)(x f 为奇函数,且当)(,0x f x 时>有最小值.22(Ⅰ)求函数)(x f 的表达式;(Ⅱ)设{}n a ,{}n b 满足如下关系:11,2)(1+-=-=+n n n n n n a a b a a f a )(*N n ∈且,311=b 求数列{}n b 的通项公式,并求数列⎭⎬⎫⎩⎨⎧-n b n 31log )13()(*N n ∈前n 项的和n S .22.(本小题满分14分)已知函数.ln )(x x x f =(Ⅰ)求函数)(x f 的单调区间和最小值;(Ⅱ)当e beb b 1)1(:,0≥>求证时(其中e=2.718 28…是自然对数的底数);(Ⅲ)若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明参 考 答 案第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分)1.A .210 :7=30 :1,∴从高三学生中抽取的人数应为,1030300=选A . 2.B .{}{}{},31|,3|,1|<≤=<=≥=t t N M x x N y y M 选C .3.D .,01,012≤-≤-=⋅xx x x b a 选D . 4.B .在A AC AB ABC ∠⇔>⋅∆0,中为锐角,不一定为锐角三角形;若ABC ∆为锐角三角形,则必有0>⋅,选B .5.C .①正确;②还可能α⊂l ,错误;③l 还需与α、β的交一垂直,错误;④由平面与平面平行的性质定理可知正确,选C .6.C .由图可知)1,0(,2141B T 代点=⇒=ωπ验证可知,选C . 7.D .{}n a 为等比数列,416412321=⇒=⋅⋅a a a a , 由⎪⎪⎪⎩⎪⎪⎪⎨⎧<==⇒=⋅=+1||,211161851211211q a q a a q a a ,11lim 1=-=∴∞→qa S n n 选B . 8.B .由题意得14422134433221314442213=A C A A A C C A A C 或或种,选B .9.A .分别以OB 、OA 、OD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系O —xyz ,易得A (0,R ,0),B (R ,0,0),C (0,)21,23R R ,D (0,0,R ),,46223,cos),21,23,0(),0,,(22==>=<-=-=RRRRRR选A.10.A.axxygaxxxfaxxxf-++=⇔=-++=+-+=--1427)3(,14)1(,3)(11中的,2,3,27===ayx代入解得选A.11.D.由Rxf在)(上是单调弟增函数知224,024,11+-≥>->aaaa同时成立,解不等式组得[)8,4∈a,选D.12.A.第Ⅱ卷(非选择题共90分)二、填空题:(每小题4分,共16分)13.1..1)6tan()6tan(1)6tan()6tan()]6()6tan[()tan(=-⋅+--++=-++=+πβπαπβπαπβπαβα14.518.令得又令得0,5101821==++++=xaaaax.502,88321=++++∴=aaaaa15.256.由4,274-==aa可得等差数列{}n a的通项公式为,1(210=-=nnan2,…,10);由题意,三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为52,取得负数的概率为21,在三次取数中,取出的数恰好为两个正数和一个负数的概率为.25621521223=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛C16.21<<a.),1,1(),()(-∈-=-xxfxf)(xf∴为奇函数;又)0,1(-∈x时,0)(<'xf)(xf'∴在(-1,0)上是单调递减函数.由奇数的性质可知)1,1()(-∈xxf在上为单调递减函数;⎪⎩⎪⎨⎧-<-<-<-<-<-⇔->-⇔>-+-∴11.111111)1()1(0)1()1(2222a a a a a f a f a f a f解得.21<<a三、解答题:(共74分) 17.解:(Ⅰ).1)632sin(2132cos 32sin3)(-+=-+=πx x x x f ………………3分 .656326],,0[ππππ≤+≤∴∈x x.1)632sin(21≤+≤∴πx )(x f ∴的值域为[0,1].…………………………4分(Ⅱ).11)632sin()(=-+=πC C f .1)632sin(=+∴πC 而.2),,0(ππ=∴∈C C ……………………2分在ABC Rt ∆中,,,2222b ac ac b +==.01)(222=-+⇒+=∴cac b ac a c解得.251±-=c a ,1sin 0<<∴A.215sin -==∴c a A …………………………3分 18.解:(Ⅰ)因为四棱锥P —ABCD 的底面是正方形,PA ⊥底面ABCD ,故建立如图所示的空间直角坐标系,xyz A -又PA=AD=2, 则有P (0,0,2),D (0,2,0).).0,2,2(),1,1,0(C M ∴).1,1,0(),2,2,2(=-=∴AM PC.,0220AM PC AM PC ⊥∴=-+=⋅ ………………4分(Ⅱ)设,21),,,(z y x N =则有 .32),2(210=∴-=-x x x同理可得.34,32==z y即得).34,32,32(N …………………………3分由.0383434=-+=⋅.AN PC ⊥∴又,,A AN AM AM PC =⊥.AMN PC 平面⊥∴………………………………1分 (Ⅲ)设平面BAN 的法向量为).,,(z y x n =由).1,2,0(,034323202-=⎪⎩⎪⎨⎧=++=⋅==⋅n z y x AN n x n 取 而,)2,2,2(的法向量为平面AMN PC -=.51512524,cos -=⋅--=>=<∴PC n 结合图形可知,所注二面角B —AN —M 的大小为.515arccos-π…………4分 19.解:(Ⅰ)由题知,.21,021)1(b c c b f --=∴=++=…………………………2分记,1)12()12()()(22--++=++++=++=b x b x c b x b x b x x f x g则).75,51(,755101)1(01)0(051)2(075)3(∈<<⇒⎪⎪⎩⎪⎪⎨⎧>+=<--=<-=->-=-b b b g b g b g b g 即…………4分(Ⅱ)令,175510).(<<<<=b x f u),0(log +∞∴在u b 是减函数.而,2)(,212b x c bx x x f b b c -=++=->=--的对称轴为函数上单调递增在区间)1,1()(c c x f ---∴从而函数)1,1()(log )(c c x f x F b ---=在上为减函数.………………2分 且,0)1(,0)()1,1()(≥-->---c f x f c c x f 只需要上恒有在区间.27170)1()7551(12-≤<-⇒⎪⎩⎪⎨⎧≥--<<--=∴c c f b b c ………………4分 20(Ⅱ)在(Ⅰ)的表达式中,由可知,在销销售旺季,当k bk b k x 250210011-=-=时,利润y 取最大值;在销销售淡季,当kbk b k x 250210022-=-=时,利润y 取最大值.下面分销售旺季和销售淡季进行讨论:由②知,在销售旺季,商场以140元/件价格出售时,能获得最大利润.因此在销售旺季,当标价1402501=-=kb x 时,利润y 取最大值. 此时.180)(,1801k kx x r k b -=-=销售量为由0180=-k kx 知,在销售旺季,衬衣的“临界价格”为180元/件.……4分 ∴由③知,在销售淡季,衬衣的“临界价格”为120元/件.可见在销售淡季,当标价120=x 元/件时,销售量为.0)(2=+=b kx x r 此时,k b 1202-=∴在销售淡季,当标价1102502=-=kb x 元/件时,利润y 取最大值. 故在销售淡季,商场要获得最大利润,应将衬衣的标价定为110元/件合适.……4分21.解:(Ⅰ)由p//q ,得1)1(2+=-+ax c x y).1,0(11)(2c x a c x ax x f y -≠>-++==∴…………2分又函数)(x f 为奇函数,有.1),()(=-=-c x f x f 可得.2,222211)(,02=∴=∴≥+=+=>a a ax ax x ax x f x 时当)0(12)(2≠+=x xx x f 故…………3分(Ⅱ),212122)(221nn nn n n n n a a a a a a a f a +=-+=-=+.)11(12121211211122222111n n n n n n n nn n n n n n b a a a a a a a a a a a a b =+-=+++-=++-+=+-=+++ .1214221-====∴--n b b b b n n n …………3分而121)31(31-=∴=n n b b (n ∈N *). …………1分 .2)13(log )13(}log )}13{(13131-⋅-=--∴n n n n b n b n 的通项为数列.2)13(2)43(28252212210--⋅-+⋅-++⋅+⋅+⋅=∴n n n n n S ① .2)13(2)43(28252221321n n n n n S ⋅-+⋅-++⋅+⋅+⋅=∴- ②①-②,得.2)13()222(32121n n n n S --++++=--).(2)43(4*N n n S nn ∈-+=∴22.解:(Ⅰ).ln 1ln ,0)(),0(1ln )(1-=-≥≥'>+='e x x f x x x f 即令 …………1分 ),0(ln ,128718.2+∞=∴>=在x y e 上是单调递增函数.).,1[.11+∞∈∴=≥∴-e x ee x同理,令].1,0(0)(e x x f 可得≤'∴f (x )单调递增区间为),1[+∞e ,单调递减区间为]1,0(e.……………………2分由此可知.1)1()(min ee f x f y -===…………………………………………1分(Ⅱ)由(I )可知当0>b 时,有eb b e x f b f 1ln ,1)()(min -≥∴-=≥,即c bee b 1)1ln(1)ln(=-≥.c beb 1)1(≥∴.……………………………………………………………………3分(Ⅲ)将)()(2ln )()(b f b a f b a a f -+≥++变形,得 2ln )()()()(b a b a f b f a f +-+≥+,即证明.2ln )()()()(b a b a f a b a f a f +-+≥-++设函数).0)(()()(>-+=k x k f x f x g ……………………………………3分.2021,0)(,ln1)ln(1ln )(.0),ln()(ln )(,ln )(k x kx k k x x k x x g xk x x k x x g k x x k x k x x x g x x x f <<⇒>--⇒>->'-=---+='<<∴--+=∴=则有令∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减. ∴)(x g 的最小值为)2(k g ,即总有).2()(k g x g ≥ 而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+= ,2ln )()(k k f x g -≥∴即.2ln )()()(k k f x k f x f -≥-+ 令,,b x k a x =-=则.b a k +=.2ln )()()()(b a b a f b f a f +-+≥+∴).()(2ln )()(b f b a f b a a f -+≥++∴……………………………………4分。
2018 年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.(5 分)已知会合 A={ x| x<a} ,B={ x| x2﹣3x+2<0} ,若 A∩ B=B,则实数 a 的取值范围是()A.a≤1B.a<1C.a≥2D.a>22.(5 分)复数 z=(i为虚数单位)的虚部为()A.1B.i C.﹣ 2i D.﹣ 23.(5 分)“直线 m 与平面α内无数条直线平行”是“直线 m∥平面α”的()A.充要条件B.充足不用要条件C.必需不充足条件D.既不充足也不用要条件4.(5 分)设实数 x,y 知足拘束条件,则目标函数的取值范围是()A.B.C.D.5.(5 分)《周易》向来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴实的认识,是中华人文文化的基础,它反应出中国古代的二进制计数的思想方法.我们用近代术语解说为:把阳爻“”看作数字“1,”把阴爻“”看作数字“0,”则八卦所代表的数表示以下:卦名符号表示的二进制数表示的十进制数坤000 0震001 1坎010 2兑011 3依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5 分)已知.则 m=()A.﹣6 或 1 B.﹣1或 6 C.6 D.17.(5 分)以下图的程序框图,若输入m=8, n=3,则输出的 S 值为()A.56 B.336 C.360 D.14408.(5 分)已知等差数列 { a n} 的前 n 项和为 S n,且,a2=4,则数列的前 10 项和为()A.B.C.D.9.(5 分)定义在 R 上的奇函数 f( x)知足 f (x+1)是偶函数,且当x∈ [ 0,1] 时, f( x) =x(3﹣2x),则 f()=()A.B.﹣C.﹣ 1 D.110.( 5 分)在四周体 S﹣ ABC中, AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面 BAC,则该四周体外接球的表面积为()A.B.8π C.D.4π11.( 5 分)已知函数 f( x)=ln + ,g(x)=e x﹣2,若 g( m)=f(n)成立,则n﹣m 的最小值为().﹣ln2 B.ln2 C. 2 ﹣2﹣3A 1 3 D. e12.( 5 分)已知 F1, F2是双曲线(a>0,b>0)的左右焦点,以 F1F2 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N,且 M ,N 均在第一象限,当直线 MF1∥ON 时,双曲线的离心率为e,若函数 f(x)=x2+2x﹣,则 f( e) =()A.1 B.C.2 D.二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.( 5 分)抛物线 y2=ax(a>0)上的点到焦点 F 的距离为 2,则a= .14.( 5 分)已知递减等差数列 { a n} 中, a3=﹣1,a4为 a1,﹣ a6 等比中项,若 S n 为数列 { a n} 的前 n 项和,则 S7的值为.15.( 5 分) Rt△ ABC中, P 是斜边 BC上一点,且知足:,点 M,N在过点 P 的直线上,若则λ+2μ的最小值为.16.( 5 分)设函数 f(x)= ,g(x)= ,对随意 x1,x2∈( 0,+∞),不等式≤恒成立,则正数k 的取值范围是.三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤 .)17.(12 分)已知△ ABC中,角 A,B,C 的对边分别为 a,b,c,2cosC (acosC+ccosA)+b=0.(1)求角 C 的大小;(2)若 b=2,,求△ ABC的面积.18.(12 分)如图,四棱锥 P﹣ ABC中, PA⊥平面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段 AD 上一点, AM=2MD, N 为 PC的中点.(I)证明直线 MN∥平面 PAB;(II)求四周体 N﹣BCM 的体积.19.( 12 分)交警随机抽取了路过某服务站的 40 辆小型轿车在经过某区间路段的车速(单位: km/h ),现将其分红六组为 [ 60,65),[ 65,70),[ 70,75),[ 75,80), [ 80,85),[ 85, 90] 后获得以下图的频次散布直方图.(Ⅰ)某小型轿车路过该路段,其速度在70km/h 以上的概率是多少?(Ⅱ)若对车速在 [ 60,65),[ 65, 70)两组内进一步抽测两辆小型轿车,求起码有一辆小型轿车速度在 [ 60,65)内的概率..(12 分)已知 A (x 0,0),B (0,y 0)两点分别在 x 轴和 y 轴上运动,且| AB| =1, 20若动点 P ( x ,y )知足.( 1)求出动点 P 的轨迹对应曲线 C 的标准方程;( 2)直线 l :x=ty+1 与曲线 C 交于 A 、B 两点, E (﹣ 1,0),试问:当 t 变化时,能否存在向来线 l ,使△ ABE 得面积为?若存在,求出直线 l 的方程;若不存在,说明原因.21.( 12 分)已知函数 f (x )=ke x ﹣ x 2(此中 k ∈ R , e 是自然对数的底数)( 1)若 k=2,当 x ∈( 0,+∞)时,试比较 f (x )与 2 的大小;( 2)若函数 f ( x )有两个极值点 x 1,x 2(x 1<x 2),求 k 的取值范围,并证明: 0< f (x 1)< 1.选修 4-4:坐标系与参数方程22.(10 分)已知圆锥曲线 C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点 O 为极点,以 x 轴的正半轴为极轴成立极坐标系.(1)求直线 AF2的直角坐标方程;(2)经过点 F1且与直线 AF2垂直的直线 l 交此圆锥曲线于 M、N 两点,求 || MF1|﹣| NF1|| 的值.选修 4-5:不等式选讲23.已知函数 f (x)=m﹣| x﹣ 1| ﹣| x+1| .( 1)当 m=5 时,求不等式 f( x)> 2 的解集;2( 2)若函数 y=x +2x+3 与 y=f(x)的图象恒有公共点,务实数m 的取值范围.2018 年四川省成都七中高考数学一诊试卷(文科)参照答案与试题分析一、选择题:本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.(5 分)已知会合 A={ x| x<a} ,B={ x| x2﹣3x+2<0} ,若 A∩ B=B,则实数 a 的取值范围是()A.a≤1B.a<1C.a≥2D.a>2【解答】解:由题意,会合A={ x| x< a} ,B={ x| x2﹣ 3x+2< 0} ={ x| 1<x<2} ,∵A∩ B=B,∴B? A,则: a≥2.∴实数 a 的取值范围 [ 2,+∞).应选 C.2.(5 分)复数z= (i 为虚数单位)的虚部为()A.1 B.i C.﹣ 2i D.﹣ 2【解答】解:∵复数z= = =1﹣ 2i,故此复数的虚部为﹣2,应选D.m∥平面α”的()3.(5 分)“直线 m 与平面α内无数条直线平行”是“直线A.充要条件B.充足不用要条件C.必需不充足条件D.既不充足也不用要条件【解答】解:由“直线 m∥平面α”,可得“直线 m 与平面α内无数条直线平行”,反之不可立.∴“直线 m 与平面α内无数条直线平行”是“直线 m∥平面α”的必需不充足条件.应选: C.4.(5 分)设实数 x,y 知足拘束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由拘束条件作出可行域如图,联立,得 A(1,﹣ 1),联立,得 B(1,3).由=,而.∴目标函数的取值范围是 [,] .应选: D.5.(5 分)《周易》向来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴实的认识,是中华人文文化的基础,它反应出中国古代的二进制计数的思想方法.我们用近代术语解说为:把阳爻“”看作数字“1,”把阴爻“”看作数字“0,”则八卦所代表的数表示以下:卦名符号表示的二进制数表示的十进制数坤000 0震001 1坎010 2兑011 3依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦切合“”表示二进制数的 010001,01234 5转变为十进制数的计算为1×2 +0× 2 +0×2 +0×2 +1×2 +0× 2 =17.6.(5 分)已知.则m=()A.﹣6 或 1 B.﹣1或6 C.6 D. 1【解答】解:∵已知===,求得 m=﹣6,或 m=1,应选: A.7.(5 分)以下图的程序框图,若输入m=8, n=3,则输出的 S 值为()A.56 B.336 C.360 D.1440【解答】解:履行程序框图,可得m=8,n=3,k=8, s=1不知足条件 k<m﹣n+1, s=8,k=7,不知足条件 k<m﹣n+1, s=56, k=6,不知足条件 k<m﹣n+1, s=336,k=5,知足条件 k< m﹣n+1,退出循环,输出s 的值为 336.应选: B.8.(5 分)已知等差数列 { a n} 的前 n 项和为 S n,且,a2=4,则数列的前 10 项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又 a2 1+d,=4=a∴a1=2=d,∴ S n==n2+n,∴,∴=.应选: B.9.(5 分)定义在 R 上的奇函数 f( x)知足 f (x+1)是偶函数,且当x∈ [ 0,1] 时, f( x) =x(3﹣2x),则 f()=()A.B.﹣C.﹣ 1 D.1【解答】解:∵ y=f(x)是定义在 R 上的奇函数,∴ f(﹣ x) =﹣f(x),∵函数 y=f( x+1)是定义在 R 上的偶函数,∴f(﹣ x+1)=f(x+1)=﹣f( x﹣ 1),f( x+2)=﹣ f(x),可得 f(x+4)=﹣f(x+2)=f( x).则 f( x)的周期是 4,∴ f()=f(4× 4﹣)=f(﹣)=﹣f()=﹣[] =﹣ 1,应选 C.10.( 5 分)在四周体 S﹣ ABC中, AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面 BAC,则该四周体外接球的表面积为()A.B.8πC.D.4π【解答】解:取 AC中点 D,连结 SD,BD,∵AB=BC= ,∴ BD⊥AC,∵SA=SC=2,∴ SD⊥ AC,AC⊥平面 SDB.∴∠ SDB为二面角 S﹣AC﹣ B 的平面角,在△ ABC中, AB⊥BC, AB=BC= ,∴ AC=2.∵平面 SAC⊥平面 BAC,∴∠ SDB=90°,取等边△ SAC的中心 E,则 E 为该四周体外接球的球心,球半径 R=SE= =,∴该四周体外接球的表面积 2 .S=4πR=4=应选: A.11.( 5 分)已知函数 f( x)=ln +,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m 的最小值为()A.1﹣ln2 B.ln2 C. 2﹣3 D.e2﹣3【解答】解:不如设 g(m) =f(n)=t,∴ e m﹣2=ln +=t,( t>0)∴m﹣2=lnt,m=2+lnt, n=2?e故 n﹣m=2?e﹣2﹣lnt,(t>0)令 h(t) =2?e﹣2﹣lnt,(t>0),h′( t)=2?e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当 t>时, h′( t)> 0,当 0<t<时, h′( t)< 0,即当 t=时,h(t)获得极小值同时也是最小值,此时 h()=2?e﹣2﹣ln=2﹣ 2+ln2=ln2,即 n﹣m 的最小值为 ln2;应选: B12.( 5 分)已知 F1, F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N,且 M ,N 均在第一象限,当直线 MF1∥ON 时,双曲线的离心率为e,若函数 f(x)=x2+2x﹣,则 f( e) =()A.1B.C.2D.【解答】解:双曲线的 c2=a2+b2, e=,双曲线的渐近线方程为y=±x,与圆 x2+y2=c2联立,解得 M (a,b),与双曲线( a> 0, b> 0)联立,解得,∵直线 MF1与直线 ON 平行时,即有,即( a+c)2(c2﹣a2)=a2( 2c2﹣ a2),∴e3+2e2﹣2e﹣2=0,即 e2+2e﹣ =2,∴f(e)=e2+2e﹣ =2,应选: C.二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.( 5 分)抛物线 y2=ax( a> 0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x= ﹣,由抛物线的焦半径公式 | PF| =x0+ = +=2,解得: a=2,故答案为: 2.14.( 5 分)已知递减等差数列 { a n} 中, a3=﹣1,a4为 a1,﹣ a6等比中项,若S n为数列 { a n} 的前 n 项和,则 S7的值为﹣14 .【解答】解:设递减等差数列 { a n} 的公差 d< 0,a3=﹣1,a4为 a1,﹣a6等比中项,∴ a1+2d=﹣ 1,=﹣a6× a1,即=﹣( a1+5d)× a1,联立解得: a1=1, d=﹣1.则S7﹣﹣.=7 = 14故答案为:﹣ 14.15.( 5 分) Rt△ ABC中, P 是斜边 BC上一点,且知足:,点M,N在过点 P 的直线上,若则λ+2μ的最小值为.【解答】解:= +==+=+=,∵三点 M ,P,N 三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.( 5 分)设函数f(),()=,对随意 1 ,x2∈(0,+∞),不x = g x x等式≤恒成立,则正数k 的取值范围是.【解答】解:对随意 x1, x2∈( 0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当 x= ,即 x=1 时取等号,即 f(x)的最小值是 2,由 g(x) =,则g′(x)==,由 g′(x)> 0 得 0<x< 1,此时函数 g(x)为增函数,由 g′(x)< 0 得 x>1,此时函数 g(x)为减函数,即当 x=1 时, g(x)获得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得 2ek≥k+1,即 k(2e﹣1)≥ 1,则,故答案为:.三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤 .)17.(12 分)已知△ ABC中,角 A,B,C 的对边分别为 a,b,c,2cosC (acosC+ccosA)+b=0.(1)求角 C 的大小;(2)若 b=2,,求△ ABC的面积.【解答】解:(1)△ ABC中,∵ 2cosC(acosC+ccosA)+b=0,由正弦定理可得 2cosC(sinAcosC+sinCcosA) +sinB=0,∴2cosCsin( A+C)+sinB=0,即 2cosCsinB+sinB=0,又 0°<B<180°,∴ sinB≠0,∴,即 C=120°.( 2)由余弦定理可得,又 a>0,a=2,∴,∴△ ABC的面积为.18.(12 分)如图,四棱锥 P﹣ ABC中, PA⊥平面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段 AD 上一点, AM=2MD, N 为 PC的中点.(I)证明直线 MN∥平面 PAB;(II)求四周体 N﹣BCM 的体积.【解答】证明:(Ⅰ)∵四棱锥 P﹣ABC中,PA⊥平面 ABCD,AD∥ BC,AB=AD=AC=3,PA=BC=4,M为线段 AD 上一点, AM=2MD,N 为 PC的中点.∴ AM=,取BP的中点T,连结AT,TN,∴由 N 为 PC的中点知 TN∥BC,TN= BC=2,又 AD∥BC,∴ TN AM,∴四边形 AMNT 是平行四边形,∴ MN∥AT,又 AT? 平面 PAB,MN?平面 PAB,∴ MNⅡ平面 PAB.解:(Ⅱ)∵ PA⊥平面 ABCD,N 为 PC的中点,∴ N 到平面 ABCD的距离为=2,取 BC的中点 E,连结 AE,由 AB=AC=3,得 AE⊥ BC,AE= = ,由 AM∥BC,得 M 到 BC的距离为,∴ S△BCM=2 ,= ∴四周体 N﹣BCM 的体积:==.19.( 12 分)交警随机抽取了路过某服务站的40 辆小型轿车在经过某区间路段的车速(单位: km/h ),现将其分红六组为 [ 60,65),[ 65,70),[ 70,75),[ 75,80), [ 80,85),[ 85, 90] 后获得以下图的频次散布直方图.(Ⅰ)某小型轿车路过该路段,其速度在70km/h 以上的概率是多少?(Ⅱ)若对车速在 [ 60,65),[ 65, 70)两组内进一步抽测两辆小型轿车,求起码有一辆小型轿车速度在 [ 60,65)内的概率.【解答】解:(Ⅰ)依据频次散布直方图,计算速度在70km/h 以上的频次为1﹣()×,预计速度在 70km/h 以上的概率是;(Ⅱ)这 40 辆车中,车速在 [ 60,70)的共有 5×()× 40=6 辆,此中在[ 65, 70)的有 5×× 40=4 辆,记为 A,B,C,D,在 [ 60,65)的有 5××40=2 辆,记为 a, b;从车速在 [ 60,70)的这 6 辆汽车中随意抽取 2 辆,可能结果是AB、AC、 AD、 Aa、Ab、BC、BD、 Ba、Bb、CD、Ca、 Cb、Da、Db、ab 有 15 种不一样的结果,此中抽出的 2 辆车车速起码有一辆在 [ 60, 65)内的结果是Aa、Ab、 Ba、Bb、Ca、 Cb、Da、Db、ab 有 9 种;故所求的概率为P= =.20.(12 分)已知 A(x0,0),B(0,y0)两点分别在 x 轴和 y 轴上运动,且| AB| =1,若动点 P( x,y)知足.(1)求出动点 P 的轨迹对应曲线 C 的标准方程;(2)直线 l :x=ty+1 与曲线 C 交于 A、B 两点, E(﹣ 1,0),试问:当 t 变化时,能否存在向来线l,使△ ABE得面积为?若存在,求出直线l 的方程;若不存在,说明原因.【解答】解:(1)依据题意,因为.即,因此因此,,又因为 | AB| =1因此即即因此椭圆的标准方程为( 2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设 A(x1,y1),B(x2, y2),则因此因为直线 x=ty+1 过点 F( 1, 0)因此△ ABE的面积令则不可立,不存在直线l 知足题意.21.( 12 分)已知函数 f (x)=ke x﹣ x2(此中 k∈ R, e 是自然对数的底数)(1)若 k=2,当 x∈( 0,+∞)时,试比较 f (x)与 2 的大小;(2)若函数 f( x)有两个极值点 x1,x2(x1<x2),求 k 的取值范围,并证明: 0< f(x1)< 1.【解答】解:(1)当 k=2 时, f (x)=2e x﹣ x2,则 f' (x) =2e x﹣ 2x,令 h( x) =2e x﹣2x, h'(x)=2e x﹣ 2,因为 x∈( 0,+∞)故 h'( x) =2e x﹣2>0,于是 h(x)=2e x﹣2x 在( 0,+∞)为增函数,因此 h(x)=2e x﹣2x>h(0)=2>0,即 f' (x) =2e x﹣ 2x>0 在( 0, +∞)恒成立,进而 f (x) =2e x﹣ x2在( 0,+∞)为增函数,故 f( x)=2e x﹣x2> f(0)=2.(2)函数 f(x)有两个极值点 x1, x2,则 x1,x2是 f' (x)=ke x﹣ 2x=0 的两个根,即方程有两个根,设,则,当 x<0 时,φ'(x)> 0,函数φ(x)单一递加且φ(x)< 0;当 0<x< 1 时,φ'(x)> 0,函数φ(x)单一递加且φ(x)>0;当 x>1 时,φ'(x)< 0,函数φ(x)单一递加且φ(x)> 0;要使方程有两个根,只要,以下图故实数 k 的取值范围是.又由上可知函数f( x)的两个极值点x1,x2知足0<x1<1<x2,由得,∴因为 x1∈( 0,1),故,因此 0<f (x1)< 1.选修 4-4:坐标系与参数方程22.(10 分)已知圆锥曲线 C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点 O 为极点,以 x 轴的正半轴为极轴成立极坐标系.(1)求直线 AF2的直角坐标方程;(2)经过点 F1且与直线 AF2垂直的直线 l 交此圆锥曲线于 M、N 两点,求 || MF1|﹣| NF1|| 的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得 F2(1,0),∴直线 AF2的直角坐标方程为:,化为y= .( 2)设M ( x1,y1),N(x2,y2).∵直线 AF2的斜率为,∴直线l的斜率为.∴直线 l 的方程为:,代入椭圆的方程可得:=12,化为=0,t 1+t2=,∴ || MF1| ﹣| NF1 || =| t 1+t 2| =.选修 4-5:不等式选讲23.已知函数 f (x)=m﹣| x﹣ 1| ﹣| x+1| .( 1)当 m=5 时,求不等式 f( x)> 2 的解集;( 2)若函数 y=x2+2x+3 与 y=f(x)的图象恒有公共点,务实数m 的取值范围.【解答】解:(1)当 m=5 时,,由 f( x)> 2 的不等式的解集为.(2)由二次函数 y=x2+2x+3=(x+1)2+2,该函数在 x=﹣1 处获得最小值 2,因为,在 x=﹣1 处获得最大值m﹣2,因此要使二次函数 y=x2+2x+3 与函数 y=f(x)的图象恒有公共点,只要 m﹣ 2≥ 2,即 m≥ 4.。
四川省成都市2018届高三第一次质量检测文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-=,{1,1}B =-,则A B =( )A .{1}B .{1,1,3}-C .{3,1,1}--D .{3,1,1,3}--2.若命题“p 或q ”与命题“非p ”都是真命题,则( )A .命题p 与命题q 都是真命题B .命题p 与命题q 都是假命题C .命题p 是真命题,命题q 是假命题D .命题p 是假命题,命题q 是真命题3.欧拉公式cos sin ixe x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x π=时,10i e π+=被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,4i e 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列曲线中离心率为223的是( ) A .22198x y -= B .2219x y -= C .22198x y += D .2219x y += 5.若72sin 410A π⎛⎫+= ⎪⎝⎭,,4A ππ⎛⎫∈ ⎪⎝⎭,则sin A 的值为( ) A .35 B .45 C .35或45 D .346.已知变量x ,y 满足约束条件40221x y x y --≤⎧⎪-≤<⎨⎪≤⎩,若2z x y =-,则z 的取值范围是( )。
2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n 项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n 项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,==2,由AM∥BC,得M到BC的距离为,∴S△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.。
2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,==2,由AM∥BC,得M到BC的距离为,∴S△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.。
2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,==2,由AM∥BC,得M到BC的距离为,∴S△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.1、一知半解的人,多不谦虚;见多识广有本领的人,一定谦虚。
2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=2.水秀中华【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:水秀中华16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,==2,由AM∥BC,得M到BC的距离为,∴S△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.水秀中华(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.。
四川省成都市2018届高中毕业班第一次诊断性检测题数 学 (文科)注意事项:全卷满分为150分,完成时间为120分钟。
参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B )S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B )=P (A )·P (B )球的体积公式如果事件A 在一次试验中发生的概率是P ,V =3R 34π那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=()kn kP P --1C k m第一卷 (选择题,共60分)一、选择题:本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号涂在机读卡的相应位置上.1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分生中抽取的人数为7,那么从高三学生中抽取的人数应为A .10B .9C .8D .72.已知集合U =R ,集合M ={y|y =2|x|,x ∈R},集合N ={x |y =lg (3-x )},则M ∩N =A .{t| t<3}B .{t| t≥1}C .{t|1≤t<3}D .∅3.已知向量a =(x ,-1)与向量b =(1,x1),则不等式a·b ≤0的解集为 A .{x |x ≤-1或x ≥1} B .{x |-1≤x <0或x ≥1}C .{x |x ≤-1或0≤x ≤1}D .{x |x ≤-1或0<x≤1}4.若函数()f x 的反函数为12()2(0)f x x x -=+<,则3(log 27)f =A .1B .-1C .1或-1D .115.若递增等比数列{}n a 满足:12312371,864a a a a a a ++=⋅⋅=,则此数列的公比q = A .12B .12或2C .2D .32或26.在△ABC 中,“0>∙”是“△ABC 为锐角三角形”的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分又非必要条件7.已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为A .f (x )=2sin (62π-x )B .f (x )=⎪⎭⎫⎝⎛+44cos 2πx C .f (x )=2cos32π-x D .f (x )=2sin ⎪⎭⎫⎝⎛+64πx 8.已知l 、m 、n 是两两不重合的直线,α、β、γ是两两不重合的平面,给出下列命题:①若m ∥l 且m ⊥a ,则l ⊥a ;②若m ∥l 且m ∥a ;③若α∩β=l,β∩γ=m ,r∩a =n ,④若l ∥α,l ⊂β,m ∥β,m ⊂a,且直钱l 、m 为异面直线,则α∥β。
其中真命题的序号为A .①②B .①③C .①④D .②④9.函数21log 8x y -=的图像可由函数2log y x =的图像经过下列的哪种平移而得到 A .先向左平移1个单位长度,再向下平移3个单位长度 B .先向右平移1个单位长度,再向上平移3个单位长度 C .按向量a =(1,-3)平移 D .按向量a =(-1,3)平移10.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排节目单,如下表:如果A 、B 两个节目相邻 ,且都排在第3号位置,那么节目单上不同的排序方式有A .192种B .144种C .96种D .72种11.如图,设地球半径为R ,点A 、B 在赤道上,O 为地心,点C 在北纬30°的纬线(O ′为其圆心)上,且点A 、C 、D 、O′、O 共面,点D 、O ′、O 共线,若∠AOB =90°,则异面直线AB 与CD 所成角的余弦值为A .46B .-46C .426+ D .426- 12.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ∈{-2,-1,0,1,2},在这些抛物线中,记随机变量ξ=“|a -b|的取值”,则概率P (ξ=1)应为A .15B .14C .31 D .12第Ⅱ卷 (非选择题,共90分)二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在题中横线上。
13.已知tan (α+β+6π)=21,tan (β-6π)=-31,则tan (a +3π).14.已知(1+x )+(1+x )2+(1+x )3+…+(1+x )8=a 0+a 1x +a 2x 2+a 3x 3+…+a 8x 8,则a 1+a 2+a 3+…+a 8=_____.15.某同学进行了2次投篮(假定这两次投篮互不影响),每次投中的概率都为p (p≠0),如果最多投中1次的概率不小于至少投中1次的概率,则p 的取值范围为 。
16.定义在(-1,1)上的函数()f x 满足:()()0f x f x -+=,当(1,0)x ∈-时函数()f x 的导函数'()0f x <恒成立。
如果f (1-a )+f (1-a 2)>0,则实数a 的取值范围为:________________.三、简答题:(本大题共6小题,共74分)解答应写出文字说明、证明过程或推演步骤. 17.(本小题满分12分)已知函数()f x =23sin3sin 23cos32xx -π. (1)若x ∈[0,π],求函数f (x )的值域;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若f (C )=1,且b 2=ac ,求sinA 的值.18.(本小题满分12分)如图,已知四棱锥P -ABCD 的镀面是正方形,P A ⊥底面ABCD ,且P A =AD =2,点M 、N 分别在棱PD 、PC 上,且.PM MD =(1)求证:AM ⊥平面PCD ; (2)若12PN NC =,求平面AMN 与平面P AB 所成锐二面角的大小.19.(本小题满分12分)已知二次函数f (x )=x 2+2bx +c (b,c ∈R )(1)若()0f x ≤的解集为{|11}x x -≤≤,求实数b 、c 的值;(2)若f (x )满足f (1)=0,且并于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内.求实数b 的取值范围.20.(本小题满分12分)某商场以100元/件的价格购进一批衬衣,以高于进价的价格出售,销售有谈季与旺季之分,通过市场调查发现:①销售量r (x )(件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:r (x )=kx +b 1;在销售淡季近似地符合函数关系:r (x )=kx +b 2,其中k <0,b 1、b 2>0且k 、b 1、b 2为常数.②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中r (x )=0时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (1)填出表格中空格的内容:(2)在销售淡季,该商场要获得最大销售利润,衬衣标价应定为多少元才合适?21.(本小题满分12分)已知等差数列{}n a 满足1(*)n n a a n N +>∈,11a =,该数列的前三项分别加上1,1,3后顺次成为等比数列{}n b 的前三项。
(1)分别求数列{}n a 、{}n b 的通项公式n a 、n b ; (2)设1212(*)n n na a a T n Nb b b =++⋅⋅⋅+∈,若231()2n n n Tc c Z n ++-<∈恒成立,求c的最小值。
22.(本小题满分14分)已知向量2(,),(1,)(,,,)m x y cx n x b x y b c R =-=+∈且m ∥n ,把其中x ,y 所满足的关系式记为()y f x =。
若'()f x 为()f x 的导函数,()()'()(0)F x f x af x a =+>,且()F x 是R 上的奇函数。
(1)求ba和c 的值; (2)函数f (x )的单调递减区间(用字母a 表示)(3)当a =2时,设0<t <4且t≠2,曲线()y f x =在点A (t ,f (t ))处的切线与曲线()y f x =相交于点B (m ,f (m ))(A 与B 不重合),直线x =t 与()y f m =相交于点C ,△ABC 的面积为S ,试用t 表示△ABC 的面积S (t );并求S (t )的最大值。
成都市2018届高中毕业班第一次诊断性检测题数学试题(文科)参考答案及评分意见第Ⅰ题(选择题 共60分)一、选择题:(每小题5分,共60分)1.A .210∶7=30∶1,∴从高三学生中抽取的人数应为30300=10,选A . 2.C .M ={y | y ≥1}, N ={x | x <3},M ∩N ={t | 1≤t <3},选C .3.D .a ·b =x -x 1≤0,xx 12-≤0,选D .4.B .23(log 27)(3)2(0)f f y x x =⇔=+<中y =3,代入解得x =-1,选B 。
5.C .{a n }为等比数列,a 1·a 2·a 3=641⇒a 2=41,211211581·16a a q a a q ⎧+=⎪⎪⎨⎪=⎪⎩得11212a q ⎧=⎪⎪⎨⎪=⎪⎩或1182a q ⎧=⎪⎨⎪=⎩,又{a n }为递增数列,∴1182a q ⎧=⎪⎨⎪=⎩,选C .6.B .在△ABC 中,·>0⇔∠A 为锐角,不一定为锐角三角形;若△ABC 为锐角三角形,则必有·>0,选B . 7.C .由图可知41T =π⇒ω=21,代点B (0,1)验证可知,选C . 8.C .①正确;②还可能l ⊂α,错误;③还可能相交于一点,错误;④由平面平行的判定定理可知正确,选C . 9.C .2log y x =→221log log (1)38x y x -==--,先向右平移1个单位长度,再向下平移3个单位长度;若按向量平移,则a =(1,-3),选C 。
10.B .由题意得C 13A 22A 44或C 14C 13A 22A 33或A 44C 13A 22=144种,选B .11.A .分别以OB 、OA 、OD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系O —xyz ,易得A (0,R ,0),B (R ,0,0),C (0,R 23),D (0,0,R ),=(R ,-R ,0),CD =(0R ,12R ),cos<,CD >46223||·||22==R RCD AB ,选A . 12.D .对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 12C 12=8条,“ξ=1”时的抛物线有2C 12=4条,P (ξ=1)=4182=,选D . 第Ⅱ题(非选择题 共90分)二、填空题:(每小题4分,共16分)13.1.tan (3πα+)=tan [(6πβα++)-(6πβ-)]=.1)6tan(·)6tan(1)6tan()6tan(=-+++--++πβπβαπβπβα 14. 518 .令x =1得a 0+a 1+a 2+…+a 8=510,又令x =0得a 0=8,∴a 1+a 2+a 3+…+a 8=518. 15.102p <≤.2112221(1)(1)(1)02p C p p C p p p p -+-≥-+⇒<≤。