第二章 遥感信息获取(电磁波)03
- 格式:ppt
- 大小:3.49 MB
- 文档页数:30
第二章遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。
由于不同物体具有各自的电磁波反射或辐射特性,才可能应用遥感技术探测和研究远距离的物体。
理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。
本章重点是掌握可见光近红外、热红外和微波遥感机理,以及地物波谱特征。
图2-1第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1. 电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。
当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。
2. 电磁辐射电磁场在空间的直接传播称为电磁辐射。
1887 年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。
装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影像。
3. 电磁波谱γ射线、X 射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。
目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。
可见光区间辐射源于原子、分子中的外层电子跃迁。
红外辐射则产生于分子的振动和转动能级跃迁。
无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。
微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。
由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。
可见光、红外和微波遥感,就是利用不同电磁波的特性。
电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。
图2-2电磁辐射的性质4. 电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。
《遥感信息的获取和处理》讲义一、引言遥感技术作为一种非接触式的探测手段,能够从远距离获取地球表面的各种信息。
这些信息对于资源调查、环境监测、城市规划等众多领域都具有极其重要的价值。
要想充分利用遥感技术所获取的信息,就必须了解其获取和处理的方法。
接下来,让我们一起深入探讨遥感信息的获取和处理。
二、遥感信息的获取(一)遥感平台遥感平台是搭载传感器的工具,常见的遥感平台包括卫星、飞机和无人机等。
卫星遥感平台具有覆盖范围广、重复观测周期短等优点,能够获取大面积的地球表面信息。
例如,陆地卫星系列可以提供多光谱、高分辨率的影像,用于土地利用、植被监测等方面。
飞机遥感平台则具有灵活性高、可以根据特定需求进行飞行任务规划的特点。
它适用于小范围、高精度的遥感数据获取,比如在地质勘探、城市规划中发挥重要作用。
无人机遥感平台近年来发展迅速,其操作简便、成本相对较低,能够在复杂地形和近地面获取高分辨率的影像数据。
传感器是遥感系统中用于收集和记录电磁辐射能量的装置。
根据工作原理的不同,传感器可分为光学传感器和微波传感器。
光学传感器利用可见光、近红外和短波红外等波段的电磁波进行成像。
常见的有电荷耦合器件(CCD)传感器和互补金属氧化物半导体(CMOS)传感器。
它们能够获取色彩丰富、细节清晰的影像,广泛应用于农业、林业和生态环境监测等领域。
微波传感器则通过发射和接收微波信号来获取信息,不受天气和光照条件的限制,具有穿透云雾、雨雪的能力。
合成孔径雷达(SAR)就是一种重要的微波传感器,在灾害监测、海洋监测等方面有着独特的优势。
(三)遥感数据的类型遥感数据主要包括图像数据和非图像数据。
图像数据是最常见的遥感数据类型,如多光谱图像、高光谱图像和全色图像等。
多光谱图像包含多个波段的信息,能够反映地物的不同特征;高光谱图像具有数百个甚至上千个波段,能够提供更丰富的光谱信息,有助于地物的精细分类;全色图像则具有较高的空间分辨率,能够清晰地显示地物的细节。
《遥感信息的获取和处理》讲义一、引言遥感技术作为一种非接触式的对地观测手段,已经在众多领域发挥着至关重要的作用。
从资源调查、环境监测到城市规划、农业生产,遥感技术凭借其能够快速、大面积获取地表信息的优势,为我们提供了丰富而宝贵的数据。
而要充分利用这些数据,关键在于准确获取和有效处理遥感信息。
接下来,让我们深入探讨遥感信息的获取和处理这一重要课题。
二、遥感信息的获取(一)传感器类型遥感信息的获取首先依赖于各种传感器。
常见的传感器包括光学传感器、微波传感器和热红外传感器等。
光学传感器是最常见的一类,它能够捕捉可见光、近红外和短波红外波段的电磁波。
例如,多光谱相机可以同时获取多个波段的图像,为我们提供地物的光谱特征信息。
微波传感器则具有穿透云雾、雨雪的能力,在恶劣天气条件下也能正常工作。
合成孔径雷达(SAR)就是一种常用的微波传感器,它能够生成高分辨率的地表图像。
热红外传感器则用于测量地物的热辐射,对于监测地表温度变化、热岛效应等具有重要意义。
(二)平台选择传感器通常搭载在不同的平台上进行工作,包括卫星、飞机和无人机等。
卫星平台能够实现全球范围的大面积观测,具有重复观测周期短、覆盖范围广的优点。
例如,陆地卫星系列、气象卫星等为全球的资源环境监测提供了大量的数据。
飞机平台可以在特定区域进行更精细的观测,但其成本相对较高,且观测范围有限。
无人机平台则具有灵活性高、成本低、可近地观测等特点,适用于小范围、高分辨率的遥感数据获取。
(三)数据采集方式遥感数据的采集方式主要有主动式和被动式两种。
主动式遥感是指传感器主动向目标发射电磁波,然后接收目标反射或散射回来的电磁波。
SAR 就是典型的主动式遥感系统。
被动式遥感则是接收目标自身发射或反射的太阳辐射。
光学传感器和热红外传感器大多属于被动式遥感。
三、遥感信息的处理(一)辐射校正由于传感器本身的特性、大气的影响等因素,获取的原始遥感数据往往存在辐射误差。
辐射校正的目的就是消除这些误差,使得数据能够准确反映地物的真实辐射特性。