金属材料学03
- 格式:ppt
- 大小:3.57 MB
- 文档页数:110
颜色不同的是课件和课后题都有的题目,水平有限,大家参考哦3-1在结构钢的部颁标准中,每个钢号的力学性能都注明热处理状态和试样直径或钢材厚度,为什么?有什么意义?(这个实在不会也查不到,大家集思广益吧!!!)3—2为什么说淬透性是评定钢结构性能的重要指标?结构钢一般要经过淬火后才能使用。
淬透性好坏直接影响淬火后产品质量3—3调质钢中常用哪些合金元素?这些合金元素各起什么作用?Mn:↑↑淬透性,但↑过热倾向,↑回脆倾向;Cr:↑↑淬透性,↑回稳性,但↑回脆倾向;Ni:↑基体韧度,Ni—Cr复合↑↑淬透性,↑回脆;Mo:↑淬透性,↑回稳性,细晶,↓↓回脆倾向;V:有效细晶,(↑淬透性),↓↓过热敏感性。
3-4机械制造结构钢和工程结构钢对使用性能和工艺性能上的要求有什么不同?工程结构钢:1、足够的强度与韧度(特别是低温韧度);2、良好的焊接性和成型工艺性;3、良好的耐腐蚀性;4、低的成本机械制造结构钢:1具有良好的力学性能不同零件,对钢强、塑、韧、疲劳、耐磨性等有不同要求2具有良好冷热加工工艺性如锻造、冲压、热处理、车、铣、刨、磨等3—5低碳马氏体钢在力学性能和工艺性上有哪些优点?在应用上应注意些什么问题?力学性能:抗拉强度σb ,1150~1500MPa ;屈服强度σs , 950~1250 MPa ψ≥40% ;伸长率δ,≥10%;冲击韧度A K≥6J .这些性能指标和中碳合金调质钢性能相当,常规的力学性能甚至优于调质钢.工艺性能:锻造温度淬火加自回火局限性:工作温度<200℃;强化后难以进行冷加工\焊接等工序;只能用于中小件;淬火时变形大,要求严格的零件慎用。
3—6某工厂原来使用45MnNiV生产直径为8mm高强度调质钢筋,要求Rm〉1450Mpa,ReL〉1200Mpa,A>0.6%,热处理工艺是(920±20)℃油淬,(470±10)℃回火.因该钢缺货,库存有25MnSi钢。
金属材料学引言金属材料作为人类历史上最重要的材料之一,广泛应用于各个领域。
金属具有优异的机械性能、导热性能和导电性能,因此在建筑、制造业、能源、电子等行业中扮演着重要角色。
金属材料学是研究金属材料结构、性能和应用的学科。
本文将介绍金属材料学的基本概念、金属材料的分类、性能测试以及在工程中的应用。
金属材料学的基本概念金属材料学是研究金属的物理、化学和力学性质的学科。
它探讨金属材料的结构、性能和制备工艺等方面的知识。
金属材料学主要研究以下几个方面:金属的结晶结构金属材料通常由晶粒组成,晶粒内部由原子或离子排列有序构成晶体。
金属的晶体结构决定了其物理、化学和力学性质。
金属的力学性能金属材料具有优异的机械性能,如强度、塑性、硬度、韧性等。
这些性能是材料在外力作用下发生变形和破坏的表现。
金属的热处理金属材料的热处理是通过加热和冷却过程改变其结构和性能。
常见的热处理方法包括退火、淬火、固溶处理等。
金属的腐蚀与防护金属材料容易受到腐蚀的影响,降低其性能和使用寿命。
因此,研究金属材料的腐蚀机理和防护方法十分重要。
金属材料的分类根据金属的化学成分和结构特征,金属材料可以分为以下几类:黄金属黄金属是指以金、银、铜为代表的贵金属。
它们具有良好的导电性和导热性,广泛应用于电子、通信、珠宝等领域。
有色金属有色金属是指除黄金属以外的金属材料。
包括铝、镁、锌、镍、钛等。
它们具有较高的强度和耐腐蚀性能,在航空航天、汽车制造等行业中得到广泛应用。
铁基合金铁基合金是以铁为主要成分,并添加其他合金元素的金属材料。
例如,不锈钢、铸铁、高速钢等。
铁基合金具有较高的强度和耐热性,在建筑、机械制造、能源等领域中用途广泛。
金属材料的性能测试为了确保金属材料的质量和性能,需要进行各种性能测试。
常见的金属材料性能测试包括:强度测试强度测试是衡量金属材料抗拉、抗压、抗弯等力学性能的方法。
常用的强度测试方法包括拉伸试验、压缩试验和弯曲试验。
硬度测试硬度测试是衡量金属材料硬度的方法。
金属材料学1. 简介金属材料学是研究金属材料的性质、结构、制备和应用的学科。
金属材料具有良好的导电性、导热性和可塑性,广泛应用于制造业、建筑业、能源领域等众多行业。
金属材料学的研究内容包括金属材料的晶体结构、力学性能、热处理、腐蚀行为以及金属材料的应用和发展趋势等。
2. 金属材料的分类金属材料可以根据其成分和结构进行分类。
常见的金属材料分类包括: - 纯金属:由单一元素组成的金属材料,如铜、铁、铝等。
- 合金:由两种或更多种金属元素组成的金属材料,通过合金化可以改变金属材料的性能和特点,如钢、青铜、铝合金等。
- 亚共晶合金:由两种金属元素组成的合金,具有不同的熔点,通常表现为固溶体和共晶组织。
- 基体金属:组成合金中总量较大的金属元素,起到支撑和固定其他金属元素的作用。
- 异质金属:由两种或更多种具有不同性质的金属组成。
3. 金属材料的制备方法金属材料的制备方法种类繁多,常见的制备方法有以下几种: - 熔炼法:将金属原料加热至熔点以上,使其熔化后进行凝固。
- 混合熔炼法:将不同金属原料按一定比例混合后进行共熔。
- 电解法:通过电解过程,在电解质溶液中制备金属。
- 粉末冶金法:将金属粉末加以压制和烧结以获得所需形态和性能的材料。
- 涂层法:将一种或多种金属材料涂覆在基体上。
4. 金属材料的性能和测试金属材料的性能包括力学性能、物理性能和化学性能。
常用的测试方法有: -拉伸试验:用于测定金属材料的强度、塑性和韧性等力学性能。
- 硬度测试:用于测定金属材料的硬度,常见的硬度测试方法有布氏硬度、洛氏硬度和巴氏硬度等。
- 压缩试验:用于测定材料的抗压性能,常常用于金属材料的强度测试。
- 磨损测试:用于测定金属材料的耐磨性能,常见的磨损测试方法有滚动磨损试验和滑动磨损试验等。
- 腐蚀测试:用于测定金属材料在不同环境条件下的耐蚀性能,常见的腐蚀测试方法有盐雾试验和电化学腐蚀测试等。
5. 金属材料的应用领域金属材料广泛应用于各个领域,包括: - 制造业:金属材料是制造业的基础材料,广泛应用于汽车制造、航空航天、机械制造等行业。
金属材料学AScience of Metal Materials课程编号:07310410学分:3学时: 45 (其中:讲课学时:41 实验学时:4 上机学时:0 )先修课程:金属学、金属组织控制原理、金属材料强韧化、材料力学性能适用专业:金属材料工程。
教材:《金属材料学》,戴起勋主编,化学工业出版社,2012 年9月第2版开课学院:材料科学与工程学院一、课程的性质与任务:《金属材料学》是一门综合性应用性较强的专业主干课,是金属材料工程专业的核心课程。
在金属学、金属组织控制原理及工艺和力学性能等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。
通过课堂讲授、实验等教学环节,使学生系统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。
二、课程的基本内容及要求绪论(金属材料的过去、现在和将来):1.教学内容(1)金属材料发展简史(2)现代金属材料(3)金属材料的可持续发展与趋势2.基本要求了解金属材料在国民经济中的地位与作用、金属材料的发展概况和本课程的性质、地位和任务。
第一章钢的合金化原理1.教学内容(1)钢中的合金元素:合金元素和铁基二元相图;合金元素对Fe-C相图的影响;合金钢中的相组成;合金元素在钢中的分布;(2)合金钢中的相变:合金钢加热奥氏体化,合金过冷奥氏体分解;合金钢回火转变;(3)金元素对强度、韧度的影响及其强韧化;(4)合金元素对钢工艺性能的影响;(5)微量元素在钢中的作用(6)金属材料的环境协调性设计基本概念;(7)钢的分类、编号方法。
2.基本要求(1)掌握钢中合金元素与铁和碳的作用;铁基固溶体、碳(氮)化合物的形成规律;合金元素在钢中的分布;合金元素对铁-碳状态图的影响(2)了解钢的分类、编号方法(3)掌握合金元素对合金钢工艺过程的影响(4)掌握合金元素对合金钢力学性能的影响规律(5)理解微量元素在钢中的作用(6)了解材料的环境协调性设计基本概念第二章工程构件用钢1.教学内容(1)工程构件用钢的服役条件及性能要求(2)普通碳素工程构件用钢、低合金(含微合金化)钢的合金化原则和有关的低合金钢,双相钢(3)提高高低碳工程构件用钢性能的途径:控轧、控冷、合金化等,了解工程构件用钢的发展趋势2.基本要求(1)了解工程构件用钢的服役条件及性能要求(2)掌握普通碳素工程构件用钢、低合金(含微合金化)钢的合金化原则和有关的低合金钢,双相钢(3)理解提高高低碳工程构件用钢性能的途径:控轧、控冷、合金化等,了解工程构件用钢的发展趋势第三章机器零用钢1.教学内容(1)机器零件用钢一般性能要求(2)机器零件用钢:调质钢、弹簧钢、低碳马氏体钢、轴承钢、高锰耐磨钢、渗碳钢、氮化钢、非调质钢等合金化原则和性能及其典型钢种(3)(超高强度钢简介)(4)理解典型机器零件用钢的选材思路和发展2.基本要求(1)掌握机器零件用钢一般服役条件及性能要求(2)掌握常用机器零件用钢的合金化原则和性能及其典型钢种(3)了解超强度钢(4)理解典型机器零件用钢的选材思路和发展第四章工具用钢1.教学内容(1)工具用钢的合金化、组织性能的特点及分类(2)低合金刃具钢的合金化,热处理特点,典型钢种。
金属材料学金属材料学是关于金属材料的研究学科,是材料科学的一个分支领域。
金属材料学主要研究金属的结构、性能和应用,并通过研究金属的组织结构、力学性能、物理性能、化学性能等方面来揭示金属材料的宏观和微观特性。
金属是一类常见的材料,具有导电、导热、强度高、韧性好等优点,广泛应用于工业、建筑、交通、电子等领域。
金属材料学的研究内容包括金属结构与相变、金属的物理性能和化学性能、金属的机械性能等。
金属结构与相变是金属材料学的基础研究内容之一。
金属材料的结构由晶体结构和晶体缺陷组成,晶体结构可以通过X射线衍射、电子显微镜等方法来研究。
金属材料的相变包括固溶体的形成、金属相变温度的确定、金属的亚稳相等等。
金属的物理性能和化学性能对金属材料的应用具有重要影响。
金属材料的物理性能包括电导率、热导率、磁性、反射率等,而化学性能则涉及金属的腐蚀性、韧性等方面。
通过研究金属的物理性能和化学性能,可以为金属材料的应用提供理论依据和技术指导。
金属的机械性能是金属材料学的重要内容之一。
金属的机械性能包括强度、硬度、韧性、延展性等方面。
通过研究金属的机械性能,可以提高金属材料的强度、硬度和韧性,降低金属的脆性,从而提高金属材料的使用寿命和安全性。
金属材料学的研究对推动金属材料的应用具有重要意义。
通过研究金属材料的结构、性能和应用,可以开发出新的金属材料和制备工艺,提高金属材料的性能和降低成本。
同时,金属材料学的研究成果也可以为金属材料的应用提供理论基础和技术支持,推动金属材料在各个领域的广泛应用。
总之,金属材料学是一门研究金属材料结构、性能和应用的学科,对于提高金属材料的性能和开发新型金属材料具有重要作用。
通过研究金属材料的结构、物理性能、化学性能和机械性能等方面,可以更加深入地了解金属材料的特性和行为,为金属材料的应用提供理论基础和技术支持。
第一章 合金化原理主要内容:概念:⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。
⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。
⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。
⑷合金钢:在碳钢基础上加入一定量合金元素的钢。
①低合金钢:一般指合金元素总含量小于或等于5%的钢。
②中合金钢:一般指合金元素总含量在5~10%范围内的钢。
③高合金钢:一般指合金元素总含量超过10%的钢。
④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。
1.1 碳钢概论一、碳钢中的常存杂质1.锰( Mn )和硅( Si )⑴Mn :W Mn %<0.8% ①固溶强化 ②形成高熔点MnS 夹杂物(塑性夹杂物),减少钢的热脆(高温晶界熔化,脆性↑);⑵Si :W Si %<0.5% ①固溶强化 ②形成SiO2脆性夹杂物;⑶Mn 和Si 是有益杂质,但夹杂物MnS 、SiO2将使钢的疲劳强度和塑、韧性下降。
2.硫(S )和磷(P )⑴S :在固态铁中的溶解度极小, S 和Fe 能形成FeS ,并易于形成低熔点共晶。
发生热脆 (裂)。
⑵P :可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。
磷可以提高钢在大气中的抗腐蚀性能。
⑶S 和P 是有害杂质,但可以改善钢的切削加工性能。
3.氮(N )、氢(H )、氧(O )⑴N :在α-铁中可溶解,含过饱和N 的钢析出氮化物—机械时效或应变时效(经变形,沉淀强化,强度↑,塑性韧性↓,使其力学性能改变)。
N 可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。
⑵H :在钢中和应力的联合作用将引起金属材料产生氢脆。
⑶O :在钢中形成硅酸盐(2MnO•SiO2、MnO•SiO2)或复合氧化物(MgO•Al2O3、碳钢中的常存杂质 碳钢的分类 碳钢的用途 1.1 碳钢概论 主要内容 1.2 钢的合金化原理: ①Me 在钢中的存在形式 ②Me 与铁和碳的相互作用 ③Me 对Fe-Fe3C 相图的影响 ④Me 对钢的热处理的影响 ⑤Me 对钢的性能的影响 1.3合金钢的分类MnO•Al2O3)。
《金属材料学》习题答案1.简述什么是材料科学研究材料组分、结构、性能相互关系和变化规律的科学,是一门基础应用学科。
2.什么是工程材料?工程材料分为哪些类别?凡与工程相关的材料均可称为工程材料。
按性能可分为结构材料和功能材料;按化学方法分为金属材料,陶瓷材料,高分子材料和复合材料。
3.什么是新材料?开发新材料的重要意义是什么?新材料:相对于传统的材料而言。
经过新工艺新技术制造的整合原有材料的功能的材料。
意义:对高科技和新技术的发展具有非常关键的作用;是发展高科技的物质基础;是国家在科技领域处于领先地位的标志之一。
4.钢的分类方法很多通常有哪些分类?按冶金方法分:平炉、转炉、电炉(镇静钢、半镇静钢,沸腾钢)。
按化学成分分:碳钢(普通碳钢,优质碳钢),合金钢(合金元素,合金含量);按质量分:普通质量钢,优质质量钢,高级优质钢。
按金相分:退火态(P+F,珠光体钢,P+Fe3C),正火态(珠光体钢,贝氏体钢,奥氏体钢);冷却时有无相变(铁素体,马氏体,奥氏体,双相钢);按用途分:工程结构钢,机器零件用钢,工程模具用钢,特殊用钢(不锈钢,耐热钢、磁钢)。
5.通常钢中的P, S控制钢的质量,按质量等级碳素钢,合金钢的钢材质量可分为哪些等级,P, S 含量是如何控制的?可分为五种情况:1)形成非金属夹杂物(如氧化物、氮化物和硫化物等),2)溶入固熔体,3)形成碳化物,4)自由存在,5)金属间化合物。
7.按化学成分如何区分低中高碳钢和低中高合金钢?碳钢:(含碳量)低碳钢<0.25%,中碳钢0.3—0.6%,高碳钢N0.6%;合金钢:(合金元素)低合金钢<5%,中合金钢5 — 10%,高合金钢>10%8.利用晶界偏聚理论解释钢的第二类回火脆性以及硼钢的淬透性问题钢的溶质原子在晶界的浓度大大超过在基体中的平均浓度的现象,称为晶界偏聚。
淬火钢在淬火、回火过程中,Ni、Cr、Sb、Sn、P等都向原A晶界偏聚,产生晶界偏聚现象,Ni、Cr不仅自身偏聚,而且促进杂质元素的偏聚。
1-1. 为什么说钢中的S、P 杂质元素在一般情况下是有害的?答:S容易和Fe结合形成熔点为989C的FeS相,会使钢在热加工过程中产生热脆性;P与Fe 结合形成硬脆的F&P相,使钢在冷变形加工过程中产生冷脆性。
1-2. 钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:可以分为简单点阵结构和复杂点阵结构,简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
1-3. 简述合金钢中碳化物形成规律。
答:①当r C r M>0.59时,形成复杂点阵结构;当r C r x0.59时,形成简单点阵结构;② 相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。
③强碳化合物形成元素优先与碳结合形成碳化物。
④N M N C 比值决定了碳化物类型⑤碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难。
1-4.合金元素对Fe - F&C相图的S、E点有什么影响?这种影响意味着什么?答:凡是扩大Y 相区的元素均使S、E点向左下方移动;凡是封闭丫相区的元素均使S E 点向左上方移动。
S 点左移,意味着共析碳量减少; E 点左移,意味着出现莱氏体的碳含量减少。
1-19. 试解释40Cr13 已属于过共析钢,而Cr12 钢中已经出现共晶组织,属于莱氏体钢。
答:①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%寸,共析碳量小于0.4%,所以含0.4%C 13%Cr的40Cr13不锈钢就属于过共析钢。
②Cr使E点左移,意味着出现莱氏体的碳含量减小。
在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。
但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。
1-21. 什么叫钢的内吸附现象?其机理和主要影响因素是什么?答:合金元素溶入基体后,与晶体缺陷产生交互作用,使这些合金元素发生偏聚或内吸附,使偏聚元素在缺陷处的浓度大于基体中的平均浓度,这种现象称为内吸附现象。