1.2.3 空间中的垂直关系(2)
- 格式:ppt
- 大小:435.50 KB
- 文档页数:19
第1课时直线与平面垂直1.理解线线垂直、线面垂直的概念.2.掌握直线与平面垂直的判定定理及性质.3.能应用性质定理证明空间位置关系.1.直线与直线的垂直两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交于点O,并且和这个平面内过交点O的任何直线都垂直,则称这条直线和这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.(2)直线和平面垂直的判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平面. (简而言之:线线垂直,则线面垂直)(3)推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.3.直线与平面垂直的性质(1)由直线和平面垂直的定义知,直线与平面内的所有直线都垂直,除此以外还有性质定理.(2)垂直于同一个平面的两条直线平行.垂直于同一条直线的两个平面平行.1.下列命题正确的是( )A.垂直于同一条直线的两直线平行B.垂直于同一条直线的两直线垂直C.垂直于同一个平面的两直线平行D.垂直于同一条直线的一条直线和平面平行解析:选C.在空间中垂直于同一直线的两条直线,可能平行,可能相交,也可能异面,所以A,B错;垂直于同一直线的直线和平面的位置关系可以是直线在平面内,也可以是直线和平面平行,所以D错;注意分析清楚给定条件下直线和平面可能的位置关系,不要有遗漏.2.在三棱锥ABCD中,AB=AD,CB=CD,求证:AC⊥BD.证明:如图取BD的中点E,连接AE,EC.因为AB=AD,BE=ED,所以AE⊥BD.又因为CB=CD,BE=ED,所以CE⊥BD.又AE∩EC=E,所以BD⊥平面ACE,又AC⊂平面ACE,所以AC⊥BD.3.垂直于同一条直线的两条直线平行吗?解:不一定.平行、相交、异面都有可能.线面垂直的判定如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN ⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.【证明】(1)因为AB为⊙O的直径,所以AM⊥BM.又PA⊥平面ABM,所以PA⊥BM.又因为PA∩AM=A,所以BM⊥平面PAM.又AN⊂平面PAM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由第一问知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以PB⊥NQ.在本例中若条件不变,在四面体PAMB的四个面中共有多少个直角三角形.解:由本例第一问的证明过程知,BM⊥平面PAM,又PM⊂平面PAM,所以BM⊥PM.所以∠PAM=∠PAB=∠AMB=∠BMP=90°.所以四个面都是直角三角形.证明线面垂直的方法(1)线线垂直证明线面垂直①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理法:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论)①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图所示,S为Rt△ABC所在平面外一点,且SA=SB=SC.点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若直角边BA=BC,求证:BD⊥平面ASC.证明:(1)法一:在等腰三角形SAC中,D为AC的中点,所以SD⊥AC,取AB的中点E,连接DE、SE.则ED∥BC,又AB⊥BC,所以DE⊥AB.又SE⊥AB,SE∩DE=E,所以AB⊥平面SED,所以AB⊥SD,又AB∩AC=A,所以SD⊥平面ABC.法二:因为D为AC中点,△ABC为直角三角形.所以AD=BD,又SA=SB,SD=SD,所以△SAD≌△SBD,所以∠SDB=∠SDA.又SA=SC,所以SD⊥AC,即∠SDA=90°,所以∠SDB=90°,即SD⊥BD,又BD∩AC=D,所以SD⊥平面ABC.(2)因为BA=BC,所以BD⊥AC,又SD⊥平面ABC,所以SD⊥BD,因为SD∩AC=D,所以BD⊥平面ASC.线面垂直的性质的应用如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB于点E,过E作EF⊥SC于点F.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.【证明】(1)因为SA⊥平面AC,BC⊂平面AC,所以SA⊥BC,因为四边形ABCD为矩形,所以AB⊥BC.所以BC⊥平面SAB,所以BC⊥AE.又SB⊥AE,SB∩BC=B,所以AE⊥平面SBC,所以AE⊥SC.又EF⊥SC,AE∩EF=E,所以SC⊥平面AEF.所以AF⊥SC.(2)因为SA⊥平面AC,所以SA⊥DC.又AD⊥DC,AD∩SA=A,所以DC⊥平面SAD.所以DC⊥AG.又由(1)有SC⊥平面AEF,AG⊂面AEF,所以SC ⊥AG ,所以AG ⊥平面SDC ,所以AG ⊥SD .证明线线垂直的常用思路线面垂直――→推出定义线线垂直――→推出判定定理线面垂直――→推出定义线线垂直.如图所示,在正方体ABCD A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明:(1)因为四边形ADD 1A 1为正方形,所以AD 1⊥A 1D . 又因为CD ⊥平面ADD 1A 1,所以CD ⊥AD 1. 因为A 1D ∩CD =D , 所以AD 1⊥平面A 1DC . 又因为MN ⊥平面A 1DC , 所以MN ∥AD 1.(2)如图,连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC . 所以ON ═∥12CD .因为CD ═∥AB , 所以ON ∥AM . 又因为MN ∥OA ,所以四边形AMNO 为平行四边形. 所以ON =AM .因为ON =12CD ,所以AM =12DC =12AB .所以M 是AB 的中点.线面垂直的综合应用如图所示,在直四棱柱ABCD A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB∥DC .(1)求证:D 1C ⊥AC 1;(2)设E 是DC 上一点,试确定E 的位置,使D 1E ∥平面A 1BD ,并说明理由. 【解】 (1)证明:连接C 1D .因为DC =DD 1,所以四边形DCC 1D 1是正方形,所以DC 1⊥D 1C . 因为AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D , 所以AD ⊥平面DCC 1D 1,D 1C ⊂平面DCC 1D 1,所以AD ⊥D 1C .又AD ∩DC 1=D ,所以D 1C ⊥平面ADC 1. 又AC 1⊂平面ADC 1,所以D 1C ⊥AC 1.(2)如图,当E 是CD 的中点时满足条件,连接BE 、D 1E ,因为AB ═∥12CD , 所以四边形ABED 为平行四边形. 所以BE ∥AD ∥A 1D 1.所以四边形BED 1A 1为平行四边形, 所以D 1E ∥A 1B .又D 1E ⊄面A 1BD ,A 1B ⊂A 1BD , 所以D 1E ∥平面A 1BD .综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .线面垂直与平行的相互转化(1)空间中直线与直线垂直、直线与平面垂直、直线与直线平行可以相互转化,每一种垂直与平行的判定都是从某种垂直与平行开始转化为另一种垂直与平行,最终达到目的的.(2)转化关系:线线垂直判定定理定义线面垂直性质判定定理推论线线平行.如图所示,侧棱垂直于底面的三棱柱ABC A 1B 1C 1中,底面ABC 为等腰直角三角形,∠ACB =90°,CE ⊥AB 1,D 为AB 的中点.求证:(1)CD ⊥AA 1; (2)AB 1⊥平面CED .证明:(1)由题意,得AA 1⊥平面ABC ,CD ⊂平面ABC ,所以CD ⊥AA 1.(2)因为D 是AB 的中点,△ABC 为等腰直角三角形,∠ACB =90°,所以CD ⊥AB . 又CD ⊥AA 1,AB ∩A 1A =A ,所以CD ⊥平面A 1B 1BA ,因为AB 1⊂平面A 1B 1BA ,所以CD ⊥AB 1. 又CE ⊥AB 1,CD ∩CE =C , 所以AB 1⊥平面CED .1.直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.两条直线垂直包括相交垂直和异面垂直. 2.线面垂直、线线垂直的证明方法 (1)线面垂直的证明方法:①定义法;②判定定理法;③判定定理的推论.(2)线线垂直的证明方法:①定义法;②线面垂直的性质. (3)线线垂直与线面垂直可相互转化.1.直线与平面垂直的定义,应注意:①定义中的“任何直线”这一条件,②直线与平面垂直是相交中的特殊情况,③利用定义可得直线和平面垂直则直线与平面内的所有直线垂直.2.直线与平面垂直应注意两点:①定理中的条件,是“平面内的两条相交直线”既不能说是“两条直线”,也不能说“无数条直线”.②应用定理的关键是在平面内,找到两条相交直线与已知直线垂直.3.“垂直于同一条直线的两条直线平行”要求涉及到的三条直线在同一个平面内,否则不正确.这告诉我们平面几何中的一些结论推广到空间时不一定成立,需要多加注意.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A.平行B.垂直C.相交不垂直D.不确定解析:选B.一条直线垂直于三角形的两条边,那么这条直线必垂直于这个三角形所在的平面,因而必与第三边垂直.2.l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B.A答案还有异面或者相交的情况,C、D不一定.3.已知PA垂直于平行四边形ABCD所在平面,若PC⊥BD,平行四边形ABCD一定是.解析:因为PA⊥平面ABCD,所以PA⊥BD.又因为PC⊥BD,PA∩PC=P,所以BD⊥平面PAC,所以BD⊥AC,所以平行四边形ABCD一定是菱形.答案:菱形4.点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,AB=AC=5,BC=6,则点P到BC的距离是.答案:4 5[学生用书P97(单独成册)])[A 基础达标]1.已知直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交D.a与b不一定垂直解析:选C.过b作平面β,β∩α=b′,则b∥b′,因为a⊥平面α,所以a⊥b′,所以a⊥b.2.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m∥n,n⊥α⇒m⊥α解析:选D.由直线与平面垂直的判定定理的推论可知D正确.3.E、F分别是正方形ABCD中AB、BC的中点,沿DE、DF及EF把△ADE、△CDF和△BEF 折起,使A、B、C三点重合于一点P,则有( )A.DP⊥平面PEF B.DE⊥平面PEFC.EF⊥平面PEF D.DF⊥平面PEF解析:选A.如图所示,A、B、C三点重合于点P,则PD⊥PE,PD⊥PF,又PE∩PF=P,所以PD⊥平面PEF.4.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是( )A.EF⊥平面αB.EF⊥平面βC.PQ⊥GE解析:选B .因为EG ⊥平面α,PQ ⊂平面α,所以EG ⊥PQ .若EF ⊥平面β,则由PQ ⊂平面β,得EF ⊥PQ .又EG 与EF 为相交直线,所以PQ ⊥平面EFHG ,所以PQ ⊥GH ,故选B .5.在正方体ABCD A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段解析:选A .如图,由于BD 1⊥平面AB 1C ,故点P 一定位于B 1C 上.6.如图,▱ADEF 的边AF ⊥平面ABCD ,AF =2,CD =3,则CE =.解析:因为AF ⊥平面ABCD ,AF ∥DE ,所以DE ⊥平面ABCD ,CD ⊂平面ABCD ,所以DE ⊥CD ,因为DE =AF =2,CD =3,所以CE =22+33=13.答案:137.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ∥n ;②α∥β;③m ⊥α;④n ⊥β.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .答案:⎭⎪⎬⎪⎫m ∥n α∥βm ⊥α⇒n ⊥β 8.如图所示,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,且PA =1,若BC 边上存在点Q ,使得PQ ⊥QD ,则a 的最小值为 .解析:因为PA ⊥平面ABCD ,所以PA ⊥QD . 若BC 边上存在一点Q ,使得QD ⊥PQ , 则有QD ⊥平面PAQ ,从而QD ⊥AQ .在矩形ABCD 中,当AD =a <2时,直线BC 与以AD 为直径的圆相离,故不存在点Q ,使PQ ⊥DQ .所以当a ≥2时,才存在点Q ,使得PQ ⊥QD .所以a 的最小值为2. 答案:29.如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F 分别是AD ,PC 的中点.证明:PC ⊥平面BEF .证明:如图所示,连接PE ,EC , 在Rt △PAE 和Rt △CDE 中,因为PA =AB =CD ,AE =DE ,所以PE =CE ,即△PEC 是等腰三角形. 又因为F 是PC 的中点,所以EF ⊥PC . 又因为BP = AP 2+AB 2=22=BC ,F 是PC 的中点,所以BF ⊥PC .又因为BF ∩EF =F ,所以PC ⊥平面BEF . 10.侧棱垂直于底面的三棱柱ABC A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求证:A ′N ⊥平面BCN ; (3)求三棱锥C MNB 的体积. 解:(1)证明:如图,连接AB ′,AC ′,因为四边形ABB ′A ′为矩形,M 为A ′B 的中点,所以AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点,所以MN ∥AC ′, 又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.(2)证明:因为A ′B ′=A ′C ′=2,点N 为B ′C ′的中点, 所以A ′N ⊥B ′C ′.又BB ′⊥平面A ′B ′C ′,所以A ′N ⊥BB ′, 所以A ′N ⊥平面B ′C ′CB ,所以A ′N ⊥平面BCN . (3)由图可知V C MNB =V M BCN , 因为∠BAC =90°, 所以BC =AB 2+AC 2=22,S △BCN =12×22×4=42.由(2)及∠B ′A ′C ′=90°可得A ′N =2, 因为M 为A ′B 的中点, 所以M 到平面BCN 的距离为22, 所以V C MNB =V M BCN =13×42×22=43.[B 能力提升]11.在正方体ABCD A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1DD .A 1A解析:选B.如图所示,连接AC,BD,因为BD⊥AC,A1C1∥AC,所以BD⊥A1C1,因为BD⊥A1A,A1A∩A1C1=A1,所以BD⊥平面ACC1A1,因为CE⊂平面ACC1A1,所以BD⊥CE.12.如图所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中,正确结论的序号是.解析:对于①、③,因为PA⊥平面ABC,故PA⊥BC.又BC⊥AC,故BC⊥平面PAC,从而BC⊥AF.故③正确.又AF⊥PC,故AF⊥平面PBC,所以AF⊥PB,故①正确.对于②,由①知AF⊥PB,而AE⊥PB,从而PB⊥平面AEF,故EF⊥PB.故②正确.对于④,AE与平面PBC不垂直,故④不正确.答案:①②③13.如图,四棱锥PABCD中,O是底面正方形ABCD的中心,侧棱PD⊥底面ABCD,PD =DC,E是PC的中点.(1)证明:EO∥平面PAD;(2)证明:DE⊥平面PBC.证明:(1)连接AC,因为点O是底面正方形ABCD的中心,所以点O是AC的中点,又因为E是PC的中点,所以在△PAC中,EO是中位线,所以PA∥EO.因为EO⊄平面PAD,PA⊂平面PAD,所以EO∥平面PAD.(2)因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC,因为底面ABCD是正方形,有BC⊥DC,所以BC⊥平面PDC.而DE⊂平面PDC,所以BC⊥DE.因为PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,所以DE⊥PC.又BC,PC⊂平面PBC,且BC∩PC=C,所以DE⊥平面PBC.14.(选做题)如图,A、B、C、D为空间四点,在△ABC中,AC=BC,等边三角形ADB 以AB为轴转动,问是否总有AB⊥CD?证明你的结论.解:当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当点D在平面ABC内时,因为AC=BC,AD=BD,所以C、D都在线段AB的垂直平分线上.所以CD⊥AB.②当点D不在平面ABC内时,取AB中点O,连DO,CO.因为AC=BC,AD=BD,所以CO⊥AB,DO⊥AB.又CO∩DO=O,所以AB⊥平面COD.因为CD⊂平面COD,所以AB⊥CD.综上所述,总有AB⊥CD.。
空间中的垂直关系练习题
知识点小结
一.线面垂直定义:如果直线AB与平面α相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说直线AB与平面α互相垂直,直线AB叫做平面α的垂线,平面α叫做直线L的垂面。
交点P叫做垂足。
垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做点到平面的距离。
由定义:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直。
二.判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
符号语言:
推论1 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面。
推论2 如果在两条直线垂直于同一平面,那么这两条直线平行。
三.平面与平面垂直的判定
1.平面与平面垂直定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直。
2.平面与平面垂直的判定定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直。
3.平面与平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
课题 空间中的垂直关系 课型 主备人 李冬旭上课教师李冬旭上课时间学习 目标1、掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2、掌握平面与平面垂直的概念和判定定理、性质定理,并能运用它们进行推理论证和解决有关问题;3、在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使问题获得解决。
教学 重点 垂直的判定定理教学 难点 垂直的性质定理应用教师 准备教学过程时间分配 集备修正三、知识要点1、直线与平面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,那么就称这条直线和这个平面垂直。
2、直线与平面垂直的判定:常用方法有:①判定定理: ,,,P b a b a =⋂⊂⊂αα α⊥⇒⊥⊥l b l a l ,.② b ⊥α, a ∥b ⇒a ⊥α;(线面垂直性质定理)③α∥β,a ⊥β⇒a ⊥α(面面平行性质定理)④α⊥β,α∩β=l ,a ⊥l ,a ⊂β⇒a ⊥α(面面垂直性质定理)3、直线与平面垂直的性质定理:①如果两条直线同垂直于一个平面,那么这两条直线平行。
( a ⊥α,b ⊥α⇒a ∥b )②直线和平面垂直时,那么该直线就垂直于这个平面内的任何直线(b a b a ⊥⇒⊂⊥αα,)4、点到平面的距离的定义: 从平面外一点引这个平面的垂线,这个点和垂足间的线段的长度叫做这个点到平面的距离。
特别注意:点到面的距离可直接向面作垂线,但要考虑垂足的位置,如果垂足的位置不能确定,往往采取由点向面上某一条线作垂线,再证明此垂足即为面的垂足。
5、平面与平面垂直的定义及判定定理:(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第1’5x5’三个平面相交所得的两条交线互相垂直,就说这两个平面互相垂直。
记作:平面α⊥平面β(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
人教版高中必修2(B版)1.2.3空间中的垂直关系教学设计一、教学目标1.了解空间中垂直关系的概念和性质,掌握相关的基本概念和定义;2.能够运用垂直关系的定义,判断两条直线、两个平面、线段和直线、线段和平面等是否垂直,解决与垂直相关的简单问题;3.通过垂直关系的学习,增强学生的空间想象能力和数学思维水平。
二、教学重点和难点1.垂直关系的定义和应用;2.掌握判断两条直线、两个平面、线段和直线、线段和平面等是否垂直的方法;3.解决与垂直相关的简单问题。
三、教学方法本课采用讲授、讨论和练习相结合的教学方法,倡导“启发式”教学,让学生在教师的引导下自主思考,发掘规律和方法,并通过课堂讨论和解决问题的过程中加深对知识的理解和记忆。
四、教学步骤1. 引入(10分钟)通过一个有趣的例子,激发学生对垂直关系的兴趣,引导学生了解垂直关系的概念和性质。
举例:小明在修建房屋时,需要确定柱子是否和地面垂直。
那么,垂直现象出现在我们生活中的哪些场合呢?2. 讲解垂直关系的基本概念和定义(20分钟)通过演示、讲解等方式,介绍垂直关系的定义和性质,如“两条直线垂直的条件是什么?两个平面垂直的条件是什么?”等等。
3. 探究垂直关系的应用(30分钟)带领学生探究判断两条直线、两个平面、线段和直线、线段和平面等是否垂直的方法和步骤,并通过练习,帮助学生巩固相关知识,增强应用能力。
4. 实际应用(30分钟)分组或个人作业,设计一些实际问题,让学生通过运用垂直关系的知识,解决实际问题。
举例:如何确定大型建筑物的每根柱子是否与地面垂直?5. 总结(10分钟)对本节课的重点知识、难点问题进行总结,并对学生问题进行答疑解惑,解决学生的困惑。
五、教学工具黑板、粉笔、几何模型、PPT等。
六、教学评价1.通过课堂练习,检验学生对垂直关系的掌握程度;2.通过实际应用的作业,检验学生对垂直关系的应用能力;3.通过教师观察、记录等方式,评价学生的表现和进步情况。
8. 5 空间中的垂直关系1.线线垂直如果两条直线所成的角是______ ( 无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直(1)定义:如果直线I与平面a内的任意一条直线都垂直,我们就说__________________________ ,记作_______ .直线I叫做______________ ,平面a叫做_______________ .直线与平面垂直时,它们惟一的公共点P叫做________ .垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的______________ .(2)判定定理:一条直线与一个平面内的________________ 都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示: a // b,(3)__________________________________________ 性质定理:垂直于同一个平面的两条直线 .3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的 ___________ ,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°勺角.任一直线与平面所成角B的范围是 ____________ .4.二面角的有关概念(1)二面角:从一条直线出发的________________________ 叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作 ______________ 的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是 _______________ .5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是_________________ ,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的__________ ,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于_____ 的直线与另一个平面垂直.自查自纠1.直角2.(1)直线I与平面a互相垂直I丄a平面a的垂线直线I 的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0;90°4.(1)两个半平面所组成的图形(2)垂直于棱[0 ° 180°]5.(1)直二面角(2)垂线(3)交线0 (2017江西宜春四校联考)下列命题中错误的是( )A •如果平面a 丄平面3那么平面 a 内一定存在直线平行于平面 3B.如果平面 a 不垂直于平面 3,那么平面a 内一定不存在直线垂直于平面3C. 如果平面 a 丄平面 Y 平面3丄平面 Y a Q 3 =丨,那么I 丄平面 丫 D .如果平面a 丄平面3那么平面a 内所有直线都垂直于平面 3解:对于选项A ,可在a 内作直线平行于交线即可, A 正确;对于选项B ,假设在a 内存在直线垂直于平面 3则a 丄3这与已知矛盾,所以原命题成立,B 正确;对于选项C ,因为平面a 丄平面Y 所以在平面 丫内存在一条直线m 丄a 所以m i l.同理可知在平面 丫内存在直线n 丄3 n 丄I.若直线m , n 重合,则面a 与3重合或平 行,这与已知矛盾,所以直线 m , n 相交,又I 丄m , I 丄n ,所以I 丄面Y C 正确;对于选项 D ,易知a 与3的 交线I 并不垂直于面 3, D 错误.故选D.° (2017甘肃马营中学月考)若m 、n 是两条不同的直线,a 、3 丫是三个不同的平面,则下列命题中的真命题是( )A .若 m? 3 ,a 丄 3 ,贝U m 丄aB .若 aCl Y= m , 3C Y = n , m / n ,贝U a/ 3 C .若 m ± 3, m //a则a 丄3D .若 a 丄Y a 丄 3则 3-L Y解:若m? 3 , a 丄3 ,贝y m 与a 的关系可能平行也可能相交或 m? a ,贝y A 为假命题;选项 B 中,a 与3选C.而不充分条件.故填必要不充分.❺(2017重庆八中适应性考试)在正四面体P-ABC 中,D , E , F 分别是AB , BC , CA 的中点,下面四个结论 中正确的是 _________________ . ① BC //平面PDF ; ② DF 丄平面FAE ;③ 平面PDF 丄平面 ABC ; ④平面PAE 丄平面 ABC.解:由DF // BC 可得BC //平面PDF ,故①正确;若PO 丄平面ABC ,垂足为O ,贝U O 在AE 上,贝U DF 丄PO , 又DF 丄AE ,故DF 丄平面FAE ,故②正确;由PO 丄平面ABC , PO?平面PAE ,可得平面 FAE 丄平面 ABC , 故④正确,平面PDF 不过PO ,故③不正确.故填①②④.A . A 1E 丄 DC 1B . A 1E 丄 BDC . A 1E 丄 BC 1D . A 1E 丄AC解:由正方体的性质,得 A 1B 1 丄 BC 1 , BQ 丄 BC 1 ,所以 BG 丄平面 A 1B 1CD ,又 A 1E?平面 A 1B 1CD ,所以 A 1E 丄BC 1 ,故选C.(2017全国卷川)在正方体 ABCD-A i B i C i D i 中, E 为棱CD 的中点,贝U()❹ 若I , m 是两条不同的直线, m 垂直于平面a ,则"I 丄m ”是"I // a”的 _____________ 条件.解:若I 丄m , m 丄平面a,贝y I //a 或I? a ;若I //a, m 丄平面a,贝U I 丄m ,所以"I 丄m ”是"I // a”的必要 可能平行也可能相交,则B 为假命题;选项 D 中3与丫也可能平行或相交(不一定垂直),则D 为假命题.»为类解析触类旁邂类型一线线垂直问题EB 如图,在四棱台ABCD-A I B I C I D I中,D i D丄平面ABCD,底面ABCD是平行四边形,AB= 2AD, AD =A1B1,Z BAD = 60°(1)证明:AA i 丄BD ;⑵证明:CC i//平面A I BD.证明:(1)因为D I D丄面ABCD,且BD?面ABCD,所以D i D丄BD.又因为AB = 2AD,/ BAD = 60°在厶ABD 中,由余弦定理得BD2= AD2+ AB2—2AD ABcos60°= 3AD2,所以AD2+ BD2= AB2所以AD丄BD.又因为AD n D I D = D,所以BD丄面ADD i A i.又AA I?面ADD I A I,所以AA I±BD.(2)连接AC, A i C i,设AC n BD = E,连接A I E.i因为四边形ABCD为平行四边形,所以EC = ^AC.由棱台定义及AB = 2AD = 2A i B i知A i C i // EC且A i C i = EC,所以四边形A I ECC I为平行四边形.所以CC i// A I E.又因为A I E?面A I BD, CC i?面ABD,所以CC I // 面A I BD.【点拨】本题主要考查线线、线面位置关系•第(i)问证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直;第(2)问证明线面平行,需转化为证明线线平行,由于面A I BD中没有与CC I平行的直线,故需作辅助线.(20i7武汉市武钢第三子弟中学月考)如图,三棱柱ABC-A i B i C i 中,CA= CB , AB = AA i , / BAA i= 60°.f(i)证明:AB 丄A I C ;⑵若AB= CB = 2, A I C = .6,求三棱柱ABC-A i B i C i的体积. 解:⑴证明:取AB的中点O,连接OC, OA i, A I B.因为CA = CB,所以0C丄AB.由于AB = AA i,/ BAA i= 60° °故厶AA i B为等边三角形,所以OA i丄AB.因为OC A OA i= 0,所以AB丄平面OA i C.又A i C?平面OA i C,故AB丄A i C.⑵由题设知△ ABC与厶AA i B都是边长为2的等边三角形,所以OC = OA i = .3. 又A i C = ■.6,贝U A i C2= OC2+ OA i,故OA i丄OC.因为OC A AB= O,所以OA i丄平面ABC, OA i为三棱柱ABC-A i B i C i的高.乂△ ABC 的面积S SBC= , 3,故三棱柱ABC-A i B i C i 的体积为V = S^ABC X OA i = 3.类型二线面垂直问题GE 如图,四棱锥P-ABCD中,PA丄底面ABCD , AB丄AD,点E在线段AD上,且CE // AB.(i)求证:CE丄平面PAD ;⑵若PA= AB= i , AD = 3, CD =运,/ CDA = 45° 求四棱锥P-ABCD 的体积. 解:(1)证明:因为PA丄底面ABCD , CE?平面ABCD,所以PA丄CE.因为AB丄AD, CE / AB,所以CE丄AD.又PA A AD = A,所以CE丄平面PAD.(2)由(1)可知CE丄AD.在Rt △ ECD 中,CE = CD sin45 = 1, DE = CD c os45°= 1, 又因为AB = 1,贝U AB = CE.又CE // AB, AB丄AD,所以四边形ABCE为矩形,四边形ABCD为梯形.因为AD = 3,所以BC = AE= AD —DE = 2,1 1 5S ABCD = 2(BC + AD) AB =彳(2 + 3)X 1 = §,1 1 5 5VP-ABCD=3SABCD'PA=3x只1=6.于是四棱锥P-ABCD的体积为|.【点拨】证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;第(2)问的难点在于求底面四边形ABCD的面积,注意充分利用题设条件,先证明底面ABCD是直角梯形,从而求出底面面积,最后求体积.(2017锦州市第二高级中学月考)如图,在正方体ABCD-A i B i C i D i中,E, F , P, Q, M, N分别是棱AB, AD , DD i, BB i, “B i, AQ i 的中点•求证:⑴直线BC i〃平面EFPQ ;⑵直线AC」平面PQMN.证明:(1)如图,连接AD i,由ABCD-A i B i C i D i是正方体,知AD i II BC i, 因为F , P分别是AD, DD i的中点,所以FP II AD i,从而BC i I FP.而FP?平面EFPQ,且BC i?平面EFPQ , 故直线BC i I平面EFPQ.⑵如图,连接AC, BD,贝U AC丄BD.由CC i丄平面ABCD , BD?平面ABCD,可得CC i丄BD .又AC A CC i = C,所以BD丄平面ACC i A i.而AC i?平面ACC i A i,所以BD丄AC i.因为M, N分别是A i B i, A i D i的中点,所以MN I BD,从而MN丄AC i. 同理可证PN丄AC i.又PN A MN = N,所以直线AC i±平面PQMN.类型三面面垂直问题GO)如图所示,在长方体ABCD-A i B i C i D i中,AB = AD = i, AA i= 2, M是棱CC i的中点.B C又A1B1Q B I M = B i,由①②得BM丄平面A I B I M.而BM?平面ABM,所以平面ABM丄平面A i B i M.【点拨】求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.变式.(2017武汉市第四十三中学月考)如图,在五棱锥P-ABCDE 中,PA丄平面ABCDE , AB// CD,/ ABC=45° AB= 2 2, BC = 2AE = 4,三角形PAB是等腰三角形.求证:平面PCD丄平面PAC.证明:因为/ABC = 45° AB= 2 2, BC = 4,所以在△ ABC 中,由余弦定理得,AC2= (2 _ 2)2+ 42-2 X 2_2X 4COS45 = 8,解得AC= 2 ,2,所以AB2+ AC2= 8 + 8 = 16= BC2,即卩AB丄AC,又PA丄平面ABCDE,所以PA丄AB.又FA n AC = A,所以AB丄平面PAC,又AB // CD,所以CD丄平面FAC. 又因为CD?平面PCD,所以平面PCD丄平面PAC.类型四垂直综合问题EE (2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,/ A = 90° BC= 6, D, E分别是AC ,AB上的点,CD = BE= 2,O为BC的中点.将厶ADE沿DE折起,得到如图2所示的四棱锥A'B-DE ,其中AO = 3.(1)证明:A'O丄平面BCDE ;⑵求二面角A'C--B的平面角的余弦值.解:(1)证明:在图1中,易得OC = 3, AC = 3,2, AD = 2 2.如图示,连接OD , OE,在△ OCD中,由余弦定理可得OD = OC2+ CD2- 2OC CDcos45°= , 5•由翻折不变性可知AD = 2 _2,易得AO2+ OD2= AD2,所以A ‘0丄OD•同理可证A O丄OE.又因为OD n OE = O,所以A O丄平面⑵过O作OH丄CD交CD的延长线于H,连接A H,因为A ‘O丄平面BCDE,易知A H丄CD,所以/ A HO为二面角A‘ C--B的平面角.结合图1可知,H为AC中点,又O为BC中点,故OH = ^AB= 节,从而A H = OH2+ OA 2=亠3°, 所以cos/ A ‘ HO=-°^ =丘A ‘ H 5 '所以二面角A'CD-B 的平面角的余弦值为亠5【点拨】本题主要考查线面垂直及二面角的计算等.(2016全国卷I )如图,在以A , B , C , D , E , F 为顶点的五面体中,(1)证明:平面 ABEF 丄平面EFDC ;⑵求二面角E-BC-A 的余弦值.解:(1)证明:由已知可得 AF 丄DF , AF 丄FE ,又DF n FE = F ,所以AF 丄平面EFDC . 又AF?平面ABEF ,故平面ABEF 丄平面EFDC.⑵过D 作DG 丄EF ,垂足为 G ,由(1)知DG 丄平面ABEF.以G 为坐标原点, G F 的方向为x 轴正方向,|GF|为单位长,建立如图所示的空间直角坐标系 G -xyz.由(1)知/DFE 为二面角 D-AF-E 的平面角,故 / DFE = 60° 贝U DF = 2, DG可得 A(1 , 4, 0), B(-3,4, 0), E( — 3, 0, 0), D(0, 0, .3).由已知得,AB // EF ,所以 AB //平面 EFDC.又平面 ABCD n 平面 EFDC = CD ,故 AB / CD , CD // EF.由BE // AF ,可得BE 丄平面EFDC ,所以/CEF 为二面角C-BE-F 的平面角,故/CEF = 60°从而可得C(— 2,0, 3),连接 AC ,则 (1 , 0, . 3), EB = (0, 4, 0), AC = (— 3,— 4,3), AB = (— 4, 0, 0).设n = (x , y , z)是平面BCE 的法向量,贝Un EC =0,'x + T 3z = 0,厂即'所以可取n = (3, 0,—*3).InEB = 0,仆 0,m AC = 0,设m 是平面ABCD 的法向量,则m AB = 0,同理可取 m = (0, 3, 4),1. 判断(证明)线线垂直的方法 (1) 根据定义;(2) 如果直线a // b , a 丄c ,贝U b 丄c ;⑶如果直线 a 丄面a, c? a ,贝U a 丄c ;折叠要注意不变量;作二面角,往往要通过作垂线来实现.面ABEF 为正方形,AF = 2FD ,贝U cos 〈n , m >n m|n ||2「19 19 结合图形,得二面角 E-BC-A 的余弦值为一2 .'19/ AFD = 90° 且二面角揭示规漳⑷向量法:两条直线的方向向量的数量积为零.2.证明直线和平面垂直的常用方法(1)利用判定定理:两相交直线a, b? a , a丄c, b± c? c丄a;(2)a // b, a丄 a ? b± a ;⑶利用面面平行的性质:a// 3, a丄a ? a± 3 ;⑷利用面面垂直的性质:a丄3, a A 3 =m, a? a , a丄m? a丄3 ;a丄丫,3丄Y, a A 3 =m? m X 丫.3.证明面面垂直的主要方法(1)利用判定定理:a丄3, a? a ? a丄3 ;(2)用定义证明.只需判定两平面所成二面角为直二面角;(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:a// 3, a丄丫? 3丄丫.4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线, 把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.注意线线垂直、线面垂直、面面垂直间的相互转化判定定理判定定理线线垂直J *线面垂直・〜面面垂直性质定理性蜃定理6.线面角、二面角求法求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)?证?求(算)三步曲.也可用射影法:设斜线段AB在平面a内的射影为A B AB与a所成角为0,贝U COS B 厂B厂I|AB|设厶ABC在平面a内的射影三角形为△ A B C 平面ABC与a所成角为0则COS 0 = S: B CS A ABC@|底翻科劃b查漏补缺折展延伸1.(2016浙江)已知互相垂直的平面 a , 3交于直线I •若直线m, n满足m// a, n丄3 ,则()A . m / lB . m / n C. n丄I D. m± n解:由题意知aA A l,所以l? 3 •因为n丄3所以n丄I•故选C.2.已知a, 3为两个不同的平面,I为直线,若a丄3, a A 3 = I,则()A .垂直于平面3的平面一定平行于平面aB.垂直于直线I的直线一定垂直于平面aC.垂直于平面3的平面一定平行于直线ID .垂直于直线I的平面一定与平面a, 3都垂直解:由面面垂直的判定定理可知,垂直于直线I的平面一定与平面a, 3都垂直.故选D.3.设m, n是两条不同的直线, a , 3是两个不同的平面.下列命题中正确的是()A .若a丄 3 m? a , n? 3 ,贝U m± nB.若a// 3 m? a , n? 3 ,则m// nC.若m l n , m? a , n? 3 ,贝U a丄3D .若m±a,m / n ,n / 3 ,贝U a丄3解:若a丄B, m? a , n?卩,贝U m与n可能平行、相交或异面,故A错;若a//®, m? a , n?卩,则m与n可能平行,也可能异面,故B错;若m丄n, m? a , n? B ,贝U a与®可能相交,也可能平行,故C错;对于D项,由m丄a, m / n,得n丄a,又知n // B,故a丄B,所以D项正确.故选D.4.(2017沈阳市第一中学月考)设平面a与平面B相交于直线m,直线a在平面a 内,直线b在平面B内,且b丄m,则"a丄B'是"a丄b”的( )A .充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件解:当a丄B时,由面面垂直的性质定理知b丄a,则b丄a.所以“a丄B”是“a丄b”的充分条件.而当a? a ,且a // m时,因为b丄m,所以b丄a,而此时平面a与平面B不一定垂直.所以“a丄B”不是“ a丄b ”的必要条件.故选A.5.(2015福建质量检查)如图,AB是圆O的直径,VA垂直圆O所在的平面,C是圆周上不同于A, B的任意一点,M , N分别为VA, VC的中点,则下列结论正确的是( )CA . MN // ABB.MN与BC所成的角为45°C.OC X平面VACD .平面VAC丄平面VBC解:依题意,MN // AC,又直线AC与AB相交,因此MN与AB不平行,A错误;注意到AC丄BC,因此MN 与BC所成的角是90°, B错误;注意到直线OC与AC不垂直,因此OC与平面VAC不垂直,C错误;由于BC丄AC, BC丄VA,因此BC丄平面VAC.又BC?平面VBC,所以平面VBC丄平面VAC, D正确.故选D.6. (2017瓦房店市高级中学月考)如图,在正方形SGG2G3中,E, F分别是G1G2, G2G3的中点,D是EF的中点,现沿SE, SF及EF把这个正方形折成一个几何体,使G1, G2, G3三点重合于点G,这样,下列五个结论:(1)SG丄平面EFG ;(2)SD丄平面EFG ;(3)GF丄平面SEF;(4)EF丄平面GSD;(5)GD丄平面SEF.正确的是( )A. (1)和⑶B. ⑵和⑸C. (1)和⑷D. ⑵和⑷解因为正方形中折叠前后都有SG丄GE, SG丄GF,所以SG丄平面EFG.(1)正确,(2)错误:因为SG丄GF, SG丄GD,所以GF并不垂直于SF, GD并不垂直于SD,即卩⑶(5)错误.因为EF丄GD , EF丄SG, GD n SG= G ,所以EF丄面GSD.(4)正确.故选C.7.在正方体ABCD-A 'B 'C 'D中,过对角线BD '的一个平面交AA于E,交CC于F,贝U①四边形BFDE 一定是平行四边形;②四边形BFD E有可能是正方形;③四边形BFD E在底面ABCD内的投影一定是正方形;④平面BFD E有可能垂直于平面BB D.以上结论正确的为____________ .(写出所有正确结论的编号)解:根据两平面平行的性质定理可得BFD E为平行四边形,①正确;若四边形BFD E是正方形,则BE丄ED ', 又A ' D '丄EB, A ' D ' n ED ' = D ',所以BE丄面ADD A ',与已知矛盾,②错;易知四边形BFD E在底面ABCD内的投影是正方形ABCD,③正确;当E, F分别为棱AA ', CC '的中点时,EF // AC,又AC丄平面BB D, 所以EF丄面BB D,④正确.故填①③④.8.(2017沈阳市回民中学月考)ABCD是正方形,P为平面ABCD外一点,且PA丄平面ABCD,则平面PAB,平面PBC,平面PCD,平面PAD,平面ABCD这五个平面中,互相垂直的平面有 _________________ 对.解:因为PA丄平面ABCD,所以平面PAD丄平面ABCD,平面PAB丄平面ABCD.又因为AD丄平面FAB,所以平面FAD丄平面PAB,同理可得平面PBC丄平面PAB,平面PAD丄平面PCD,故互相垂直的平面有5对.故填5.9.(2017钟祥市实验中学月考)如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD = a, PA = PC =■, 2a.求证:(1)PD 丄平面ABCD ;⑵平面PAC丄平面PBD.证明:⑴因为PD = a, DC = a, PC= 2a,所以PC2= PD2+ DC2,所以PD 丄DC.同理可证PD丄AD,又AD n DC = D ,所以PD丄平面ABCD.⑵由⑴知PD丄平面ABCD ,所以PD丄AC,而四边形ABCD是正方形,所以AC丄BD,又BD n PD = D,所以AC丄平面PDB.同时AC?平面PAC ,所以平面PAC丄平面PBD.10. (2017谷城县第一中学月考)如图所示,在四棱锥P-ABCD中,PA丄底面ABCD , AB丄AD , AC丄CD,/ABC = 60° PA = AB = BC, E 是PC 的中点.证明:⑴CD丄AE;(2)PD丄平面ABE.证明:⑴ 因为PA丄底面ABCD , CD?平面ABCD,所以PA丄CD.因为AC丄CD , FA Q AC = A,所以CD丄平面FAC.而AE?平面PAC,所以CD丄AE.(2)由FA= AB= BC ,Z ABC= 60 °可得AC = PA•因为E是PC的中点,所以AE丄PC.由⑴知AE丄CD,且PC Q CD = C,所以AE丄平面PCD.而PD?平面PCD,所以AE丄PD.因为PA丄底面ABCD,所以PA丄AB.又因为AB丄AD且PA Q AD = A,所以AB丄平面PAD,而PD?平面PAD,所以AB丄PD.又因为AB Q AE= A,所以PD丄平面ABE.11. (2017 天津)如图,在四棱锥P- ABCD 中,AD 丄平面PDC , AD // BC, PD 丄PB, AD = 1 , BC = 3, CD = 4, PD = 2.AP 5因为PD丄平面PBC,故PF为DF在平面PBC上的射影,所以/ DFP为直线DF和平面PBC所成的角.由于AD // BC, DF // AB,故BF = AD = 1 ,由已知,得CF = BC- BF = 2.又AD 丄DC ,故BC 丄DC ,在Rt△ DCF 中,DF2= DC2+ CF2= 42+ 22= 20, DF = 2 5,所以在Rt△ DPF 中可得sin/ DFP = DD二亠5所以,直线AB与平面PBC所成角的正弦值为—.5(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC丄BM,并求MC的值.解:⑴由题设AB= 1, AC = 2,/ BAC = 60°, 可得S A ABC=I' AB - AC • sin60 °= ^3.由PA丄平面ABC,可知PA是三棱锥P-ABC的高,又PA = 1,所以三棱锥P-ABC的体积⑵证明:在平面ABC内,过点B 作BN丄AC,垂足为N.在平面FAC内,过点N作MN // PA,交PC于点M ,连接BM •由FA丄平面ABC知FA丄AC,又MN // PA,所以MN丄AC•又BN丄AC, BN P MN = N, BN?平面MBN ,MN?平面MBN,所以AC丄平面MBN.又BM?平面MBN,所以AC丄BM.I 3 PM AN 1在Rt△BAN中,AN=ABcos/BAC=2 从而NC=AC-AN乜由MN〃PA,得MM=AN二./ BAC= 60 °V=3 ABC,PA=卡. (2015安徽)如图,三棱锥AB= 1 , AC= 2,(1) 求异面直线A i M和C i D i所成的角的正切值;⑵证明:平面ABM丄平面A i B i M.解:⑴因为C i D i I B i A i,所以/ MA i B i为异面直线A i M和C i D i所成的角,因为A i B i丄平面BCC i B i,所以/ A i B i M =90°而A i B i= i , B i M = . B i C?+ MC i= 2,故tan/ MA i B i = = .2.A iB i(2) 证明:由A i B i丄平面BCC i B i, BM?平面BCC i B i,得"B i丄BM •①由(i)知,B i M = 2,又BM = BC1 2+ CM2= .2, B i B= 2,B i M2+ BM2= B i B2,从而BM 丄B i M.②(1) 求异面直线AP与BC所成角的余弦值;(2) 求证:PD丄平面PBC;⑶求直线AB与平面PBC所成角的正弦值.解:(1)如图,由已知AD // BC,故/DAP或其补角即为异面直线AP与BC所成的角.因为AD丄平面PDC,所以AD丄PD.在Rt△ PDA 中,由已知,得AP = AD1 2+ PD2= 5.故cos/ DAP = AD =血.所以,异面直线AP与BC所成角的余弦值为-?.5⑵证明:因为AD丄平面PDC,直线PD?平面PDC,所以AD丄PD.又因为BC // AD,所以PD丄BC.又PD丄PB,所以PD丄平面PBC.⑶过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.。
1.2.3空间中的垂直关系(二)【学习要求】1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用.【学法指导】借助对实例、图片的观察,提炼平面与平面垂直的定义;通过直观感知,操作确认,归纳平面与平面垂直的判定定理及性质定理;通过运用两定理感悟和体验面面垂直转化为线线垂直的思想方法.填一填:知识要点、记下疑难点1.两平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.两个平面α,β互相垂直,记作:α⊥β .2.面面垂直的判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.3.面面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.研一研:问题探究、课堂更高效[问题情境]在第一大节,我们曾直观地看到,当一个平面通过另一个平面的垂线时,就给我们两个平面垂直的形象.这一小节我们将进一步研究平面与平面垂直的判定与性质.探究点一两平面垂直的定义及判断问题1如图,已知α∩β=CD,BA⊥CD, BE⊥CD.那么直线CD与平面ABE有怎样的关系?为什么?答:CD⊥平面ABE.因为AB∩BE=B,所以AB与BE确定平面ABE,又BA⊥CD, BE⊥CD,所以CD⊥平面ABE.问题2在问题1的图中,当∠ABE是什么角时,给我们两平面互相垂直的印象?答:当∠ABE为直角时;给我们两平面互相垂直的印象.问题3由问题2,你能总结出两平面垂直的定义吗?答:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条直线互相垂直,就称这两个平面互相垂直.两个平面α,β互相垂直,记作:α⊥β.问题4在问题1的图形中,已知∠ABE为直角,那么直线BA与平面β有怎样的关系?为什么?答:BA⊥β,因为∠ABE为直角,可知BA⊥BE,又BA⊥CD,所以BA⊥β.问题5在问题1的图中,如果平面α过平面β的垂线BA,那么这两个平面是否相互垂直呢?说明理由.答两个平面垂直.理由如下:在平面β内过点B作BE⊥CD,由于BA⊥β,所以BA⊥BE,因此∠ABE为直角.问题6由问题5你能得出怎样的结论?答:平面与平面垂直的判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.问题7如何画两个平面互相垂直的直观图?答:画两个互相垂直的平面,把直立平面的竖边画成和水平面的横边垂直,如图所示,平面α和平面β垂直.例1如图,已知:平面α⊥平面β,在α与β的交线上取线段AB=4 cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,求CD的长.解:连接BC,因为BD⊥AB,直线AB是两个互相垂直的平面α 和β的交线,所以BD⊥α,BD⊥BC,所以△CBD是直角三角形,在直角△BAC中,BC=32+42=5;在直角△CBD中,CD=122+52=13.所以CD的长为13 cm.小结:证明面面垂直需根据面面垂直的判定定理转化为证明线面垂直进而转化为证明线线垂直.此外还可用定义法.跟踪训练1如图,在三棱锥V-ABC中,VC⊥底面ABC,D是AB的中点,且AC=BC,求证:平面V AB⊥平面VCD.证明:因为AC=BC,所以△ABC是等腰三角形.又D是AB的中点,所以CD⊥AB.又VC⊥底面ABC,AB⊂底面ABC,所以VC⊥AB.因为CD∩VC=C,CD⊂平面VCD,VC⊂平面VCD,所以AB⊥平面VCD.又AB⊂平面V AB,所以平面V AB⊥平面VCD.例2已知Rt△ABC中,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC成直角(如图).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC;(2)∠BAC=60°.证明: (1)因为AD ⊥BD ,AD ⊥DC, 所以AD ⊥平面BDC.因为平面ABD 和ACD 都过AD , 所以平面ABD ⊥平面BDC ,平面ACD ⊥平面BDC ;(2)如图(1)中,在直角△BAC 中,因为AB =AC =a ,所以BC =2a, 所以 BD =DC =22a, 如图(2),△BDC 是等腰直角三角形, 所以BC =2BD =a, 所以AB =AC =BC ,因此∠BAC =60°.小结:对于由平面图形折叠而成的几何体,要注意利用平面图形折叠前后有些线段的长度及角的大小不变的性质. 跟踪训练2 如图,在四面体ABCD 中,BD =2a ,AB =AD =BC =CD =AC =a.求证:平面ABD ⊥平面BCD.证明:取BD 中点E ,连接AE ,CE ,则AE ⊥BD ,BD ⊥CE.在△ABD 中,AB =a ,BE =12BD=22a ,∴AE =22a ,同理,CE =22a. 在△AEC 中,AE =EC =22a ,AC =a ,∴AC 2=AE 2+EC 2,即AE ⊥EC. 又∵BD∩EC =E ,∴AE ⊥平面BCD.又∵AE ⊂平面ABD ,∴平面ABD ⊥平面BCD.探究点二 两平面垂直的性质问题1 设平面α与平面β垂直,α∩β=CD ,BA ⊂α,BA ⊥CD ,那么BA 是否垂直平面β?答:BA ⊥β,证明如下:如下图,在平面β内过点B 作BE ⊥CD ,因为α⊥β,所以BA ⊥BE , 又因为BA ⊥CD ,CD∩BE =B ,所以BA ⊥β.问题2 由问题1你能归纳出怎样的结论?答:面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 例3 如图所示,P 是四边形ABCD 所在平面外的一点,ABCD 是∠DAB =60°且边长为a 的菱形.侧面PAD 为正三角形,其所在平面垂直于底面ABCD.(1)若G 为AD 边的中点,求证:BG ⊥平面PAD ;(2)求证:AD ⊥PB.证明:(1)连接PG ,BD ,由题知△PAD 为正三角形,G 是AD 的中点,∴PG ⊥AD.又平面PAD ⊥平面ABCD ,∴PG ⊥平面ABCD ,∴PG ⊥BG .又∵四边形ABCD 是菱形且∠DAB =60°,∴△ABD 为正三角形.∴BG ⊥AD.又AD∩PG =G ,∴BG ⊥平面PAD.(2)由(1)可知BG ⊥AD ,PG ⊥AD.∴AD ⊥平面PBG ,又∵PB ⊂面PBG ,∴AD ⊥PB.小结:证明线面垂直,除利用定义和判定定理外,另一种重要的方法是利用面面垂直的性质定理证明,应用时应注意:(1)两平面垂直;(2)直线必须在一个平面内;(3)直线垂直于交线.跟踪训练3 如图,已知平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,AE ⊥平面PBC ,E 点为垂足.(1)求证:PA ⊥平面ABC ;(2)当E 为△PBC 的垂心时,求证:△ABC 是直角三角形.证明:(1)在△ABC 内取一点D ,作DF ⊥AC 于点F ,因为平面PAC ⊥平面ABC ,且交线为AC ,所以DF ⊥平面PAC ,又PA ⊂平面PAC ,所以DF ⊥AP.作DG ⊥AB 于点G ,同理可证DG ⊥AP.因为DG 、DF 都在平面ABC 内,且DG∩DF =D ,所以PA ⊥平面ABC.(2)连接BE 并延长,交PC 于点H.因为E 是△PBC 的垂心,所以PC ⊥BE.又已知AE 是平面PBC 的垂线,所以PC ⊥AE.又BE∩AE =E ,所以PC ⊥平面ABE.因为AB ⊂平面ABE ,所以PC ⊥AB.又因为PA ⊥平面ABC ,AB ⊂平面ABC ,所以PA ⊥AB.又PC∩PA =P ,所以AB ⊥平面PAC.又AC ⊂平面PAC ,所以AB ⊥AC ,即△ABC 是直角三角形.练一练:当堂检测、目标达成落实处1.下列命题中正确的是(C)A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β2.设两个平面互相垂直,则(B)A.一个平面内的任何一条直线都垂直于另一个平面B.过交线上一点垂直于一个平面的直线必在另一个平面内C.过交线上一点垂直于交线的直线必垂直于另一个平面D.分别在两个平面内的两条直线互相垂直3.已知四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EBD⊥平面ABCD.证明:连接AC,BD,交点为F,连接EF,EF是△SAC的中位线,∴ EF∥SC.∵SC⊥平面ABCD,∴EF⊥平面ABCD,又EF⊂平面BDE,∴平面BDE⊥平面ABCD.课堂小结:1.判定面面垂直的方法主要有:(1)面面垂直的定义(使用较少);(2)面面垂直的判定定理(使用最多).在证明两个平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线在现有的图中不存在,则可通过作辅助线来解决.2.空间中的垂直关系相互转化图:3.运用两个平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.。
1.2.3 空间中的垂直关系平面与平面垂直一、教材分析平面与平面的垂直是两个平面的一种重要的位置关系.是继教材直线与直线的垂直、直线与平面的垂直之后的迁移与拓展.这一节的学习对理顺学生的知识架构体系、提高学生的綜合能力起着重要的作用.二、学生分析学生通过学习直线与直线的垂直、直线与平面的垂直,已经初步掌握了线线垂直与线面垂直的判定和性质.这为学生学习平面与平面垂直的判定定理与性质定理打下了良好的基础.但是,有一部分学生的空间象想能力和逻辑思维能力较差,因此,在学习的过程仍有一定的难度,教学中必须注意这一点.三、设计理念学生是学习和发展的主体,教师是学习活动积极的组织者和引导者.立体几何的学习主要培养学生的空间想象能力和逻辑思维能力,因此在学习与教学过程中应充分发挥学生在学习中的主动性和创造性, 通过探究性的学习方法,使学生在不断的探究学习的过程中积极参与、独立思考.多媒体与教具的应用是教学情景的设置、表现立体几何中丰富多彩的线面关系、加深定理与性质的理解的一个重要手段.也是教师调动学生的情感体验、关注学生的学习兴趣和诱导学生积极独立思考的重要方法,为实现学生的主体地位起着重要的作用.四、教学目标理解和掌握面面垂直的定义、判定定理及性质定理,并能应用定理解决相关问题五、教学重点、难点教学重点:两个平面垂直的定义、判定定理、性质定理。
教学难点:两个平面垂直的定义、判定定理、性质定理的推导及应用。
六、教学方法与教学手段教学方法:本节课采用“问题探究式”教学法,通过观察、归纳、启发探究,运用现代化多媒体教学手段,进行教学活动..教学手段:采用多媒体辅助教学,增强直观性,增大教学容量,提高效率。
(1)新课引入:提出问题,激发学生的求知欲。
(2)定义的讲解:让学生自己分析定义中的两个垂直,并和以前的知识建立联系。
(3)判定定理的分析:通过两个实际的例子,让学生自己分析两个平面怎样才能垂直,归纳定理的内容。
再进一步分析定理。
1.2.3空间中的垂直关系(二)一、基础过关1.已知三条相交于一点的线段PA、PB、PC两两垂直点P在平面ABC外PH⊥面ABC于H则垂足H是△ABC() A.外心B.内心C.垂心D.重心2.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β. A.①②B.①③C.②③D.①②③3.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.一个或无数个D.可能不存在4.平面α∩平面β=l,平面γ⊥α,γ⊥β,则()A.l∥γ B.l⊂γC.l与γ斜交D.l⊥γ5.若α⊥β,α∩β=l,点P∈α,PD/∈l,则下列命题中正确的为________.(只填序号)①过P垂直于l的平面垂直于β;②过P垂直于l的直线垂直于β;③过P垂直于α的直线平行于β;④过P垂直于β的直线在α内.6.α、β、γ是两两垂直的三个平面,它们交于点O,空间一点P到α、β、γ的距离分别是2 cm、3 cm、6 cm,则点P到O的距离为________.7.如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB. 8.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C1. 求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C1.二、能力提升9.若平面α与平面β不垂直,那么平面α内能与平面β垂直的直线有()A.0条B.1条C.2条D.无数条10.设l是直线,α,β是两个不同的平面,下列结论中正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β11.如图在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在直线_________上.12.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.三、探究与拓展13.在直三棱柱ABC—A1B1C1的底面△ABC中,AB=BC,能否在侧棱BB1上找到一点E,使得截面A1EC⊥侧面AA1C1C?若能找到,指出点E的位置;若不能找到,说明理由.1 / 1。
张喜林制1.2.3 空间中的垂直关系考点知识清单1.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交,并且和这个平面____,则叫做这条直线与这个平面垂直.(2)直线与平面垂直的判定定理:如果一条直线与平面内的垂直,那么这条直线与这个平面垂直.(3)直线与平面垂直的性质定理:垂直于同一平面的两条直线2.平面与平面垂直(1)平面与平面垂直的定义:如果两个相交平面的交线与第三个平面____,又这两个平面与第三个平面相交所得的两条交线____,就称这两个平面互相垂直.(2)平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条,则这两个平面____.(3)平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于另一个平面.要点核心解读1.直线与平面垂直(1)直线与平面垂直的定义的理解.定义中的“任何一条直线”的含义是所有,而不是无数.这里要避免两个错误:①一条直线垂直于一个平面内的一条直线,它就垂直于这个平面(这一错误显然是受到了线面平行的判定定理的影响).②一条直线垂直于一个平面内的无数条直线,它就垂直于这个平面(无数条直线不能保证一定存在两条相交直线,可能是无数条平行直线).直线和平面垂直的定义可看作是线面垂直的一条性质,如果有直线和平面垂直,那么这条直线就和这个平面内的所有直线都垂直.(2)直线与平面垂直的判定.①判定定理的符号表示:ααα⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊥⊥=⊂⊂l b l al p b a b a②定理中有三个条件:两个线线垂直和一个相交条件推得结论。
三个条件缺一不可,尤其最后一个——两条相交直线这一条件,极易被忽视.直线和平面垂直的判定定理是判定直线和平面垂直的理论依据. ③推论:αα⊥⇒⎭⎬⎫⊥2121//l l l l (3)直线与平面垂直的性质,①性质定理的符号表示:b a b a //⇒⎭⎬⎫⊥⊥αα ②直线和平面垂直的性质定理也可以看作是线线平行的判定定理. (4)注意两个唯一性,①过一点有且只有一条直线和一个平面垂直. ②过一点有且只有一个平面和一条直线垂直. 2.平面与平面垂直(1)两个平面垂直的定义的理解,①两个平面垂直是两个平面相交的特例.②用两个平面的交线和这两个平面与第兰个平面的交线间的垂直关系——三线相互垂直来定义两个平面垂直.(2)两个平面垂直的判定定理. ①判定定理的符号表示:βααβ⊥⇒⎭⎬⎫⊂⊥a a②面面垂直的判定定理不仅是判定两个平面互相垂直的理论依据,而且还是找出或作出与已知平面垂直的平面的理论依据.另外,面面垂直的判定定理还可以实现线面垂直和面两垂直之间的转化,具体如下:面面垂直判定定理线面垂直这个定理的实质是将面面垂直的问题转化为线面垂直的问题来处理,这样证明两个平面垂直的问题就转化为证明线面垂直(3)两个平面垂直的性质定理, ①性质定理的符号表示:αββαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⊥a la a l②平面与平面垂直的性质定理也可以看作是直线与平面垂直的判定定理,即:线面垂直性质定理面面垂直3.直线与平面、平面与平面的距离(1)直线与平面的距离①一条直线和一个平面平行,这条直线上的任意一点到这个平面的距离叫做这条直线到这个平面的距离.②直线到平面的距离是用点到平面的距离来度量的,归根结底还是点与点的距离. (2)平面与平面的距离.①两个平行平面的公垂线、公垂线段的定义:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,其中夹在这两个平面间的部分,叫做这两个平行平面的公垂线段,②两个平行平面的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 4.常见问题的处理方法(1)判断线面垂直的方法. ①利用定义。
数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。
空间中的垂直关系
在三维空间中,直线和平面之间的垂直关系可以通过以下方式定义:
1. 直线和平面相交,且交线的夹角为 90 度,则直线和平面垂直。
2. 直线和平面相交,且交线是斜线,则直线和平面不垂直。
3. 直线和平面相交,且交线是一条直线,则直线和平面垂直。
对于平面和平面之间的垂直关系,可以使用以下方式定义:
1. 如果两个平面互相垂直,则它们的交线是直线,且这两条直线互相垂直。
2. 如果两个平面互相垂直,则其中一个平面的垂线穿过另一个平面,且这两条垂线互相垂直。
在三维空间中,直线和直线之间的垂直关系可以通过以下方式定义:
1. 如果两条直线互相垂直,则它们的交角为 90 度。
2. 如果两条直线互相平行,则它们不一定垂直,但如果它们在某一点相交,则它们的交线是直线,且这两条直线互相垂直。
垂直关系在三维空间中非常重要,因为它们可以用来定义物体之间的相对位置和方向。
在建筑设计、机械设计、航空航天等领域,垂直关系经常被应用到。
空间中的垂直关系专题训练知识梳理一、线线垂直:如果两条直线于一点或经过后相交于一点,并且交角为,那么称这两条直线互相垂直.二、线面垂直:1.定义:如果一条直线和一个平面相交,并且和这个平面内的_________________,那么称这条直线和这个平面垂直. 也就是说,如果一条直线垂直于一个平面,那么他就和平面内任意一条直线都.直线l和平面α互相垂直,记作l⊥α.2.判定定理:如果一条直线与平面内的直线垂直,那么这条直线与这个平面垂直.推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面.推论②:如果两条直线同一个平面,那么这两条直线平行.3.点到平面的距离:长度叫做点到平面的距离.三、面面垂直:1.定义:如果两个相交平面的交线与第三个平面,又这两个平面与第三个平面相交所得的两条交线,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.2.判定定理:如果一个平面经过另一个平面的___________,那么这两个平面互相垂直.3.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于直线垂直于另一个平面.四、求点面距离的常用方法:1.直接过点作面的垂线,求垂线段的长,通常要借助于某个三角形.2.转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解.3.体积法:利用三棱锥的特征转换位置来求解.题型一线线垂直、线面垂直的判定及性质例1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.【变式1】:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点.〔Ⅰ〕求证:B1D1⊥AE;〔Ⅱ〕求证:AC∥平面B1DE.【解答】〔Ⅰ〕连接BD,那么BD∥B1D1,∵ABCD是正方形,∴AC⊥ BD.∵CE⊥平面ABCD,BD⊂平面ABCD,∴CE⊥BD.又∵AC∩CE=C,∴BD⊥面ACE.∵AE⊂面ACE,∴BD⊥AE,∴B1D1⊥AE.﹣﹣﹣〔5分〕〔Ⅱ〕证明:取BB1的中点F,连接AF、CF、EF.∵ E、F是C1C、B1B的中点,∴ CE∥B1F且CE=B1F,∴ 四边形B1FCE是平行四边形,∴ CF∥ B1E.∵ 正方形BB1C1C 中,E、F是CC、BB的中点,∴ EF∥BC且EF=BC又∵ BC∥AD且BC=AD,∴ E F∥AD且EF=AD.∴ 四边形ADEF是平行四边形,可得AF∥ED,∵ AF∩CF=C,BE∩ED=E,∴ 平面ACF∥平面B1DE.又∵ AC⊂平面ACF,∴AC∥面B1DE.【变式2】如图,四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.〔Ⅰ〕证明:EA⊥PB;〔Ⅱ〕证明:BG∥面AFC.【解答】〔Ⅰ〕证明:因为面ABCD为菱形,且∠ABC=60°,所以△ ACD为等边三角形,又因为E是CD的中点,所以EA⊥AB.又PA⊥平面ABCD,所以EA⊥PA.而AB∩PA=A所以EA⊥面PAB,所以EA⊥PB.〔Ⅱ〕取PF中点M,所以PM=MF=FD.连接MG,MG∥CF,所以MG∥面AFC.连接BM,BD,设AC∩BD=O,连接OF,所以BM∥OF,所以BM∥面AFC.而BM∩MG=M所以面BGM∥面AFC,所以BG∥面AFC.【变式3】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=,AA1=2.〔1〕证明:AA1⊥BD〔2〕证明:平面A1BD∥平面CD1B1;〔3〕求三棱柱ABD﹣A1B1D1的体积.【解答】〔1〕证明:∵底面ABCD是正方形,∴BD⊥AC,又∵A1O⊥平面ABCD且BD⊂面ABCD,∴A1O⊥BD,又∵A1O∩AC=O,A1O⊂面A1AC,AC⊂面A1AC,∴BD⊥面A1AC,AA1⊂面A1AC,∴AA1⊥BD.〔2〕∵A1B1∥AB,AB∥CD,∴A1B1∥CD,又A1B1=CD,∴四边形A1B1CD是平行四边形,∴A1D∥B1C,同理A1B∥CD1,∵A1B⊂平面A1BD,A1D⊂平面A1BD,CD1⊂平面CD1B1,B1C⊂平面CD1B,且A1B∩A1D=A1,CD1∩B1C=C,∴平面A1BD∥平面CD1B1.〔3〕∵A1O⊥面ABCD,∴A1O是三棱柱A1B1D1﹣ABD的高,在正方形ABCD中,AO=1.在Rt△A1OA中,AA1=2,AO=1,∴A1O=,∴V三棱柱ABD﹣A1B1D1=S△ABD•A1O=•〔〕2•=∴三棱柱ABD﹣A1B1D1的体积为.【变式4】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=BC=AC=AA1=4,点F在CC1上,且C1F=3FC,E是BC的中点.〔1〕求证:AE⊥平面BCC1B1〔2〕求四棱锥A﹣B1C1FE的体积;〔3〕证明:B1E⊥AF.【解答】〔1〕∵AB=AC,E是BC的中点,∴AE⊥BC.在三棱柱ABC﹣A1B1C1,中,BB1∥AA1,∴BB1⊥平面ABC,∵AE⊂平面ABC,∴BB1⊥AE,….〔2分〕又∵BB1∩BC=B,….〔3分〕BB1,BC⊂平面BB1C1C,∴AE⊥平面BB1C1C,….〔4分〕〔2〕由〔1〕知,即AE为四棱锥A﹣B1C1FE的高,在正三角形ABC中,AE=AB=2,…在正方形BB1C1C,中,CE=BE=2,CF=1,∴=﹣﹣S△CFE=4×=11.…〔6分〕∴=•AE==…〔7分〕〔3〕证明:连结B1F,由〔1〕得AE⊥平面BB1C1C,∵B1E⊂平面BB1C1C,∴AE⊥B1E,….〔8分〕在正方形BB1C1C,中,B1F==5,B1E==2,EF==,∵B1F2=B1E2+EF2,∴B1E⊥EF….〔9分〕又∵AE∩EF=E,….〔10分〕AE,EF⊂平面AEF,∴B1E⊥平面AEF,….〔11分〕∵AF⊂平面AEF,∴B1E⊥AF.….〔12分〕【变式5】如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,G在BC上,且CG=CB〔1〕求证:PC⊥BC;〔2〕求三棱锥C﹣DEG的体积;〔3〕AD边上是否存在一点M,使得PA∥平面MEG?假设存在,求AM的长;否那么,说明理由.【解答】〔1〕证明:∵PD⊥平面ABCD,∴PD⊥BC.又∵ABCD是正方形,∴BC⊥CD.又∵PD∩CD=D,∴BC⊥平面PCD.又∵PC⊂平面PCD,∴PC⊥BC.〔2〕∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴S△EDC=S△PDC==×〔×2×2〕=1.V C﹣DEG=V G=GC•S△DEC=××1=.﹣DEC〔3〕连结AC,取AC中点O,连结EO、GO,延长GO交AD于点M,那么PA∥平面MEG.证明:∵E为PC的中点,O是AC的中点,∴EO∥PA.又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG.在正方形ABCD中,∵O是AC的中点,BC=PD=2,CG=CB.∴△OCG≌△OAM,∴AM=CG=,∴所求AM的长为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【变式6】如下列图,在三棱柱ABC﹣A1B1C1中,BB1⊥底面A1B1C1,A1B1⊥B1C1且A1B1=BB1=B1C1,D为AC的中点.〔Ⅰ〕求证:A1B⊥AC1〔Ⅱ〕在直线CC1上是否存在一点E,使得A1E⊥平面A1BD,假设存在,试确定E点的位置;假设不存在,请说明理由.【解答】〔Ⅰ〕证明:连接AB1∵BB1⊥平面A1B1C1∴B1C1⊥BB1∵B1C1⊥A1B1且A1B1∩BB1=B1∴B1C1⊥平面A1B1BA∴A1B⊥B1C1. 又∵A1B⊥AB1且AB1∩B1C1=B1∴A1B⊥平面AB1C1∴A1B⊥AC1〔Ⅱ〕存在点E在CC1的延长线上且CE=2CC1时,A1E⊥平面A1BD.设AB=a,CE=2a,∴,∴,,DE=,∴,∴A1E⊥A1D…∵BD⊥AC,BD⊥CC1,AC∩CC1=C,∴BD⊥平面ACC1A1,又A1E⊂平面ACC1A1∴A1E⊥ BD. 又BD∩A1D=D ,∴A1E⊥平面A1BD【变式7】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.〔1〕求证:AC⊥BC1;〔2〕求证:AC1∥平面CDB1.【解答】证明:〔1〕因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.〔2〕连结C1B交CB1于E,再连结DE,由可得E为C1B的中点,又∵D为AB的中点,∴DE 为△BAC1的中位线.∴AC1∥DE。