2011年合肥一中自主招生数学试题
- 格式:doc
- 大小:1.25 MB
- 文档页数:4
合肥一中、六中、一六八中学10-11学年度高一第二学期数学试卷(考试时间:100分钟 满分:100分)参考公式:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数说明:若对数据作适当的预处理,可避免对大数字进行运算。
一、选择题(30分,每题3分)1、等比数列{}n a 中, ,243,952==a a 则4a = ( ) A .27 B .63 C .81 D .1202、在∆ABC 中,已知222,a b c -+=则角B 为 ( )A.3π或23π B. 6π或56π C. 3πD. 6π3、设0a b +<且0b >,则下列不等式成立的是 ( )A.22b a ab >>B.22b a ab <<-C. 22a ab b <-<D. 22a ab b >->4、等差数列1476{},39,9n a a a a a ++==中则数列{}n a 的前9项的和9S 等于( ) A. 96 B 99 C 144 D 1985、为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,则视力在4.7到4.8之间的学生数为 ( )A. 24B. 23C. 22D. 216、 360和504的最大公约数是 ( )A 24B 72C 144D 以上都不对7、对任意x R ∈,下列不等式中不成立的是 ( )A .2111x ≤+ B .212x x +≥ C .2lg(1)lg 2x x +≥ D .2414xx ≤+8、下图所示的算法被称为“趋1数字器”,它输出的数字都是分数,且随着运算次数的增加,0.10.1 0.10.10.10.1 0.1 0.1输出的分数会越来越接近于1.该程序若想输出的结果为20102011,则判断框中应填入的条件是 ( )A .i<2011?B . i<2010?C . i<2009?D .i<2008?9、给出下列命题,其中正确命题的个数有 ( ) ①有一大批产品,已知次品率为0010,从中任取100件,必有10件次品; ②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37; ③某事件发生的概率是随着试验次数的变化而变化的; ④若()()()1P A B P A P B =+=,则,A B 是对立事件。
合肥一中自主招生数学试卷(含答案[1]2011年合肥一中自主招生《科学素养》测试数学试题(满分:150分)一、选择题:(本大题共4小题,每小题8分,共32分.在每小题给出的四个选项中,有且只有一项是正确的.)1.如图一张圆桌旁有四个座位,A,B,C,D 四人随机坐在四个座位上,A 则D 与相邻的概率是( )2.3A B. 12 C. 14 D. 29 2. 小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为( )A .40B .30+22C .202D .10+1023.在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A 的坐标为(1,0), 点D 的坐标为(1,0),延长CB 交x 轴与A 1,作作第二个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第二个正方形 A 2B 2C 2C 1•••,按这样的规律进行下去,第2010个正方形的面积为( )A. 200935()2 B. 200895()4 C. 401835()2D. 201095()4若该县常住居民共24万人,则估计该县常住居民中,利用“五·一”期间出游采集发展信息的人数约为万人。
6.已知点P(x,y)位于第二象限,并且y ≤x+4,x,y 为整数,符合上述条件的点P 共有 个。
7. 如图,已知菱形OABC,点C 在直线y=x 经过点A ,菱形OABC 的面积是2,若反比例函数的图象经过点B,则此反比例函数表达式为 。
(第7题)(第8题)8.如图,已知梯形ABCD 中,AD ∥BC ,AB ⊥BC,,AD =2,将腰CD 以D 为中心逆时针旋转90°至DE ,连结AE ,若△ADE 的面积是3,则BC 的长为_ ________.9.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 。
合肥一中2010~2011学年第二学期期中考试高一数学试卷一、选择题(在每小题给出的四个选项中,只有一项是正确的。
每小题4分,共40分。
) 1. 在ABC ∆中,已知2a =2b =,45B =︒,则角A =( ) A. 30︒B. 60︒C.60︒或120︒ D. 30︒或150︒2.数列{}n a 中,11a =,12,()2nn n a a n N a ++=∈+,则5a =( ) A.25 B. 13 C. 23 D. 123.方程2640x x -+=的两根的等比中项是( )A .3B .2±C .6±D .2 4.不等式112x <的解集是 ( ) A .(,0)-∞ B .(2,)+∞ C .(0,2) D .()(,0)2,-∞⋃+∞5.已知数列{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k 等于( ) A. 6B .7C .8D .96. 已知在⊿ABC 中,BCb c cos cos =,则此三角形为( )A . 直角三角形 B. 等腰三角形 C .等腰直角三角形 D. 等腰或直角三角形7.若不等式2()0f x ax x c =-->的解集是{}|21x x -<<,则函数()y f x =-的图象是( )8.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138 B .135 C .95D .239. 设a 、b ∈R +,且4a b +=,则有( )A .211≥ab B .111≥+ba C .2≥abD .41122≥+b a10. 数列{}n x 满足12531332211-+=⋯=+=+=+n x x x x x x x x n n ,且126n x x x ++⋯+=, 则首项1x 等于( )A .12-nB .2nC .621n - D .26n二、填空题(请把答案填在题中横线上,每小题4分,共16分)11.函数)3(31>+-=x x x y 的最小值为_____________. 12. 已知数列}{n a 成等差数列,且π41371=++a a a ,则)tan(122a a += 13. 设数列{}n a 为公比1q >的等比数列,若45,a a 是方程24830x x -+=的两根,则67a a +=_________.14. 在ABC ∆中,∠A:∠B=1:2,∠C 的平分线CD 分⊿ACD 与⊿BCD 的面积比是3:2,则cos A =选择题答题卡(请务必把答案填写在答题卡内)三、解答题(解答应写出必要的文字说明、证明步骤或演算步骤,共44分)15、(本小题满分8分)在锐角ABC ∆中,a b c 、、分别是角A B C 、、的对边,5cos A =,310sin B =. (1)求cos()A B +的值;(2)若4a =,求ABC ∆的面积.座位号:16(本小题满分8分)已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a (1)求数列}{n a 的通项公式; (2)证明.111112312<-++-+-+n n a a a a a a17(本小题满分8分)在数列{}n a 中,n n n a a a 22,111+==+(1)设12-=n n n ab ,证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和n S .18(本小题满分10分)某工厂要建造一个无盖长方体水池,底面一边长固定为8m ,最大装水量为723m ,池底和池壁的造价分别为2a 元2/m 、a 元2/m ,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少? 19.(本小题满分10分)如图,在y 轴的正半轴上依次有点 ,,,,21n A A A 其中点)10,0(),1,0(21A A ,且||3||11+-=n n n n A A A A ),4,3,2( =n ,在射线)0(≥=x x y 上依次有点 ,,,,21n B B B 点1B 的坐标为(3,3),且22||||1+=-n n OB OB ),4,3,2( =n ⑴用含n 的式子表示||1+n n A A ;⑵用含n 的式子表示n n B A ,的坐标; ⑶求四边形n n n n B B A A 11++面积的最大值。
安徽省合肥XX中学自主招生数学试卷一、选择题(本大提共8小题,每小题5分,共40分)1.(5分)已知a=,b=,则二次根式的值是()A.6B.7C.8D.92.(5分)已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.3.(5分)已知一次函数y=kx+b(k≠0)的图象经过点A(1,3),且与坐标轴围成面积为6的三角形,则满足条件的函数有()A.2个B.3个C.4个D.5个4.(5分)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20B.2C.2或﹣20D.2或205.(5分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|AB|的值是()A.B.C.D.6.(5分)已知a,b,c是△ABC的三边,则下列式子一定正确的是()A.a2+b2+c2≥ab+bc+ac B.<C.D.a3+b3<c37.(5分)如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3B.C.D.28.(5分)半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.二、填空题(本大提共7题,每小题5分,共35)9.(5分)若分式方程=a无解,则a的值为.10.(5分)已知一列数a1,a2,a3,…满足a1=,a2=,a3=,a4=,…,依此类推,则a1,a2,…,a,这个数的积为.11.(5分)某公司加工252个零件,计划若干天完成,加工了2天后,由于改进新技术,每天可多加工9个零件,因此提前1天完成任务,则原计划完成任务的天数为.12.(5分)已知函数y=x2﹣2mx+4(m是实数)与x轴两交点的横坐标为x1,x2,当1<x1<2,1<x2<3时,则m的范围是.13.(5分)如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于.14.(5分)如图,在等腰直角三角形ABC中,∠C=90°,内取一点P,且AP=AC=a,BP=CP=b(b<a),则=.15.(5分)足球运动员在足球场上,常需要带球跑到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端的夹角是射门角.如果点A,B表示球门边框(不考虑球门的高度)的两端点,点C表示射门点,连接AC,BC,则∠ABC就是射门角,在不考虑其他因素的情况下,一般地,射门角越大,射门进球的可能性越大,如图(1)(2)(3)是运动员带球跑动的三种常见路线(用直线L表示),则下列说法:①如图(1),AB∥L,当运动员在线段AB的垂直平分线与L的交点C处射门时,进球的可能性最大;②如图(2)AB⊥L垂足为D,设AB=2a,BD=b,当运动员在离底线AB的距离为的点C处(即CD=)射门时,进球可能性最大.③如图(3),AB与L交于点Q,设AB中点为O,当点C满足OQ=CQ时,运动员在点C处射门时,进球的可能性最大.④如图(3),过点C作直线L的垂线与线段AB的垂直平分线交于点M,当M恰好是△ABC的外心时,运动员在点C处射门时,进球可能性最大.其中正确的序号是(写出所有正确的序号)三、解答题(本大题共5小题,共75分)16.(12分)若,求的值.17.(13分)某学校在大课间举行跳绳活动,为此学校准备购置长、中、短三种跳绳若干,要求中跳绳的条数是长跳绳的2倍,且短跳绳的条数不超过长跳绳的6倍.已知长跳绳单价是20元,中跳绳的单价是15元,短跳绳的单价是8元.(1)若学校准备用不超过2300元的现金购买200条长、中、短跳绳,问学校有几种购买方案可供选择?(2)若学校准备恰好用3000元的现金购买n条长、中、短跳绳.求n的最大值.18.(13分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.19.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,﹣),点M 是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.20.(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).安徽省合肥168中自主招生数学试卷参考答案与试题解析一、选择题(本大提共8小题,每小题5分,共40分)1.(5分)已知a=,b=,则二次根式的值是()A.6B.7C.8D.9【解答】解:∵a==(﹣)2=4﹣,b===4+,∴ab=(4+)(4﹣)=1,∴======9.故选:D.2.(5分)已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.3.(5分)已知一次函数y=kx+b(k≠0)的图象经过点A(1,3),且与坐标轴围成面积为6的三角形,则满足条件的函数有()A.2个B.3个C.4个D.5个【解答】解:把A(1,3)代入y=kx+b中,得3=k+b,∴b=3﹣k,∴一次函数的解析式为:y=kx+3﹣k,∴一次函数图象与坐标轴的交点为(0,3﹣k),(,0),∵一次函数y=kx+b(k≠0)的图象与坐标轴围成三角形的面积为6,∴,解得,k=﹣3,或k=9,∴k的值有3个,∴满足条件的函数有3个.故选:B.4.(5分)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20B.2C.2或﹣20D.2或20【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.(5分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|AB|的值是()A.B.C.D.【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|AB|=+++…+=1﹣=,故选:C.6.(5分)已知a,b,c是△ABC的三边,则下列式子一定正确的是()A.a2+b2+c2≥ab+bc+ac B.<C.D.a3+b3<c3【解答】解:A、由三角形三边关系可得:(a﹣b)2+(b﹣c)2+(a﹣c)2≥0,可得:2(a2+b2+c2)≥2(ab+bc+ac),可得:(a﹣b)2+(b﹣c)2+(a﹣c)2≥0,故选项正确;B、由三角形三边关系不一定得出a+b>c,<,可得<,>,选项错误;C、由三角形三边关系不一定得出a>b>c,由,可得:a>b>c,选项错误;D、由三角形三边关系不一定得出a3+b3<c3,选项错误;故选:A.7.(5分)如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3B.C.D.2【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.8.(5分)半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.二、填空题(本大提共7题,每小题5分,共35)9.(5分)若分式方程=a无解,则a的值为1或﹣1.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣110.(5分)已知一列数a1,a2,a3,…满足a1=,a2=,a3=,a4=,…,依此类推,则a1,a2,…,a,这个数的积为.【解答】解:a1=,a2=,=2,a3==﹣1,a4==,…,依此类推,发现每3个数为一组一个循环,前3个数的乘积为:2×(﹣1)=﹣1,所以÷3=672…1,则a1,a2,…,a,这个数的积为(﹣1)672×=.故答案为:.11.(5分)某公司加工252个零件,计划若干天完成,加工了2天后,由于改进新技术,每天可多加工9个零件,因此提前1天完成任务,则原计划完成任务的天数为7.【解答】解:设原计划每天加工x个零件.由题意得:+2+1=,整理得:x2+27x﹣2268=0.解得:x1=36,x2=﹣63(不合题意舍去).经检验:x=36是原方程的解.当x=36时,=7,即原计划7天完成,故答案为:7.12.(5分)已知函数y=x2﹣2mx+4(m是实数)与x轴两交点的横坐标为x1,x2,当1<x1<2,1<x2<3时,则m的范围是2<m<.【解答】解:由题意得:△=b2﹣4ac=(﹣2m)2﹣4×4>0,解得:m>2或m<﹣2①,函数的对称轴为x=﹣=﹣=m,当1<x1<2,1<x2<3时,1<(x1+x2)<,而x=﹣=﹣=m=(x1+x2),即1<m<②,联立①②并解得:2<m<,故答案为:2<m<.13.(5分)如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于﹣6.【解答】解:过点C作CE⊥y轴,垂足为E,∵A,B两点的坐标分别是(﹣1,0),(0,1),∴OA=OB=1,∠OAB=∠OBA=45°,∵ABCD是矩形,∴∠ABC=90°,∴∠CBE=180°﹣90°﹣45°=45°=∠BCE,∴△AOB∽△BEC,∴==,又∵BC=2AB,∴BE=CE=2,OE=OB+BE=1+2=3,∴点C(﹣2,3),代入反比例函数关系式得,k=﹣2×3=﹣6,故答案为:﹣6.14.(5分)如图,在等腰直角三角形ABC中,∠C=90°,内取一点P,且AP=AC=a,BP=CP=b(b<a),则=.【解答】解:如图:过点P作PD⊥BC与点D,作PE⊥AC于点E,可得矩形PDCE,有PD=EC,PE=CD,∵PC=PB,PD⊥BC,∴DC=DB=BC=AC=a,∴PE=CD=a,Rt△AEP中,AP=AC=a,PE=a,∴AE=a,∴EC=AC﹣AE=a﹣a=a.∴PD=EC=a,Rt△CDP中,PD2+CD2=CP2,∴(a)2+()2=b2,∴a2+a2=b2,∴a2=b2,∴(2﹣)a2=b2.∴=2﹣,∴===.故答案是:.15.(5分)足球运动员在足球场上,常需要带球跑到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端的夹角是射门角.如果点A,B表示球门边框(不考虑球门的高度)的两端点,点C表示射门点,连接AC,BC,则∠ABC就是射门角,在不考虑其他因素的情况下,一般地,射门角越大,射门进球的可能性越大,如图(1)(2)(3)是运动员带球跑动的三种常见路线(用直线L表示),则下列说法:①如图(1),AB∥L,当运动员在线段AB的垂直平分线与L的交点C处射门时,进球的可能性最大;②如图(2)AB⊥L垂足为D,设AB=2a,BD=b,当运动员在离底线AB的距离为的点C处(即CD=)射门时,进球可能性最大.③如图(3),AB与L交于点Q,设AB中点为O,当点C满足OQ=CQ时,运动员在点C处射门时,进球的可能性最大.④如图(3),过点C作直线L的垂线与线段AB的垂直平分线交于点M,当M恰好是△ABC的外心时,运动员在点C处射门时,进球可能性最大.其中正确的序号是①②④(写出所有正确的序号)【解答】解:①作△ABC的外接圆圆O,过C作圆O的切线,由圆的切线性质可得,当△ABC等腰三角形的时候,∠ACB最大,所以正确;②当△DBC∽△DAC时,∠ACB最大,此时,CD2=BD•AD=b(2a+b)=2ab+b2,CD=,所以正确;③④过点C作l的垂线,交AB垂直平分线于M,当M恰好是△ABC的外心时,∠ACB最大,所以③错误,④正确.故答案为:①②④.三、解答题(本大题共5小题,共75分)16.(12分)若,求的值.【解答】解:∵=﹣,∴x=a+﹣2,∵x≥0,∴≥,∴a≥1,≤1,原式=,=,=,=,当a≥时,原式==a2;当a<时与a≥1,≤1相矛盾.综上所述,原二次根式的值为:a2.故答案为:a2.17.(13分)某学校在大课间举行跳绳活动,为此学校准备购置长、中、短三种跳绳若干,要求中跳绳的条数是长跳绳的2倍,且短跳绳的条数不超过长跳绳的6倍.已知长跳绳单价是20元,中跳绳的单价是15元,短跳绳的单价是8元.(1)若学校准备用不超过2300元的现金购买200条长、中、短跳绳,问学校有几种购买方案可供选择?(2)若学校准备恰好用3000元的现金购买n条长、中、短跳绳.求n的最大值.【解答】解:(1)设购进x条长跳绳,则购进2x条中跳绳,(200﹣x﹣2x)条短跳绳,依题意,得:,解得:22≤x≤26.∵x为正整数,∴x=23,24,25,26,∴学校共有4种购买方案可供选择.(2)设可以购买a条长跳绳,则购进2a条中跳绳,(n﹣a﹣2a)条短跳绳,依题意,得:,化简,得:,∴13a=4(375﹣n),∴a为4的倍数,设a=4k,则n=375﹣13k,∴375﹣13k≤36k,∴k≥7,∴k的最小值为8,n的最大值为271.18.(13分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连接OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴,即,∴r=4,即⊙O的半径为4.19.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,﹣),点M 是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.20.(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【解答】解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).。
2011年安徽省中考数学试题及详细解析一、选择题(共10小题,每小题4分,满分40分)1、在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。
2011年安徽省中考试题数 学(本试卷共8大题,计23小题,满分150分,考试时间120分钟.)题号 一 二 三 四 五 六 七 八 总分 得分一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2011安徽,1,4分)-2,0,2,-3这四个数中最大的是……………………………………【 】A .2B .0C .-2D .-3 【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 2.(2011安徽,2,4分)安徽省2010年末森林面积为3804.2千公顷,用科学计数法表示3804.2千.正确的是………………………………………………………………………………………………………【 】A .3102.3804⨯ B .41042.380⨯ C .6108042.3⨯ D .7108042.3⨯【分析】.【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 3.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图为………………………【 】【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】4.(2011安徽,4,4分)设119-=a ,a 在两个相邻整数之间,则这两个整数是……………………【 】 A .1和2 B .2和3 C .3和4 D .4和5 【分析】. 【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 5.(2011安徽,5,4分)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是…………………………………………………………【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为51D .事件M 发生的概率为52 【分析】 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 6.(2011安徽,6,4分)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是…【 】A .7B .9C .10D .11 【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 7.(2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点, ∠BAC=36°,则劣弧BC 的长为………………………………………【 】 B第6题图 G HF EDC B A第10题图PM N D CBAA .5π B .52πC .53πD .54π 【分析】. 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】8.(2011安徽,8,4分)一元二次方程x x x -=-2)2(的根是………………【 】 A .1- B .2C .1和2D .1-和2【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】9.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 的边上.若P 到BD 的距离为23,则点P 的个数为………………………【 】 A .1 B .2C .3D .4 【分析】A 到BD 的距离为2,故在AB 、AD 存在, .【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 10.(2011安徽,10,4分)如图所示,P 是菱形ABCD 的对角线AC 上一点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………【 】第9题图D CBAA .B .C .D .【分析】⎪⎪⎩⎪⎪⎨⎧<<-≤<=)21(),2(2)10(,212x x x x x y .【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】二、填空题(本大题4小题,每小题5分,满分20分)11.(2011安徽,11,5分)因式分解b ab b a ++22=_______________.【分析】.【答案】2)1(+a ab【涉及知识点】因式分解,提公因式法,公式法(完全平方公式)【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 12.(2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:n E 10=,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_______________.【分析】.【答案】100【涉及知识点】数的乘方,整式除法. 【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 13.(2011安徽,13,5分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_______________ 【分析】过O 作AB 、CD 的垂线垂足分别为M 、N ,则OM=ON=1.【答案】5【涉及知识点】勾股定理,圆的对称性. 【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】14.(2011安徽,14,5分)定义运算)1(b a b a -=⊗,下面给出了关于这种运算的几个结论: ①6)2(2=-⊗;②a b b a ⊗=⊗;第13题图③若0=+b a ,则ab b b a a 2)()(=⊗+⊗; ④若0=⊗b a ,则0=a其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号) 【分析】.ab ab b a b a b b a a b b a a 22)()()()(22222=++-=+-=-+-=⊗+⊗ 【答案】①③ 【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 三、(本大题共2小题,每小题8分,共16分)15.(2011安徽,15,8分)先化简,再求值:12112---x x ,其中2-=x . 【分析】. 【答案】原式=11)1)(1(1)1)(1(2)1)(1(21+=+--=+--+--+x x x x x x x x x …………………………(6分)当2-=x 时,原式、1121-=+-……………………………………………………(8分)【涉及知识点】分式、分式的运算与化简,简单题。
2011年普通高等学校夏季招生全国统一考试数学(安徽卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间120分钟.参考公式(理):如果事件A 与B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 与B 相互独立,那么P (AB )=P (A )P (B ) 锥体体积13V Sh =,其中S 为锥体的底面积,h 为锥体的高 参考公式(文): 锥体体积13V Sh =,其中S 为锥体的底面积,h 为锥体的高 若(x 1,y 1),(x 2,y 2),…,(x n ,y n )为样本点,ˆy bx a =+为回归直线,则11n i i x x n ==∑,11ni i y y n ==∑ ()()()1122211n ni i i ii i n n ii i i x y y y x y nx y b x x x nx ====---==--∑∑∑∑,a y bx =- 说明:若对数据作适当的预处理,可避免对大数字进行运算.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数1+i 2i a -为纯虚数,则实数a 为( ) A .2B .-2C .1-2D . 122.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .22 C .4 D .243.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .34.设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-15.在极坐标系中,点)3,2(π到圆ρ=2cos θ的圆心的距离为( ) A .2 B . 942π+ C . 912π+ D . 36.一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .17832+C .17848+D .807.命题“所有能被2整除的整数都是偶数”的否定..是( ) A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数8.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( )A .57B .56C .49D .89.已知函数f (x )=sin(2x +φ),其中φ为实数.若|)6(|)(πf x f ≤对x ∈R 恒成立,且)()2(ππf f >,则f (x )的单调递增区间是( ) A .)(6,3Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B .)(2,Z k k k ∈⎥⎦⎤⎢⎣⎡+πππ C .)(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D .)(,2Z k k k ∈⎥⎦⎤⎢⎣⎡-πππ 10.函数f (x )=ax m ·(1-x )n 在区间[0,1]上的图像如图所示,则m ,n 的值可能是( )A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.如图所示,程序框图(算法流程图)的输出结果是__________.。
合肥一中2011—2012学年度第一学期期中高三年级数学试卷(文科)命题人:王君 张桂贤说明:1.考试时间120分钟,满分150分.2.将卷Ⅰ答案用2B 铅笔涂在答题卡上,卷Ⅱ用蓝黑钢笔或圆珠笔答在试卷上.. 3.球的体积公式为V =3π34R ,球的表面积公式是S =4πR 2 4.独立重复试验概率公式 k n kk n n p p C k P --=)1()(卷Ⅰ(选择题 共60分)一.选择题(共12小题,每小题5分,计60分.在每小题给出的四个选项中,只有一个选项正确 1. 集合A =⎭⎬⎫⎩⎨⎧≥-+021|x x x ,B =⎭⎬⎫⎩⎨⎧∈=N n n y y ,2πsin |,则B A C R ⋂)(=( ) A . {}1,0,1- B .{}1,1- C .{}1,0 D .{}1- 2.函数y =216x-)2(log 22--x +1的定义域为 ( )A .[-4,4]B .)2,4[-C .]4,2(D .),2(+∞3.在等比数列{a n }中,若27975=a a a ,则1129a a= ( )A .9B .1C .2D .34. 在下列函数中,图象关于原点对称的是 ( )A .y =x sin xB .y =2xx e e -+C .y =x ln xD .y =x 3-2sin x +tan x5.已知实数x 、y 满足⎪⎩⎪⎨⎧≤≤≤-≥+3022y y x y x ,则z =2x -y 的取值范围是( )A . [-5,7]B . [5,7]C . [4,7]D . [-5,4]6. 当a >0且a ≠1时,把函数xay -=和x y a log =的图象画在同一平面直角坐标系中,可以是 ( )A .①②B .①③C .②③D .③④7.已知正方形ABCD 的边长为2,E 是BC 的中点,则·AE 等于 ( ) A .-6 B .6 C .7 D .-88.已知函数f (x )满足,1)2()(=+⋅x f x f 且f (1)=2,则f (99)= ( ) A .21B .1C .2D .99 9. 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 ( ) A .13 B .21 C .23D .3410.若函数f (x )=ax 3+bx 2+cx +d 有极值,则导函数f ’(x )的图象不可能是 ( )11.已知双曲线13222=-by x 的右焦点到一条渐近线的距离为1,则该双曲线的离心率为 ( )A .2B .3C .332 D . 223 12.某班选派6人参加两项公益活动,每项活动最多安排4人,则不同的安排方法有( )A .50种B .70种C .35种D .55种卷Ⅱ(非选择题 共90分)二.填空题(共4小题,每小题5分,计20分)13.已知二项式 (1+2x )100 的展开式为a 0+a 1x +a 2x 2+a 3x 3+…+a 100x 100,则)222(log 10010022102a a a a ++++=______. 14.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ____.15. 已知S 、A 、B 、C 是球O 表面上的四个点,SA ⊥平面ABC ,AB ⊥BC , SA =2,AB =BC =2,则球O 的表面积为_______.16.过函数f (x )=24x -的图象上一点作切线l ,l 与x 轴、y 轴的交点分别为 A 、B ,则|AB |的最小值为_______.三.解答题(本大题共6小题,计70分,写出必要的解题步骤) 17. (本题满分10分)已知f (x )=6c os 2x -23si n x c os x -3. ⑴求f (x )的值域及最小正周期;⑵设锐角△ABC 的内角A 、B 满足f (A )=2f (B )=-23,AB =3,求BC .18.(本题满分12分)已知等差数列{a n }的前n 项和为S n ,已知a 5=9,S 10=100. ⑴求通项a n ;⑵记数列}{n S n 的前n 项和为T n ,数列}1{11++-n n T S 的前n 项和为U n .求证:U n <2.19.(本题满分12分)甲、乙两位乒乓球选手,在过去的40局比赛中,甲胜24局.现在两人再次相遇.⑴打满3局比赛,甲最有可能胜乙几局,说明理由;⑵采用“三局两胜”或“五局三胜”两种赛制,哪种对甲更有利,说明理由.(注:计算时,以频率作为概率的近似值.“三局两胜”就是有一方胜局达到两局时,就结束比赛;“五局三胜”就是有一方胜局达到三局时,就结束比赛)20.(本题满分12分)已知四棱锥P—ABCD的底面是正方形,P A⊥底面ABCD.异面直线PB与CD所成的角为45°.求:⑴二面角B—PC—D的大小;⑵直线PB与平面PCD所成的角的大小.21.(本题满分12分) 已知函数f (x )=31x 3-(a +2)x 2+a (a +4)x +5在区间(-1,2)内单调递减,求a 的取值范围.22.(本题满分12分)已知点P (-1,23)是椭圆E :12222=+by a x (a >b >0)上一点,F 1、F 2分别是椭圆E 的左、右焦点,O 是坐标原点,PF 1⊥x 轴.⑴求椭圆E 的方程;⑵设A 、B 是椭圆E 上两个动点,λ=+(0<λ<4,且λ≠2).求证:直线AB 的斜率等于椭圆E 的离心率;⑶在⑵的条件下,当△P AB 面积取得最大值时,求λ的值.唐山一中2010—2011学年期中考试高三年级数学(文科)参考答案一.选择题:CCDD ABBA CDCA7.提示:建立坐标系如图.则A (0,0),C (2,2),E (2,1),AC =(2,2),=(2,1).·=6.也可以先用余弦定理求出∠CAE 的余弦. 8.提示:)()4(,)(1)2(x f x f x f x f =+=+,f (x )的周期为4. f (99)=f (3)=f (1+2)=21)1(1=f . 12. 提示:这是分组问题.362226C A C +=50. 二.13.答案:100. 提示:令x =21,得1001002210222a a a a ++++ =2100.14. 答案:18.15.答案:8π.提示:三棱锥S —ABC 是长方体的一角,它的外接球的直径和该长方体的外接球的直径相同.2R =22224=++,R =2.16.答案:4.提示:f (x )的图象是半圆x 2+y 2=4(y ≥0),设A (a ,0),B (0,b ),则直线l 的方程为1=+bya x ,因为直线l 与半圆x 2+y 2=4(y ≥0)相切,所以圆心到直线l 的距离为211122=+b a ,即)11(422ba +=1, 于是a 2+b 2=4(a 2+b 2)(2211ba +)≥16,|AB |=22b a +≥4,a =b 时取等号. 说明:此题主要考查数形结合.此题不要用导数求切线,因为文科不要求y =24x -的导数.三. 解答题17.解:⑴f (x )=3(1+c os2x )- 3sin 2x -3=23 (x x 2sin 212cos 23-)=23c os(2x +6π)……………………………………………3分 f (x )的值域为[-23,23],周期为π; ……………………4分⑵由f (A )=23c os(2A +6π)=-23得c os(2A +6π)=-1, ∵0<A <2π,6π<2A +6π<67π,∴2A +6π=π,A =125π……………………………………………6分由f (B )=23c os(2B +6π)=-3得c os(2B +6π)=-21,∵0<B <2π,6π<2B +6π<67π,∴2B +6π=32π,B =4π.因此C =3π. ………………………………………………………8分根据正弦定理得3πsin 3sin sin ==CABA BC =2, 所以BC =2sin A =2sin(4π+6π)=226+. ……………………10分 18.解:⑴a 5=a 1+4d =9S 10=10a 1+d 2910⨯=100, 解得a 1=1,d =2, ……………………………………………4分 a n =a 1+(n -1)d =2n -1; ……………………………………………6分 ⑵S n =212)(n a a n n =+,n nS n =,T n =2)1(+n n ,…………………………8分S n +1-T n +1=(n +1)2-2)2)(1(++n n =2)1(+n n .)111(2)1(2111+-=+=-++n n n n T S n n , ……………………………10分U n =2[)111()4131()3121()211(+-++-+-+-n n ]=2(111+-n )<2. ……………………………………………12分19.解:比赛一局,甲胜的概率约为p =6.04024=.………………………………1分⑴甲胜k (k =0,1,2,3)局的概率为k kk p p C k P --=333)1()(.………………2分则0064.0)0(3=P 288.0)1(3=P432.0)2(3=P 216.0)3(3=P ,……………………………………5分因为甲P 3(2)最大,所以甲最有可能胜两局;…………………………6分 ⑵三局两胜制:甲胜的概率为P 1=648.06.0)1()2(22=⨯+P P ,………………8分五局三胜制:甲胜的概率为P 2=683.06.0)2(6.0)2()3(433≈⨯+⨯+P P P ,……………………………………11分因为P 2>P 1,所以采用“五局三胜制”对甲有利. ……………12分20.解:⑴∵AB ∥CD ,∴∠PBA 就是PB 与CD 所成的角,即∠PBA =45°,……1分于是P A =AB .作BE ⊥PC 于E ,连接ED ,在△ECB 和△ECD 中,BC =CD ,CE =CE , ∠ECB =∠ECD , △ECB ≌△ECD ,∴∠CED =∠CEB =90°,∠BED 就是二面角B —PC —D 的平面角.………………………4分设AB =a ,则BD =PB =a 2,PC =a 3,BE =DE =a PC BC PB 36=⨯,cos ∠BED =212222-=⨯-+DE BE BD DE BE ,∠BED =120° 二面角B —PC —D 的大小为120°; ……………………………6分⑵还原棱锥为正方体ABCD —PB 1C 1D 1,作BF ⊥CB 1于F , ∵平面PB 1C 1D 1⊥平面B 1BCC 1,∴BF ⊥平面PB 1CD ,………………………………8分 连接PF ,则∠BPF 就是直线PB 与平面PCD 所成 的角. ……………………………………………10分BF =a 22,PB =a 2,sin ∠BPF =21,∠BPF =30°.所以就是直线PB 与平面PCD 所成的角为30°. …………………12分注:也可不还原成正方体,利用体积求出点B 到平面PCD 的距离,或用向量法解答.21.解1:f ’(x )=x 2-2(a +2)x +a (a +4)=(x -a )(x -a -4),……………………………4分 f ’(x )<0的解为(a ,a +4), ……………………………7分 ∵f (x )在区间(-1,2)内单调递减,∴(-1,2)⊆ (a ,a +4),……………………………………………………10分 由此得a ≤-1且a +4≥2,a 的范围是[-2,-1]. ………………12分解2:f ’(x )=x 2-2(a +2)x +a (a +4), …………………2分 ∵f (x )在区间(-1,2)内单调递减,∴f ’(x )≤0在区间(-1,2)上恒成立, …………………4分∵二次函数f ’(x )=x 2-2(a +2)x +a (a +4)的开口向上,∴f ’(-1)=a 2+6a +5≤0且f ’(2)=a 2-4≤0 …………………………………10分解得a 的范围是[-2,-1]. ………………………………………………12分22. 解:⑴∵PF 1⊥x 轴,∴F 1(-1,0),c =1,F 2(1,0),|PF 2|=2523222=+)(,2a =|PF 1|+|PF 2|=4,a =2,b 2=3, 椭圆E 的方程为:13422=+y x ;…………………3分 ⑵设A (x 1,y 1)、B (x 2,y 2),由 λ=+得(x 1+1,y 1-23)+(x 2+1,y 2-23)=λ(1,- 23), 所以x 1+x 2=λ-2,y 1+y 2=23(2-λ)………① …………………5分又12432121=+y x ,12432222=+y x ,两式相减得3(x 1+x 2)(x 1-x 2)+ 4(y 1+y 2)(y 1-y 2)=0………..② 以①式代入可得AB 的斜率k =212121=--x x y y =ac=e ;……………8分⑶设直线AB 的方程为y =21x +t , 与124322=+y x 联立消去y 并整理得 x 2+tx +t 2-3=0, △=3(4-t 2),|AB |=222124215)4(3411||1t t x x k -⨯=-⨯+=-+,点P 到直线AB 的距离为d =5|2|2-t ,△P AB 的面积为S =21|AB |×d =|2|4232--⨯t t , ………10分 设f (t )=S 2=43-(t 4-4t 3+16t -16) (-2<t <2), f ’(t )=-3(t 3-3t 2+4)=-3(t +1)(t -2)2,由f ’(t )=0及-2<t <2得t =-1.当t ∈(-2,-1)时,f ’(t )>0,当t ∈(-1,2)时,f ’(t )<0,f (t )=-1时取得最大值481, 所以S 的最大值为29. 此时x 1+x 2=-t =1=λ-2,λ=3. ……………………………………12分。
答案一、选择题3、已知:y=1/2(x的平方-100x+196+|x的平方-100x+196|),当x=1,2,到100,求这100个自然数的和的函数值解法一:对于函数x^2-100x+196,它可因式分解为(x-2)(x-98),所以当x=2 x=98时,这个函数为0当2<x<98时,这个函数的x轴的下面,而对于|x的平方-100x+196|,它在x轴的上面,且两者离x轴的距离都相等。
所以当x=2、3、、4、……、98时,y都为0当x=0时,y=1/2*(196+196)=196该函数的抛物线为x=50,所以x=1和x=99的值相等,当x=1时,y=1^2-100+196=97所以这100个自然数的值为196+97*2=390解法二:当2≤x≤98时,因为x^2-100x+196=(x-2)*(x-98)≤0,所以恒有y=[x^2-100x+196-(x^2-100x+196)]/2=0,当x=1,99,100时,y=[x^2-100x+196+(x^2-100x+196)]/2=x^2-100x+196。
y(1)=y(99)=97,y(100)=196。
所以:y(1)+y(2)+y(3)+y(4)+……+y(97)+y(98)+y(99)+y(100)=97+0+0+0+……+0+0+97+196=390。
5、设a平方+1=3a,b平方+1=3b,且a不等于b,则代数式1/a平方+1/b平方的值是解:a²+1=3a,b²+1=3b,则:a、b是方程x²+1=3x即x²-3x+1=0的两个根,则:a+b=3且ab=11/a²+1/b²=[a²+b²]/(ab)²=[(a+b)²-2ab]/(ab)²=76、如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()解:小球周长和三角形边长相等,因此在每条边转动了360°(即转1圈)三条边一共3圈。
第1页2011年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2011·安徽)-2,0,2,-3这四个数中最大的是【 】 A.-1 B.0 C.1 D.22. (2011·安徽)安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是【 】 A .3102.3804⨯B .41042.380⨯C .6108042.3⨯D .7108042.3⨯3. (2011·安徽)下图是五个相同的小正方体搭成的几体体,其左视图是【 】4.(2011·安徽)设191a =-,a 在两个相邻整数之间,则这两个整数是【 】A.1和2B.2和3C.3和4D.4 和55. (2011·安徽)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是【 】A.事件M 是不可能事件B. 事件M 是必然事件C.事件M 发生的概率为15 D. 事件M 发生的概率为256.(2011·安徽)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【 】 A.7 B.9 C.10 D. 11第3题图 第6题图7. (2011·安徽)如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是【 】 A.5π B. 25π C. 35π D.45π8.(2011·安徽)一元二次方程()22x x x -=-的根是【 】 A.-1 B. 2 C. 1和2D. -1和29.(2011·安徽)如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为【 】 A.1 B.2 C.3 D.410.(2011·安徽)如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是【 】二、填空题(本题共4小题,每小题5分,满分20分) 11.(2011·安徽)因式分解:22a b ab b ++=_________.12.(2011·安徽)根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.(2011·安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________.第10题图 第13题图 第7题图 第9题图第3页14.(2011·安徽)定义运算)1(b a b a -=⊗,下面给出了关于这种运算的几个结论: ①6)2(2=-⊗;②a b b a ⊗=⊗; ③若0=+b a ,则ab b b a a 2)()(=⊗+⊗;④若0=⊗b a ,则0=a其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号)三、(本题共2小题,每小题8分,满分16分) 15.(2011·安徽)先化简,再求值:21211x x ---,其中x=-2 【解】16.(2011·安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量. 【解】四、(本题共2小题,每小题8分,满分16分) 17. (2011·安徽)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2; (1)把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2. 【解】18.(2011·安徽)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向第17题图依次不断地移动,每次移动一个单位,其行走路线如下图所示:(1)填写下列各点的坐标:4A ( , ),8A ( , ),12A ( , ); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到点101A 的移动方向.五、(本题共2小题,每小题10分,满分20分)19.(2011·安徽)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.20、(2011·安徽)一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.第19题图 1A 2A 5A 6A 9A 10AO 3A 4A 7A 8A 11A 12A xy第18题图第5页【解】 六、(本题满分12分)21.(2011·安徽) 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标;(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分)22.(12分·2011·安徽)在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A / CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为 S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3; 【证】第21题图第22题图(1)(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】八、(本题满分14分)23.(14分·2011·安徽)如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3; 【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12;【解】 (3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】第22题图(3)第23题图第7页2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500, ∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组. 21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以xy 22=解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x A A 1 BC B 1 C 1 A 2B 2C 2· O所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2.22.(1)易求得60='∠CD A , DC C A =', 因此得证. (2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证. (3)120°,a 23 23.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以5452451452312112121211+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛-+=h h h h h h S又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.第9页2011年安徽省中考试题数 学题号 一 二 三 四 五 六 七 八 总分 得分每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.(2011安徽,1,4分)-2,0,2,-3这四个数中最大的是……………………………………【 】 A .2 B .0 C .-2 D .-3 【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 2.(2011安徽,2,4分)安徽省2010年末森林面积为3804.2千公顷,用科学计数法表示3804.2千.正确的是………………………………………………………………………………………………………【 】 A .3102.3804⨯B .41042.380⨯C .6108042.3⨯D .7108042.3⨯【分析】.【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 3.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图为………………………【 】【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 4.(2011安徽,4,4分)设119-=a ,a 在两个相邻整数之间,则这两个整数是……………………【 】 A .1和2B .2和3C .3和4D .4和5【分析】. 【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 5.(2011安徽,5,4分)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是…………………………………………………………【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为51D .事件M 发生的概率为52 【分析】 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 6.(2011安徽,6,4分)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是…【 】A .7B .9C .10D .11 【分析】. 【答案】D 【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 7.(2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点, ∠BAC=36°,则劣弧BC 的长为………………………………………【 】 A .5πB .52πC .53πD .54π 【分析】. 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】8.(2011安徽,8,4分)一元二次方程x x x -=-2)2(的根是………………【 】 A .1- B .2C .1和2D .1-和2【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】9.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在第7题图B第6题图 G HF EDCB A第11页第10题图PM N D CBA四边形ABCD 的边上.若P 到BD 的距离为23,则点P 的个数为………………………【 】 A .1 B .2C .3D .4 【分析】A 到BD 的距离为2,故在AB 、AD 存在, .【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 10.(2011安徽,10,4分)如图所示,P 是菱形ABCD 的对角线AC 上一点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………【 】【分析】⎪⎪⎩⎪⎪⎨⎧<<-≤<=)21(),2(2)10(,212x x x x x y .【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】二、填空题(本大题4小题,每小题5分,满分20分)11.(2011安徽,11,5分)因式分解b ab b a ++22=_______________.【分析】. 【答案】2)1(+a b【涉及知识点】因式分解,提公因式法,公式法(完全平方公式)【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】12.(2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:nE 10=,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_______________.【分析】. 【答案】100【涉及知识点】数的乘方,整式除法. 【点评】本题考查,属于基础题.第9题图D CBAA .B .C .D .【推荐指数】☆☆ 【典型错误】 13.(2011安徽,13,5分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_______________ 【分析】过O 作AB 、CD 的垂线垂足分别为M 、N ,则OM=ON=1.【答案】5【涉及知识点】勾股定理,圆的对称性. 【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】14.(2011安徽,14,5分)定义运算)1(b a b a -=⊗,下面给出了关于这种运算的几个结论: ①6)2(2=-⊗;②a b b a ⊗=⊗; ③若0=+b a ,则ab b b a a 2)()(=⊗+⊗;④若0=⊗b a ,则0=a其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号) 【分析】.ab ab b a b a b b a a b b a a 22)()()()(22222=++-=+-=-+-=⊗+⊗ 【答案】①③【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 三、(本大题共2小题,每小题8分,共16分)15.(2011安徽,15,8分)先化简,再求值:12112---x x ,其中2-=x . 【分析】. 【答案】原式=11)1)(1(1)1)(1(2)1)(1(21+=+--=+--+--+x x x x x x x x x …………………………(6分) 当2-=x 时,原式、1121-=+-……………………………………………………(8分) 【涉及知识点】分式、分式的运算与化简,简单题。
2011年卓越联盟自主招生数学试题(1)向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为 (A )6π(B )3π(C )23π (D )56π(2)已知sin2(α+γ)=n sin2β,则tan()tan()αβγαβγ++-+(A )11n n -+(B )1n n +(C )1n n - (D )11n n +-(3)在正方体ABCD —A 1B 1C 1D 1中,E 为棱AA 1的中点,F 是棱A 1B 1上的点,且A 1F :FB 1=1:3,则异面直线EF 与BC 1所成角的正弦值为(A(B(C (D(4)i 为虚数单位,设复数z 满足|z |=1,则2221z z z i-+-+的最大值为(A(B(C (D(5)已知抛物线的顶点在原点,焦点在x 轴上,△ABC 三个顶点都在抛物线上,且△ABC 的重心为抛物线的焦点,若BC 边所在直线的方程为4x +y -20=0,则抛物线方程为(A )y 2=16x(B )y 2=8x(C )y 2=-16x (D )y 2=-8x(6)在三棱锥ABC —A 1B 1C 1中,底面边长与侧棱长均等于2,且E 为CC 1的中点,则点C 1到平面AB 1E 的距离为(A(B(C )2(D )2(7)若关于x 的方程||4x x +=kx 2有四个不同的实数解,则k 的取值范围为( ) (A )(0,1)(B )(14,1)(C )(14,+∞) (D )(1,+∞)(8)如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O于G、F,交⊙O在A点的切线于P,若PE=3,ED=2,EF=3,则PA的长为(A(B(C(D(9)数列{a n}共有11项,a1=0,a11=4,且|a k+1-a k|=1,k=1,2,…,10.满足这种条件的不同数列的个数为( )(A)100(B)120(C)140(D)160(10)设σ是坐标平面按顺时针方向绕原点做角度为27π的旋转,τ表示坐标平面关于y轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ,用σk表示连续k次的变换,则στσ2τσ3τσ4是( ) (A)σ4 (B)σ5 (C)σ2τ(D)τσ2(11)设数列{a n}满足a1=a,a2=b,2a n+2=a n+1+a n.(Ⅰ)设b n=a n+1-a n,证明:若a≠b,则{b n}是等比数列;(Ⅱ)若limn→∞(a1+a2+…+a n)=4,求a,b的值.(12)在△ABC中,AB=2AC,AD是A的角平分线,且AD=kAC.(Ⅰ)求k的取值范围;(Ⅱ)若S△ABC=1,问k为何值时,BC最短?(13)已知椭圆的两个焦点为F1(-1,0),F2(1,0),且椭圆与直线y=x相切.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两条互相垂直的直线l1,l2,与椭圆分别交于P,Q及M,N,求四边形PMQN面积的最大值与最小值.(14)一袋中有a个白球和b个黑球.从中任取一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在重复n次这样的操作后,记袋中白球的个数为X n.(Ⅰ)求EX1;(Ⅱ)设P(X n=a+k)=p k,求P(X n+1=a+k),k=0,1,…,b;(Ⅲ)证明:EX n+1=(1-1a b+)EX n+1.(15)(Ⅰ)设f(x)=x ln x,求f′(x);(Ⅱ)设0<a<b,求常数C,使得1|ln|bax C dxb a--⎰取得最小值;(Ⅲ)记(Ⅱ)中的最小值为m a,b,证明:m a,b<ln2.2012年卓越联盟自主招生数学试题2013年卓越联盟自主招生数学试题一、选择题:(本大题共4小题,每小题5分.在每小题给出的4个结论中,只有一项是符合题目要求的.) (1)已知()f x 是定义在实数集上的偶函数,且在(0,)+∞上递增,则(A )0.72(2)(log 5)(3)f f f <-<- (B) 0.72(3)(2)(log 5)f f f -<<- (C) 0.72(3)(log 5)(2)f f f -<-< (D) 0.72(2)(3)(log 5)f f f <-<-(2)已知函数()sin()(0,0)2f x x πωϕωϕ=+><<的图象经过点(,0)6B π-,且()f x 的相邻两个零点的距离为2π,为得到()y f x =的图象,可将sin y x =图象上所有点 (A )先向右平移3π个单位长度,再将所得点的横坐标变为原来的12倍,纵坐标不变(B) 先向左平移3π个单位长度,再将所得点的横坐标变为原来的12倍,纵坐标不变(C) 先向左平移3π个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变(D) 先向右平移3π个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变(3)如图,在,,,,A B C D E 五个区域中栽种3种植物,要求同一区域中只种1种植物,相邻两区域所种植物不同,则不同的栽种方法的总数为(A )21 (B)24 (C)30 ( D)48(4)设函数()f x 在R 上存在导数()f x ',对任意的x R ∈,有2()()f x f x x -+=,且在(0,)+∞上()f x x '>.若(2)()22f a f a a --≥-,则实数a 的取值范围为(A )[1,)+∞ (B) (,1]-∞ (C) (,2]-∞ (D) [2,)+∞二、填空题:(本大题共4小题,每小题6分,共24分)(5)已知抛物线22(0)y px p =>的焦点是双曲线2218x y p-=的一个焦点,则双曲线的渐 近线方程为 .(6)设点O 在ABC ∆的内部,点D ,E 分别为边AC ,BC 的中点,且21OD DE +=, 则23OA OB OC ++= .(7)设曲线y 与x 轴所围成的区域为D ,向区域D 内随机投一点,则该点落 入区域22{(,)2}x y D x y ∈+<内的概率为 .(8)如图,AE 是圆O 的切线,A 是切点,AD 与OE 垂直,垂足是D ,割线EC 交圆O 于,B C ,且,O D C D B C αβ∠=∠=,则OEC ∠= (用,αβ表示).三、解答题(本大题共4小题,共56分.解答应写出文字说明,证明过程或演算步骤) (9)(本小题满分13分)在ABC ∆中,三个内角A 、B 、C 所对边分别为a 、b 、c .已知()(sin sin )()sin a c A C a b B -+=-.(1)求角C 的大小; (2)求sin sin A B ⋅的最大值.(10)(本题满分13分)设椭圆2221(2)4x y a a +=>的离心率为3,斜率为k 的直线l 过点(0,1)E 且与椭圆交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE =,求k 的值; (3)设A 为椭圆的下顶点,AC k 、AD k 分别为直线AC 、AD 的斜率,证明对任意的k 恒 有2AC AD k k ⋅=-.(11)(本题满分15分)设0x >,(1)证明:2112xe x x >++; (2)若2112xye x x e =++,证明:0y x <<.(12)(本题满分15分)已知数列{}n a 中,13a =,2*1,,n n n a a na n N R αα+=-+∈∈.(1)若2n a n ≥对*n N ∀∈都成立,求α的取值范围;(2)当2α=-时,证明*121112()222n n N a a a +++<∈---.2013大学自主招生模拟试题一一.选择题1. 把圆x 2+(y -1)2=1与椭圆9x 2+(y +1)2=9的公共点,用线段连接起来所得到的图形为( ) (A )线段 (B )不等边三角形 (C )等边三角形 (D )四边形2. 等比数列{a n }的首项a 1=1536,公比q=-12,用πn 表示它的前n 项之积。
2011年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟题号一二三四五六七八 总分 得分一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大的是………………………………………………………【 】 A.-1 B.0 C.1 D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是…………………………………………………………………………………………………【 】A.3804.2×103B.380.42×104C.3.842×106D.3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【 】4.设191a =-,a 在两个相邻整数之间,则这两个整数是………………………………【 】 A.1和2 B.2和3 C.3和4 D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………………………………………【 】 A.事件M 是不可能事件 B. 事件M 是必然事件 C.事件M 发生的概率为15D. 事件M 发生的概率为256如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是……………【 】 A.7 B.9 C.10 D. 117. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧 BC的长是…………………………………………………………………………………【 】第3题图 第6题图A.5π B. 25π C. 35π D.45π8.一元二次方程()22x x x -=-的根是………………【 】 A.-1 B. 2 C. 1和2D. -1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为……………………………【 】 A.1 B.2 C.3 D.410.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………………………………【 】二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:22a b ab b ++=_________.12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________.14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论: ① ()226⊗-= ②a b b a ⊗=⊗③若0a b +=,则())(2a b b a ab ⊗+⊗= ④若0a b ⊗=,则a=0.其中正确结论序号是_____________.(把在横线上填上你认为所有正确结论的序号)三、(本题共2小题,每小题8分,满分16分)15.先化简,再求值:第10题图 第3题图第13题图第7题图第9题图21211x x ---,其中x=-2 【解】16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量. 【解】四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2; (1)把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2. 【解】18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,_____),A 3(____,_____),A 12(____,____); (2)写出点A n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到A 101的移动方向. 【解】第17题图 第18题图五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. 【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】第19题图(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分)22.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A /CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0).第22题图(1)第22题图(2)第22题图(3)(1)求证h 1=h 3; 【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12; 【解】(3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ()21+a b ; 12. 100; 13. 5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克. 17. 如下图CC 1B 2C 218.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500, ∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组. 21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以x y 22=解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x 所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2.22.(1)易求得60='∠CD A , DC C A =', 因此得证.(2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证. (3)120°,a 23 23.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以 5452451452312112121211+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛-+=h h h h h h S又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.。
2011年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大的是……………………………【 】 A.-1 B.0 C.1 D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是……………………………………………………【 】 A.3804.2×103 B.380.42×104 C.3.842×106 D.3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【 】4.设1a =,a 在两个相邻整数之间,则这两个整数是………………【 】A.1和2B.2和3C.3和4D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………【 】 A.事件M 是不可能事件 B. 事件M 是必然事件 C.事件M 发生的概率为15D. 事件M 发生的概率为256如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是……【 】 A.7 B.9 C.10 D. 117. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是………………………………………………【 】 A.5π B. 25π C. 35π D.45π第3题图 第6题图第7题图8.一元二次方程()22x x x -=-的根是………………【 】 A.-1 B. 2 C. 1和2D. -1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为……【 】 A.1 B.2 C.3 D.410.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是………………………【 】二、填空题(本题共4小题,每小题5分,满分20分) 11.因式分解:22a b ab b ++=_________.12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________. 14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论: ① ()226⊗-= ②a b b a ⊗=⊗③若0a b +=,则())(2a b b a ab ⊗+⊗= ④若0a b ⊗=,则a=0.其中正确结论序号是_________.(把在横线上填上你认为所有正确结论的序号) 三、(本题共2小题,每小题8分,满分16分) 15.先化简,再求值:21211x x ---,其中x=-2 【解】第10题图 第13题图第9题图16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.【解】四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.【解】第17题图18、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.第18题图(1)填写下列各点的坐标:A1(____,____),A3(____,____),A12(___,___);(2)写出点A n的坐标(n是正整数);【解】(3)指出蚂蚁从点A100到A101的移动方向.【解】五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. 【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】第19题图(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分) 22.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A / CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为 S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】 八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3; 【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12;【解】第22题图(1)第22题图(2) 第22题图(3) 第23题图(3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC 新课标第一网 11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500, ∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.A A 1 BC B 1 C 1A 2B 2C 2· O21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以x y 22=解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x 所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2.22.(1)易求得60='∠CD A , DC C A =', 因此得证.(2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证. (3)120°,a 23 23.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以 5452451452312112121211+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛-+=h h h h h h S又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.。
2011年安徽省合肥市一中理科实验班数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列运算正确的是()A.2ab+3ab=5a2b2B.a2•a2=a6C.a﹣2=(a≠0)D.考点:负整数指数幂;合并同类项;同底数幂的乘法;二次根式的加减法.分析:本题涉及合并同类项、同底数幂的乘法、负整数指数幂、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:A、根据合并同类项法则,得:2ab+3ab=5ab,错误;B、根据同底数幂的乘法法则计算,得:a2•a2=a4,错误;C、a﹣2=(a≠0),符合负整数指数幂的运算法则,正确;D、是最简二次根式,错误.故选C.点评:解答此题的关键是熟知以下概念:合并同类项,只需把系数相加减,字母和字母的指数不变;幂的乘方法则为:底数不变,指数相乘;负整数指数幂的运算法则为:a﹣p=(a≠0);最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.2.(4分)如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2考点:实数的性质;实数与数轴.专题:图表型.分析:首先能够结合数轴得到a的取值范围,从而判断a﹣2的符号,最后根据绝对值的性质进行化简.解答:解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选A.点评:主要考查绝对值性质的运用.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.3.(4分)甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为=10.7秒,=10.7秒,方差分别为S甲2=0.054,S乙2=0.103,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是()A.甲运动员B.乙运动员C.甲、乙两人一样稳定D.无法确定考点:方差;算术平均数.分析:根据方差的定义,方差越小数据越稳定.解答:解:因为S甲2=0.054,S乙2=0.103,方差小的为甲,所以本题中成绩比较稳定的是甲.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(4分)如图,A,B,C,D是直线L上顺次四点,M,N分别是AB,CD的中点,且MN=6cm,BC=1cm,则AD的长等于()A.10cm B.11cm C.12cm D.13cm考点:比较线段的长短.专题:计算题.分析:由已知条件知MB+CN=MN﹣BC,MB+CN=(AB+CD),故AD=AB+BC+CD可求.解答:解:∵MN=6cm∴MB+CN=6﹣1=5cm,AB+CD=10cm∴AD=11cm.故选B.点评:本题的关键是根据图形分清线段的关系利用已知条件求出AD的长.5.(4分)已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是()A.20°、20°、140°B.40°、40°、100°C.70°、70°、40°D.40°、40°、100°或70°、70°、40°考点:等腰三角形的性质.专题:分类讨论.分析:由于140°的外角不明确等腰三角形顶角和底角的外角,故应分两种情况讨论.解答:解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个底角度数为40°,100°.故选D.点评:本题考查了等腰三角形的性质及三角形内角和定理;等腰三角形的角度计算,要注意区别顶角,底角的不同情况,不要漏解.6.(4分)如图,点A在函数(x<0)的图象上,过点A作AE垂直X轴,垂足为E,过点A作AF垂直y轴,垂足为F,则矩形AEOF的面积是()A.2B.3C.6D.不能确定考点:反比例函数系数k的几何意义.专题:数形结合.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形面积S是个定值|k|.解答:解:因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|,所以矩形AEOF的面积是6.故选C.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.(4分)用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为()A.22个B.19个C.16个D.13个考点:由三视图判断几何体.分析:主视图、俯视图是分别从物体正面、上面看,所得到的图形.解答:解:综合正视图和俯视图,这个几何体的底层最少有3+3+1=7个小正方体,第二层最少有3个,第三层最少有2个,第四层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为7+3+2+1=13个.故选D.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.(4分)用半径为6cm、圆心角为120°的扇形做成一个圆锥的侧面,则这个圆锥的底面半径是()A.2cm B.3cm C.4cm D.6cm考点:弧长的计算.分析:根据弧长公式计算.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得2πr=,r=2cm.故选A.点评:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.9.(4分)若n为整数,则能使也为整数的n的个数有()A.1个B.2个C.3个D.4个考点:分式的值;分式的加减法.专题:计算题.分析:原式=1+,则n﹣1的值,一定是±1或±2.就可以求出n的值.解答:解:当n=0时原式等于﹣1;n=2时原式等于3;n=3时原式等于2;n=﹣1时原式等于0.故选D.点评:此题主要考查分式的基本概念和性质,难易程度适中.10.(4分)已知a为实数,则代数式的最小值为()A.0B.3C.D.9考点:二次根式的性质与化简.分析:把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.解答:解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选B.点评:用配方法对多项式变形,根据非负数的意义解题,是常用的方法,需要灵活掌握.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2005•河南)函数y=中,自变量x的取值范围是x≥﹣2.考点:函数自变量的取值范围;二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,列不等式求解.解答:解:根据题意得:x+2≥0,解得:x≥﹣2.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(4分)分解因式:﹣3x3y+27xy=﹣3xy(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣3xy,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:﹣3x3y+27xy,=﹣3xy(x2﹣9),﹣﹣(提取公因式)=﹣3xy(x+3)(x﹣3).﹣﹣(平方差公式).点评:本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(4分)把2007个边长为1的正方形排成如图所示的图形,则这个图形的周长是4016.考点:规律型:图形的变化类.分析:最上层或最下层只有一个正方形,故最上与最下的两层的周长为5和3,中间的1002层周长为4,计算可知这个图形的周长为5+3+4×1002=4016.解答:解:这个图形的周长为5+3+4×1002=4016.点评:此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.14.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG 绕点A旋转,那么C、F两点之间的最小距离为3cm.考点:正方形的性质;旋转的性质.分析:根据题意得到,当点F在正方形ABCD的对角线AC上时,C、F两点之间的距离最小,从而求得CF的长.解答:解:当点F在正方形ABCD的对角线AC上时,CF=AC﹣AF,当点F不在正方形的对角线上时由三角形的三边关系可知AC﹣AF<CF<AC+AF,∴当点F在正方形ABCD的对角线AC上时,C、F两点之间的距离最小,∴CF=AC﹣AF=4﹣=3cm.故答案为:3.点评:本题要考查正方形性质的运用,要明确旋转的概念.15.(4分)若规定:①{m}表示大于m的最小整数,例如:{3}=4,{﹣2.4}=﹣2;②[m]表示不大于m的最大整数,例如:[5]=5,[﹣3.6]=﹣4,则使等式2{x}﹣[x]=4成立的整数x=2.考点:规律型:数字的变化类.分析:根据题意①{m}表示大于m的最小整数,即2{m}=2(x+1);②[m]表示不大于m的最大整数,即[m]=x.解答:解:根据题意,得使等式2{x}﹣[x]=4成立的整数x应满足:2(x+1)﹣x=4,∴x=2.故答案为2.点评:解决此题的关键是理解题意,这里注意x是整数.16.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF 与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为40cm2.考点:平行四边形的性质.分析:作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.解答:解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.点评:本题综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.三、解答题(共7小题,满分86分)17.(8分)计算:.考点:特殊角的三角函数值;实数的性质;零指数幂.专题:计算题.分析:按照实数的运算法则依次计算,注意(﹣2)0=1,|﹣2|=2﹣.解答:解:原式=1﹣3×﹣(2﹣)=1﹣﹣2+=﹣1.点评:本题需注意的知识点是:任何不等于0的数的0次幂是1.负数的绝对值是正数.18.(10分)先化简,再求值:÷,其中.考点:分式的化简求值.专题:计算题.分析:先去括号,再把除法统一为乘法把分式化简,再把数代入.解答:解:原式=(2分)===﹣x﹣4;(4分)当时,原式==.(6分)点评:本题考查分式的混合运算,通分、分解因式、约分是关键.19.(10分)(2007•兰州)将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.考点:列表法与树状图法;概率公式.分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:(1)P偶数==(2)树状图为:或列表法为:第一次1 2 3 4第二次1 ﹣21 31 412 12 ﹣32 423 13 23 ﹣434 14 24 34 ﹣所以P4的倍数=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(12分)为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.考点:一元一次不等式组的应用.分析:本题可根据:每处安排10人×安排的处数=总人数﹣15;10≤每处安排14人×安排的处数<14,列出不等式组求出未知数的取值范围,然后判断出符合条件的值.解答:解:设这所学校派出x名学生,参加y处公共场所的义务劳动,依题意得:,解得:3<y≤4.∵y为整数,∴y=4.∴当y=4时,x=10×4+15=55.答:这所学校派出55名学生,参加4处公共场所的义务劳动.点评:根据每处安排的人数的取值范围及总人数列出不等式组求解即可.解答此题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.21.(14分)如图,四边形ABCD是正方形,点N是CD的中点,M是AD边上不同于点A、D的点,若sin∠ABM=,求证:∠NMB=∠MBC.考点:正方形的性质;全等三角形的判定与性质;勾股定理;锐角三角函数的定义.专题:证明题.分析:可构建等腰三角形来解答,如图,证明△MBE是等腰三角形,关键是证明△MND≌△ENC,点N是CD的中点,∠MDN=∠ECN=90°,∠MND=∠ENC;设AM=1,由,由勾股定理得,,所以,,CE=MD=2、,所以,ME=MN+NE=BE=BC+CE=5,即可证明;解答:证明:如图,分别延长BC、MN相交于点E,设AM=1,∵,∴,得,∴,∵四边形ABCD是正方形,∴DM=AD﹣AM=2,且,在Rt△DMN中,,又∵∠MDN=∠ECN=90°、∠MND=∠ENC,∴△MDN≌△ECN(ASA)∴CE=MD=2、,∴ME=MN+NE=5、BE=BC+CE=5,∴ME=BE,∴∠NMB=∠MBC.点评:本题考查了正方形勾股定理的运用、全等三角形及等腰三角形的判定,本题综合性较强,证明△MND≌△ENC,是解答本题的关键.22.(16分)如图,抛物线的顶点坐标是,且经过点A(8,14).(1)求该抛物线的解析式;(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)已知了抛物线的顶点坐标,可用顶点式的二次函数通式设出抛物线的解析式.然后根据A点的坐标即可求出抛物线的解析式.(2)根据(1)得出的抛物线的解析式即可求出B、C、D的坐标.(3)如果延长AC交y轴于E点.根据A、C的坐标可求出直线AC的解析式,不难得出E 点的坐标,这时可发现E点正好和B点关于x轴对称,也就是说x轴是线段BE的垂直平分线,因此x轴上任意点到B、E两点的距离都相等,那么AE=AC+BC,AP+PC=AP+PE,因此本题要分两种情况进行讨论:①当P、C重合时,此时AC+BC=AP+PC②当P、C不重合时,在三角形AEP中,根据三角形三边之间的关系可得出AP+PE>AE,根据前面分析的结论可得出AP+PC>AC+BC.综合上述两种情况:AP+BP≥AC+BC.解答:解:(1)设抛物线的解析式为y=a(x﹣)2﹣∵抛物线经过A(8,14),∴14=a(8﹣)2﹣,解得:a=∴y=(x﹣)2﹣(或)(2)令x=0得y=2,∴B(0,2)令y=0得x2﹣x+2=0,解得x1=1、x2=4∴C(1,0)、D(4,0)(3)结论:PA+PB≥AC+BC理由是:①当点P与点C重合时,有PA+PB=AC+BC②当点P异于点C时,∵直线AC经过点A(8,14)、C(1,0),∴直线AC的解析式为y=2x﹣2设直线AC与y轴相交于点E,令x=0,得y=﹣2,∴E(0,﹣2),则点E(0,﹣2)与B(0,2)关于x轴对称∴BC=EC,连接PE,则PE=PB,∴AC+BC=AC+EC=AE,∵在△APE中,有PA+PE>AE∴PA+PB=PA+PE>AE=AC+BC综上所得AP+BP≥AC+BC.点评:本题考查了待定系数法求二次函数解析式以及根据二次函数的解析式求函数与坐标轴交点和抛物线顶点的方法,(3)中准确的作出E点(即B关于x轴的对称点)并能根据三角形三边的关系进行求解是解题的关键.23.(16分)如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP.(1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由;(2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形.专题:开放型.分析:(1)若存在点E在⊙O上时,由已知,根据垂径定理知EC=CP,∠ECO=∠ACP=90°,由两直线平行,内错角相等知,∠E=∠P,由SAS知,△EOC≌△PAC,OC=CA,OE=AP则在Rt△APC中,由正弦的概念知,由特殊角的三角函数值知∠APC=30°;(2)由于P是⊙O右半圆上的任意一点,且AP∥OQ,由两直线平行,同位角相等知,∠PAC=∠QOB由BM是⊙O的切线,由切线的性质知,∠ABQ=90°,已知中有PC⊥AB,即∠ACP=∠ABQ=90°,∴△ACP∽△OBQ得到,,又有∠CAF=∠BAQ,∠ACF=∠ABQ=90°,故由△ACF∽△ABQ可知,又因为AB=2OB,则即得到PC=2CF,即PF=CF,所以有=,即k值不随点P的移动而变化.解答:解:(1)解法一:当点E在⊙O上时,设OQ与⊙O交于点D,∵AB⊥PC,∴=.∵AP∥OQ,∴∠APE=∠PEQ.∴=.又∠AOE=∠BOD,=,,∴.解法二:设点E在⊙O上时,由已知有EC=CP,∴△EOC≌△PAC.∴OC=CA,OE=AP.在Rt△APC中,,∴∠APC=30°.(2)k值不随点P的移动而变化.理由是:∵P是⊙O右半圆上的任意一点,且AP∥OQ,∴∠PAC=∠QOB.∵BM是⊙O的切线,∴∠ABQ=90°.又∵PC⊥AB,∴∠ACP=90°.∴∠ACP=∠ABQ.∴△ACP∽△OBQ.∴.又∵∠CAF=∠BAQ,∠ACF=∠ABQ=90°,∴△ACF∽△ABQ.∴.又∵AB=2OB,∴即.∴PC=2CF即PF=CF.∴=.即k值不随点P的移动而变化.点评:本题利用了切线的性质,平行线的性质,相似三角形和全等三角形的判定和性质,正弦的概念,特殊角的三角函数值求解.。