【数学】2015-2016年陕西省渭南市澄城县七年级下学期数学期末试卷和答案解析PDF
- 格式:pdf
- 大小:807.86 KB
- 文档页数:21
2015-2016学年度七年级下学期期末考试试卷数 学一、精心选一选,旗开得胜 (每小题3分, 满分30分,请将正确答案的序号填写在下表内)1. 如果向北走2米记作+2米,那么-3米表示A. 向东走3米B.向南走3米C.向西走3米D.向北走3米 2.下列说法中正确的是A. -a 一定是负数B. |a |一定是正数C. |a |一定不是负数D. |a |一定是负数。
3.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是A.6105.2⨯千克 B.5105.2⨯千克 C.61046.2⨯千克 D.51046.2⨯千克4.电影院第一排有m 个座位,后面每一排比前一排多2个座位,则第n 排的座位数有 A. m+2n, B. mn+2 C. m+(n+2) D. m+2(n-1) 5. 已知多项式ax bx +合并的结果为0,则下列说法正确的是A. a=b=0B.a=b=x=0C.a -b=0D.a+b=0 6.下列计算正确的是A.224a b ab +=B.2232x x -= C.550mn nm -= D.2a a a += 7.如图1,将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图18. 若式子x -1的值是-2,则x 的值是A 、-1B 、-2C 、-3D 、-4 9. 若a <0时,a 和-a 的大小关系是 A .a >-aB .a <-aC .a =-aD .都有可能10. 某班的5位同学在向“希望工程”捐款活动中,捐款如下(单位:元):4,3,8,2,8,那么这组数据的众数、中位数、平均数分别为A .8,8,5B .5,8,5C .4,4,5D .8,4,5二、耐心填一填,一锤定音 (每小题3分, 满分18分)11. -3.5的相反数是 .12.下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .13. 一个正多面体有六个面,则该多面体有 条棱. 14.欢欢将自己的零花钱存入银行,一年后共取得102元,已知年利 率为2%,则欢欢存入银行的本金是 元. 15. 比较大小: 34-56-.(填“<”、“>”或“=”) 16. 小明家上个月支出共计800元,各项支出如图2所示,其中用于教育上的支出是 元.三、细心想一想,慧眼识金 (每小题6分, 满分24分17. 计算:[]22)32(95542)3(6)2(⨯÷-÷⨯--+-18.求不等式1223++x >39+x 的最小整数解19. 有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中12x =,1y =-”.甲同学把“12x =”错抄成“12x =-”,但他计算的最后结果,与其他同学的结果都一样.试说明理由,并求出这个结果.20. 马小哈在解一元一次方程“⊙329x x -=+”时,一不小心将墨水泼在作业本上了,其中未知数x 前的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“∴原方程的解为2x =-”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?四、用心画一画,马到成功 (每小题4分,满分8分)21、画出如下图3中每个木杆在灯光下的影子。
2015-2016学年第二学期期末七年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)16.6 17.105° (17小题有无度数均不扣分)18.14 19.4 20.(14,2) 注:不加括号不能得分三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分) 解:(1)①6 ②﹣2 (①②两个小题,结果不正确不能得分) (2)解:由②得y=6﹣x ,代入①得2x ﹣3(6﹣x )=2,解得x=4.------------------2分 把x=4代入②,得y=2. ∴原方程组的解为.-------------------------------------------------------------4分(3)解:,由①得:x >﹣2,-----------------------------------------------------1分 由②得:x ≤3,---------------------------------------------------------2分 ∴不等式组的解集是:﹣2<x ≤3.-----------------------------4分 (其他解法参照此评分标准酌情给分) 22.(本题满分8分) 解:(1)如图所示;------------------------3分(2)由图可知,A ′(2,3)、B ′(1,0)、C ′(5,1);--6分(3)S △A ′B ′C ′=3×4﹣×1×3﹣×1×4﹣×2×3 =12﹣﹣2﹣3=.---------------------------------8分23.(本题满分8分)解:∵AB ⊥BF ,CD ⊥BF , ∴∠B=∠CDF=90°,∴AB ∥CD ,---------------------------------3分 ∵∠1=∠2,∴AB ∥EF ,----------------------------------6分 ∴CD ∥EF .----------------------------------8分 (其他解法参照此评分标准酌情给分)(第22题图)(第23题图)2015-2016学年第二学期期末七年级数学答案 第2页(共2页)24.(本题满分8分) 解:(1)4,6;------------------------2分(2)24, ------------------------------------3分120°,-----------------------------------4分 补图----------------------------------------6分 (3)32÷80×1000=400答:今年参加航模比赛的获奖人数约是400人. -------------------------------------------------8分25.(本题满分10分)解:设后半小时速度为xkm/h ,根据题意得:--------------------------------1分50+0.5x ≥120, --------------------------------------------------------6分解得:x ≥140.---------------------------------------------------------------------- 9分 答:后半小时速度至少为140km/h 才能保证按时到达.----------------- 10分 (其他解法参照此评分标准酌情给分。
2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。
七年级下册渭南数学期末试卷测试卷附答案一、选择题1.116的平方根是() A .-14B .14C .14±D .12±2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.若点()1,A a a -在第二象限,则点(),1B a a -在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直. ②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行. ④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离. ⑤过一点,有且只有一条直线与已知直线平行. A .2个B .3个C .4个D .5个5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒6.下列说法错误的是( ) A .-8的立方根是-2 B .1212-=- C .5-的相反数是5D .3的平方根是3±7.如图,已知//AB CD ,BC 平分ABE ∠,64BED ∠=︒,则C ∠的度数是( )A .26︒B .32︒C .48︒D .54︒8.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P 1,P 2,P 3,…均在格点上,其顺序按图中“→”方向排列,如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)…根据这个规律,点P 2021的坐标为( )A .(﹣505,﹣505)B .(﹣505,506)C .(506,506)D .(505,﹣505)二、填空题9.算术平方根是5的实数是___________.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.12.如图,直线//a b ,//AB CD ,160∠=︒,则4∠=________.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 15.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.16.在平面直角坐标系中,对于点(),P x y ,我们把点()1,1M y x -++叫做点P 的和谐点.已知点1A 的和谐点为2A ,点2A 的和谐点为3A ,点3A 的和谐点为4A ,……,这样依次得到点1A ,2A ,3A ,…,n A .若点1A 的坐标为()2,4,则点2021A 的坐标为______.三、解答题17.计算: (1)3181624-+-; (2)1333⎛⎫+ ⎪⎝⎭.18.求下列各式中的x 值: (1)(x ﹣1)2=4; (2)(2x +1)3+64=0; (3)x 3﹣3=38.19.学习如何书写规范的证明过程,补充完整,并完成后面问题.已知:如图,点D ,E ,F 分别是三角形ABC 的边BC ,CA ,AB 上的点,DE ∥BA ,∠A =∠FDE .求证:FD ∥AC .证明:∵DE ∥BA (已知) ∴ ∠BFD = ( ) 又 ∵ ∠A =∠FDE ∴ = (等量代换) ∴FD ∥CA ( )模仿上面的证明过程,用另一种方法证明FD ∥AC .20.如图,三角形ABC 的顶点都在格点上,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:1A ______,1B ______,1C ______; (2)画出平移后三角形111A B C ; (3)求三角形ABC 的面积.21.一个正数的两个平方根为21n 和4n -,2n 是24m +的立方根,39的小数部分是k ,求39m n k +-+的平方根.二十二、解答题22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.(1)如图①,若∠B +∠D =∠E ,则直线AB 与CD 有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB //CD ,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB //CD ,则∠1+∠2+…+∠n -1+∠n 的度数为 .24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.26.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】解:因为211416⎛⎫±=⎪⎝⎭,所以116的平方根是14±,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C【分析】根据平移不改变图形的形状和大小,进而得出答案.【详解】解:观察图形可知选项C中的图案通过平移后可以得到.故选:C.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案.【详解】解:观察图形可知选项C中的图案通过平移后可以得到.故选:C.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,故选A.【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.B【分析】先求∠DFE的度数,再利用平角的定义计算求解即可.【详解】∵AB∥CD,∴∠DFE=∠A=65°,∴∠EFC=180°-∠DFE =115°,故选B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.6.B 【分析】根据平方根以及立方根的概念进行判断即可. 【详解】A 、-8的立方根为-2,这个说法正确;B 、,这个说法错误;C .D 、3的平方根是 故选B . 【点睛】本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根. 7.B 【分析】利用平行线的性质,角平分线的定义即可解决问题. 【详解】解:∵//AB CD ,64BED ∠=︒,BC 平分ABE ∠, ∴64ABE ∠=︒,11643222ABC EBC ABE ∠=∠=∠=⨯︒=︒,∵//AB CD , ∴32C ABC ∠=∠=︒, 故选:B . 【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.A 【分析】先分别求出点的坐标,再归纳类推出一般规律即可得. 【详解】解:由题意得:点的坐标为,即, 点的坐标为,即, 点的坐标为,即,归纳类推得:点的坐标为,其中为正整数, ,点的坐标为,解析:A 【分析】先分别求出点5913,,P P P 的坐标,再归纳类推出一般规律即可得.【详解】解:由题意得:点5P 的坐标为5(1,1)P --,即411(1,1)P ⨯+--, 点9P 的坐标为9(2,2)P --,即421(2,2)P ⨯+--, 点13P 的坐标为13(3,3)P --,即431(3,3)P ⨯+--,归纳类推得:点41n P +的坐标为41(,)n n P n +--,其中n 为正整数,202145051=⨯+,∴点2021P 的坐标为2021(505,505)P --,故选:A . 【点睛】本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键.二、填空题 9.5 【分析】根据算术平方根的定义解答即可. 【详解】解:算术平方根是的实数是5. 故答案为:5. 【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个解析:5 【分析】根据算术平方根的定义解答即可. 【详解】5. 故答案为:5. 【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键.10.0; 【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】解:根据对称的性质,得, 解得.故答案为:0. 【点睛】考查了关于轴、轴对称的点的坐标,解析:0; 【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可. 【详解】解:根据对称的性质,得11m -=-, 解得0m =. 故答案为:0. 【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.35 【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E . 【详解】 解解析:35 【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E . 【详解】解:∵BE 和CE 分别是∠ABC 和∠ACD 的角平分线, ∴∠EBC =12∠ABC ,∠ECD =12∠ACD , 又∵∠ACD 是△ABC 的一外角, ∴∠ACD =∠A +∠ABC ,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD , ∵∠ECD 是△BEC 的一外角, ∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°, 故答案为:35. 【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.12.120°.【分析】延长AB 交直线b 于点E ,可得,则 ,再由,可得 ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵,∴,∴ ,∵,,∴ ,∴.故答案为: .【点睛】解析:120°.【分析】延长AB 交直线b 于点E ,可得//AE CD ,则4180AED ∠+∠=︒ ,再由//a b ,可得1AED ∠=∠ ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵//AB CD ,∴//AE CD ,∴4180AED ∠+∠=︒ ,∵//a b ,160∠=︒,∴160AED ∠=∠=︒ ,∴4180120∠=︒-∠=︒AED .故答案为:120︒ .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.【详解】解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.15.(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点A 的坐解析:(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.16.【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A解析:()2,4【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A 1的坐标为(2,4),∴A 2(−3,3),A 3(−2,−2),A 4(3,−1),A 5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A2021的坐标与A1的坐标相同,为(2,4).故答案为:()2,4.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.19.(1)∠FDE,两直线平行,内错角相等;∠A,∠BFD,同位角相等,两直线平行;(2)证明见解析.【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)∠FDE,两直线平行,内错角相等;∠A,∠BFD,同位角相等,两直线平行;(2)证明见解析.【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:∵DE∥BA(已知)∴∠BFD=∠FDE(两直线平行,内错角相等)又∵∠A=∠FDE∴∠A=∠BFD,(等量代换)∴FD∥CA(同位角相等,两直线平行.)故答案为:∠FDE,两直线平行,内错角相等;∠A,∠BFD,同位角相等,两直线平行.(2)证明:∵DE∥BA(已知),∴∠A=∠DEC(两直线平行,同位角相等),又∵∠A=∠FDE(已知),∴∠FDE=∠DEC(等量代换),∴FD∥CA;(内错角相等,两直线平行).本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC 补全为长方形解析:(1)()4,7,()1,2,()6,4;(2)见解析;(3)192【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC 补全为长方形,然后利用作差法求解即可.【详解】解:(1)平移后的三个顶点坐标分别为:()14,7A ,()11,2B ,()16,4C ;(2)画出平移后三角形111A B C ;(3)1519255322ABC ABE GBC AFC EBGF S S S S S =---=---=长方形.【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.21.【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.【详解】∵一个正数的两个平方根为和,∴,解得:,∵是的立方根,∴,解得:,∵,解析:3±【分析】根据平方根的性质即可求出n 的值,根据立方根的定义求得m 的值,根据6397<求得39k ,即可求得答案.【详解】∵一个正数的两个平方根为21n 和4n -,∴()2140n n ++-=,解得:1n =,∵2n 是24m +的立方根,∴()3224n m =+, 解得:2m =,∵67<,∴6,则小数部分是:6k=,∴m n k+-)=+-,2169∴m n k+-3=±.【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.25.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。
abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。
每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。
)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。
陕西省渭南市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共36分)1. (4分) (2016七下·建瓯期末) 下列运算中,正确的是()A . =±3B . =2C .D .2. (4分)(2017·杭州模拟) 下列各式变形中,正确的是()A . 2x2•3x3=6x6B . =aC . x2﹣4=(x+4)(x﹣4)D . (a﹣b)2=(b﹣a)23. (4分) (2020七下·合肥月考) 冠状病毒,其直径为750纳米至1000纳米,750纳米即0.0000075米,数据0.0000075用科学记数法表示正确的是().A .B .C .D .4. (2分)(2012·杭州) 如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A . 点B到AO的距离为sin54°B . 点B到AO的距离为tan36°C . 点A到OC的距离为sin36°sin54°D . 点A到OC的距离为cos36°sin54°5. (2分)下列说法:(1)平行四边形的对角线互相平分。
(2)菱形的对角线互相垂直平分。
(3)矩形的对角线相等,并且互相平分。
(4)正方形的对角线相等,并且互相垂直平分。
其中正确的是()A . ①,②B . ①,②,③C . ②,③,④D . ①,②,③,④6. (4分)若a>b,且c<0,则下列不等式中正确的是()A . a÷c<b÷cB . a×c>b×cC . a+c<b+cD . a﹣c<b﹣c7. (4分) (2020七下·宜昌期中) 下列各数中,界于6和7之间的数是()A .B .C .D .8. (4分) (2019八上·双台子期末) 如果把分式中的x和y都扩大2倍,那么分式的值()A . 扩大2倍B . 缩小2倍C . 不变D . 扩大4倍9. (4分) (2016九上·端州期末) 一元二次方程总有实数根,则m应满足的条件是:()A . m>1B . m=1C . m<1D . m≤110. (4分) (2017八上·山西月考) 已知是完全平方式,则的值是().A .B .C .D .二、填空题 (共4题;共20分)11. (5分) (2018九上·长春开学考) 当 ________时,分式有意义.12. (5分)(2016·鄞州模拟) 分解因式:x2﹣9=________.13. (5分) (2020七上·巴彦期末) 某工程,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后乙加入工作,问甲、乙合作________天才能完成这项工程.14. (5分)(2019·宁波) 如图,过原点的直线与反比例函数y= (k>0)的图象交于A,B两点,点A在第一象限点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为________.三、解答题 (共7题;共66分)15. (8分)(2019·高台模拟)(1)计算:;(2)解不等式组,并写出该不等式组的最大整数解.16. (8分) (2016七上·临清期末) 化简并求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.17. (2分)(2018·汕头模拟) 解不等式组,并将解集在数轴上表示出来.18. (10分) (2019七下·蔡甸月考) 如图,在△ABC中,∠1=∠2,ED//BC,CD⊥AB于点D.求证:∠FGB=90°.19. (12分) (2019八上·德惠期中) 已,求:(1);(2) .20. (12分) (2020八上·富顺期中) 如图,在四边形中,点是边的中点,点是边的中点,且有.(1)求证:;(2)若,求的度数.21. (14.0分)(2019·萍乡模拟) “绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A.B 两种型号的垃圾处理设备共10台(两种型号都要买),已知每台A型设备日处理能力为12吨,每台B型设备日处理能力为15吨,购回的设备日处理能力不低于140吨(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元。
2015-2016学年陕西省渭南市澄城县七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.以长途汽车总站为坐标原点,幸福街为x轴,向阳路为y轴建立平面直角坐标系,纪念馆的位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)2.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.73.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)4.小雪在作业本上做了四道题目:①=﹣3;②±=4;③=9;④=6,她做对了的题目有()A.1道B.2道C.3道D.4道5.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③6.如图,∠1+∠2=180°,∠3=108°,则∠4的度数是()A.72° B.80° C.82° D.108°7.由方程组可得出x与y的关系是()A.x+y=1 B.x+y=﹣1 C.x+y=7 D.x+y=﹣78.比较2,,的大小,正确的是()A.2<<B.2<<C.<<2 D.<2<9.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题()A.13 B.14 C.15 D.1610.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.1<a≤2 B.1≤a≤2 C.a>1 D.a≤2二、填空题(每小题3分,共18分)12.计算(+2)的结果是.13.不等式组无解,m取值范围为.14.如图,两条直线a、b相交,已知2∠3=3∠1,则∠2= .15.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为.棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 316.如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.17.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.三、解答题(8小题,共72分)18.解方程和方程组(1)(x﹣2)2=9(2).19.解不等式组并在数轴上表示它的解集.20.若a、b为实数,且b=+4,求a+b的值.21.如图,已知AC⊥AB,ED⊥AB,垂足为A、D,∠CAF=80°.求∠DGF的度数.22.一件商品,如果按定价打九折出售可以盈利20%,如果打八折出售可以盈利10元,问此商品的定价和进价是多少元?23.如表给出了我国2005﹣2010年国内生产总值(GDP)年份2005 2006 2007 2008 2009 2010GDP/亿元180000 210000 260000 310000 340000 400000 (1)请选择合适的统计图描述表中的数据,并分析这几年国内生产总值的变化趋势.(2)如果到2020年国内生产总值比2005年翻两番,那么2020年的国内生产总值是多少?增长了百分之几?24.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?25.如图,在平面直角坐标系中,A、B、C三点的坐标分别为(0,1)(2,0)(2,1.5)(1)求三角形ABC的面积.(2)如果在第二象限内有一点P(a,),试用含a的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与三角形ABC的面积相等?若存在,请求出点P的坐标?若不存在,请说明理由.26.开放性试题:李师傅设计的广告模板草图(单位:m)如图所示,李师傅想通过电话征求陈师傅的意见,假如你是李师傅,你将如何把这个图形告知陈师傅呢?2015-2016学年陕西省渭南市澄城县七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.以长途汽车总站为坐标原点,幸福街为x轴,向阳路为y轴建立平面直角坐标系,纪念馆的位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)【考点】坐标确定位置.【分析】观察图形可知,纪念馆位置在第四象限,根据第四象限的符号特点进行判断即可.【解答】解:因为第四象限内点的坐标,横坐标为正数,纵坐标为负数,结合各选项符合条件的只有C(5,﹣3).故选C.2.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】二元一次方程的解.【分析】把x=1,y=﹣2代入方程ax﹣3y=1,再解一元一次方程求出即可.【解答】解:∵是关于x、y的二元一次方程ax﹣3y=1的解,∴代入得:a﹣3×(﹣2)=1,解得:a=﹣5.故选A.3.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【考点】点的坐标.【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.4.小雪在作业本上做了四道题目:①=﹣3;②±=4;③=9;④=6,她做对了的题目有()A.1道B.2道C.3道D.4道【考点】立方根;平方根;算术平方根.【分析】依据立方根、平方根算术平方根的定义求解即可.【解答】解:①=﹣3,故①正确;②±=±4,故②错误;③=3,故③错误;④=6,故④正确.故选:B.5.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.6.如图,∠1+∠2=180°,∠3=108°,则∠4的度数是()A.72° B.80° C.82° D.108°【考点】平行线的判定与性质.【分析】由邻补角定义得到∠2与∠5互补,再由∠1与∠2互补,利用同角的补角相等得到∠1=∠5,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到∠6与∠4互补,而∠3与∠6对顶角相等,由∠3的度数求出∠6的度数,进而求出∠4的度数.【解答】解:∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴a∥b,∴∠4+∠6=180°,∴∠4=72°.故选:A.7.由方程组可得出x与y的关系是()A.x+y=1 B.x+y=﹣1 C.x+y=7 D.x+y=﹣7【考点】解二元一次方程组.【分析】先把方程组化为的形式,再把两式相加即可得到关于x、y的关系式.【解答】解:原方程可化为,①+②得,x+y=7.故选C.8.比较2,,的大小,正确的是()A.2<<B.2<<C.<<2 D.<2<【考点】实数大小比较.【分析】把2转化为,即可比较大小.【解答】解:∵2=,∴,∵2=,∴,∴,即,故选:D.9.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题()A.13 B.14 C.15 D.16【考点】一元一次不等式的应用.【分析】根据题意可得:竞赛得分=10×答对的题数+(﹣5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x>200,解得x>.∵x为整数,∴x最小是14,故选:B.10.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.1<a≤2 B.1≤a≤2 C.a>1 D.a≤2【考点】不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故选:A.二、填空题(每小题3分,共18分)12.计算(+2)的结果是2+2.【考点】二次根式的混合运算.【分析】结合二次根式的混合运算的概念和运算法则求解即可.【解答】解:原式=•+2=2+2.故答案为:2+2.13.不等式组无解,m取值范围为m≥5 .【考点】不等式的解集.【分析】根据不等式组无解,判断m与5的大小关系.【解答】解:∵不等式组无解,∴m≥5.故答案为:m≥5.14.如图,两条直线a、b相交,已知2∠3=3∠1,则∠2= 108°.【考点】对顶角、邻补角.【分析】根据邻补角的性质,可得∠1的度数,根据对顶角的性质,可得答案.【解答】解;∵2∠3=3∠1,∠3=∠1,∠1与∠3是邻补角,∴∠1+∠3=180°,∠1=72°,由邻补角的性质得∠2=180°﹣∠1=108°,故答案为:108°.15.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为0.8 .棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3【考点】频数与频率.【分析】先求得在8≤x<32这个范围的频数,再根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是: =0.8.故答案为0.8.16.如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD 的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.17.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.【考点】二元一次方程的应用.【分析】设甲种运动服买了x套,乙种买了y套,根据准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.【解答】解:设甲种运动服买了x套,乙种买了y套,20x+35y=365,得x=,∵x,y必须为正整数,∴>0,即0<y<,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为:2.三、解答题(8小题,共72分)18.解方程和方程组(1)(x﹣2)2=9(2).【考点】解二元一次方程组;平方根.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1;(2)方程组整理得:,①×5+②得:26x=52,解得:x=2,把x=2代入②得:y=4,则方程组的解为.19.解不等式组并在数轴上表示它的解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x<0,由②得,x≤﹣,故不等式组的解集为:x≤﹣.在数轴上表示为:.20.若a、b为实数,且b=+4,求a+b的值.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出方程,分别求出a、b的值,计算即可.【解答】解:由题意得,a2﹣1≥0,1﹣a2≥0,解得,a=±1,则b=4,∴a+b=3或5.21.如图,已知AC⊥AB,ED⊥AB,垂足为A、D,∠CAF=80°.求∠DGF的度数.【考点】垂线.【分析】先根据平行线的性质求出∠EGF,再根据邻补角的性质即可解决问题.【解答】解:∵AC⊥AB,ED⊥AB,∴AC∥DE,∴∠GAC=∠EGF=80°,∴∠DGF=180°﹣∠EGF=180°﹣80°=100°.22.一件商品,如果按定价打九折出售可以盈利20%,如果打八折出售可以盈利10元,问此商品的定价和进价是多少元?【考点】二元一次方程组的应用.【分析】设此商品的定价为x元,进价是y元,根据此商品按定价打九折出售可以盈利20%,如果打八折出售可以盈利10元,列方程组求解.【解答】解:设此商品的定价为x元,进价是y元,由题意得,,解得:.答:此商品的定价为200元,进价是150元.23.如表给出了我国2005﹣2010年国内生产总值(GDP)年份2005 2006 2007 2008 2009 2010 GDP/亿元180000 210000 260000 310000 340000 400000 (1)请选择合适的统计图描述表中的数据,并分析这几年国内生产总值的变化趋势.(2)如果到2020年国内生产总值比2005年翻两番,那么2020年的国内生产总值是多少?增长了百分之几?【考点】统计图的选择.【分析】(1)根据表中的数据绘制条形统计图即可描述表中的数据,再根据条形统计图分析国内生产总值的变化趋势;(2)根据到2020年国内生产总值比2005年翻两番,求得2020年的国内生产总值以及增长的百分比.【解答】解:(1)如图,用折线统计图描述数据:由图可得,这几年国内生产总值逐年增加,呈现线性的增长趋势;(2)∵到2020年国内生产总值比2005年翻两番,∴2020年的国内生产总值=180000×2×2=720000(亿元),增长的百分比为:÷180000×100%=300%.24.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?【考点】一元一次不等式组的应用.【分析】(1)设租36座的车x辆,则租42座的客车(x﹣1)辆.不等关系:租42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人.(2)根据(1)中求得的人数,进一步计算三种方案的费用:①只租36座客车;②只租42座客车;③合租两种车.再进一步比较得到结论即可.【解答】解:(1)设租36座的车x辆.据题意得:,解得:.∴7<x<9.∵x是整数,∴x=8.则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200元;方案②:租42座车7辆的费用:7×440=3080元;方案③:∵<,∴42座车越多越省钱,又∵=6…36,余下人数正好36座,可以得出:租42座车6辆和36座车1辆的总费用:6×440+1×400=3040元.∵3040<3080<3200,∴方案③:租42座车6辆和36座车1辆最省钱.25.如图,在平面直角坐标系中,A、B、C三点的坐标分别为(0,1)(2,0)(2,1.5)(1)求三角形ABC的面积.(2)如果在第二象限内有一点P(a,),试用含a的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与三角形ABC的面积相等?若存在,请求出点P的坐标?若不存在,请说明理由.【考点】坐标与图形性质.【分析】(1)根据A、B、C三点的坐标即可得出△ABC的面积;(2)作PE⊥y轴于E,四边形ABOP的面积=△AOB的面积+△AOP的面积,即可得出结果;(3)根据题意得:1﹣a=1.5,求出a=﹣1,即可得出点P的坐标.【解答】解:(1)∵A、B、C三点的坐标分别为(0,1)(2,0)(2,1.5),∴△ABC的面积=×1.5×2=1.5;(2)作PE⊥y轴于E,如图所示:则四边形ABOP的面积=△AOB的面积+△AOP的面积=OA•OB+OA•PE=×1×2+×1×(﹣a)=1﹣a;(3)存在点P,使得四边形ABOP的面积与三角形ABC的面积相等,点P的坐标为(﹣1,);理由如下:根据题意得:1﹣a=1.5,解得:a=﹣1,∴P(﹣1,).26.开放性试题:李师傅设计的广告模板草图(单位:m)如图所示,李师傅想通过电话征求陈师傅的意见,假如你是李师傅,你将如何把这个图形告知陈师傅呢?【考点】坐标确定位置.【分析】直接利用已知图形建立平面直角坐标系,进而表示出各点坐标即可.【解答】解:如图所示:O(0,0),A(7,0),B(7,3),C(3,3),D(3,5),E(0,5).。
陕西省渭南市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共11题;共22分)1. (2分) (2016九上·乐至期末) 如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;② = ;③DP2=PH•PB;④tan∠DBE=2﹣.其中正确的是()A . ①②③④B . ①②④C . ②③④D . ①③④2. (2分)(2018·怀化) 如图,直线a∥b,∠1=60°,则∠2=()A . 30°B . 60°C . 45°D . 120°3. (2分)如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中共有全等三角形()A . 1对B . 2对C . 3对D . 4对4. (2分) (2018九上·泗洪月考) 下列说法中错误的有()个①三角形的一个外角等于这个三角形的两个内角的和;②直角三角形只有一条高;③在同圆中任意两条直径都互相平分;④n边形的内角和等于(n﹣2)•360°.A . 4B . 3C . 2D . 15. (2分) (2017七下·涪陵期末) 下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是()A . 23B . 25C . 26D . 286. (2分)若一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A . 直角三角形B . 锐角三角形C . 钝角三角形D . 无法确定7. (2分)(2018·潮南模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A .B .C .D .8. (2分)如图示一个黑白小方块相同的长方形,李明用一个小球在上面随意滚动,球停在黑色方块(每个小方块的大小相同)的概率()A .B .C .D .9. (2分)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A . 4个B . 6个C . 34个D . 36个10. (2分) (2018八上·南召期末) 如图,在的网格中,每个网格线的交点称为格点.已知为两个格点,请在图中再寻找另一个格点,使成为等腰三角形,则满足条件的点的个数为()A . 10个B . 8个C . 6个D . 4个11. (2分)同学们在学校小花园的一角种植了M,P,Q三种花,其所占的种植区域如图所示,∠AOE=90°,AB=OB,CB∥OE,AB=4m,则种植M花的面积为()A . πm2B . πm2C . 16πm2D . 8πm2二、解答题 (共5题;共45分)12. (5分)计算题:| ﹣ |+| ﹣ |+| ﹣|+…+| ﹣ |13. (20分) (2019七上·潼南月考) 计算.(1)(2)(3)×[-32÷(- )2+(-2)3](4)14. (5分)(1)如图1,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;(2)如图2,点B、F、D在射线AM上,点G、C、E在射线AN上,且AB=BC=CD=DE=EF=FG=GA,求∠A的度数.15. (10分)(2011·资阳) 如图,A、B、C、D、E、F是⊙O的六等分点.(1)连接AB、AD、AF,求证:AB+AF=AD;(2)若P是圆周上异于已知六等分点的动点,连接PB、PD、PF,写出这三条线段长度的数量关系(不必说明理由).16. (5分) (2017八下·江海期末) 正方形ABCD 的CD边长作等边△DCE,AC和BE相交于点F,连接DF.求∠AFD 的度数.参考答案一、选择题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、解答题 (共5题;共45分)12-1、13-1、13-2、13-3、13-4、14-1、15-1、15-2、16-1、。
七年级数学试题与答案 第1页(共2页)2015—2016学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题3分,计30分. 1.下列命题中是假命题的是A.对顶角相等B.邻补角是互补的角C.同旁内角互补D.垂线段最短2.23的算术平方根是A.3B. ±3.已知点A (a +3,a -2)位于第四象限,则a 的取值范围是 A .a <-3B .a > 2C .-3<a <2D .-2<a <34.在平面直角坐标系中,将点P (-2,1)向左平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是A .(1,5)B .(-5,5)C .(1,-3)D .(-5,-3) 5.若x >y ,则下列式子错误的是A. x ﹣3>y ﹣3B.﹣3x >﹣3yC. x +3>y +3D. 3x >3y6.若a b +=3,a b -=7,则22a b +的值是A.5B.21C.29D. 857.下列调查:①调查某批次汽车的抗撞击能力;②了解某班学生的身高情况;③调查春节联欢晚会收视率;④选出某校短跑最快的学生参加全市比赛.其中适宜抽样调查的是A. ①②B. ①③ 错误!未找到引用源。
C. ②③错误!未找到引用源。
陕西省渭南市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列运算正确的是()A .B .C .D .2. (2分) (2019七上·柯桥月考) 在,,,,,中,无理数有()个A . 5个B . 4个C . 3个D . 2个3. (2分) (2018九下·潮阳月考) 不等式2x≥x﹣1的解集在数轴上表示正确的是()A .B .C .D .4. (2分) (2019七下·乌兰浩特期中) 下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为()A . 1个B . 2 个C . 3个5. (2分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A . 30°B . 35°C . 40°D . 45°6. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .7. (2分)现给出下列四个命题:①无公共点的两圆必外离②位似三角形是相似三角形③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于60°⑤对角线相等的四边形是矩形其中选中是真命题的个数的概率是()A .B .C .D .8. (2分)若关于x,y的二元一次方程组的解也是二元一次方程3x+2y=10的解,则k的值为()B . -2C . 2D . 49. (2分)下列调查中,最适合采用普查方式的是()A . 对重庆市石柱县中小学视力情况的调查B . 对动车重要零部件的调查C . 对市场上方便面质量的调查D . 对重庆市“雾都夜话”栏目收视率的调查10. (2分) (2015七下·周口期中) 在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A . (2,5)B . (﹣8,5)C . (﹣8,﹣1)D . (2,﹣1)11. (2分)已知实数a,b在数轴上的位置如图,则下列等式成立的是()A . b﹣a>0B . a+b>0C . a﹣1>0D . 1﹣b>012. (2分)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A .B .C .D .二、填空题 (共4题;共8分)13. (1分)计算:(π﹣2016)0﹣()2+tan45°=________14. (5分)如图,AB和CD相交于点O,∠C=∠1,∠D=∠2,求证:∠A=∠B.证明:∵∠C=∠1,∠D=∠2(已知)又∵∠1=∠2(________ )∴________(________ )∴AC∥BD(________ )∴________(两直线平行,内错角相等)15. (1分)已知关于x、y的方程组的解是正数,则a的取值范围________ .16. (1分) (2016八上·东莞开学考) 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,第5个图案中白色正方形的个数________.三、解答题 (共8题;共80分)17. (10分) (2019八上·驿城期中) 计算:(1)(2)18. (10分)按要求解下列方程组.(1)用加减消元法解方程组:;(2)用代入消元法解方程组:.19. (5分)解不等式组,把每个不等式的解集在数轴上表示出来,并写出不等式组的整数解.20. (5分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.于是可以用﹣1来表示的小数部分.请解答:已知:+2的小数部分是a,5﹣的小数部分是b.①写出a、b的值.②求a+b的值.③求ab的值.21. (10分) (2017七下·扬州月考) 如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,(1)试判断DG与BC的位置关系,并说明理由.(2)若∠A=70°,∠B=40°,求∠AGD的度数.22. (15分)(2016·自贡) 我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.23. (10分)(2017·武汉模拟) 某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润P与a的函数关系式,并求当a≥30时P的最大值.24. (15分) (2019八下·武昌月考) 如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)边AC,AB,BC的长;(2)点C到AB边的距离;(3)求△ABC的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分) 17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。
2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。
2015-2016学年度初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D.33ba <3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A .1种 B .2种 C .3种 D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )A .∠BAC <∠ADCB .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = .第6题图第7题图10.不等式93-x <0的最大整数....解是 . 11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = ______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)解方程:62221+-=--y y y19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x第16题图DEA BCB第12题图第13题图第14题图第17题图21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD沿AD 折叠得到△AED ,AE 与BC 交于点F . (1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA -的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)ACDB E F25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元; 假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,∠②BDC ∠α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示).(3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).BACBAA图1图22015-2016学年度初一年下学期期末质量检测数学试卷参考答案说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B 二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11;(2)120.三、解答题:(89分) 18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分 212336--=+-y y y ………………5分 321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来. 解:1335+≤-x x ……………………2分 42≤x ………………………4分 2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分 20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x方法一:用代入法解的得分步骤解:由(1)得 3+=y x (3)……3分 把(3)代入(2)得1633(2=++y y ) 解得2=y ………6分把2=y 代入(3) 得5=x ……8分方法二:用加减法解的得分步骤解:由(2)-(1)×2得 105=y …………………4分 2=y ……………6分 把2=y 代入(1)得5=x ……………………8分21.(9分)解:由(1)得13≥x ……………………3分由(2)得2->x ……………………6分在数轴上表示两个解集(略)………7分所以原不等式组的解是:13≥x …………9分 22.(9分)解:(1)110; ………………………………………… 3分(2)解法一:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分解法二: ∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到, ∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角, ∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分) 23.(9分)解:作图如下:24.(9分)答案不惟一.P ACD BEF (1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分 (3)正确画出点P . ……………………9分(注:画对一个得5分,两个得9分)∵只能为正整数 ∴m 最小为434答:他当月至少要卖434件.………………………………………………10分 (3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a 则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)①125;②α2190+;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠ ∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分(3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190………………12分 ∴α4190+=∠BMC .……………………………………13分。