单项式同步练习
- 格式:doc
- 大小:116.00 KB
- 文档页数:3
4.1 第1课时 单项式知识点 1 单项式的概念1.下列式子中,是单项式的是( ) A.12x 3y 2 B .x +y C .-m 2-n 2 D.12x2.下列式子中单项式的个数是( ) 3a ,12xy 2,-5xy 4,a π,-x ,23(a +1),2x ,2A .4B .5C .6D .73.一辆长途汽车从甲地出发,3小时后到达相距s 千米的乙地,这辆长途汽车的平均速度是________千米/时,所列代数式________单项式(填“是”或“不是”).知识点 2 单项式的系数和次数4.单项式-4x 2y 3中数字因数为______,故系数是______;所有字母指数之和为______,所以次数是________.5.教材习题A 组第2题变式 下列说法正确的是( ) A .单项式x 既没有系数,也没有次数 B .单项式3x 2y 4的系数是3,次数是2C .单项式12πx 2的系数是12,次数是3D .单项式-a 2bc 的系数是-1,次数是46.学校购买了一批图书,共a 箱,每箱有b 册,若将这批图书的一半捐给社区,则捐给社区的图书为________册,这个单项式的系数为________,次数为________.7.已知(a -1)x 2y a+1是关于x ,y 的五次单项式,则这个单项式的系数是________.8.指出下列各单项式的系数和次数.(1)3x 3;(2)-65xyz ;(3)2mn 3;(4)-x4;(5)-mx ;(6)3πx 2y 7.9.下列说法正确的是( )A .34x 3是7次单项式B .5πR 2的系数是5C .0是单项式 D.1m 2是二次单项式10.若-52x m y4的次数是6,则m 的值是( )A .6B .5C .4D .311.(1)如果-axy m 是关于x ,y 的单项式,且系数是4,次数是5,那么a 与m 的值分别是________;(2)如果-(a -2)xy m 是关于x ,y 的五次单项式,那么a 与m 应满足的条件是____________; (3)如果单项式2x 3y 4与-17x 2z n 的次数相同,那么n =________.12.已知-a 3x |m |y 是关于x ,y 的单项式,且系数为-59,次数是4,求代数式3a +12m 的值.13.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的符号规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.教师详解详析【备课资源】【详解详析】1.A2.C [解析] 单项式有3a ,12xy 2,-5xy 4,aπ,-x ,2,共6个.3.s3是 4.-4 -4 5 55.D [解析] 单项式x 的系数和次数都为1,故A 项错误;单项式3x 2y 4的系数是34,次数是3,故B 项错误;单项式12πx 2的系数是12π,次数是2,故C 项错误;只有D 选项正确.故选D.6.12ab 122 7.1 [解析] 由题意,得a +1+2=5,解得a =2,则这个单项式的系数是a -1=1. 8.解:(1)3x 3的系数为3,次数为3. (2)-65xyz 的系数为-65,次数为3.(3)2mn 3的系数为23,次数为2.(4)-x 4的系数为-14,次数为1.(5)-mx 的系数为-1,次数为2. (6)3πx 2y 7的系数为3π7,次数为3.9.C10.B [解析] 由已知可得m +1=6,所以m =5.故选B. 11.(1)-4,4 (2)a ≠2且m =4 (3)5[解析] (1)根据题意,得-a =4,1+m =5,所以a =-4,m =4. (2)根据题意,得-(a -2)≠0且1+m =5,所以a ≠2且m =4. (3)根据题意,得3+4=2+n ,所以n =5.12. 解:由已知可得-a 3=-59,所以a =53;|m |+1=4,所以|m |=3.因为|±3|=3,所以m =±3.当m =3,a =53时,3a +12m =3×53+12×3=132;当m =-3,a =53时,3a +12m =3×53-12×3=72.13.解:(1)这组单项式的系数的符号规律是(-1)n . (2)次数的规律是从1开始的连续自然数. (3)第n 个单项式是(-1)n (2n -1)x n .(4)第2019个单项式是-4037x 2019,第2020个单项式是4039x 2020.。
数学:9.2单项式乘多项式同步练习(苏科版七年级下)【基础演练】一、填空题1.计算:_____________)(32=+y x xy x .2. ·c b a c ab 532243—=.3.计算:)164(4)164(24242++-++a a a a a =________.4.计算)2()(22y x x xy +-=____ ____.5.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.二、选择题6. 化简)1()1(a a a a --+的结果是( )A .2a ;B . 22a ;C .0 ;D .a a 222-.7. 适合12)52()1(2=---x x x x 的x 的值是( )A .2 ;B . 1;C .0 ;D .4.8.下列计算中正确的是 ( )A.()a a a a +=+236222 ;B.()x x y x xy +=+23222;C.a a a +=10919 ;D.()a a =336.9. 一个长方体的长、宽、高分别是x x -342、和x ,它的体积等于 ( ) A.x x -3234; B.x 2 ; C.x x -3268; D.x x -268.10. 计算:ab b a ab 3)46(22∙-的结果是( )A.23321218b a b a -;B.2331218b a ab -;C.22321218b a b a -;D.23221218b a b a -.三、解答题11.计算: (1) )2(222ab b a ab -∙; (2))12()3161(23xy y x x -∙-;(3))13()4(32-+∙-b a ab a ; (4) )84)(21(323xy y y x +-;(5))()(a b b b a a ---; (6) )1(2)12(322--+-x x x x x .12.先化简,再求值:)22(32)231(2x x x x ----,其中2=x13.解方程: )153(18)7(3--=-y y y y .【能力提升】14.某同学在计算一个多项式乘以-3x 2时,因抄错符号,算成了加上-3x 2,得到的答案是x 2-0.5x+1,那么正确的计算结果是多少?15.已知:(),,A ab B ab a b C a b ab =-=+=-222323,且a b 、 异号,a 是绝对值最小的负整数,b =12,求3A ·B-21A ·C 的值.参考答案1.y x y x 3233+;2. 328b a -;3. 646-a ; 4. 34232y x y x +; 5.-4.6.B ;7.D ;8.B ;9.C ;10.A.11.(1) 322342b a b a -; (2)23442y x y x +-; (3)a b a b a 4124422+--; (4) 543342y x y x --; (5)22b a -; (6) x x x 3423+-.12.x x 38232+-,314. 13.3.14. 23431512x x x -+-.15.解:由题意得11,2a b =-=,原式=32231621a b a b --,当11,2a b =-=时,原式=118.。
02.01整式—整式的概念同步练习01BY HILBERT 导航:1.单项式:只含有数和字母的乘积的代数式叫做单项式.•单独的一个数或一个字母也是单项式.它的本质特征在于:(1)不含加减运算;(2)可以含乘、除、乘方运算,但分母中不能含有字母.2.单项式的次数、系数:一个单项式中,•所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.3.多项式:几个单项式的和叫做多项式.多项式中,•每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.4.整式:单项和多项式统称整式.典型例题例.填空:(1)单项式-a2b2c3的系数是________,次数是___________.(2)单项式-245x yπ的系数是__________,次数是__________.(3)多项式5a3b2c-12abc2+4ab3-6ab-9•的次数是_______,•常数项是_______,•它是_____次______项式.分析:单项式的系数是指其数字因数,次数是其所含的所有字母的指数和;•多项式的次数是其中次数最高的项的次数.解:(1)-1,7;(2)-45π,3;(3)6,-9,6,5练习题一、选择题1.下列式子中不是整式的是()A.-23x B.a-2b=3 C.12x+5y D.02.下列式子:-abc2,3x+y,c,0,2a2+3b+1,x-x,2ab,6xy-.其中单项式有()A.3个B.4个C.5个D.6个3.已知2x b-2是关于x的3次单项式,则b的值为()A.5 B.4 C.6 D.74.如果一个多项式的次数是5,那么这个多项式的任何一项的次数()A.都小于5 B.都等于5 C.都不小于5 D.都不大于5 二、填空题5.单项式的次数是指__________,系数是指_________与____________统称为整式.6.已知m是关于x的六次多项式,n是关于x的四次多项式,则2m-n是x的_______次多项式.7.已知多项式3x m+(n-5)x-2是关于x•的二次三项式,•则m•、•n•应满足的条件是_________.8.观察下列算式:1×3+1=4=22,2×4+1=9=33,3×5+1=16=42,4×6+1=25=52,•……将你观察到的规律用等式表示出来是___________.三、解答题9.指出下列各单项式的系数和次数.(1)-12 xy2(2)-22a2bc (3)-32x2y3z10.写出系数是-2,只含有字母a、b的所有4次单项式.四、探究题11.有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.11、一台微波炉成本价是a元,销售价比成本价增加22%,因库存积压降价60%出售,则每台实际售价为 ( )A 、 (1+22%)(1+60%)a 元B 、(1+22%)·60%a 元C 、 (1+22%)(1-60%)a 元D 、(1+22%+60%)a 元12、在代数式32b ,2xy +3,-2,5x ab +,xy 3,ba +1中整式有几个 ( ) A 、1 B 、2 C 、3 D 、413、多项式1-2x -31x 2+41x 3的二次项是: ( ) A 、13 B 、-13 C 、14x 3 D 、-13x 2 1.下列各式中,是单项式的是 () A 、123+--a a a B 、x 5-2x +1 C 、32b a D 、-2(b+4a ) 2、单项式-31x 2的系数,次数分别是 ( )A 、1 ,2B 、-13,2C 、13,2D 、-13,1 3、下列说法中正确的是 ( )A 、单项式x 的系数和次数都是零B 、343x 是7次单项式C 、25R π的系数是5D 、0是单项式4、下列各组两项中,是同类项的是 ( )A 、 3x 2y ,3xy 2B 、 15abc ,15acC 、 -2xy ,-3abD 、xy ,-xy20、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4,…,请你将猜想到的规律用自然数n (n ≥0)表示出来___.16、“x的2倍与1的和”用代数式表示为___;17、请任意写出z y x 222的一个同类项________________________.18、若(x +1)2+4y -6=0,则7x +8y +4x -6y 的值为 . 26、按照规律填上所缺的单项式并回答问题:⑴a 、22a -、33a 、44a -,________,__________;⑵试写出第2007个和第2008个单项式⑶ 试写出第n 个单项式1.长为a ,宽为b 的长方形周长是 .2.教室里有x 人,走了y 人,此时教室里有 人.3.三个连续的自然数,中间的一个为n ,则第一个为 ,第三个为 .4.细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成4个,第三次分裂成8个,那么第n 次时细胞分裂的个数为 个.8.376-+-y x 的相反数是 .9.一个学生由于粗心,在计算N +41时,误将“+”看成“-”,结果得12,则N +41的值应为 .11. 把多项式5423534b a ab b a -+-按字母b 的升幂排列是_________.12. 若53<<a ,则_________35=-+-a a .1. 下列代数式中,不是整式的是( ) A.ab a +2 B.41+a C.0 D.πb a 24.下列说法正确的是( )A.x 的系数是0B.42与42不是同类项C.y 的次数是0D.xyz 52是三次单项式5.下列各组代数式(1)b a -与b a --;(2)b a +与b a --;(3)1+a 与a -1;(4)b a +-与ba -中,互为相反数的有( )A.(1)(2)(4)B.(2)与(4)C.⑴与(3)D.(3)与(4)7.当x 分别等于3和3-时,多项式356642+-+x x x 的值是( )A.互为相反数B.互为倒数C.相等D.异号。
北师大版七年级数学下册第一章 1.7.1单项式除以单项式 同步练习题一、填空题1.计算:(1)2x 2y 3÷(-3xy)=___________;(2)10x 2y 3÷2x 2y =___________;(3)3x 4y 5÷(-23xy 2)=___________; 2.(1)化简:(2a 2b)3÷(-2ab)=___________;(2)计算:-21x 2y 4·6x 3÷(-3x 2y)2=___________;3.(1)如果3a 3b 2÷A =13ab ,那么A =___________; (2)计算:20x 3y 5z ÷(-10x 2y)-2xy ·y 3z =___________;4.(1)已知4x 2y 3÷(-12xy)2=16,则y 的值为___________; (2)已知(-a 3)4÷a 12·(-2a 3)=-54,则a 的值为___________;二、选择题5.计算(-2a 3)2÷a 2的结果是()A .-2a 3B .-2a 4C .4a 3D .4a 46.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的值分别为()A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =37.计算:20x 14y 4÷(-2x 3y)2÷(5xy 2)=()A .-x 6B .y 4C .-x 7D .x 78.下列算式中,不正确的是()A .(-12a 5b)÷(-3ab)=4a 4B .9x m y n -1÷(13x m -2y n -3)=27x 2y 2 C.12a 2b 3÷(14ab)=12ab 2 D .x(x -y)2÷(y -x)=-x(x -y)三、解答题9.计算:(1)(-2xy 2)2÷3xy ;(2)3m 2·8m 3n 2÷6m 7;(3)(-ab 2)3·(-9a 3b)÷(-3a 3b 5);(4)(-6x 4y 7)÷(-2xy 2)÷(-3x 2y 4).10.计算:(1)24x2y÷(-6xy)+8x5÷2x4;(2)(-5r3)2÷5r4+(1-2r)(1+2r);(3)(-2a2b3)÷(-23ab2)-b(3a-1);(4)(2x3y)2·(-2xy)+(-2x3y)3÷2x2.B组(中档题) 一、填空题11.(1)计算:(2a +b)4÷(2a +b)2-4a(a +b)=___________;(2)若一个长方形的面积为a 2bc ,长为15ac ,则它的宽为___________; 12.(1)计算:(x -y)5÷(y -x)2=___________;(2)已知|m -3|+(n -2)2=0,化简:6a m +5b m ÷(-2ab n )=___________;13.计算:(1)(a 2-b 2)2÷(a -b)2=___________;(2)[(xy +2)(xy -2)-2(x 2y 2-2)]÷(xy)=___________;二、解答题14.(1)已知a 4=5,求(-a 5)4÷a 12·(-2a 4)的值.(2)已知(2a m b 3)2÷(-12a 2b n )=ka 6b 4,求m -n +k -1的值.C 组(综合题)15.已知(-13xyz)2·M =13x 2n +2y n +3z 4÷5x 2n -1y n +1z ,且自然数x ,z 满足2x ·3z -1=72,求M 的值.参考答案北师大版七年级数学下册第一章 1.7.1单项式除以单项式 同步练习题一、填空题1.计算:(1)2x 2y 3÷(-3xy)=-23xy 2;(2)10x 2y 3÷2x 2y =5y 2;(3)3x 4y 5÷(-23xy 2)=-92x 3y 3.2.(1)化简:(2a 2b)3÷(-2ab)=-4a 5b 2.(2)计算:-21x 2y 4·6x 3÷(-3x 2y)2=-14xy 2.3.(1)如果3a 3b 2÷A =13ab ,那么A =9a 2b .(2)计算:20x 3y 5z ÷(-10x 2y)-2xy ·y 3z =-4xy 4z .4.(1)已知4x 2y 3÷(-12xy)2=16,则y 的值为1.(2)已知(-a 3)4÷a 12·(-2a 3)=-54,则a 的值为3.二、选择题5.计算(-2a 3)2÷a 2的结果是(D)A .-2a 3B .-2a 4C .4a 3D .4a 4 6.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的值分别为(A)A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =37.计算:20x 14y 4÷(-2x 3y)2÷(5xy 2)=(D)A .-x 6B .y 4C .-x 7D .x 78.下列算式中,不正确的是(C)A .(-12a 5b)÷(-3ab)=4a 4B .9x m y n -1÷(13x m -2y n -3)=27x 2y 2 C.12a 2b 3÷(14ab)=12ab 2 D .x(x -y)2÷(y -x)=-x(x -y)三、解答题9.计算:(1)(-2xy 2)2÷3xy ;解:原式=4x 2y 4÷3xy =43xy 3. (2)3m 2·8m 3n 2÷6m 7;解:原式=24m 5n 2÷6m 7=4m -2n 2.(3)(-ab 2)3·(-9a 3b)÷(-3a 3b 5);解:原式=(-a 3b 6)·(-9a 3b)÷(-3a 3b 5)=9a 6b 7÷(-3a 3b 5)=-3a 3b 2.(4)(-6x 4y 7)÷(-2xy 2)÷(-3x 2y 4).解:原式=-xy.10.计算:(1)24x2y÷(-6xy)+8x5÷2x4;解:原式=0.(2)(-5r3)2÷5r4+(1-2r)(1+2r);解:原式=r2+1.(3)(-2a2b3)÷(-23ab2)-b(3a-1);解:原式=b.(4)(2x3y)2·(-2xy)+(-2x3y)3÷2x2.解:原式=4x6y2·(-2xy)+(-8x9y3)÷2x2=-8x7y3-4x7y3=-12x7y3.B组(中档题) 一、填空题11.(1)计算:(2a+b)4÷(2a+b)2-4a(a+b)=b2.(2)若一个长方形的面积为a2bc,长为15ac,则它的宽为5ab.12.(1)计算:(x-y)5÷(y-x)2=(x-y)3.(2)已知|m-3|+(n-2)2=0,化简:6a m+5b m÷(-2ab n)=-3a7b.13.计算:(1)(a 2-b 2)2÷(a -b)2=a 2+2ab +b 2;(2)[(xy +2)(xy -2)-2(x 2y 2-2)]÷(xy)=-xy .二、解答题14.(1)已知a 4=5,求(-a 5)4÷a 12·(-2a 4)的值.解:(-a 5)4÷a 12·(-2a 4)=a 20÷a 12·(-2a 4)=-2a 12.∵a 4=5,∴原式=-2×(a 4)3=-2×53=-250.(2)已知(2a m b 3)2÷(-12a 2b n )=ka 6b 4,求m -n +k -1的值. 解:左边=(2a m b 3)2÷(-12a 2b n )=-8a 2m -2b 6-n , ∵左边=右边,即-8a 2m -2b 6-n =ka 6b 4,∴k =-8,2m -2=6,6-n =4,即k =-8,m =4,n =2.∴m -n +k -1=4-2+(-8)-1=116-18=-116. C 组(综合题)15.已知(-13xyz)2·M =13x 2n +2y n +3z 4÷5x 2n -1y n +1z ,且自然数x ,z 满足2x ·3z -1=72,求M 的值.解:由题意,得M =13x 2n +2y n +3z 4÷5x 2n -1y n +1z ÷(-13xyz)2=115x 3y 2z 3÷19x 2y 2z 2=35xz. ∵自然数x ,z 满足2x ·3z -1=72=23×32,∴x =3,z -1=2.∴x=3,z=3.因此,M=35×3×3=275.。
初三数学第一学期同步练习题及解析:降次4 前言初三数学第一学期是非常重要的阶段,这时候同学们需要掌握更加深入的知识,来为进入高中做好准备。
在这一阶段,掌握降次4是非常关键的,下面提供一些同步练习题及解析,希望对同学们有所帮助。
降次4练习题题目1将5y3+3y2−xy降次4。
解析:将每个单项式的次数减去4,即可得到结果,如下:5y3+3y2−xy=(5y−1+3y−2−x)y4因此,将5y3+3y2−xy降次4后的结果为(5y−1+3y−2−x)y4。
题目2将下列各式中的含有x的单项式降次4:$$ 3x^4+\\sqrt{2}x^2+x $$解析:将每个单项式的次数减去4,含有x的单项式得到 $(x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4$,因此将 $3x^4+\\sqrt{2}x^2+x$ 中含有x的单项式降次4后的结果为 $(x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4+\\sqrt{2}x^2$。
降次4练习题解析解析题目1将5y3+3y2−xy降次4后,得到的结果为(5y−1+3y−2−x)y4,这也符合降次4的定义。
可以尝试将答案与原题代入验证其正确性,如下:(5y−1+3y−2−x)y4=5y3+3y2−xy因此,答案正确。
解析题目2将 $3x^4+\\sqrt{2}x^2+x$ 中含有x的单项式降次4后,得到的结果为 $(x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4+\\sqrt{2}x^2$,这也符合降次4的定义。
同样可以尝试将答案与原题代入验证正确性,如下:$$ (x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4+\\sqrt{2}x^2=3x^4+\\sqrt{2}x^2+x $$ 因此,答案正确。
总结降次4是初三数学中的重要知识点,需要同学们细心掌握。
通过本文的练习题及解析,相信同学们已经有了一定的掌握,希望能够在学习中更上一层楼。
2.1.1单项式◆随堂检测1、 用代数式表示:(1)边长为a 的正方形周长为 ,面积为 .(2)设n 为整数,则奇数可表示为 ,偶数可表示为 .(3)拿158元钱去买钢笔,买了单价为5元的钢笔x 支,则剩下的钱为 元.(4)某人骑自行车m 小时行驶了48千米,则平均每小时的车速是 千米/时.2、用单项式填空,并指出它们的系数和次数.(1)每包书有10册,n 包书有 册.(2)一个长方体的长宽高分别是y x x ,,,则它的体积是 .(3)一台电脑原价a 元,现在按8折出售,这台电脑现在的售价为 .(4)半径为r 的圆的面积是 .3、填空:(1)单项式y x 22的的系数是 ,次数是 ;(2)单项式232a π-的系数是 ,次数是 ; (3)单项式3π的系数是 ,次数是 ; (4)单项式8的系数是 ,次数是 .◆典例分析我们知道;)(2024828642;1223)62(642;622)42(42=⨯+=+++=⨯+=++=⨯+=+ n 2642++++ 的结果会是多少呢? 分析:对于规律题,首先要观察后一个等式与前一个等式不一样的地方是什么,其实这个过程就是发现规律的过程,再者就是准确地表示出规律.解:n 2642++++ )1(2)22(+=⨯+=n n n n ◆课下作业●拓展提高1、用代数式表示:(1)如果a 个同学在2h 内共搬了b 块砖,则平均每人每小时搬 块砖.(2)产量由a 千克增长10%,就达到 千克.(3)1千克绿豆发芽后重量增加6倍,m 千克的绿豆可发成 千克绿豆.(4)每件x 元的上衣,降价20%后售价为 .(5)葡萄每千克p 元,买10千克以上按9折优惠,买13千克应支付 元钱.2、写出一个单项式,并写出它的系数和次数分别是什么.3、给代数式b a 32+赋予一定的实际意义为 .4、下列代数式的书写中,正确的是( )A 、211⨯aB 、a ÷3C 、ab 411 D 、)(2n m +5、某工厂第一个月生产汽车a 台,平均每月的增长率是x%.(1)用代数式表示第3个月生产汽车的辆数;(2)当a=10000,x=5时,求前三个月生产汽车的总辆数.6、写出下列各单项式的系数和次数: (1)y x 243-; (2)532bc a .●体验中招1、(2009年,广州)如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是_____,第n 个“广”字中的棋子个数是____2、(2009年,武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 ___________ 个小圆.参考答案第1个图形 第2个图形 第3个图形 第4个图形…随堂检测1、(1)mx n n a a 48)4(;5158)3(;2,12)2(;,42-+ 2、;,次数是系数是110,10)1(n ;,次数是系数是)(31,22y x .2,)4(18.08.032,次数是系数是;,次数是元,系数是)(ππr a3、(1)2,3;(2)232,π-;(3)3,3ππ;(4)8,8. 拓展提高1、(1);2a b (2)%);101(+a (3)m 7;(4);%80x ⋅(5)p 13109⋅. 2、略,答案不唯一.3、略,答案不唯一.4、D. 211⨯a 应该写成a 23,a ÷3应写成a 3;ab 411应写出ab 45 . 5、(1)2%)1(x a +; (2)当5,10000==x a 时,前三个月的总产量是 =+⨯++⨯+2%)51(10000%)51(100001000031525(台)6、(1)系数是43-,次数是3;(2)系数是53 ,次数是4. 体验中招1、1+2×7=15(个),1+2(n+2).2、4+6×7=46(个)2.1.2 多项式◆随堂检测1、 下列代数式中,哪些是单项式,哪些是多项式? 2,3121,1238,,0,32,32,1,152322y x b a xy y x m b a a bc y x -+------π 2、多项式623522233-++-b b a b a a 的最高次项是 ,四次项系数是 ,常数项是 .3、多项式325256--+-z y x y x x 是 次 项式,每一项的系数分别是 , 六次项是 .4、列式表示:(1)比x 小2的数是 ;(2)x 的四分之三减y 的差是 ;(3)设礼堂里座位的行数为a ,并且行数是每行座位数的32,礼堂里共有座位 个; (4)一钢管的外径为R,内径为r ,长为a ,则该钢管的体积为 .◆典例分析若8)1(2++--x kx x k k 是关于x 的一次多项式,求k 的值.分析:题中给出的多项式从形式上看是二次多项式,但题中说明的是一次多项式,这就要求二次项的系数必须为零,即0)1(=-k k ,求出k 值,并检验所求k 值是否满足题意.解:由题意得,0)1(=-k k ,∴10==k k 或当0=k 时,原多项式=8+x ,是一次多项式;当1=k 时,原多项式=8,不是一次多项式.∴0=k◆课下作业●拓展提高1、若a,b 表示两个有理数,则它们的平方和可表示为 ,和的平方可表示为 ,倒数的和可表示为 ,差的相反数可表示为 .2、一个两位数,个位数字是a,十位数字式b ,则这个两位数可表示为 .3、已知单项式y x 26的次数等于单项式22y x m -的次数,则=m .4、若多项式2)1(3)1(234-+-+--x b x x a x 不含3x 和x 项,则a= ,b= .5、四次单项式y xn m m 3)(--的系数为3-,求m,n 的值.6、m 为何值时22)2(y x m m +33xy -时六次二项式?●体验中招1、(2009年,山西)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .2、(2009年,荆门)如图,正方形ABCD 边长为1,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为______;当点P 所在位置为D 点时,点P 的运动路程为______(用含自然数n 的式子表示).参考答案随堂检测1、 单项式有:;,0,1,152m y x --π 多项式有:.2,3121,1238,32232y x b a xy y x b a -+---- 2、6,2,3523--b b a 和 3、八次四项式,2-、1、﹣1、﹣3,y x x 562和-4、)(;23;43;222r R a a a y x x -⋅--πBD A (P )C(1) (2) (3) …… ……拓展提高1、a b b a b a b a -+++,11,)(,2222、a b +103、由123=+=m m 得,4、由⎩⎨⎧=+=-0101b a 得,⎩⎨⎧-==11b a5、由题意得⎩⎨⎧==∴⎩⎨⎧-=-=+-963413n m n m m6、由题意得224026222=∴⎩⎨⎧-≠=∴⎩⎨⎧≠+=+m m m m m体验中招1、n n ++)1(22、由于150242009 =÷,所以在B 点;34+n2.2.1整式的加减◆随堂检测1、下列是同类项的是( )A 、223xy y x -与B 、c ab bc a 2222-与C 、yx xy 54与 D、222与x2、填空:(1)=-t t 3210( )t ; (2)=+22155a a ()2a ; (3)=-2263mn mn ( )2mn .3、下列各题的合并同类项正确吗?若不正确,请说明理由.(1)xy y x 752=+; (2)56=-ab ab ;(3)y x yx y x 33398=-; (4)422853x x x =+.4、若单项式2363y x y x m n --与是同类项,则n m 32+的值是 .5、合并同类项(1)228.010x x -; (2)xy xy xy 32-+-;(3)14325--+-a b b a ; (4)x x x x x 365345322++--+.◆典例分析求多项式22543222-+-++-x x x x x 的值,其中31=x 分析:在求多项式的值时,先将多项式中的同类项合并,然后再代入求值,这样可以简化运算.但部分同学会直接代入求值,当未知数的值较复杂时,计算量会非常大.我们习惯上“先化简,再求值”. 解:22543222-+-++-x x x x x2)54()213(2--+++-=x x2--=x当31=x 时,原式=37231-=-- ◆课下作业●拓展提高1、 合并同类项(1)5433222-+--xy y x xy y x ; (2)ab b a ab b a ab 634864622222--+++-;(3))(4)(2)()(522b a b a b a b a +++-+-+.2、若两个单项式6253243b a b a n m -与的和仍为单项式,则m= , n= .3、设m 为正整数,n m n m b a b a 44218++-与是同类项,则满足条件的m 的值有( )个 A 、1个 B 、2个 C 、3个 D 、无数个4、有一列单项式,.,20,19,,4,3,2,2019432 x x x x x x ---(1)根据你发现的规律,写出第100个,第101个,第102个单项式;(2)你能进一步写出第n 个单项式吗?5、求代数式的值:222232253b ab a b ab a ---+-,其中3,21-==b a●体验中招1、(2009年,烟台)若n m y x y x 3253与+的和是单项式,则=n m .(原题中式求m n ,现改为n m )2、(2009年,长春)计算:=-a a 25 .参考答案随堂检测1、 C2、 3,20,22--3、 (1)不正确,不是同类项不能合并;(2)不正确,正确答案是ab 5;(3)不正确,正确答案是y x 3-;(4)不正确,正确答案是28x .4、由题意得2732,5,6=+∴==n m n m5、(1)原式=22.9x ;(2)原式=xy xy 2)321(-=-+-;(3)原式=11)32()45(+-=-+-+-b a b a ;(4)原式=42264)53()35(62323+-+=+-+-+x x x x x x拓展提高1、(1)原式=55)43()32(22-+-=-+-+-xy y x xy y x(2)原式=3838)44()66(3322+=+++-+-ab ab b a ab(3)原式=)(3)(2))(41())(35(22b a b a b a b a +++-=++-++-2、5,3==n m3、D4、(1)第100个,第101个,第102个单项式分别是102101100102,101,100x x x -(2)第n 个单项式是n n nx ⋅-)1(5、222232253b ab a b ab a ---+- 22226)32()15()23(bab a b ab a --=-+--+-= 当3,21-==b a 时,原式=41)3()3(216)21(22=---⨯⨯- 体验中招 1、 由题意得,4)2(,2,22=-==-=n m n m 则2、 3a2.2.2整式的加减◆随堂检测1、 判断正误:(1)z y x z y x -+-=-+-2)2( ( )(2)z y x z y x 36)33(2-+-=+-- ( )(3)c b a c b a 22)(2+-=+-+ ( )2、去括号 :(1))(d c b a +--+; (2))42(32z y x -+;(3))4(215c b a --; (4))]3(2[32z y x y x ----.3、计算: (1))54()23(y x y x ++-; (2))102()65(b a b a ---;(3))5(32ab ab ab ---; (4))()3(42222mn n m mn n m ---.4、一个多项式加上1452-+x x 得2862+-x x ,则这个多项式是 . ◆典例分析计算:)21(6)3212(22+--+-x x x x 分析:本题有两个地方易错:① 6和括号里的每一项都要相乘,部分学生往往只和第一项相乘;②去括号时,不知道什么时候要变号什么时候不变号,这就说明去括号的法则没有理解.解:原式=)21(6)3212(22+--+-x x x x 27383663212)366(321222222--=-+-+-=+--+-=x x x x x x x x x x◆课下作业●拓展提高1、计算:(1))(21)(312222xy y x x x xy y x ++---; (2))2(2)2(232222b a a b b a +---+-;(3))22(3)642(3b c c b a a --+--- (4)]2)34(7[322x x x x ----.2、若多项式18223-+-x x x 与多项式352323+-+x mx x 相加后不含二次项,则m= . 3、(1)已知:2,622=-=-b ab ab a ,求2222,2b a b ab a -+-的值.(2)已知6063)2(5,522-+--=-x y x y y x 求的值.4、已知22228,8y x xy B xy y x A +-=+-=,当31,21-=-=y x 时,求B A +2的值.5、求代数式中的值:{})]24(3[2522222b a ab ab b a ab ----,其中5.0,3=-=b a6、若)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关,试求a,b 的值.●体验中招1、(2009年,太原)已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( )A 、15--xB 、15+xC 、113--xD 、113+x 2、(2009年,江西)化简)12(2-+-a a 的结果是( )A 、14--aB 、14-aC 、1D 、1-参考答案随堂检测1、 错,错,对2、 (1)原式=d c b a +--; (2)原式=z y x 1262-+; (3)原式=c b a 2215+-;(4)原式=z y x y x z y x y x -++-=+---323232)32( 3、(1)原式=y x y x y x 375423+=++- (2)原式=b a b a b a 4310265+=+-- (3)原式=ab ab ab ab 4532=+-(4)原式=2222412mn n m mn n m +--22311mn n m -= 4、32132++-x x 拓展提高1、(1)原式=xy x y x xy y x x x xy y x 656561212121313131222222---=----- (2)原式=b a b a a b b a -=-+-+-3422432222(3)原式=b a b c c b a a 2666423-=--++-(4)原式335)233(3)2347(322222--=-+-=-+--=x x x x x x x x x 2、由题意得,24)82(5)3523(18223323+--+=+-++-+-x x m x x mx x x x x ∵多项式24)82(523+--+x x m x 不含2x 项 ∴4082=∴=-m m3、(1)∵2,622=-=-b ab ab a∴8)()(,4)()(2222=-+-=---b ab ab a b ab ab a ∴8,422222=-=+-b a b ab a8060535560)2(3)2(56063)2(5,52)2(222=-⨯+⨯=--+-=-+--∴=-y x y x x y x y y x 4、∵22228,8y x xy B xy y x A +-=+-=∴B A +22222222481622y xy x y x xy xy y x -+=+-++-=当31,21-=-=y x 时,原式=36149)31()31()21(24)21(22=---⨯-⨯+-. 5、{})]24(3[2522222b a ab ab b a ab ----2222222245)]243(2[5ab ab ab b a ab ab b a ab =-=+---=当5.0,3=-=b a 时,原式=35.0)3(42-=⨯-⨯ 6、∵)1532()2(22-+--+-+y x bx b y ax x16)3()22(15322222++-++-=+-+-+-+=b y x a x b y x bx b y ax x又)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关∴⎩⎨⎧=-=∴⎩⎨⎧=+=-1303022b a a b 体验中招1、A2、D第二章 整式的加减综合测试题一、选择题(每题3分,计24分) 1.下列各式中不是单项式的是( ) A .3a B .-51 C .0 D .a3 2.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .21x -3 D .21x+3 3.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=24.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( )A .3222331a ab a b --+B .322231a ab a b +-+C .322231a ab a b +-+D .322231a ab a b --+5.从25a b +减去44a b -的一半,应当得到( ). A. 4a b - B. b a - C. a b -9 D. 7b 6.减去-3m 等于5m 2-3m -5的式子是( )A .5(m 2-1)B .5m 2-6m -5C .5(m 2+1)D .-(5m 2+6m -5)7.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,则n 的值为( ) A .21 B .11 C .15 D .9 8.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A .7xy - B .7xy C .xy - D .xy二、填空题(每题4分,计32分)9.单项式2r π-的系数是 ,次数是 . 10.当 x =5,y =4时,式子x -2y的值是 . 11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来.要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________. 13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________.14.用语言说出式子a+b 2的意义:______________________________________15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________.三、解答题(共28分)17.(6分)化简:(1))343(4232222x y xy y xy x +---+;(2))32(5)5(422x x x x +--.18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n •个正方形组成.n=4n=3n=2n=1(1)第2个图形中,火柴棒的根数是________; (2)第3个图形中,火柴棒的根数是________; (3)第4个图形中,火柴棒的根数是_______; (4)第n 个图形中,火柴棒的根数是________. 19.(8分)有这样一道题:“当a=2009,b=—2010时,求多项式332332376336310a a b a b a a b a b a -+++--+2010的值.”小明说:本题中a=2009,b=—2010是多余的条件;小强马上反对说:这不可能,多项式中含有a 和b,不给出,a b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.20.(8分)一个三角形一边长为a+b,另一边长比这条边大•b,•第三边长比这条边小a—b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.四、拓广探索(共16分)21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;(2)若要得到152个等腰三角形,应画_______个正方形;B 卷1.(7分)已知x 2—xy=21,xy -y 2=—12,分别求式子x 2-y 2与x 2—2xy+y 2的值. 2.(7分)同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为)237(<<a a ,分别用代数式表示同一时刻的巴黎时间和东京时间;(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻贩巴黎时间、东京时间分别为几时?3.(8分)按照下列步骤做一做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数;(3)求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?4.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )参考答案一、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.A 8.C 二、填空题9.2,π- 10.3 11.x 3—5x 2—(4x —9) 12.3(x —y ) 13.3a+2b 14.a 与b 的平方的和 15.m=a+n —1 16.3x 2+4x —6 三、解答题17.(1)原式=xy x y xy y xy x -=-+--+2222343423; (2)原式=x x x x x x 3561510204222--=---. 18.(1)7;(2)10;(3)13;(4)3n+119.∵332332376336310a a b a b a a b a b a -+++--+2010=332(731)(66)(33)a a b a b +-+-++-+2010=2010.∴a=2009,b=—2010是多余的条件,故小明的观点正确.20. (1) 三角形的周长为:b a b a b a b b a b a 52)()()(+=+-++++++;(2)当a =5,b =3时,周长为:25. 四、拓广探索 21.(1)—100x 100;(2)(—1)n+1x n . 22.0,4,8,12,4(n —1) (1)56;(2)4(n —1)=152,n=39. 2.1-2.2测试B 参考答案1.x 2-y 2= (x 2-xy )+(xy -y 2)=21—12=9,x2-2xy+y2= (x2-xy)—(xy-y2)=21+12=33.2.(1)巴黎时间为a+5,东京时间为a+1;(2) 巴黎时间为3:08,东京时间为23:08.3.(1)24;(2)42;(3)42—24=18;是9的倍数.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b.10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)4.第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,从而第(3)种方法绳子最长,第(2)种方法绳子最短。
第二章第一节单项式同步练习1. 下列各式:−n,a+b,−12,x−1,3ab,1x,其中单项式的个数是()A.2B.3C.4D.52. 单项式−x2yz2的系数、次数分别是()A.0,2B.0,4C.−1,5D.1,43. 下列说法中正确的是()A.代数式一定是单项式B.单项式一定是代数式C.单项式a没有系数D.−y的次数为04. 下列说法正确的是()A.0和x不是单项式B.−ab2的系数是12C.x2y的系数是0D.−22x2的次数25. 下列式子中单项式的个数为()3a,12xy2,−5xy4,aπ,−x,23(a+1),2x.A.4B.5C.6D.76. 下列说法中正确的是()A.单项式x的系数和次数都是零B.34x3是7次单项式C.5πR2的系数是5D.0是单项式7. 下列说法错误的是()A.单项式与单项式的积仍是单项式B.单项式相乘,积的系数等于两个单项式系数的积C.单项式相乘,积的次数等于两个单项式次数的和D.单项式相乘,单项式中所含字母不一定在积中出现8. 下列结论中,正确的是()A.单项式的次数是1,没有系数B.多项式是三次三项式C.单项式的系数是,次数是3D.单项式的系数是,次数是49. 下列各组中的两个单项式是同类项的是()A.x2y与2xy2B.3x与x3C.12与−1 D.2x2yz与−3x2y10. 下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.0不是单项式C.1x是一次单项式D.a2b3c是六次单项式,它的系数是111. 下列说法中,正确的是()A.−x2的系数是1B.a的次数是0C.3ab2的次数是2D.2ab5的系数是2512. 下列说法正确的是()A.x3yz2没有系数B.x2+y3+c26不是整式C.42是一次单项式D.8x−5是一次二项式13. 单项式−3πxy22的系数是________,次数是________.是单项式的是________.(只填序号)15. (1)y9的系数是________,次数是________; 15.(2)−5x 2y6的系数是________次数是________;15.(3)−m 2n2的系数是________次数是________;15.(4)−5xy的系数是________,次数是________.16. −12x2y是________次单项式.17. 判断下列说法是否正确,正确的在括号内打“√”,不正确的打“×”.(错的写出原因)(1)单项式m既没有系数,也没有次数.(________)原因:________.(2)单项式5×105的系数是5.(________)原因:________.(3)−2006是单项式.(________)原因:________.(4)单项式−23x的系数是−23.(________)原因:________.(5)0不是单项式.(________)原因:________.(6)ab3是单项式,次数是4,没有系数.(________)原因:________.(7)−6abc4的系数是−6,次数是6.(________)原因:________.18. 单项式−x2y35的系数是________,次数是________.19. 回答下列小题;(1)单项式−32a5b的系数是________,次数是________;(2)单项式4πr33的系数是________,次数是________.20. 填表.21. 判断题(判断对错)(1)−7xy2的系数是7;________(2)−x2y3与x3没有系数;________(3)−ab3c2的次数是0+3+2;________(4)−a3的系数是−1;________(5)−32x2y3的次数是7;________(6)13πr2ℎ的系数是13.________.22. 分别写出一个符合下列条件的单项式:(1)系数为3;(2)次数为2;(3)系数为−1,次数为3;(4)写出系数为−1,均只含有字母a,b所有五次单项式.23. 下列代数式是单项式的有(1)(2)(4)(5).11+x x224. 0.5x4−m y与6x m y3的次数相同,求m的值.25. 单项式与的次数相同,求m的值26. 下列代数式中,哪些是单项式?哪些不是?−2x3;ab;1+x;4ab25;−y;6x2−12x+7.27. 如果2x a y4与12b2x2y a−b都是关于x,y的六次单项式,且系数相等,试求a,b的值.28. 一列单项式:−x,2x2,−3x3,4x4,…,−19x19,20x20,…(1)你能说出排列有什么规律吗?(2)写出第99个,第2010个单项式;(3)写出第n个,第n+1个单项式.29. 有一串单项式,−x,2x2,−3x3,4x4,…,−19x19,20x20,…(1)你能写出第7个单项式吗?(2)你能写出第2012个单项式吗?参考答案与试题解析第二章第一节单项式同步练习一、选择题(本题共计 12 小题,每题 3 分,共计36分)1.【答案】B【考点】单项式【解析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.【解答】,3ab是单项式,共3个.解:根据单项式的定义:−n,−12故选B.2.【答案】C【考点】单项式【解析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.单项式的次数就是所有字母指数的和.【解答】解:单项式−x2yz2的系数、次数分别是:−1,2+1+2=5.故选:C.3.【答案】B【考点】单项式【解析】根据单项式与多项式统称为整式,整式与分式统称为代数式,单项式的系数是数字因数,次数是所有字母字数的指数和进行选择即可.【解答】A、代数式一定是单项式,故错误,如x+1是代数式,但不是单项式;B、单项式一定是代数式,故正确;C、单项式a没有系数,故错误,系数为1;D、−y的次数为0,故错误,次数为1,4.【答案】D【考点】【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、所含字母不同,不是同类项,故选项错误;B、所含字母不同,不是同类项,故选项错误;C、所含字母不同,不是同类项,故选项错误;D、正确.故选D.5.【答案】B【考点】单项式【解析】根据单项式的定义,数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可做出选择.【解答】解:根据单项式中只能含有乘法运算,不能含有加法、减法或除法运算,则3a,12xy2,−5xy4,aπ,−x共5个是单项式.故选:B.6.【答案】D【考点】单项式单项式的系数与次数【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:根据单项式的系数和次数的定义:A、单项式x的系数是1,次数都是1,B、34x3是3次单项式,字母指数是3,C、5πR2的系数是5π,π是常数,D、0是单项式.故选D.7.【答案】C【考点】单项式的系数与次数单项式此题暂无解析【解答】解:根据单项式与单项式的乘法法则可知:单项式相乘,结果也是单项式,故选项A正确;单项式相乘,积的系数等于这两个单项式系数的积,故选项B正确;单项式相乘,积的次数等于这两个单项式对应的字母的次数之和,故选项C错误;单项式相乘,单项式中所含的字母一定在积中出现,故选项D正确.故选C.8.【答案】D【考点】单项式多项式单项式的系数与次数【解析】直接利用单项式以及多项式的次数确定方法以及单项式的系数确定方法分别分析得出答案.【解答】解:A、单项式m的次数是1,系数为1,故此选项错误;B、多项式2x2+xy+53是二次三项式,故此选项错误;C、单项式3xy27的系数是37,次数是3,故此选项错误;D、单项式−23xy2z的系数是−23,次数是4,故此选项正确;故选D.9.【答案】C【考点】单项式的概念的应用同类项的概念【解析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.【解答】根据同类项定义“所含字母相同,且相同字母的指数也相等的几个单项式”知,A、B、D都不是同类项,而12与−1是同类项,10.【答案】D【考点】单项式的概念的应用【解析】解:a是单项式,它的次数是1,系数是1,选项A错误;0是单项式,选项B错误;1x不是一次单项式,单项式的分母不存在未知数,选项C错误;a2b3c是六次单项式,它的系数是1,故选D.11.【答案】D【考点】单项式的概念的应用多项式的概念的应用【解析】此题暂无解析【解答】解:−x2的系数是−1,A选项错误;a的次数是1,B选项错误;3ab2的次数是3,选项错误;2ab 5的系数是25,选项正确;故选D.12.【答案】D【考点】多项式整式的概念单项式单项式的概念的应用单项式的系数与次数多项式的项与次数【解析】根据单项式、整式、多项式的概念及单项式的次数、系数的定义解答.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【解答】解:A、单项式x3yz2的系数是1,故选项错误;B、x2+y3+c26是整式,故选项错误;C、42的次数是0,故选项错误;D、根据多项式的定义可知8x−5是一次二项式,正确.故选D.二、填空题(本题共计 9 小题,每题 3 分,共计27分)−3π2,3【考点】单项式【解析】此题暂无解析【解答】解:代数式−23πxy 2 的系数是23π,次数是3.故答案为: −23π, 3.14.【答案】①②③④⑦⑧【考点】单项式【解析】直接利用单项式定义分析得出答案.【解答】①−1,②−23a 2,③16x 2y ,④−ab 2π,⑤ab c ,⑥3a +b ,⑦0,⑧m 中,是单项式的是:①−1,②−23a 2,③16x 2y ,④−ab 2π,⑦0,⑧m 共6个. 15.【答案】1,9−56,3 −12,3−5,2【考点】单项式【解析】直接利用单项式的次数与系数确定方法分别分析得出答案.【解答】y 9的系数是:1,次数是:9;−5x 2y 6的系数是:−56;次数是:3; −m 2n 2的系数是−12,次数是:3;−5xy 的系数是:−5,次数是:2.【答案】三【考点】单项式【解析】此题暂无解析【解答】解:−12x2y是3次单项式,故答案为:3.17.【答案】×,单项式m的次数是1×,单项式5×105的系数是5×105√,单独的一个数也是单项式√,单项式的系数是指单项式的数字因数×,单独的一个数也是单项式×,系数是1√,单项式的系数是指单项式的数字因数,单项式的次数是指单项式中所有字母的指数的和【考点】科学记数法--表示较大的数多项式单项式【解析】根据单项式的系数和次数的定义直接判断即可.【解答】单项式m既没有系数,也没有次数.(×)原因:单项式m的次数是1.故答案为×,单项式m的次数是1;单项式5×105的系数是5.(×)原因:单项式5×105的系数是5×105.故答案为×,单项式5×105的系数是5×105.−2006是单项式.(√)原因:单独的一个数也是单项式.故答案为√,单独的一个数也是单项式.单项式−23x的系数是−23.(√)原因:单项式的系数是指单项式的数字因数.故答案为√,单项式的系数是指单项式的数字因数.0不是单项式.(×)原因:单独的一个数也是单项式.故答案为×,单独的一个数也是单项式.ab3是单项式,次数是4,没有系数.(×)原因:系数是1.故答案为×,系数是1.−6abc4的系数是−6,次数是6.(√)原因:单项式的系数是指单项式的数字因数,单项式的次数是指单项式中所有字母的指数的和.故答案为√,单项式的系数是指单项式的数字因数,单项式的次数是指单项式中所有字母的指数的和.18.【答案】−15,5【考点】单项式【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数、次数的定义,单项式−x 2y35的系数是−15,次数是5.19.【答案】(1)−9,6(2)43π,3【考点】单项式【解析】此题暂无解析【解答】解:单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.(1)单项式−32a5b的系数是−32=−9次数是5+1=6;故答案为:19,6.(2)单项式4πr 33的系数是4π3,次数是3.故答案为:43π,3.20.【答案】1,−1,−52,π,−8,1,3,4,3,5【考点】单项式【解析】根据单项式的系数与次数的定义求解.【解答】解:答案为1,−1,−52,π,−8;1,3,4,3,5.21.【答案】×;(2)−x2y3与x3系数分别是−1,1.故答案为:×;(3)−ab3c2的次数是1+3+2=6.故答案为:×;(4)−a3的系数是−1.故答案为:√;(5)−32x2y3的次数是2+3=5.故答案为:×;(6)13πr2ℎ的系数是13π.故答案为:×.【考点】单项式【解析】根据单项式系数及次数的定义进行解答即可.【解答】解:(1)−7xy2中的数字因数是−7,故其系数是−7.(2)−x2y3与x3系数分别是−1,1.(3)−ab3c2的次数是1+3+2=6.(4)−a3的系数是−1.(5)−32x2y3的次数是2+3=5.(6)13πr2ℎ的系数是13π.三、解答题(本题共计 8 小题,每题 10 分,共计80分)22.【答案】系数为3的单项式可以为:3ab(答案不唯一);次数为2的单项式可以为:x2(答案不唯一);系数为−1,次数为3的的单项式可以为:−x3(答案不唯一);系数为−1,均只含有字母a,b所有五次单项式分别为:−ab4,−a2b3,−a3b2,−a4b.【考点】单项式【解析】(1)直接利用单项式的系数确定方法分别分析得出答案;(2)直接利用单项式的次数确定方法分别分析得出答案;(3)直接利用单项式的次数与系数确定方法分别分析得出答案;(4)直接利用单项式的系数确定方法分别分析得出答案.【解答】系数为3的单项式可以为:3ab (答案不唯一);次数为2的单项式可以为:x 2(答案不唯一);系数为−1,次数为3的的单项式可以为:−x 3(答案不唯一);系数为−1,均只含有字母a ,b 所有五次单项式分别为:−ab 4,−a 2b 3,−a 3b 2,−a 4b .23.【答案】(1)(2)(4)(5)【考点】单项式【解析】根据单项式的概念即可求出答案.【解答】(1)a ;(2)−12;(4)x π;(5)xy ;是单项式,24.【答案】∵ 0.5x 4−m y 与6x m y 3的次数相同,∴ 4−m +1=m +3,解得:m =1.【考点】单项式【解析】直接利用单项式次数确定方法得出关于m 的等式求出答案.【解答】∵ 0.5x 4−m y 与6x m y 3的次数相同,∴ 4−m +1=m +3,解得:m =1.25.【答案】m =9【考点】单项式轴对称图形有理数的乘方【解析】利用单项式的次数即可求解.【解答】由题意得:4+m =1+12,得m =926.【答案】解:单项式有:−2x3;ab;4ab 25;−y;不是单项式的有:1+x;6x2−12x+7.【考点】单项式单项式的概念的应用【解析】此题暂无解析【解答】解:单项式有:−2x3;ab;4ab 25;−y;不是单项式的有:1+x;6x2−12x+7.27.【答案】解:根据题意得:{a+4=62+a−b=61 2b2=2,解得:{a=2b=−2.【考点】单项式【解析】根据单项式的次数都是6,以及系数相等即可列方程求得a、b的值.【解答】解:根据题意得:{a+4=62+a−b=61 2b2=2,解得:{a=2b=−2.28.【答案】解:(1)第几个单项式,它的系数的绝对值就是几,x的指数就是几,奇数项系数为负数,偶数项系数为正数;(2)−99x99,2010x2010;(3)(−1)n nx n、(−1)n+1(n+1)x n+1.【考点】单项式【解析】通过观察题意可得:n为奇数时,单项式系数为负数;n为偶数时,单项式系数为正数.第n个单项式,x的指数为n,由此可解出本题.【解答】解:(1)第几个单项式,它的系数的绝对值就是几,x的指数就是几,奇数项系数为负数,偶数项系数为正数;(2)−99x99,2010x2010;(3)(−1)n nx n、(−1)n+1(n+1)x n+1.29.【答案】解:(1)∵第一个单项式为−x=(−1)1×1x1;第二个单项式为2x2=(−1)2×2x2;第三个单项式为−3x3=(−1)3×3x3;…∴第n个单项式为(−1)n×nx n;∴第7个单项式为(−1)7×7x7=−7x7;(2)∵由(1)知,第n个单项式为(−1)n×nx n;∴第2012个单项式为:(−1)2012×2012x2012=2012x2012.【考点】单项式【解析】(1)、(2)根据所给出的单项式找出规律即可得出结论.【解答】解:(1)∵第一个单项式为−x=(−1)1×1x1;第二个单项式为2x2=(−1)2×2x2;第三个单项式为−3x3=(−1)3×3x3;…∴第n个单项式为(−1)n×nx n;∴第7个单项式为(−1)7×7x7=−7x7;(2)∵由(1)知,第n个单项式为(−1)n×nx n;∴第2012个单项式为:(−1)2012×2012x2012=2012x2012.。
2.1单项式一、基础过关1、每包书有12册,n 包书有 册;2、底边长为a ,高为h 的三角形的面积是 ;3、一个长方体的长和宽都是a ,高是h ,它的体积________;4、产量由m 千克增长10%,就达到_______千克;5、一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为 元;6、一个长方形的长是0.9,宽是a ,这个长方形面积是 ;7、32z xy -的系数及次数分别是( )A .系数是0,次数是5 ;B .系数是1,次数是6;C .系数是-1,次数是5;D .系数是-1,次数是6; 8、某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是 . 9、32xy π-的系数是 ,次数是 。
10、下列说法错误的是( ) A .y x 223-的系数是23-B .数字0也是单项式C .xy π32的系数是32 D .x π-是一次单项式11、在下列各式中:352y x ,x 2π,1-,12-x a 3,32+-a 中,是单项式的有:。
12、如果32122--n yx 是七次单项式,则n 的值为( )A 、4B 、3C 、2D 、113、小明上学步行的速度为5千米/时,若小明到学校的路程为s 千米,则他上学和放学共需要走( )A .5s 小时 B .s 5小时 C .52s 小时 D .s 10小时14、单项式mb a 285-与43711y x -是次数相同的单项式,求m 的值。
15、已知28y x m -是一个六次单项式,求102+-m 的值。
四、能力提升16、如果单项式223c b a n -与5445y x 的次数相同,则=n 。
17、若()2322-+n y x m 是关于y x ,的六次单项式,则≠m ,n = 。
18、若()1233++n y x m 是关于y x ,的五次单项式且系数为1,试求n m ,的值。
19、针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整。
七年级数学上册《单项式》同步练习题(附答案解析)一、选择题1、下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0. ②ab−12是单项式.③−3xy4的系数为3,次数为1.④6πx 3的系数为6,次数为4. A .0B .1C .3D .42、下列语句中,错误的( ) A .数字0也是单项式 B .单项式a -的系数与次数都是1 C .12xy 是二次单项式D .23ab -的系数是−23 3、下列代数式中,为单项式的是( ) A .5xB .aC .a+b3aD .x 2+y 24、下列各式a 2b 2,13x −1,−25,a+b 2,a 2−2ab +b 2中单项式的个数有( )A .4个B .3个C .2个D .1个5、下列代数式中,全是单项式的一组是( ) A .1a ,2,3ab B .2,a ,12abC .2a b-,1,π D .x +y ,-1,13(x -y)6、下列说法正确的是( ) A .3πxy 的系数是3B .3πxy 的次数是3C .223xy -的系数是−23D .223xy -的次数是27、下列说法中,正确的是( ) A .0.3不是单项式 B .单项式3x 3y 的次数是3 C .单项式﹣2πx 2y 3的系数是﹣2D .4次单项式2234x y -的系数是﹣348、已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2x2y B.3x2q C.2xy3D.−2xy2二、填空题9、单项式−2a2b3的系数是________,次数是_______.10、在1x ,12π,−5,a,−2x+y2中,是单项式的为_______.11、写出一个系数为−12,次数为3的单项式_______.12、单项式232x yz是______次单项式,系数是______,若(a−2)x2y|a|+1是x,y五次单项式,则a的值为_______.13、下列式子①-1,②−23a2,③16x2y,④−ab2π,⑤abc,⑥3a+b,⑦0,⑧m中,是单项式的是____________________ .(只填序号)14、单项式−ab33的系数为x,次数为y,则xy的值为________.15、若﹣(a﹣1)x2y b+1是关于字母x,y的五次单项式,且系数是﹣12,则a=_____,b=_____.16、填表:三、简答题17、一个含有字母x,y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式的值是32,求这个单项式.18、如果|a+1|+(b-2)2=0,那么单项式-x a+b y b-a的次数是多少?19、观察下列单项式:−x,3x2,−5x3,7x4,…,−37x19,39x20,…写出第n个单项式.为解决这个问题,特提供下面的解题思路:通过观察单项式的结构特征,分三步确定:先确定符号,再确定系数的绝对值,最后确定次数.(1)这组单项式系数的符号规律是________系数的绝对值规律是________;(2)这组单项式的次数的规律是________;第六个单项式是________;(3)根据上面的归纳,可以猜想第n个单项式是________;(4)请你根据猜想,写出第2019个单项式.20、分别写出下列各项的系数与次数(1)2x3;(2)−x2y;xy;(3)35x2y3.(4)−81521、观察下列单项式:−x,3x2,−5x3,7x4,⋯−37x19,39x20,…(1)根据规律,写出第99个单项式,第100个单项式,第n个单项式;(2)当x=1时,求出上述题中第1个到第100个单项式和的值.(3)当x=1时,直接写出上述题中第1个到第n个单项式和的值.(提示:n要分奇数,偶数讨论)参考答案与解析一、选择题1、A【分析】根据单项式的定义以及单项式的系数、次数定义判断即可.【详解】解:①单项式a的系数为1,次数为1,故本项错误;②ab−12不是单项式,故本项错误;③−3xy4的系数为−34,次数为2,故本项错误;④6πx3的系数为6π,次数为3,故本项错误.所以正确的个数是0.故选:A.【点睛】本题考查了单项式的系数、次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.2、B【分析】根据单项式系数、次数的定义来求解;单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数;单独一个数字也是单项式.【详解】A:数字0也是单项式是正确的,不符合题意;B:单项式-a的系数是-1,次数都是1,不正确的,符合题意;C:12xy是二次单项式,不符合题意;D:−2ab3的系数是−23是正确的,不符合题意;故选:B.【点睛】此题考查单项式,解题关键在于掌握其定义.3、B【分析】根据单项式的定义判断即可得出答案.【详解】解:A. 5x为分式不是整式,错误;B. a是单项式,正确;C. a+b3a是分式,错误;D. x2+y2是多项式,错误;故答案选B.【点睛】本题考查单项式的定义:数字与字母的乘积组成的代数式为单项式,需要特别注意的是,单独的一个数字或一个字母也是单项式.4、C【分析】根据单项式的定义进行解答即可.【详解】解:a2b2,是数与字母的积,故是单项式;1 3x−1,a+b2,a2−2ab+b2是单项式的和,故是多项式;-25是单独的一个数,故是单项式.故共有2个.故选:C.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.5、B【分析】根据单项式的定义,从独数,独字母,数与字母三种形式去判断即可.【详解】∵1a 不是单项式,2是单项式,3ab是单项式 ∴选项A 不符合题意;∵12ab 是单项式,2是单项式,a 是单项式, ∴选项B 符合题意; ∵2a b-是多项式,1是单项式,π是单项式, ∴选项C 不符合题意;∵x +y 是多项式,-1是单项式,13(x -y)是多项式, ∴选项D 不符合题意; 故选B .【点睛】本题考查了单项式的定义,熟练掌握单独的数,单独的字母,数与字母的积是单项式的三种基本表现形式是解题的关键. 6、C【分析】分析各选项中的系数或者次数,即可得出正确选项 【详解】A. 3πxy 的系数是3π,π是数字,不符合题意, B. 3πxy 的次数是2,x,y 指数都为1,不符合题意C. 223xy -的系数是−23,符合题意 D. 223xy -的次数是3,不符合题意故选C【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键. 7、D【分析】根据单项式的有关概念即可求出答案. 【详解】解:A 、0.3是单项式,故此选项错误;B 、单项式3x 3y 的次数是4,故此选项错误;C 、单项式﹣2πx 2y 3的系数是﹣2π,故此选项错误;D 、4次单项式2234x y -的系数是﹣34,故此选项正确.故选:D .【点睛】本题考查单项式的相关知识,是基础题,熟练掌握单项式的相关知识是解题关键.8、A【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:A、2x2y系数是2,次数是3,故本选项符合题意;B、3x2q系数是3,次数是3,故本选项不符合题意;C、2xy3系数是2,次数是4,故本选项不符合题意;D、−2xy2系数是-2,次数是3,故本选项不符合题意;故选:A.【点睛】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.二、填空题9、−233【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】解:单项式−2a2b3的系数是−23,次数是3,故答案为:−23,3.【点睛】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.10、12π,−5,a【分析】根据单项式的定义逐个判断即可.【详解】解:在1x ,12π,−5,a,−2x+y2中,单项式有:12π,−5,a,故答案为:12π,−5,a.【点睛】本题考查了单项式,注意:表示数或数与字母的积,叫单项式.11、−12x3【分析】根据单项式的系数次数,可得答案【详解】解:系数为−12,次数为3的单项式为−12x 3, 故答案为:−12x 3.【点睛】本题考查了单项式,熟练掌握单项式的系数、次数的定义是解题的关键. 12、六 −12 -2【分析】根据单项式及其系数和次数的定义求解即可.【详解】解:单项式232x yz 是六次单项式,系数是−12,∵(a −2)x 2y |a |+1是x ,y 五次单项式, ∴|a |+1=3且a -2≠0, 解得:a =-2,故答案为:六,−12,-2.【点睛】此题主要考查了单项式,关键是掌握单项式相关定义. 13、①②③④⑦⑧【分析】根据单项式的定义进行判断即可.【详解】解:⑤中分母上含有字母,不是单项式;⑥是多项式,不是单项式; 而①②③④⑦⑧均是单项式, 故答案为:①②③④⑦⑧.【点睛】本题考查了单项式的定义:由任意个字母和数字的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式). 14、−43【分析】利用单项式的次数与系数的定义得出答案. 【详解】解:∵单项式−ab 33的系数为−13,次数为1+3=4,∴x=−13,y=4, ∴xy=−13×4=−43, 故答案为:−43.【点睛】此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键. 15、32 2.【分析】直接根据单项式的概念即可求解.【详解】解:∵﹣(a ﹣1)x 2y b +1是关于字母x ,y 的五次单项式,且系数是﹣12, ∴﹣(a ﹣1)=﹣12,2+b +1=5,∴a =32,b =2. 故答案为:32,2.【点睛】此题主要考查多项式的概念,正确理解概念是解题关键. 16、见解析【分析】根据单项式系数和次数的概念求解.三、简答题 17、4x 3y 2 .【解析】首先根据题目的条件设出单项式,然后代入x 、y 的值求解即可. 【详解】解答:∵ 这一个含有字母x ,y 的五次单项式,x 的指数为3, ∴ y 的指数为2,∴ 设这个单项式为:ax 3y 2 ,∵ 当x=2,y=-1时,这个单项式的值是32, ∴ 8a=32 解得:a=4.故这个单项式为:4x 3y 2 .【点睛】本题考查了单项式的知识,了解单项式的次数和系数是解决本题的关键. 18、4【详解】试题分析:先根据非负数之和为0的特点求得a ,b 的值,再求算单项的指数和,求单项式的次数.试题解析:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.所以-x a +b y b -a =-xy 3.所以单项式-x a +b y b -a 的次数是4.点睛:此题主要考查绝对值的性质和单项式次数的求法,要掌握单项式的次数是所有字母的指数的和.19、(1)(-1)n ,2n-1;(2)从1开始的连续自然数,11x 6;(3)(-1)n (2n-1)x n ;(4)-4037x 2019 【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律; (2)根据已知数据次数得出变化规律; (3)根据(1)(2)中数据规律得出即可; (4)利用(3)中所求即可得出答案.【详解】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n-1. 故答案为:(-1)n ,2n-1;(2)这组单项式的次数的规律是从1开始的连续自然数.第6个单项式为:11x 6 故答案为:从1开始的连续自然数,11x 6. (3)第n 个单项式是:(-1)n (2n-1)x n . 故答案为:(-1)n (2n-1)x n ; (4)第2019个单项式是-4037x 2019. 故答案为:-4037x 2019.【点睛】此题主要考查了单项式变化规律,得出次数与系数的变化规律是解题关键. 20、(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:−815,次数:5【分析】根据单项式的系数是数字因数,单项式的次数是各字母的次数之和做答即可. 【详解】解:(1)2x 3的系数:2,次数:3; (2)−x 2y 系数:-1,次数:3; (3)35xy 系数:35,次数:2; (4)−815x 2y 3系数:−815,次数:5.【点睛】本题只要考查单项式的系数和次数的知识,根据其定义作答即可.21、(1)−197x99,199x100,(−1)n(2n−1)x n;(2)100;(3)n为奇数时,值为-n;n为偶数时,值为n【分析】(1)观察总结出规律:单项式的系数-1,3,-5,7,…,从1开始的连续的奇数,奇数项为负,偶数项为正,次数的规律是从1开始的连续的整数,从而可得结果;(2)将x=1代入可得−1+3−5+7+...+199,计算即可;(3)分n为奇数和n为偶数,分别将x=1代入计算即可.【详解】解:(1)由题目找出规律,可得第n个单项式为(−1)n(2n−1)x n,当n=99时,(−1)99×(2×99−1)×x99=−197x99,当n=100时,(−1)100×(2×100−1)×x100=199x100;(2)当x=1时,第1个到第100个单项式的和为:−1+3−5+7+...+199=2+2+...+2=2×50=100;(3)当n为奇数时,第1个到第n个单项式的和为:−1+3−5+7−...−(2n−1)−(2n−1)=2×n−12=-n;当n为偶数时,第1个到第n个单项式的和为:−1+3−5+7−...+(2n−1)=2×n2=n【点睛】本题考查单项式的规律,解答本题的关键是明确题意,发现单项式的变化特点,写出相应的单项式.第11页共11页。
2.1整式一.选择题1.单项式的系数和次数分别为()A.,3B.﹣1,3C.﹣1,2D.,22.下列单项式中,次数为3的是()A.B.mn C.3a2D.3.已知(a﹣1)x2y a+1是关于x、y的五次单项式,则这个单项式的系数是()A.1B.2C.3D.04.代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值()A.与x,y有关B.与x有关C.与y有关D.与x,y无关5.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣xy2的系数是﹣1D.﹣2ab2是二次单项式6.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.的系数次数分别为()A.,7B.,6C.,8D.5π,68.下列判断中正确的是()A.单项式的系数是﹣2B.单项式的次数是1C.多项式2x2﹣3x2y2﹣y的次数是2D.多项式1+2ab+ab2是三次三项式9.对于式子:,,,3x2+5x﹣2,abc,0,,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式10.下列语句中错误的是()A.数字2017是单项式B.单项式﹣a的系数与次数都是1C.是二次单项式D.﹣的系数是﹣二.填空题11.3xy﹣π2y+1是次多项式.12.单项式的系数和次数分别是.13.已知多项式(a﹣4)x3﹣x b+x﹣1是关于x的二次三项式,则ab=.14.关于x的多项式(a﹣4)x a﹣x2+x﹣a+1(a为正整数)是二次三项式,则a=.15.已知一列按规律排列的代数式:a2,3a4,5a6,7a8,…,则第9个代数式是.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.下列代数式分别有n项,每一项的系数分别是什么?﹣2x﹣3y,﹣4a2﹣4ab+b2,.18.指出下列各式的系数:﹣x2,a3b,,(﹣2)3a3,.19.观察下列单项式:﹣2x,22x2,﹣23x3,24x4,…,﹣219x19,你能写出第n个单项式吗?并写出第2013个单项式为解决这个问题,我们不妨从系数和次数两个方面入手进行探究,从中发现规律,经过归纳,猜想出结论.(1)系数规律有两条:①系数的符号规律是;②系数的绝对值规律是.(2)次数的规律是.(3)根据上面的规律,猜想出第n个单项式.(4)求第2013个单项式.参考答案与试题解析一.选择题1.【解答】解:单项式的系数是﹣,次数为3,故选:A.2.【解答】解:A、﹣次数为3,故此选项正确;B、mn次数为2,故此选项错误;C、3a2次数为2,故此选项错误;D、﹣ab2c次数为4,故此选项错误;故选:A.3.【解答】解:由题意得:a+1+2=5,解得:a=2,则这个单项式的系数是a﹣1=1,故选:A.4.【解答】解:4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3=(4+3﹣7)x3+(﹣3+3)x3y+(8﹣8)x2y=0.故代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值与x,y无关.故选:D.5.【解答】解:A、2x2﹣3xy﹣1是二次三项式,正确,不合题意;B、﹣x+1不是单项式,正确,不合题意;C、﹣xy2的系数是﹣1,正确,不合题意;D、﹣2ab2是三次单项式,故此选项错误,符合题意.故选:D.6.【解答】解:在代数式π(单项式),x2+(分式),x+xy(多项式),3x2+nx+4(多项式),﹣x(单项式),3(单项式),5xy(单项式),(分式)中,整式共有6个,故选:B.7.【解答】解:的系数为,次数为6,故选:B.8.【解答】解:A、单项式的系数是﹣,故此选项错误;B、单项式,没有次数,故此选项错误;C、多项式2x2﹣3x2y2﹣y的次数是4,故此选项错误;,D、多项式1+2ab+ab2是三次三项式,正确;故选:D.9.【解答】解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式,,abc,0,m;2个多项式为:,3x2+5x﹣2.故选:C.10.【解答】解:A、单独的一个数字也是单项式,故A正确;B、单项式﹣a的系数应是﹣1,次数是1,故B错误;C、xy的次数是2,符合单项式的定义,故C正确;D、﹣的系数是﹣,故D正确.故选:B.二.填空题(共5小题)11.【解答】解:多项式3xy﹣π2y+1是二次多项式.故答案为:二.12.【解答】解:单项式的系数是﹣,次数是6,故答案为:,6.13.【解答】解:由题意得:a﹣4=0,b=2,解得:a=4,b=2,则ab=8,故答案为:8.14.【解答】解:由题意得:a﹣4=0,解得:a=4,当a=2时,原式=﹣3x2+x﹣1,符合题意,故答案为:4或2.15.【解答】解:系数的规律为:1、3、5、7……、2n﹣1,次数的规律为:2、4、6、8……、2n,∴第9个代数式为:17a18,故答案为:17a18.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:﹣2x﹣3y有两项:﹣2x,﹣3y;两项的系数分别是﹣2,﹣3;﹣4a2﹣4ab+b2有三项:﹣4a2,﹣4ab,b2;三项的系数分别是﹣4,﹣4,1;有三项:﹣x2y,2x,﹣3y;三项的系数分别是﹣,2,﹣3.18.【解答】解:单项式﹣x2,a3b,,(﹣2)3a3,的系数分别是:﹣1,1,,﹣8,.19.【解答】解:(1)∵第一个单项式是﹣2x=(﹣1)1×21x1;第二个单项式是22x2=(﹣1)2×22x2;第三个单项式是﹣23x3=(﹣1)3×23x3;…;∴第n个单项式是(﹣1)n×2n x n.∴①系数符号的规律是(﹣1)n;②系数的绝对值规律是2n.故答案为:(﹣1)n;2n.(2)∵由(1)知第n个单项式是=(﹣1)n×2n x n,∴次数的规律是:第n 个为n 次;(3)由(12.2《整式的加减》姓名: 班级: 等级:一.选择题(每小题4分,共32分) 题号 选项1.下列算式正确的是( ) A.B.2222a a a -=--C. 3243a a a =+D.a a a =-222.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.-3的次数是0D.25xyz 是三次单项式 3.下列判断中正确的是( )A.3a 2bc 与bca 2不是同类项 B.52nm 不是整式C.单项式-x 3y 2的系数是-1D.3x 2-y +5xy 2是二次三项式 4.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.y 的次数是0D.25xyz 是三次单项式5.如果单项式-x a+1y 3与y b x 2是同类项,那么a,b 的值分别为( ) A.a=2,b=3 B.a=1,b=2 C.a=1,b=3D.a=2,b=26.若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( ) A.三次多项式 B.四次多项式 C.七次多项式 D.四次七项式 7.当x 分别取2和-2时,多项式x 5+2x 3-5的值( ) A.互为相反数 B.互为倒数 C.相等 D.异号不等8.有一列式子,按一定规律排列成3a ,﹣9a 2,27a 3,﹣81a 4,243a 5,….当n 为正整数时,第n 个式子为( )A .3n a nB .(﹣1)n 3n a nC .(﹣1)n+13n a nD .﹣3n ﹣1a n二.填空题(每小题4分,共32分) 9.计算:﹣a ﹣(﹣a+2a )= .10.a 3b 2c 的系数是 ,次数是 ;11.一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是 。
第二章整式的加减2.1整式第1课时单项式能力提升1.以下结论中正确的选项是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.是8次单项式,那么m的值是()3.3×105xy的系数是,次数是.4.以下式子:①ab;②3xy2;③;④-a2+a;⑤-1;⑥a-.其中单项式是.(填序号)5.写出一个含有字母x,y的五次单项式.6.关于单项式-23x2y2z,系数是,次数是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购置9个篮球应付款元;(2)购置m(m>10)个篮球应付款元.8.假设-mx n y是关于x,y的一个单项式,且系数是3,次数是4,那么m+n=.9.观察以下各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.★10.假设(m+2)x2m-2n2是关于x的四次单项式,求m,n的值,并写出这个单项式.创新应用★11.有一系列单项式:-a,2a2,-3a3,4a4,…,-19a19,20a20,….(1)你能说出它们的规律是什么吗(2)写出第101个、第2 016个单项式.(3)写出第2n个、第(2n+1)个单项式.参考答案能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B 错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×10524.①②⑤5.-x4y(答案不唯一)6.-2357.(1)9a(2)0.8ma8.09.-2n-2,-4,-6,-8,-10,首先,这些数都是负数,另外都是偶数,所以第n个数为-2n.10.解:由题意知n=0,2m=4,那么m=2,n=0.故这个单项式为4x4.创新应用11.解:(1)第n个单项式是(-1)n na n.(2)-101a101,2021a2021.(3)2na2n,-(2n+1)a2n+1.第二课时一元一次方程能力提升1.以下说法中错误的选项是()A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,那么可列方程x-1=52.某市电力部门呼吁广阔市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,那么有8人无座位;每排坐31人,那么空出26个座位.以下方程正确的选项是()x-8=31x+x+8=31x+26x-8=31x-x+8=31x-263.假设x=2是关于x的方程2x+3m-1=0的解,那么m的值为()A.-1B.0C.1D.4.方程(a-2)x|a|-1=1是关于x的一元一次方程,那么a=.5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心〞的活动,王老师利用寒假带着团员乘车到农村开展“送字典下乡〞活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.〞乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.〞王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场〞游戏时,观察好友“咖啡思语〞和“雨薇〞的信息发现:“咖啡思语〞的金币比“雨薇〞的金币的4倍还多3个.“咖啡思语〞的金币数如下列图,那么“雨薇〞有多少个金币如果设“雨薇〞有x个金币,那么可列方程为.8.由于电子技术的飞速开展,计算机的本钱不断降低,假设每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.〞顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.〞请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.假设设这四个班捐款的总和为x元,你能列出方程吗并检验x=636是不是所列方程的解.★12.关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2由题意,得|a|-1=1,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.。
沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。
单项式、多项式习题单项式与多项式习题在数学中,单项式和多项式是两种基本且重要的数学概念。
这两种表达式在代数学,物理,工程学和其他科学领域都有广泛的应用。
下面,我们将对单项式和多项式的习题进行探讨。
一、单项式习题单项式是一个数学表达式,它只包含一个变量,一个系数和一个指数。
例如,x,3x,x²等都是单项式。
以下是几个关于单项式的习题:1、找出下列单项式的系数和指数:a) 2x³; b) y²/3; c) -4y; d) 3答案:a)系数为2,指数为3; b)系数为y²/3,指数为0; c)系数为-4,指数为1; d)系数为3,指数为0。
2、计算下列单项式的值:a) 4x²当x=3时; b) 5x³当x=-2时; c) -3y³当y=1/2时; d) 4/5x 当x=5/2时。
答案:a) 36; b) -4; c) -3/8; d) 10/3。
二、多项式习题多项式是由几个单项式组成的表达式。
例如,x² + 2x + 1,y³ - 4y ² + 2y等都是多项式。
以下是几个关于多项式的习题:1、将下列多项式分解成单项式:a) x³ + x² - x; b) 2y² + 3y + 1; c) -3x² + 2y² - y + 2; d) x² - 2xy + y² + x + y。
答案:a) x³,x²,-x; b) 2y²,3y,1; c) -3x²,2y²,-y,2; d) x²,-2xy,y²,x,y。
2、计算下列多项式的值:a) x³ + x² - x当x=2时; b) 2y³ - 3y² + 2y当y=3时; c) -4x ² + 2y² - y + 2当x=4,y=-5时; d) x² - 2xy + y² + x + y当x=3,y=1时。
七年级数学上册同步练习2.1.2单项式与多项式时间:30分钟一、单选题1.代数式:①2a 3;①πr 2;①21x 12+;①﹣3a 2b ;①a bc +.其中整式的个数是( )A .2B .3C .4D .5 2.单项式﹣2πxy 2的系数和次数分别是( )A .﹣2和4B .2π和3C .2和4D .﹣2π和3 3.整式-0.3x 2y ,0,12x +,-22abc 2,13x 2,−14y ,−13ab 2-12a 2b 中单项式的个数有()A .6个B .5个C .4个D .3个 4.下列各式中不是单项式的是( )A .a +bB .-2aC .0D .π 5.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( ) A .2 B .-2 C .4 D .-4 6.下列说法正确的是( )A .m 2+m ﹣1的常数项为1B .单项式32mn 3的次数是6次C .多项式5m n+的次数是1,项数是2D .单项式﹣12πmn 的系数是﹣127.下列判断中错误的是( )A .2a ab --是二次三项式B .3m n-是多项式C .22r π中,系数是2D .2020是单项式8.若(3x 3+M )(2x 2-1)是一个五次多项式,则下列说法中正确的是( ) A .M 是一个三次单项式 B .M 是一个三次多项式C .M 的次数不高于三D .M 不可能是一个常数9.下列说法正确的是( )A .﹣5,a 不是单项式B .﹣2abc的系数是﹣2C .223x y -的系数是﹣13,次数是4 D .x 2y 的系数为0,次数为210.下列各式是5次单项式的是( )A .45xy -B .32xyC .5x yD .32x x +二、填空题11.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 12.222324x y x y xy -+--的最高次项为_______.13.写出一个系数是﹣1,次数是3的单项式_____________.14.在112,,5,,22x y a x π+--中,是单项式的为_______. 15.在式子2a ,3a ,1+y x ,﹣12,1﹣x ﹣5xy 2,﹣x ,6xy+1,a 2+b 2中,多项式有_____个. 16.单项式317xy -的系数是____________,次数是____________. 17.写出系数为-1,含有字母x y 、的四次单项式___________.18.单项式212xy -的系数和次数的和为__________.三、解答题19.把下列各式式的序号分别填在相应的大括号内: ① 67ab -;① 23n p m -;① 1a +;① 2123xy xy +-;①3m y π;①2221352x y x y +-;①3. 单项式:{ };多项式:{ };20.分别写出下列各项的系数与次数(1)32x ;(2)2x y -;(3)35xy ; (4)23815x y -.21.已知多项式3322351x y x y x ---+.(1)求次数为3的项的系数和.(2)当1x =-,2y =-时,求该多项式的值.22.已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同. (1)求m 、n 的值;(2)求多项式各项的系数和.23.把下列代数式的序号填入相应的集合括号里.A .3x 2+2y ;B .35x −x 2+1;C .2a b +;D .–23xy ;E .0;F .–x +3y ;G .2xy a . (1)单项式集合{____________________________…}(2)多项式集合{____________________________…}.24.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值. 25.一块原长分别为a 、b (1,1a b >>)的长方形,一边增加1,另一边减少1(1)当a b =时,变化后的面积是增加还是减少?(2)当a b >时,有两种方案,第一种方案如图1,第二种方案如图2,请你比较这两种方案,确定哪一种方案变化后的面积比较大.参考答案1.C【解析】①23a ;①πr 2;①12x 2+1;①﹣3a 2b ,都是整式, ①a b c+,分母中含有字母,不是整式,故选:C . 2.D【解析】解:单项式﹣2πxy 2的系数和次数分别是:﹣2π和3.故选:D .3.B【解析】根据单项式的定义:由数字和字母的积组成的代数式叫做单项式判断,有-0.3x 2y ,0,-22abc 2,13x 2,−14y 是单项式,共有5个,故选B. 4.A【解析】解:-2a ,0,π都是单项式,a +b 不是单项式,是多项式,故选A .5.C【解析】解:根据题意得:2x 3-8x 2+x -1+3x 3+2mx 2-5x +3=5x 3+(2m -8)x 2-4x +2, 由结果不含二次项,得到2m -8=0,解得:m =4.故选C .6.C【解析】解:A .m 2+m ﹣1的常数项为﹣1,故本选项错误;B .单项式32mn 3的次数是4次,故本选项错误;C .多项式5m n +的次数是1,项数是2,故本选项正确; D .单项式﹣12πmn 的系数是﹣12π,故本选项错误;故选:C .7.C【解析】解:A 、2a ab --是二次三项式,正确,不合题意;B 、3m n -是多项式,正确,不合题意;C 、22r π中,系数是2π,故此选项错误,符合题意;D 、2020是单项式,正确,不合题意.故选:C .8.C【解析】解:(3x 3+M )(2x 2-1)=6x 5-3x 3+2Mx 2-M ,因为结果是一个五次多项式,所以M 的次数不高于三,故选:C .9.C【解析】A 、﹣5,a 是单项式,故此选项错误;B 、2abc -的系数是12-,故此选项错误; C 、223x y -的系数是13-,次数是4,故此选项正确; D 、x 2y 的系数为1,次数为3,故此选项错误.故选:C .10.A【解析】解:A 、单项式45xy -的次数是1+4=5次,符合题意;B 、单项式32xy 的次数是1+1=2次,不符合题意;C 、单项式5x y 的次数是5+1=6次,不符合题意;D 、32x x +是多项式不是单项式,其次数是3次,不符合题意;故选择:A11.5【解析】解:①多项式112m x -﹣3x+7是关于x 的四次三项式, ①m ﹣1=4,解得m =5,故答案为:5.12.222x y -.【解析】解:222324x y x y xy -+--的最高次项为:222x y -.故答案为:222x y -.13.3a -.【解析】解:系数是-1、次数是3的单项式,如:3a -.故答案为:3a -.14.1,5,2a π- 【解析】解:在112,,5,,22x y a x π+--中, 单项式有:1,5,2a π-, 故答案为:1,5,2a π-. 15.3【解析】根据多项式的定义可知,上述各式中属于多项式的有:1﹣x ﹣5xy 2、6xy+1、a 2﹣b 2,共3个.故答案为3.16.17- 4 【解析】解:单项式317xy -的系数是17-,次数是1+3=4, 故答案为:17-;4. 17.3-x y【解析】解:系数为-1,含有字母x y 、的四次单项式为:3-x y .故答案为:3-x y .18.52【解析】解:单项式212xy -的系数和次数分别是:-12和3, ①单项式212xy -的系数和次数的和为-12+3=52. 故答案为:52. 19.① ① ①,① ① ①【解析】单项式:{ ① ① ① };多项式:{ ① ① ① };20.(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:815-,次数:5 【解析】解:(1)32x 的系数:2,次数:3;(2)2x y -系数:-1,次数:3;(3)35xy 系数:35,次数:2; (4)23815x y -系数:815-,次数:5. 21.(1)3;(2)15【解析】解:(1)多项式3322351x y x y x ---+中,次数为3的项是33x ,3y -和25x y -,系数分别是3,-1,-5,①和为3-1-5=-3;(2)当1x =-,2y =-时,3322351x y x y x ---+=15.22.(1)3m =,2n =;(2)-13【解析】解:(1)①多项式2123536m x y xy x +-+--是六次四项式,①216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.23.(1)D ,E (2)B ,C ,F【解析】(1)单项式集合:{D ,E…};(2)多项式集合:{B ,C ,F…}.24.-1【解析】①关于x ,y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3,①m +1=3,﹣n =- 3,解得:m =2,n =3, ①231m n -=-=-.25.(1)减小(2)方案2变化后面积大【解析】解:(1)设原来长方形的面积是S 前,变化后的长方形的面积是S 后, 根据题意得:S 前=ab ,S 后=(a +1)(b −1)=ab +b −a −1, ①S 后−S 前=ab +b −a −1−ab =b −a −1, ①a =b ,①b −a −1=−1<0,①S 后<S 前,①变化后面积减小了.(2)方案1,S 1=(a +1)(b −1)=ab −a +b −1, 方案2,S 2=(a −1)(b +1)=ab +a −b −1, ①S 1−S 2=−2a +2b =−2(a −b ), ①a >b ,①S 1−S 2<0,①方案2变化后面积大.。
七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版的全部内容。
第9章 9.2单项式乘多项式一、单选题(共9题;共18分)1、一个长方体的长,宽,高分别是5x﹣2,3x,2x,则它的体积是( )A、30x3﹣12x2B、25x3﹣10x2C、18x2D、10x﹣22、m(a2﹣b2+c)等于()A、ma2﹣mb2+mB、ma2+mb2+mcC、ma2﹣mb2+mcD、ma2﹣b2+c3、下列计算中正确的是( )A、(﹣3x3)2=9x5B、x(3x﹣2)=3x2﹣2xC、x2(3x3﹣2)=3x6﹣2x2D、x(x3﹣x2+1)=x4﹣x34、计算a(1+a)﹣a(1﹣a)的结果为()A、2aB、2a2C、0D、﹣2a+2a5、化简﹣3a•(2a2﹣a+1)正确的是( )A、﹣6a3+3a2﹣3aB、﹣6a3+3a2+3aC、﹣6a3﹣3a2﹣3aD、6a3﹣3a2﹣3a6、一个三角形的底为2m,高为m+2n,它的面积是()A、2m2+4mnB、m2+2mnC、m2+4mnD、2m2+2mn7、已知:(x4﹣n+y m+3)•x n=x4+x2y7 , 则m+n的值是()A、3B、4C、5D、68、要使(x3+ax2﹣x)•(﹣8x4)的运算结果中不含x6的项,则a的值应为()A、8B、﹣8C、D、09、下列说法正确的是( )A、多项式乘以单项式,积可以是多项式也可以是单项式B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C、多项式乘以单项式,积的系数是多项式系数与单项式系数的和D、多项式乘以单项式,积的项数与多项式的项数相等二、解答题(共1题;共5分)10、先化简,再求值:。
人教版八年级数学试题14.1.4 整式的乘法第1课时 单项式与单项式、多项式相乘1、填空:(每小题7分,共28分)(1) a (2a 2一3a +1)=_________; (2)3a b(2a 2b -a b+1) =_____________; (3)(34a b 2+3a b 一23b )(12a b)=_______;(4)(一22x )(2x -12x 一1) =_____. 2.选择题:(每小题6分,共18分)(1)下列各式中,计算正确的是 ( )A .(a -3b+1)(一6a )= -6a 2+18a b+6aB .()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .-a b(a 2一a -b) =-a 3b-a 2b-a b 2 (2)计算a 2(a +1) -a (a 2-2a -1)的结果为 ( )A .一a 2一aB .2a 2+a +1C .3a 2+aD .3a 2-a (3)一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( )A .22x —32xB .6x -3C .62x -9xD .6x 3-92x 3.计算(每小题6分,共30分)(1)323(23)x y xy xy ⋅-; (2)222(3)x x xy y ⋅-+;(3)222(1)(4)4a b ab a b --+⋅- (4)(2x 3一32x +4x -1)(一3x);(5)()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭.4.先化简,再求值.(每小题8分,共24分)(1) 22(1)2(1)3(25)x x x x x x-++--;其中12 x=-(2)m2(m+3)+2m(m2—3)一3m(m2+m-1),其中m52 =;⑶4a b(a2b-a b2+a b)一2a b2(2a2—3a b+2a),其中a=3,b=2.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
单项式
一.选择题(共5小题)
1.单项式﹣7ab2的系数和次数分别是()
A.﹣7和3B.﹣7和2C.7和3D.7和2
2.单项式9x4y3的系数、次数分别是()
A.9,6B.﹣9,7C.9,7D.﹣9,8
3.下列代数式,,3a2b,x2﹣3x+1中,单项式有()
A.4个B.3个C.2个D.1个
4.已知一个单项式的系数是3,次数是2,则这个单项式可以是()A.3xy2B.2x3C.2xy3D.3xy
5.关于单项式﹣y,下列说法正确的是()
A.系数为3B .次数为﹣C.次数为3D .系数为
二.填空题(共3小题)
6.单项式﹣5xy2的系数是.
7.单项式﹣3ab4的次数是.
8.单项式﹣3ab的系数是.
三.解答题(共3小题)
9.单项式的次数是,系数是.
10.已知x、y互为相反数,m、n互为倒数,a是单项式﹣3bc的系数,求a2﹣4(x+y+2mn)的值.
11.指出下列单项式的系数和次数:
﹣4x2y2,,2a,﹣ab2.
第1页(共1页)。
华师大新版七年级上学期《3.3.1 单项式》2019年同步练习卷一.选择题(共28小题)1.对于下列四个式子:0.1;;;.其中不是整式的有()A.1个B.2个C.3个D.4个2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.下列代数式中,整式为()A.x+1B.C.D.5.下列代数式中整式有(),2x+y,a2b,,,0.5,a.A.4个B.5个C.6个D.7个6.下列式子:x2+1,﹣4,,,﹣5x,,,0中,整式的个数是()A.6B.5C.4D.37.下列各式中,不是整式的是()A.6ab B.C.a+1D.08.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个9.下面各式:①a2﹣1;②;③x﹣1=0;④a2;⑤2x>3;⑥﹣2ab2+,其中是整式的有()A.2个B.3个C.4个D.5个10.代数式﹣a+,x3﹣,,中,是整式的有()A.1个B.2个C.3个D.4个11.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b312.下列关于单项式﹣的正确说法是()A.系数是4,次数是3B.系数是﹣,次数是3 C.系数是,次数是2D.系数是﹣,次数是2 13.单项式﹣ab2的系数是()A.1B.﹣1C.2D.3 14.在式子,2m+5n,,0.9b,﹣3a3b,中,单项式的个数是()A.4个B.3个C.2个D.1个15.下列说法正确的是()A.﹣1不是单项式B.2πr2的次数是3C.的次数是3D.﹣的系数是﹣116.单项式﹣4ab2的次数是()A.4B.﹣4C.3D.2 17.下列说法错误的是()A.0的相反数是0B.﹣5的绝对值与5的绝对值相等C.数a表示的数是正数D.﹣x的系数是﹣18.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3 19.给出下列结论:①﹣a表示负数;②若|x|=﹣x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的个数是()A.0个B.1个C.2个D.3个20.在代数式①x2y,②a2﹣ab+1,③3n,④x+1,⑤中,单项式有()A.1个B.2个C.3个D.4个21.单项式﹣xy2的系数和次数分别是()A.﹣和3B.﹣3和2C.和3D.﹣和2 22.如果代数式﹣22a2bc n是5次单项式,则n的值是()A.4B.3C.2D.523.下列说法正确的是()A.x的系数为0B.1是单项式C.﹣3x的系数是3D.5x2y的次数是224.在代数式:﹣ab,0,,,,中,单项式有()A.6个B.5个C.4个D.3个25.单项式﹣的系数和次数分别是()A.﹣,1B.﹣,2C.,1D.,2 26.下列式子中,是单项式的是()A.x3y2B.x+y C.﹣m2﹣n2D.27.单项式﹣的系数和次数分别是()A.﹣、5B.﹣、3C.﹣、5D.﹣、3 28.下列关于单项式﹣的说法中,正确的是()A.系数是,次数是3B.系数是﹣,次数是3C.系数是,次数是2D.系数是﹣,次数是2二.填空题(共2小题)29.单项式的系数是.30.单项式﹣3x2y的系数是.华师大新版七年级上学期《3.3.1 单项式》2019年同步练习卷参考答案与试题解析一.选择题(共28小题)1.对于下列四个式子:0.1;;;.其中不是整式的有()A.1个B.2个C.3个D.4个【分析】根据整式的概念对各个式子进行判断即可.【解答】解:0.1;是整式,;不是整式,共两个;故选:B.【点评】本题考查的是整式的概念,对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“﹣”将单项式连起来的就是多项式,不含“+”或“﹣”的整式绝对不是多项式,而单项式注重一个“积”字.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个【分析】根据多项式与单项式统称为整式,判断即可.【解答】解:在代数式π(单项式),x2+(分式),x+xy(多项式),3x2+nx+4(多项式),﹣x(单项式),3(单项式),5xy(单项式),(分式)中,整式共有6个,故选:B.【点评】此题考查了整式,弄清整式的定义是解本题的关键.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.【解答】解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.下列代数式中,整式为()A.x+1B.C.D.【分析】直接利用整式、分式、二次根式的定义分析得出答案.【解答】解:A、x+1是整式,故此选项正确;B、,是分式,故此选项错误;C、是二次根式,故此选项错误;D、,是分式,故此选项错误;故选:A.【点评】此题主要考查了整式、分式、二次根式的定义,正确把握相关定义是解题关键.5.下列代数式中整式有(),2x+y,a2b,,,0.5,a.A.4个B.5个C.6个D.7个【分析】根据单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法,可得答案.【解答】解:2x+y,a2b,,0.5,a是整式,故选:B.【点评】本题考查了整式,单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.6.下列式子:x2+1,﹣4,,,﹣5x,,,0中,整式的个数是()A.6B.5C.4D.3【分析】根据单项式和多项式合称整式进行分析即可.【解答】解:x2+1,,﹣5x,,0是整式,共5个,故选:B.【点评】此题主要考查了整式,关键是掌握单项式和多项式定义.7.下列各式中,不是整式的是()A.6ab B.C.a+1D.0【分析】整式包括多项式与单项式.【解答】解:是分式,故选:B.【点评】本题考查整式的概念,属于基础题型.8.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.9.下面各式:①a2﹣1;②;③x﹣1=0;④a2;⑤2x>3;⑥﹣2ab2+,其中是整式的有()A.2个B.3个C.4个D.5个【分析】直接利用整式的定义,分别分析得出即可.【解答】解:①a2﹣1是整式;②是分式;③x﹣1=0是等式;④a2是整式;⑤2x >3是不等式;⑥﹣2ab2+是分式,故选:A.【点评】此题主要考查了整式的定义,正确区分整式与分式是解题关键.10.代数式﹣a+,x3﹣,,中,是整式的有()A.1个B.2个C.3个D.4个【分析】直接利用整式的定义分析得出答案.【解答】解:在代数式﹣a+,x3﹣,,中,是整式的有:x3﹣,共2个.故选:B.【点评】此题主要考查了整式,正确把握定义是解题关键.11.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.12.下列关于单项式﹣的正确说法是()A.系数是4,次数是3B.系数是﹣,次数是3C.系数是,次数是2D.系数是﹣,次数是2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是﹣,次数是3.故选:B.【点评】本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.13.单项式﹣ab2的系数是()A.1B.﹣1C.2D.3【分析】根据单项式的系数是数字部分,可得答案.【解答】解:单项式﹣ab2的系数是﹣1,故选:B.【点评】本题考查了单项式,注意单项式的系数包括符号.14.在式子,2m+5n,,0.9b,﹣3a3b,中,单项式的个数是()A.4个B.3个C.2个D.1个【分析】根据单项式的定义进行解答即可.【解答】解:0.9b,﹣3a3b是数与字母的积,故是单项式;是单独的一个数,故是单项式.2m+5n,是多项式.是分式.故选:B.【点评】本题考查的是单项式的定义,即数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.15.下列说法正确的是()A.﹣1不是单项式B.2πr2的次数是3C.的次数是3D.﹣的系数是﹣1【分析】直接利用单项式的定义以及单项式的次数与系数确定方法分析即可.【解答】解:A、﹣1是单项式,故此选项错误,不合题意;B、2πr2的次数是2,故此选项错误,不合题意;C、的次数是3,正确,符合题意;D、﹣的系数是﹣,故此选项错误,不合题意;故选:C.【点评】此题主要考查了单项式的定义以及单项式的次数与系数,正确把握相关定义是解题关键.16.单项式﹣4ab2的次数是()A.4B.﹣4C.3D.2【分析】直接利用单项式的次数的确定方法分析得出答案.【解答】解:单项式﹣4ab2的次数是:3.故选:C.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.17.下列说法错误的是()A.0的相反数是0B.﹣5的绝对值与5的绝对值相等C.数a表示的数是正数D.﹣x的系数是﹣【分析】根据相反数,绝对值,正数以及单项式的定义进行判断.【解答】解:A、0的相反数是0,故选项说法正确.B、﹣5的绝对值与5都是5,故选项说法正确.C、数a表示的数也有可能是0和负数,故选项说法错误.D、﹣x的系数是﹣,故选项说法正确.故选:C.【点评】考查了单项式,相反数以及绝对值等知识点,难度不大,熟练掌握相关概念即可解答.18.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.【解答】解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.19.给出下列结论:①﹣a表示负数;②若|x|=﹣x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的个数是()A.0个B.1个C.2个D.3个【分析】根据单项式的概念以及有理数的性质即可求出答案.【解答】解:①﹣a不一定表示负数,故①错误;②由题意可知:﹣x≥0,所以x≤0,故②错误;③由|x|≥0可知,绝对值最小的有理数为0,故③正确;④该单项式的次数为3,故④错误;故选:B.【点评】本题考查学生对相关概念的理解,解题的关键是正确理解单项式、有理数的概念,本题属于基础题型.20.在代数式①x2y,②a2﹣ab+1,③3n,④x+1,⑤中,单项式有()A.1个B.2个C.3个D.4个【分析】根据单项式的定义即可求出答案.【解答】解:①x2y与③3n是单项式,故选:B.【点评】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.21.单项式﹣xy2的系数和次数分别是()A.﹣和3B.﹣3和2C.和3D.﹣和2【分析】根据单项式的概念即可求出答案.【解答】解:该单项式的系数为:,次数为:3,故选:A.【点评】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.22.如果代数式﹣22a2bc n是5次单项式,则n的值是()A.4B.3C.2D.5【分析】根据单项式的次数的概念即可求出答案.【解答】解:由题意可知:2+1+n=5,∴n=2,故选:C.【点评】本题考查单项式,解题的关键是正确理解单项式的次数,本题属于基础题型.23.下列说法正确的是()A.x的系数为0B.1是单项式C.﹣3x的系数是3D.5x2y的次数是2【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【解答】解:A、x的系数为1,故原题说法错误;B、1是单项式,故原题说法正确;C、﹣3x的系数是﹣3,故原题说法错误;D、5x2y的次数是3,故原题说法错误;故选:B.【点评】此题主要考查了单项式,关键是掌握单项式的相关概念.24.在代数式:﹣ab,0,,,,中,单项式有()A.6个B.5个C.4个D.3个【分析】根据单项式的概念分析判断各个式子.【解答】解:在代数式:﹣ab,0,,,,中,是单项式的有:﹣ab,0,,共4个.故选:C.【点评】此题主要考查了单项式,正确把握定义是解题关键.25.单项式﹣的系数和次数分别是()A.﹣,1B.﹣,2C.,1D.,2【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式﹣的系数和次数分别是:﹣,2.故选:B.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.26.下列式子中,是单项式的是()A.x3y2B.x+y C.﹣m2﹣n2D.【分析】根据单项式的概念即可求出答案.【解答】解:由数或字母的积组成的代数式叫做单项式,故选:A.【点评】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.27.单项式﹣的系数和次数分别是()A.﹣、5B.﹣、3C.﹣、5D.﹣、3【分析】根据单项式的次数与系数的概念即可求出答案.【解答】解:该单项式的系数为,次数为3,故选:B.【点评】本题考查单项式,解题的关键是正确理解单项式的系数与次数,本题属于基础题型.28.下列关于单项式﹣的说法中,正确的是()A.系数是,次数是3B.系数是﹣,次数是3C.系数是,次数是2D.系数是﹣,次数是2【分析】根据单项式系数及次数的定义,即可作出判断.【解答】解:单项式﹣的系数是﹣,次数是3,故选:B.【点评】考查了单项式,注意单项式的系数不要漏掉“5”.二.填空题(共2小题)29.单项式的系数是﹣.【分析】根据单项式系数的定义进行解答即可.【解答】解:∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣,故答案为:﹣.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.30.单项式﹣3x2y的系数是﹣3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣3x2y的系数是﹣3,故答案为:﹣3.【点评】考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.。
单项式同步练习
一、选择题
1、下列式子中单项式的个数是()
3m,
1
4xy
,-
5
4
ab
,-a,
2
3
(a+b),
2
x
.,2012
A 4
B 5
C 6
D 7
2、在下列式子中,次数为3的单项式是()
A xy2
B x3-y3
C x3y D3xy
3、下列关于单项式-3
5
xy2说法正确的是()
A 、系数是-3
5
,,次数是4,
B、系数是-3
5
, 次数是3
C、系数是-3
5
, 次数是4
D、系数是-3
5
,次数是3
4、下列单项式中书写正确的是()
A、1a B x.2 C 2
3
xy D 12yz÷7
5、下列代数式中,次数是3的单项式是()
A xy2
B x3+2xy
C –x3y D3xy
6、下列数量关系中,用式子表示的结果是单项式的是()
A、a与b的平方的差
B、a与x差的4倍的相反数
C、比a的倒数大1的数
D、a的3倍的相反数与y的积
7、若单项式-2a m-3b2 与6ab n-3是次数相同的单项式,则 m+n等于()
A 6
B 7
C 8
D 9
8 下列各式不是单项式的是()
A 1
2
xy B
y
π
C
1
2x
D 0
二、填空题
9、如果两个单项式3x m y与-2x2y的次数相同,那么m=---------------------,
10、若(a-2)x3y b是关于x,y的五次单项式,且系数为 -1/4,则a=----------, b=-------------.
11、写出一个含字母m,n的四次单项式-----------------。
12、填表:
单项式-a
-3
4
mn2
0.3ab -πx2
系数
16、下面是三种化合物的结构图,按此规律第6个化合物的结构式用式子表示为------------------(含字母C,H)
H H H H H H
︳︳︳︳︳︳
H-C-H H-C- -C-H H-C--C—C-H
︳︳︳︳︳︳
H H H H H H
17、已知(m-3)x2y︳m ︳五次单项式,则m=-----------.
18、观察-2,4,-8,16,-32,64···;则第n个数为-------------。
三、解答题
19、观察下列各式,完成问题。
已知1+3=4=2,,1+3+5=9=32,1+3+5+7=16=42,···
(1)、仿照上例,计算1+3+5+7+···+99=-----------------。
(2)、根据上述规律,写出第n个式子。
20、若︳x -3 ︳+ ︳y +2 ︳=o,求单项式-x2y3/3的值。
21、若(m+1)x2y n-1是关于x,y的六次单项式,其系数为4,求m,n的值。
22、直接写出下列第n个数
(1)、4,6,8,10,12.···,则第n个数是----------------;
(2)、6,18,54,162,···,则第n个数是----------------;
(3)、9,27,81,243,···,则第n个数是----------------;
(4)、0,3,8,15,24,···,则第n个数是----------------;
(5)、-2,3,-4,5,-6,···,则第n个数是----------------;
(6)、
1
3
,-
2
5
,
3
7
,-
4
9
,…,则第n个数是----------------。
23、若︱x-4︱ =2,
1
2
︱y+3︱=2,3a3z-1b与7a5b是次数相同的单项式,且xy<0,则y-2x+z的值。
2.1 第2课时单项式
次数
三、19 (1) 502 (2)1+3+5+···+(2n+1)=(n+1)2 20 24 21 m=3 n=5
22 2(n+1) 2×3n 3n+1 n2-1 (-1)n(n+1)
(-1)n+1n/2n+1 23 -9或-17。