小学六年级数学圆柱和圆锥
- 格式:doc
- 大小:81.50 KB
- 文档页数:2
圆柱和圆锥
第一部分基础部分
一、圆柱和圆锥的认识
1、图形的形成
①正方形)卷曲而得到;
②圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。
2、高的条数:圆柱有无数条高;圆锥只有一条高
3、侧面展开图
,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
②圆锥:侧面展开得到一个扇形
4、图形的形成:(1)圆柱:①卷曲:也可以由长方形(或正方形)卷曲而得到;
②旋转:圆柱是以长方形的一边为轴旋转而得到的
(2)圆锥:①卷曲:也可以由扇形卷曲而得到;
②旋转:以直角三角形的一条直角边为轴旋转得到
【例1】:下面()图形是圆柱的展开图。(单位:cm)
【易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。【例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()
【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?
2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?【练习:】
一、选择
1、圆柱侧面积的大小是由( )决定的。
A 圆柱的底面周长
B 底面直径和高
C 圆柱的高。
2、下面的材料中,( )能做成圆柱。
1号 2号 3号 4号 5号
A.1号、2号和3号
B.1号、4号和5号
C.1号、2号和4号
二、解答题
一个长为8m,宽为6m 的长方形旋转成一个圆柱,它的侧面积是多少平方米?
六年级数学下册《圆柱和圆锥》重点必考知识及练习
圆柱
圆柱的定义
以长方形ABCD的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AD长方形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AD叫做圆柱的轴,AD的长度叫做圆柱的高,DC的长度是圆柱的底面半径。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧=2*πr²+cH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr²h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高S侧=ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。
圆锥
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
小学六年级数学下册第二单元圆柱和圆锥知识点
小学六年级数学下册第二单元圆柱和圆锥知识点
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、
侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、
圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际
问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图
形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面
的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面
沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积2即S表=S侧+S底2或
2h+2r2
7、圆柱的'侧面积=底面周长高即S侧=Ch或2h
8、圆柱的体积=圆柱的底面积高,即V=sh或r2h
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V 锥=1/3Sh或r2h3
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
小学六年级数学圆柱和圆锥知识点
小学六年级数学圆柱和圆锥知识点
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、
侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、
圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际
问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图
形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面
的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面
沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底
×2或2πr×h+2×π
7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的'高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V 锥=1/3Sh或πr2×h÷
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
小学数学六年级圆柱与圆锥练习题小学数学六年级圆柱与圆锥练题
1. 已知一个圆台的上底半径是4cm,下底半径是6cm,高度是
8cm,求该圆台的体积。
解答:
圆台的体积可以通过以下公式计算:V = 1/3 * π * h * (r1^2 +
r2^2 + r1 * r2)
其中,V表示圆台的体积,π近似取 3.14,h表示圆台的高度,r1和r2分别表示圆台的上底半径和下底半径。
代入已知数值,计算可得:
V = 1/3 * 3.14 * 8 * (4^2 + 6^2 + 4 * 6)
V = 1/3 * 3.14 * 8 * (16 + 36 + 24)
V = 1/3 * 3.14 * 8 * 76
V = 8 * 25.12 ≈ 201.28
所以,该圆台的体积约为201.28立方厘米。
2. 一个圆柱的半径是2.5cm,高度是10cm,求该圆柱的侧面积和表面积。
解答:
圆柱的侧面积可以通过以下公式计算:A = 2 * π * r * h
圆柱的表面积可以通过以下公式计算:S = 2 * π * r * (r + h)
其中,A表示圆柱的侧面积,S表示圆柱的表面积,π近似取3.14,r表示圆柱的半径,h表示圆柱的高度。
代入已知数值,计算可得:
A = 2 * 3.14 * 2.5 * 10
A = 2 * 3.14 * 2.5 * 10
A = 2 * 3.14 * 25
A = 157
S = 2 * 3.14 * 2.5 * (2.5 + 10)
S = 2 * 3.14 * 2.5 * 12.5
S = 2 * 3.14 * 31.25
小学数学六年级圆柱和圆锥知识点的归纳
小学数学六年级圆柱和圆锥知识点的归纳
人教版六下学习的圆柱圆锥是立体几何的一个难点,店铺整理了小学六年级数学下册圆柱和圆锥的知识点归纳,希望这份资料对各位同学有所帮助。让我们一起来梳理一下基础知识点!
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的'面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积 = 圆柱的侧面积 +底面积×2 即S表=S侧+S底×2或2πr×h + 2×πr2
7、圆柱的侧面积 = 底面周长×高即S侧=Ch 或2πr×h
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
《圆柱和圆锥》概念公式整理
一、概念整理:
1.圆柱的特征:有2个底面,1个侧面,两个底面是面积相等的圆形。侧面是一个曲面。两个底面之间的距离叫做高,圆柱有无数条高。
2.沿着高剪开,圆柱的侧面展开得到一个长方形(特殊情况是一个正方形),长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高,长方形的面积相当于圆柱的侧面积。
3.当圆柱的侧面展开得到一个正方形时,圆柱的底面周长和高相等。
4.求圆柱的表面积时要根据实际情况分析:
(1)只求侧面积:商标纸、通风管、压路机前轮滚动、烟囱等
(2)求侧面积+一个底面积:水池、笔筒、帽子、无盖水桶等
5.把圆柱的底面分成许多相等的扇形,切开后可拼成一个近似长方体,长方体的长相当于圆柱底面周长的一半(∏r),长方体的宽相当于圆柱的底面半径(r),长方体的高相当于圆柱的高(h),长方体的底面积等于圆柱的底面积,长方体的体积等于圆柱的体积。
6.把一个圆柱拼成一个长方体后,体积不变,
表面积增加了2rh。(如图:增加了长方体左右两个面)
7.把一个圆柱沿着高切开,表面积增加了两个底面积(∏r2×2);
把一个圆柱没着底面直径切开,表面积增加了两个长方形(dh×2)。
8.示例:长方形的长是10厘米,宽是5厘米,
以长为轴旋转,圆柱体的r=5厘米,h=10厘米。h=5
h=10
r=10
r=5
以宽为轴旋转,圆柱体的r=10厘米,h=5厘米。 9.直角三角形的两条直角边分别是3厘米、4厘米, 以任意一条直角边为轴旋转,均可得到圆锥。
10.圆锥有2个面,底面是一个圆形,侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。
六年级数学圆柱和圆锥重点知识汇总
真听老师讲课是学好小学六年级数学的方法之一,听讲时要做到全神贯注,聚精会神,跟着老师的思路走,下面是小偏整理的六年级数学圆柱和圆锥重点知识汇总,感谢您的每一次阅读。
六年级数学圆柱和圆锥重点知识汇总
(一)圆柱
1、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相同的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;
4、圆柱的侧面积:
圆柱的侧面积=底面的周长×高,用字母表示为:
圆柱的侧面积=底面周长×高即
S侧=Ch或×h
5、圆柱的表面积:圆柱的表面积=侧面积+2个底面面积。
即S表=S侧+S底×2或×h+2×
6、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
V=Sh即或×h
(二)圆锥
1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的旋转体叫做圆锥。该直角边叫圆锥的轴。
2、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、把圆锥的侧面展开得到一个扇形。
5、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=h),得出圆锥体积公式:V=1/3Sh
6、圆柱与圆锥的关系:
小学数学六年级圆柱、圆锥十大知识点总结复习
知识点1、点线面的关系,以及常见的立体图形的认识
点的运动形成线,线的运动形成面,面的旋转形成立体图形,常见的立体图形有长方体正方体圆柱圆锥棱柱球等
1.用纸片和小棒做成下面的小旗,快速旋转小棒,想象纸片旋转所形成的图形,再连一连。
1.
【解析】半圆旋转形成球,长方体(正方体)旋转形成圆柱,直角三角形旋转形成圆锥,三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。
知识点2、圆柱圆锥的行程,展开图以及各部分的名称
圆柱是由长方形(或正方形)旋转而成(可以由长正方形绕一条边或者一条高旋转而成)圆锥是由直角三角形绕它的一条直角边旋转而成(还可以由等腰三角形绕它底边上的高旋转而成,)
圆柱的展开图:侧面可能是长方形或正方形(沿着一条高线展开),也有可能是平行四边形(不是沿着高线展开)底面是两个完全一样的圆(要求会求圆柱的侧面积和表面积)
圆锥的展开图:侧面是一个扇形,底面是一个圆(不要求会求圆锥的侧面积和表面积)
2.下面()图形是圆柱的展开图。(单位:cm)
2.A
【解析】圆柱的展开图,侧面是长方形(或正方形)底面是两个圆,并且底面圆的周长等于长方形的长,高是长方形的宽。三个选项中底面圆的直径是3,底面周长是3.14×3=9.42,三个选项的高都是2,所以选择A。
3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
3.246.49平方分米
【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。底面圆的周长等于 3.14×5=15.7(分米),即正方形的边长是15.7分米,所以面积是15.7×15.7=146.49(平方分米)。
小学六年级数学下册第二单元圆柱和圆锥知识点
1、认识圆柱和圆锥,掌握它们的根本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、外表积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,开展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的外表积 = 圆柱的侧面积 +底面积2 即S表=S侧+S 底2或2h + 2r2
7、圆柱的侧面积 = 底面周长高即S侧=Ch 或 2h
8、圆柱的体积=圆柱的底面积高,即V=sh或 r2h
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保存数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的间隔是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的间隔。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh 或 r2h3
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
人教版小学六年级数学下册《圆柱与圆锥》评课稿
引言
我将通过评课稿的形式对人教版小学六年级数学下册的
《圆柱与圆锥》这一章进行评价。本章的学习内容主要涉及到圆柱和圆锥的形状、特征以及计算相关的问题。我将从教材的编写与设计、教学目标的达成、教学过程的设计和教学评价四个方面对该章进行评价。
一、教材的编写与设计
教材是教学活动的重要组成部分,它应当具备一定的知识性、趣味性和启发性。在《圆柱与圆锥》这一章节中,教材的编写与设计方面存在一些值得称赞的地方。
首先,教材循序渐进地介绍了圆柱和圆锥这两种几何图形
的形状和特征。通过图文结合的方式,使学生能够直观地理解和认识圆柱和圆锥的几何形状,并能够区分它们与其他几何图形的不同之处。
其次,教材设计了一系列有趣的例题和练习题,通过实际
问题的引入,使学生能够运用所学知识解决实际问题。例如,教材中提到的“圆柱罐装果汁的盛装问题”和“圆锥形帽子的制作问题”,都很好地引导学生将所学的数学知识应用到实际生活中。
再次,教材将几何图形与计算问题相结合,既注重了形状
的认识,又突出了计算能力的培养。例如,在教材的后半部分,学生需要计算圆柱和圆锥的体积和表面积,这不仅要求学生掌握所学的几何知识,还需要进行一些数学计算。
总之,从教材的编写与设计来看,《圆柱与圆锥》这一章
节较好地循序渐进地介绍了圆柱和圆锥的形状和特征,通过例题和练习题的设计,使学生能够直观地理解和运用所学知识。
二、教学目标的达成
教学目标是教学活动的重要目标,它包括认知目标、技能
目标和情感目标。在《圆柱与圆锥》这一章中,教学目标被良好地达成。
六年级下册数学第二单元圆柱和圆锥知识点总结,给孩子收
藏!
六年级下册数学第二单元知识点总结(圆柱和圆锥)
一、圆柱
01
圆柱的定义
以长方形ABcD的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AD长方形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AD叫做圆柱的轴,AD的长度叫做圆柱的高,Dc的长度是圆柱的底面半径。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧
=2*πr2+cH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高S侧=ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。
二、圆锥
02
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
小学数学六年级圆柱和圆锥知识点的归纳
第1篇:六年级数学圆柱和圆锥的知识点归纳
1、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。7.圆柱的体积:
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。
4、圆柱的侧面积:圆柱的侧面积=底面的周长高,用字母表示为:s侧=ch。
5、圆往的表面积:圆柱的表面积=侧面积+2底面积。即s表=s 侧+2s底。
6、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。v=sh
7、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。
8、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
9、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
10、圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。圆锥有无数条母线。
11、圆锥的侧面:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。
12、圆锥的侧面积=底面的周长(展开图弧长)母线
13、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体
积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式v=sh(v=rrh),得出圆锥体积公式:v=1/3sh
小学数学六年级圆柱、圆锥十大知识点总结复习
知识点1、点线面的关系,以及常见的立体图形的认识
点的运动形成线,线的运动形成面,面的旋转形成立体图形,常见的立体图形有长方体正方体圆柱圆锥棱柱球等
1.用纸片和小棒做成下面的小旗,快速旋转小棒,想象纸片旋转所形成的图形,再连一连。
1.
【解析】半圆旋转形成球,长方体(正方体)旋转形成圆柱,直角三角形旋转形成圆锥,三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。
知识点2、圆柱圆锥的行程,展开图以及各部分的名称
圆柱是由长方形(或正方形)旋转而成(可以由长正方形绕一条边或者一条高旋转而成)圆锥是由直角三角形绕它的一条直角边旋转而成(还可以由等腰三角形绕它底边上的高旋转而成,)
圆柱的展开图:侧面可能是长方形或正方形(沿着一条高线展开),也有可能是平行四边形(不是沿着高线展开)底面是两个完全一样的圆(要求会求圆柱的侧面积和表面积)
圆锥的展开图:侧面是一个扇形,底面是一个圆(不要求会求圆锥的侧面积和表面积)
2.下面()图形是圆柱的展开图。(单位:cm)
2.A
【解析】圆柱的展开图,侧面是长方形(或正方形)底面是两个圆,并且底面圆的周长等于长方形的长,高是长方形的宽。三个选项中底面圆的直径是3,底面周长是3.14×3=9.42,三个选项的高都是2,所以选择A。3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
3.246.49平方分米
【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。底面圆的周长等于 3.14×5=15.7(分米),即正方形的边长是15.7分米,所以面积是15.7×15.7=146.49(平方分米)。
小学六年级数学下第二单元《圆柱和圆锥》教材分析
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
全单元编排五道例题、四个练习,把内容分成四段教学。依次是圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积。在单元结束时,还安排了整理与练习以及实践活动《测量物体的体积》。
1.通过观察、操作,认识圆柱和圆锥。
学生在第一学段已经直观认识了圆柱,通过滚一滚、堆一堆、摸一摸等活动初步感受了圆柱的形状与长方体、正方体有不同之处。例1先教学认识圆柱,再教学认识圆锥,要让学生从整体上体会它们的特征,了解围成圆柱或圆锥的各个面,认识圆柱和圆锥的高,并会测量高。
教学圆柱从识别圆柱形的物体开始,因为学生已有这样的能力。例1的图片里,有些物体是圆柱形的,有些物体的一部分是圆柱形的,也有些物体不是圆柱形的。而且,在圆柱形的物体中,有的高,有的矮,有的厚,有的薄,这就为认识圆柱提供了丰富的具体对象。
认识圆柱的教学要引导学生进行观察、交流,同时教师要给予必要的讲解。让学生仔细观察圆柱,发现圆柱的上、下两个面是相同的圆形,圆柱的侧面是曲面,而且圆柱上下是一样粗的。前两点学生容易注意到,第三点往往会疏忽,在交流的时候,要引起学生的注意。在
“练一练”里,教材安排了上、下两个底面大小不同的杯子和木桶,两个底面虽然相同但两底之间粗细不同的腰鼓,还有底面是正六边形的盒子,让学生指出这些物体都不是圆柱形,从而加强对圆柱特征的体验。在学生交流圆柱特征的过程中,教师可相机指出圆柱上、下两个面叫做底面,围成圆柱的曲面叫做侧面,及时出现圆柱的几何图形,在图形上标出圆柱的底面和侧面,这是建立圆柱概念的重要一步。同时指出圆柱两个底面之间的距离叫做高,并在圆柱的几何图形上标出高,既直观地表达高的意义,又能使学生想到测量圆柱高的方法。
《圆柱和圆锥》知识点总结
1.
底面
2.
有无数条)。
圆柱的底面:圆柱的两个圆面叫做底面(又分上底和下底)。
圆柱的侧面:圆柱有一个曲面,叫做侧面;(展开图是长方形,正方形或平行平行四边形)。
3. 圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱体积=底面积×高 V柱=Sh =πr2·h
圆柱的高=体积÷底面积h =V 柱÷S=V柱÷(πr2)
圆柱的底面积=体积÷高S=V柱÷h
4.圆柱的侧面积:圆柱的侧面积=底面的周长×高,S侧=Ch (注:c为πd)
5.圆柱的表面积=两个底面积+一个侧面积
S表=2πr2 +Ch
6. 圆柱的切割:
a.2倍底面积,即S增
=2
切面
b.竖切(过直径):切面是长方形(如果h=2R,切
面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
6.圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
7.考试常见题型:
a.已知圆柱的底面半径和高,求圆柱的侧面积,表面积,体积,底面周长;
C=2πr S侧=2πrh S表=2πr2 +2πrh V=πr2·h
b.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;
S侧=Ch S表=2π(C÷π÷2)²+ Ch V=π(C÷π÷2)²h S底=π(C÷π÷2)²
c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;
h= V÷(C÷π÷2)²
先求h= V÷(C÷π÷2)²再求S侧=Ch
先求h= V÷C÷π÷2)²再求 S表=2π(C÷π÷2)²+ Ch
S底=π(C÷π÷2)²