2019—2020年最新华东师大版八年级数学上册《平方根》同步练习题及答案解析.docx
- 格式:docx
- 大小:88.29 KB
- 文档页数:13
12.1.1 平方根(第一课时)◆随堂检测1、若x 2= a ,则 叫 的平方根,如16的平方根是 ,972的平方根是 2、3±表示 的平方根,12-表示12的 3、196的平方根有 个,它们的和为 4、下列说法是否正确?说明理由 (1)0没有平方根; (2)—1的平方根是1±; (3)64的平方根是8; (4)5是25的平方根; (5)636±= 5、求下列各数的平方根(1)100 (2))8()2(-⨯- (3)1.21 (4)49151◆典例分析例 若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是( )A 、49B 、441C 、7或21D 、49或441 2、2)2(-的平方根是( )A 、4B 、2C 、-2D 、2± 二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是 三、解答题6、a 的两个平方根是方程3x+2y=2的一组解 (1) 求a 的值 (2)2a 的平方根7、已知1-x +∣x+y-2∣=0 求x-y 的值● 体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有 个3、(08荆门)下列说法正确的是( )A 、64的平方根是8B 、-1 的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根12.1.1平方根(第二课时)◆随堂检测1、259的算术平方根是 ;___ __ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是 ,若a ≥04、下列叙述错误的是( )A 、-4是16的平方根B 、17是2(17)-的算术平方根 C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为( )A 、16B 、16±C 、4±D 、2±2 )A 、4B 、4±C 、2D 、2± 二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则xy =三、解答题5、若a 是2(2)-的平方根,b 2a +2b 的值6、已知a b-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ) A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是 ;若a<57<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简 222()a b a b --- =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2 立方根◆随堂检测1、若一个数的立方等于 —5,则这个数叫做—5的 ,用符号表示为 ,—64的立方根是 ,125的立方根是 ; 的立方根是 —5.2、如果3x =216,则x = . 如果3x =64, 则x = .3、当x 为 时,.4、下列语句正确的是( )A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32± D 、2)1(-立方根是1- 典例分析例 若338x 51x 2+-=-,求2x 的值.◆课下作业●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是( )A 、0B 、12-C 、0或12-D 、0或12或12- 2、若式子3112a a -+-有意义,则a 的取值范围为( )A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343 (2)64631)1(3-=-x6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是( )A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A 、4~5cm 之间 B 、5~6cm 之间 C 、6~7 cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个. 2、33-的相反数是 ,|33-|=57-的相反数是 ,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a| |b|;大于17小于35的整数是 ; 比较大小:3 5 5、下列说法中,正确的是( )A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例: 设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、 如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为 ( )A .2-1B .1-2C .2-2D .2-2 2、设a 是实数,则|a|-a 的值( )A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数 二、填空C A 0 B3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m = 三、解答题5、比较下列实数的大小(1)|8-| 和3 (2)52- 和9.0- (3)215-和876、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.● 体验中考2.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A.2- B.1-C.2-+D.1+3.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A . 2-B . 2C . 12D . 12-(第46题图)0 (第8题图)§13.1 幂的运算1. 同底数幂的乘法试一试(1) 23×24=( )×( )=2();(2) 53×54=5(); (3) a 3·a 4=a ().概 括:a m ·a n =( )( )= =a n m +.可得 a m ·a n =a n m +这就是说,同底数幂相乘, .例1计算:(1) 103×104; (2) a ·a 3; (3) a ·a 3·a 5.练习1. 判断下列计算是否正确,并简要说明理由.(1) a ·a2=a 2;(2) a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2. 计算:(1) 102×105; (2) a 3·a 7; (3) x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+同底数幂的乘法练习题1.计算: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5((7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+;(3)nnny y y 22=⨯; (4)22m m m =⋅;(5)422)()(a a a =-⋅-; (6)1243a a a =⋅;(7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+. 4.选择题: (1)22+m a可以写成( ).A .12+m aB .22a am+ C .22a a m ⋅ D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯= B .443)3(=- C .4433=- D .3443= (3)下列计算正确的是( ).A .44a a a =⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅2. 幂的乘方根据乘方的意义及同底数幂的乘法填空:(1) (23)2= × =2();(2) (32)3= × =3();(3) (a 3)4= × × × =a ().概 括(a m )n = (n 个)= (n 个)=a mn 可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方, .例2计算:(1) (103)5;(2) (b 3)4.练习 1. 判断下列计算是否正确,并简要说明理由.(1) (a 3)5=a 8;(2) a 5·a 5=a 15;(3) (a 2)3·a 4=a 9.2. 计算:(1)(22)2; (2)(y 2)5; (3)(x 4)3; ( 4)(y 3)2·(y 2)3.3、计算:(1)x·(x2)3 (2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8 (5)[(a -b )n ] 2 [(b -a )n -1] 2(6)[(a-b)n] 2 [(b-a)n-1] 2 (7)(m3)4+m10m2+m·m3·m8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m)n= ___(其中m、n都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a3)2=______;(4)(-x2)3=_______。
华师大新版八年级上册《11.1 平方根与立方根》2020年同步练习卷一、选择题1.(3分)﹣的平方的立方根是()A.4B.C.﹣D.2.(3分)下列语句,写成式子正确的是()A.7是49的算术平方根,即=±7B.±7是49的平方根,即±=7C.7是(﹣7)2的算术平方根,即=7D.是7的算术平方根,即=73.(3分)若一个正数的算术平方根是a,则比这个数大3的正数的平方根是()A.B.C.D.4.(3分)若一个数的平方根与它的立方根完全相同.则这个数是()A.1B.﹣1C.0D.±1,0 5.(3分)面积为10的正方形的边长x满足下面不等式中的()A.1<x<3B.3<x<4C.5<x<10D.10<x<100 6.(3分)若a2=25,|b|=3,则a+b=()A.8B.±8C.±2D.±8或±2 7.(3分)下列各式中,正确的是()A.=﹣2B.(﹣)2=9C.=﹣3D.±=±3 8.(3分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1 9.(3分)使等式(﹣)2=x成立的x的值()A.是正数B.是负数C.是0D.不能确定10.(3分)已知=a,=b,则=()A.B.C.D.二、填空题11.(3分)一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是,一个数的算术平方根等于它本身,这个数是.12.(3分)若x3=x,则x=;若=x,x=.13.(3分)若x2=16,那么(5﹣x)的算术平方根是.14.(3分)一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为.三、解答题15.求符合下列各条件中的x的值①2x2﹣=0②③(x﹣4)2=4④(x+3)3﹣9=0.16.已知x的两个平方根分别是2a+3和1﹣3a,y的立方根是a,求x+y的值.17.利用计算器计算:…,,,,,,,,….计算后,分析结果,你发现了什么规律?18.已知x是1的平方根,求(x2012﹣1)(x2012﹣15)(x2011+1)(x2011+15)+1000x的立方根.华师大新版八年级上册《11.1 平方根与立方根》2020年同步练习卷参考答案与试题解析一、选择题1.(3分)﹣的平方的立方根是()A.4B.C.﹣D.【分析】由于﹣的平方等于,然后根据立方根的定义即可求解.【解答】解:∵﹣的平方等于,而的立方为,∴﹣的平方的立方根是.故选:D.【点评】此题主要考查了立方根的定义和平方运算,解题时首先求出﹣的平方然后求其立方根.2.(3分)下列语句,写成式子正确的是()A.7是49的算术平方根,即=±7B.±7是49的平方根,即±=7C.7是(﹣7)2的算术平方根,即=7D.是7的算术平方根,即=7【分析】根据平方根和算术平方根的定义逐一判断即可得.【解答】解:A.7是49的算术平方根,即=7,此选项错误;B.±7是49的平方根,即±=±7,此选项错误;C.7是(﹣7)2的算术平方根,即=7,此选项正确;D.是7的算术平方根,但≠7,此选项错误;故选:C.【点评】本题主要考查算术平方根,解题的关键是掌握算术平方根和平方根的定义.3.(3分)若一个正数的算术平方根是a,则比这个数大3的正数的平方根是()A.B.C.D.【分析】由于一个正数的算术平方根是a,由此得到这个正数为a2,比这个正数大3的数是a2+3,然后根据平方根的定义即可求得其平方根.【解答】解:∵一个正数的算术平方根是a,∴这个正数为a2,∴比这个数大3的正数的平方根是.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)若一个数的平方根与它的立方根完全相同.则这个数是()A.1B.﹣1C.0D.±1,0【分析】根据任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,进行进行解答.【解答】解:根据平方根与立方根的性质,一个数的平方根与它的立方根完全相同,则这个数是0.故选:C.【点评】本题主要考查了平方根与立方根的区别与联系,熟记一些特殊数据的平方根与立方根是解题的关键.5.(3分)面积为10的正方形的边长x满足下面不等式中的()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【分析】根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.【解答】解:根据题意,得正方形的边长是.∵9<10<16,∴3<<4.故选:B.【点评】此题考查了正方形的面积公式和无理数的估算方法,熟悉1﹣20的整数的平方.6.(3分)若a2=25,|b|=3,则a+b=()A.8B.±8C.±2D.±8或±2【分析】利用平方根的定义及绝对值的代数意义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=25,|b|=3,∴a=5,b=3;a=﹣5,b=3;a=5,b=﹣3;a=﹣5,b=﹣3,则a+b=±8或±2.故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.(3分)下列各式中,正确的是()A.=﹣2B.(﹣)2=9C.=﹣3D.±=±3【分析】由平方根和立方根的定义即可得到.【解答】解:A、应=2,故此项错误;B、应=3,故此项错误;C、应=﹣,故此项错误;D、,故正确;故选:D.【点评】本题考查了平方根和立方根的定义,熟记定义是解题的关键.8.(3分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.【点评】本题主要考查的是平方根的性质,明确2m﹣4与3m﹣1相等或互为相反数是解题的关键.9.(3分)使等式(﹣)2=x成立的x的值()A.是正数B.是负数C.是0D.不能确定【分析】根据二次根式的性质可化简求解.【解答】解:由题意得﹣x≥0,且x≥0,解得x=0,故选:C.【点评】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(3分)已知=a,=b,则=()A.B.C.D.【分析】把0.063写成分数的形式,化简后再利用积的算术平方根的性质,写成含ab的形式.【解答】解:===∵=a,=b,∴原式=.故选:D.【点评】本题考查了二次根式的化简及积的算术平方根的性质.积的算术平方根的性质:=•(a≥0,b≥0)二、填空题11.(3分)一个数的平方等于它本身,这个数是0或1;一个数的平方根等于它本身,这个数是0,一个数的算术平方根等于它本身,这个数是0或1.【分析】分别根据平方、平方根、算术平方根的概念解答即可.【解答】解:一个数的平方等于它本身,这个数是0,1;一个数的平方根等于它本身,这个数是0;一个数的算术平方根等于它本身,这个数是0,1.故填0或1;0;0或1.【点评】此题主要考查了平方运算、平方根的定义、算术平方根的定义.做此题时可根据各个概念,从0,1中找.12.(3分)若x3=x,则x=0,±1;若=x,x=0,±1.【分析】如果一个数x的立方等于a,那么x是a的立方根,所以根据立方根的定义即可求解.【解答】解:若x3=x,即一个数的立方等于它本身,则这个数显然是0,±1;若=x,即一个数的立方根等于它本身,根据立方根与立方互为逆运算,则这个数是0,±1.故填0,±1;0,±1.【点评】此题主要考查了立方根的定义和性质,要求学生能够根据立方和立方根的意义正确找到立方等于它本身和立方根等于它本身的数.找的时候,主要结合0,1,﹣1进行分析.13.(3分)若x2=16,那么(5﹣x)的算术平方根是1或3.【分析】先根据平方根的定义求出x的值,从而得到(5﹣x)的值,然后根据算术平方根的定义进行求解即可.【解答】解:∵(±4)2=16,∴x=4或x=﹣4,∴5﹣x=5﹣4=1或5﹣x=5﹣(﹣4)=9,∵12=1,32=9,∴(5﹣x)的算术平方根是1或3.故答案为:1或3.【点评】本题考查了平方根的定义以及算术平方根的定义,先求出(5﹣x)的值是解题的关键,也是本题容易出错的地方.14.(3分)一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为5,6,7,8.【分析】先根据已知求出这个实数的范围,再求出即可.【解答】解:∵4的算术平方根是2,9的算术平方根是3,∴符合条件的实数是大于4且小于9,∴它的整数位上可能取到的数值为5,6,7,8,故答案为:5,6,7,8.【点评】本题考查了平方根,实数的大小比较的应用,关键是确定实数的范围.三、解答题15.求符合下列各条件中的x的值①2x2﹣=0②③(x﹣4)2=4④(x+3)3﹣9=0.【分析】各项方程利用平方根及立方根定义计算即可求出x的值.【解答】解:①方程整理得:x2=,开方得:x=±;②方程整理得:x3=﹣8,开立方得:x=﹣2;③开方得:x﹣4=2或x﹣4=﹣2,解得:x=6或x=2;④方程整理得:(x+3)3=27,开立方得:x+3=3,解得:x=0.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.已知x的两个平方根分别是2a+3和1﹣3a,y的立方根是a,求x+y的值.【分析】根据一个正数有两个平方根,它们互为相反数得出方程,求出a,即可求出x、y,代入求出即可.【解答】解:∵x的两个平方根分别是2a+3和1﹣3a,∴2a+3+1﹣3a=0,a=4,∴x=(2×4+3)2=121,∵y的立方根是a,∴y=43=64,∴x+y=121+64=185.【点评】本题考查了平方根,立方根的应用,注意:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.17.利用计算器计算:…,,,,,,,,….计算后,分析结果,你发现了什么规律?【分析】利用计算器进行计算即可得解,然后根据小数点的移动写出变化规律.【解答】解:用计算器计算所得结果如下:…,0.25,0.7906,2.5,7.906,25,79.06,250,….分析计算结果可以发现:被开方数的小数点每向右(左)移动两位,算术平方根的小数点相应地向右(左)移动一位.【点评】本题考查了算术平方根,主要考查了利用计算器进行数的开方,仔细观察小数点的移动位数的变化是解题的关键.18.已知x是1的平方根,求(x2012﹣1)(x2012﹣15)(x2011+1)(x2011+15)+1000x的立方根.【分析】直接利用平方根的定义结合立方根的定义分别分析得出答案.【解答】解:因为x是1的平方根,所以x=±1.设M=(x2012﹣1)(x2012﹣15)(x2011+1)(x2011+15)+1000x,当x=1时,M=(1﹣1)(1﹣15)(1+1)(1+15)+1000,=0+1000,=1000,=103,故M的立方根是10;当x=﹣1时,M=(1﹣1)(1﹣15)(﹣1+1)(﹣1+15)﹣1000,=0﹣1000,=﹣1000,=﹣103,故M的立方根是:﹣10;所以(x2012﹣1)(x2012﹣15)(x2011+1)(x2011+15)+1000x的立方根是10或﹣10.【点评】此题主要考查了立方根、平方根,正确掌握相关定义是解题关键.。
八年级数学上册11.1平方根与立方根―立方根同步练习(华师大版带答案和解释)《11.1 平方根与立方根―立方根》一、选择题 1.若8x3+1=0,则x为() A.�B.± C. D.�2.的平方根与�8的立方根之和为() A.�4 B.0 C.�6或2 D.�4或0 3.如果 =a,那么a是() A.±1 B.1,0 C.±1,0 D.以上都不对二、填空题 4.的立方根是,平方根是. 5.若(x�1)3=125,则x= . 6.立方根等于它本身的数为.三、选择题 7.若�1<m<0,且n= ,则m、n的大小关系是() A.m>n B.m <n C.m=n D.不能确定 8.�27的立方根与的平方根之和为()A.0 B.6 C.0或�6 D.0或6 四、填空题 9.若x4=16,则x= ;若3n=81,则n= . 10.若,则x= ;若,则x . 11.当x 时,有意义;当x 时,有意义. 12.若,则x+y= . 13.计算: + � + = .五、解答题 14.求下列各数的立方根(1)�0.001;(2)3 ;(3)(�4)3. 15.求下列各式中的x的值.(1)x3�216=0;(2)(x+5)3=64;(3)( x+1)3=8. 16.计算题(1)× ×3 (2)× . 17.若与互为相反数,求的值. 18.已知 =1�a2,求a的值.《11.1 平方根与立方根―立方根》参考答案与试题解析一、选择题 1.若8x3+1=0,则x为()A.�B.± C. D.�【考点】立方根.【分析】先求得x3的值,然后依据立方根的性质求解即可.【解答】解:∵8x3+1=0,∴x3=�.∴x=�.故选:A.【点评】本题主要考查的是立方根的性质,求得x3的值是解题的关键. 2.的平方根与�8的立方根之和为() A.�4 B.0 C.�6或2 D.�4或0 【考点】立方根;平方根.【分析】先求的平方根,再求�8的立方根,然后求和.【解答】解:∵ =4,4的平方根为±2,�8的立方根为�2 故它们的和是�4或0.故选D.【点评】本题主要考查了平方根和立方根的定义. 3.如果 =a,那么a是() A.±1 B.1,0 C.±1,0 D.以上都不对【考点】立方根.【分析】利用立方根的定义分析得出答案.【解答】解:∵ =1, =�1, =0,∴ =a,那么a是±1,0.故选:C.【点评】此题主要考查了立方根,正确把握定义是解题关键.二、填空题 4.的立方根是 2 ,平方根是±2 .【考点】立方根;平方根;算术平方根.【分析】先根据算术平方根的定义得到 =8,然后根据平方根和立方根的定义分别求出8的平方根与立方根.【解答】解:∵ =8,∴8的平方根为±2 ,8的立方根为 =2.故答案为:2,±2 .【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作± ,也考查了立方根的定义. 5.若(x�1)3=125,则x= 6 .【考点】立方根.【分析】根据立方根定义得出x�1=5,求出即可.【解答】解:(x�1)3=125=53, x�1=5, x=6,故答案为:6.【点评】本题考查了立方根的定义的应用,能得出方程x�1=5是解此题的关键. 6.立方根等于它本身的数为1,�1,0 .【考点】立方根.【分析】根据立方根的意义得出即可.【解答】解:立方根等于它本身的本身的数为1,�1,0,故答案为:1,�1,0.【点评】本题考查了立方根的应用,主要考查学生的理解能力和计算能力.三、选择题 7.若�1<m<0,且n= ,则m、n的大小关系是() A.m>n B.m<n C.m=n D.不能确定【考点】实数大小比较.【分析】取特殊值,m=�,再比较即可.【解答】解:∵�1<m<0,∴取m=�,∴m=�=�,∵n= =�=�,∴n<m,故选A.【点评】本题考查了实数的大小比较的应用,能选择适当的方法比较两个实数的大小是解此题的关键. 8.�27的立方根与的平方根之和为() A.0 B.6 C.0或�6 D.0或6 【考点】实数的运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:± =�3±3,则�27的立方根与的平方根之和为为0或�6.故选C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、填空题 9.若x4=16,则x= ±2;若3n=81,则n= 4 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用乘方的意义计算即可确定出x的值;根据已知等式,利用乘方的意义确定出n的值即可.【解答】解:若x4=16,则x=±2;若3n=81,则n=4.故答案为:±2;4.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键. 10.若,则x= 1或0 ;若,则x ≤0.【考点】立方根;算术平方根.【分析】根据立方根和算术平方根的定义计算即可.【解答】解:∵ ,∴x=1或0,∵ ,∴x≤0,故答案为:1或0;≤0.【点评】本题主要考查立方根和算术平方根的知识点,比较简单. 11.当x ≥ 时,有意义;当x 取任意实数时,有意义.【考点】二次根式有意义的条件;立方根.【专题】常规题型.【分析】根据被开方数大于等于0列式求解即可;根据立方根的被开方数可以是任意实数解答.【解答】解:根据题意得,3x�1≥0,解得x≥ ; 5x+2可以取任意实数,∴x 取任意实数.故答案为:≥ ,取任意实数.【点评】本题考查了二次根式有意义的条件,以及任意实数都有立方根的性质,需熟练掌握. 12.若,则x+y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【专题】计算题.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【解答】解:根据题意得,x+1=0,y�2=0,解得x=�1,y=2,∴x+y=�1+2=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 13.计算: + �+ = �.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用平方根及立方根定义计算即可得到结果.【解答】解:原式= × + × �2 +2= �,故答案为:�【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.五、解答题 14.求下列各数的立方根(1)�0.001;(2)3 ;(3)(�4)3.【考点】立方根.【分析】根据立方根的计算方法可以解答本题.【解答】解:(1);(2);(3).【点评】本题考查立方根,解题的关键是明确立方根的计算方法. 15.求下列各式中的x的值.(1)x3�216=0;(2)(x+5)3=64;(3)( x+1)3=8.【考点】立方根.【分析】根据立方根的计算方法和解方程的方法可以解答各个方程.【解答】解:(1)x3�216=0 x3=216 x= x=6;(2)(x+5)3=64 x+5= x+5=4 x=�1;(3)( x+1)3=8 x+1= x+1=2 x=2.【点评】本题考查立方根,解题的关键是明确立方根的计算方法和解方程的方法. 16.计算题(1)× ×3 (2)× .【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=10×(�2)×3×0.7=�42;(2)原式=60× =240.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 17.若与互为相反数,求的值.【考点】立方根;相反数.【分析】根据相反数得出 + =0,得到x与y 的关系,再代入求出即可.【解答】解:∵ 与互为相反数,∴ + =0,∴1�2x+3y�2=0, 1+2x=3y,∴ = =3.【点评】本题考查了立方根,代数式的值,相反数的应用,能求出x与y的关系是解此题的关键. 18.已知 =1�a2,求a的值.【考点】立方根.【分析】分三种情况:1�a2=�1,1�a2=�0,1�a2=1,进行讨论求解即可.【解答】解:依题意有 1�a2=�1,解得a=± ; 1�a2=0,解得a=±1; 1�a2=1,解得a=0.故a的值是=± ,a=±1,a=0.【点评】此题考查了立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.注意分类思想的应用.。
八年级数学上册:第11章 数的开方类型之一 平方根、立方根的概念和性质 1.[2020·桂林] 若√x -1=0,则x 的值是( ) A .-1B .0C .1D .22.[2019·通辽] √16的平方根是( ) A .±4B .4C .±2D .23.[2019·济宁] 下列计算正确的是( ) A .√(-3)2=-3 B .√-53=√53C .√36=±6D .-√0.36=-0.64.已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值. 类型之二 算术平方根的性质与应用5.a 2的算术平方根一定是( ) A .aB .|a|C .√aD .-a6.下列计算正确的是( ) A .√22=2 B .√22=±2 C .√42=2D .√42=±27.[2019·杭州西湖区月考] 若实数x 满足√x -2·|x+1|≤0,则x 的值为( ) A .2或-1 B .2≥x ≥-1 C .2D .-18.[2019·资中月考] 若(2x+8)2与√y -2的值互为相反数,则√x y = . 类型之三 实数的分类、大小比较及运算 9.[2019·日照] 在实数√83,π3,√12,43中,有理数有( ) A .1个B .2个C .3个D .4个10.下面四个选项中,结果比-5小的是( ) A .-8的绝对值 B .√2的相反数 C .-5的倒数D .-4与-3的和11.[2019·绵阳] 已知x 是整数,当|x-√30|取最小值时,x 的值是( )A.5B.6C.7D.83-√(-2)2+|1-√3|.12.计算:√9+√813.(1)计算:①2的平方根;②-27的立方根;③√16的算术平方根.(2)将(1)中求出的各个数表示在图1中的数轴上;(3)将(1)中求出的各个数按从小到大的顺序排列,并用“<”号连接.图114.已知√8+1在两个连续的自然数a和a+1之间,1是b的一个平方根.(1)求a,b的值;(2)比较a+b的算术平方根与√5的大小.类型之四数轴上的点与实数的一一对应关系15.[2020·福建]如图2,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1B.1C.2D.3图2 图316.[2019·济南]实数a,b在数轴上的对应点的位置如图3所示,下列关系式不成立的是()A.a-5>b-5B.6a>6bC.-a>-bD.a-b>017.[2019·南京]实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()图418.如图5,在一条不完整的数轴上,从左向右有两个点A,B,其中点A表示的数为m,点B表示的数为4,C也为数轴上一点,且AB=2AC.(1)若m为整数,求m的最大值;(2)若点C表示的数为-2,求m的值.图5类型之五 数学活动19.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚非常迅速地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚有条理地讲述了计算过程:①因为103=1000,1003=1000000,1000<59319<1000000,所以10<√593193<100,所以√593193是两位数;②因为59319的个位上的数字是9,只有个位上的数字是9的数的立方的个位上的数字依然是9,所以√593193的个位上的数字是9;③如果划去59319后三位只剩下59,因为33=27,43=64,而27<59<64,所以30<√593193<40,所以√593193的十位上的数字是3,所以59319的立方根是39. 根据上面的材料,请你解答问题: 求50653的立方根.20.对非负实数x 四舍五入到个位的值记为[x ],即当n 为非负整数时,若n-12≤x<n+12,则[x ]=n.如:[2.9]=3;[2.4]=2;…. 根据以上材料,解决下列问题:(1)填空:[1.8]= ,[√5]= ; (2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x ]=32x-1的所有非负实数x 的值.答案1.C [解析] 因为√x -1=0, 所以x-1=0, 解得x=1, 则x 的值是1. 故选C .2.C [解析] 因为√16=4,±√4=±2,所以√16的平方根是±2,故选C .3.D [解析] A .√(-3)2=√9=3,故A 项错误;B .√-53=-√53,故B 项错误; C .√36=6,故C 项错误; D .-√0.36=-0.6,故D 项正确. 故选D .4.解:根据题意,得2a=4,3a+b=27, 解得a=2,b=21, 则a-2b=2-42=-40.5.B6.A [解析] √22=2,故A 项正确,B 项错误; √42=4,故C 项,D 项均错误. 故选A .7.C [解析] 根据算术平方根的性质,得√x -2≥0,x-2≥0,所以x ≥2,所以|x+1|>0.又因为√x -2·|x+1|≤0,所以√x -2=0,所以x=2.故选C . 8.4 [解析] 由题意,得(2x+8)2+√y -2=0,则2x+8=0,y-2=0,解得x=-4,y=2,则√x y =√(-4)2=4. 故答案为4.9.B [解析] 在实数√83,π3,√12,43中,√83=2,有理数有√83,43,共2个.故选B . 10.D [解析] -8的绝对值是8,8>-5,故A 选项不符合题意; √2的相反数是-√2,-√2>-5,故B 选项不符合题意; -5的倒数是-15=-0.2,-0.2>-5,故C 选项不符合题意; -4+(-3)=-7,-7<-5,故D 选项符合题意.故选D .11.A [解析] 因为√25<√30<√36,所以5<√30<6,且与√30最接近的整数是5,所以当|x-√30|取最小值时,整数x 的值是5.故选A . 12.解:原式=3+2-2+√3-1=2+√3. 13.解:(1)①2的平方根是±√2;②-27的立方根是-3;③√16=4,4的算术平方根是2.(2)如图所示:(3)-3<-√2<√2<2.14.解:(1)因为4<8<9,所以2<√8<3.又因为√8+1在两个连续的自然数a 和a+1之间,所以a=3. 因为1是b 的一个平方根,所以b=1. (2)由(1)知,a=3,b=1,所以a+b=3+1=4, 所以a+b 的算术平方根是2. 因为4<5,所以2<√5.15.C [解析] 因为M ,N 所对应的实数分别为m ,n ,所以-2<n<-1<0<m<1, 所以m-n 的结果可能是2.故选C .16.C [解析] 由图可知,b<0<a ,且|b|<|a|,所以a-5>b-5,6a>6b ,-a<-b ,a-b>0,所以关系式不成立的是选项C .故选C .17.A [解析] 因为a>b 且ac<bc ,所以c<0.选项A 符合a>b ,c<0的条件,故满足条件的对应点位置可以是A .选项B,C 不满足a>b ,选项C,D 不满足c<0,故满足条件的对应点位置不可以是B,C,D .故选A .18.解:(1)由题意可得m<4.因为m 为整数,所以m 的最大值为3. (2)因为点C 表示的数为-2,点B 表示的数为4, 所以点C 在点B 的左侧.①当点C 在线段AB 上时,因为AB=2AC ,所以4-m=2(-2-m ),解得m=-8.②当点C 在线段BA 的延长线上时,因为AB=2AC ,所以4-m=2(m+2),解得m=0. 综上所述,m 的值是-8或0.19.解:因为103=1000,1003=1000000,1000<50653<1000000, 所以10<√506533<100,所以√506533是两位数.因为50653的个位上的数字是3,只有个位上的数字是7的数的立方的个位上的数字是3, 所以√506533的个位上的数字是7. 如果划去50653后三位只剩下50,因为33=27,43=64,而27<50<64, 所以30<√506533<40,所以√506533的十位上的数字是3, 所以50653的立方根是37. 20.解:(1)2 2(2)因为[2x+1]=4,所以72≤2x+1<92,所以54≤x<74.故答案为54≤x<74. (3)设32x-1=m ,则x=2m+23,所以2m+23=m ,所以m-12≤2m+23<m+12,解得12<m ≤72.因为m 为整数,所以m=1或m=2或m=3, 所以x=43或x=2或x=83.。
《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算:+= .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时,= .21.若|a|=,=2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算:+= 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解:+=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵=4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时,= ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=,=2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵=2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为:+.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S= 告诉我们一种求三角形面积的方法,其中p 表示三角形周长的一半,a 、b 、c 分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm ,b=4cm ,c=5cm ,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC 、AC 、AB 的长求出P ,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm ,b=4cm ,c=5cm ,∴p===6,∴S===6(cm 2), ∴△ABC 的面积6cm 2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵+(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。
华东师大版数学八年级上册《平方根》练习题(含答案及解析)一、选择题1.()20.7- 的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.49答案:B知识点:平方根解析:解答:∵(-0.7)2=(±0.7)2,∴(-0.7)2的平方根是±0.7.故答案为:B .分析:本题根据平方根的定义解答即可.注意一个正数有两个平方根,它们互为相反数.2. 若 -3a =387,则a 的值是( ) A.87 B.-87 C.±87 D.-512343 答案:B知识点:立方根解析:分析:本题根据立方根的定义,可将根号外的符号移入根号内,结合题意即可求出,属于基础题.3.有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A.1B.2C.3D.4答案:B知识点:平方根解析:解答::(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B.分析:此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.4. 若2a=25,b=3,则a+b=()()29±A.-8B.±8C.±2D. ±8或±2答案:D知识点:平方根;绝对值解析:解答:∵a2=25,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=5+3=8,当a=5,b=-3时,a+b=5-3=2,当a=-5,b=3时,a+b=-5+3=-2,当a=-5,b=-3时,a+b=-5-3=-8,综上所述,a+b=±8或±2.故答案为:D.分析:本题根据有理数的乘方和绝对值的性质分别求出a、b,然后分类讨论.难点在于分情况讨论.5. 81的平方根是()A.±3B.±9C.3D.9答案:B知识点:平方根解析:±9=81,解答:∵()2∴81的平方根是±9.故选B.分析:本题根据平方根的定义进行解答即可,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.6.若2m-4与3m-1是同一个数的平方根,则m为()A.-3B.1C.-1D.-3或1答案:D知识点:平方根解析:解答:依题意得:2m-4=-(3m-1)或2m-4=3m-1,解得m=1或-3;∴m的值为1或-3.故答案为D.分析:由于同一个数的两个平方根互为相反数,由此可以得到2m-4=-(3m-1),解方程即可求解.7. 下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身答案:D知识点:平方根解析:解答:A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选:D.分析:本题根据平方根的定义即可解答.用排除法作答,考查了考生对正负数的立方根理解.)A.6B.±6C.D.答案:D知识点:平方根解析:故选D.分析:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一A.1B.2C.3D.4答案:D知识点:平方根解析:根据平方根的被开方数是非负数,可得答案.注意开平方的被开方数是非负数.故选:D.分析:A.±2B.2C.4D.±4答案:A知识点:平方的非负性;绝对值的非负性;平方根解析:解答:根据题意得,b-4=0,a-1=0,解得a=1,b=4,所以14 ab=,1 4的平方根是12±,故选A.根的定义解答即可.几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.11. 一个数的平方等于16,则这个数是()A.+4 B.-4 C.±4 D.±8答案:C知识点:平方根解析:解答:∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.故选C.分析:此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.()25-的平方根是()A.-5B.±5C.5D.25答案:B知识点:有理数的乘方;平方根解析:解答:∵(-5)2=(±5)2,∴(-5)2的平方根是±5.故选B.分析:本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.下列说法中错误的是( )B.36的平方根为±6C.=5D.-4的算术平方根是-2答案:D知识点:平方根;算术平方根解析:解答:A、0的算术平方根是0,说法正确,故本选项错误;B、36的平方根为±6,说法正确,故本选项错误;C、=5,说法正确,故本选项错误;D、-4没有算术平方根,说法错误,故本选项正确.故选D.分析:根据平方根、算术平方根的定义,结合选项即可得出答案.14.下列语句中正确的是( )A.的平方根是9B.的平方根是±9C.的算术平方根是±3D.9的算术平方根是3答案:D知识点:平方根;算术平方根解析:解答:A、的平方根是±3,故本选项错误;B、的平方根是±3,故本选项错误;C、的算术平方根是3,故本选项错误;D、9的算术平方根是3,故本选项正确;故选D.分析:求出=9,再求出9的平方根和算术平方根,即可得出选项.15.下面说法正确的是( )A.4是2的平方根C.0的算术平方根不存在D.-1的平方的算术平方根是-1答案:B知识点:平方根;算术平方根解析:解答:A、4不是2的平方根,故本选项错误;B、2是4的算术平方根,故本选项正确;C、0的算术平方根是0,故本选项错误;D、-1的平方为1,1的算术平方根为1,故本选项错误.故选B.分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.二.填空题答案:4知识点:平方根解析:解答:设正方形的边长是x平方厘米,则x2=16,∵x>0,∴x=4,故答案为:4.分析:17.若一个数的算术平方根是8,则这个数是_____.答案:64知识点:算术平方根解析:解答:∵一个数的算术平方根是8,∴这个数是28=64.故答案为:64.分析:根据算术平方根的定义可以得到这个数就是8的平方,由此即可得到答案.18. 81的平方根是_____;的算术平方根是_____.答案:±9;2知识点:平方根;算术平方根解析:解答:81的平方根是=±9;的算术平方根是4,4的算术平方根即为2;故填±9;2.分析:前面题目可以根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简,然后即可求出其结果的算术平方根.19. 一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是_____.答案:知识点:算术平方跟解析:解答:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.分析:首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.20.已知:若≈1.910,≈6.042,则≈_____.答案:604.2知识点:算术平方根解析:解答:根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.解:若≈1.910,≈6.042,则≈604.2,故答案为:604.2.分析:三.解答题.21. 已知3a-2的算术平方根是4,2a+b-2的算术平方根是3,求a、b的值.答案:a=6,b=-1.知识点:算术平方根解析:解答:∵16的算术平方根是4,∴3a-2=16,解得:a=6,∵9的算术平方根是3,a=6,∴2×6+b-2=9,解得:b=-1,可得:a=6,b=-1.分析:根据算术平方根的定义得出3a-2=16,以及2a+b-2=9进而求出a,b的值即可.22.我家客厅的面积为21.6m2,要想用240块相同的正方形地砖铺设,问每块地砖的边长应为多少?答案:0.3m知识点:算术平方根解析:解答:一块地砖的面积为:21.6÷240=0.09m2,∴每块地砖的边长应为=0.3m.分析:先求出一块地砖的面积,再根据算术平方根的定义解答.23. 判断下列各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.答案:略知识点:平方根解析:解答:(1)有平方根,﹣3的平方是9;(2)有平方根,0是非负数;(3)没有平方根,负数没有平方根;(4)没有平方根,负数没有平方根;(5)a等于零时,有平方根,a≠0时没有平方根,负数没有平方根;(6)有平方根,被开方数是大或等于1的数.分析:本题考查了平方根,根据被开方是非负数可得答案.注意被开方数是非负数.24. 求下列各数的平方根:(1)121;(2)0.01;(3)2;(4)(﹣13)2;(5)﹣(﹣4)3.答案:(1)±11;(2)±0.1;(3);(4)±13(5)±8.知识点:平方根解析:解答:(1)=±11;(2)=±0.1;(3)==;(4)=±13;(5)==±8.分析:本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.25. 已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.答案:13知识点:平方根;代数式求值解析:解答:∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.分析:根据开方与平方是互逆运算,求出2m+2的值,与3m+n+1的值,然后两式联立求出m、n的值,再代入进行计算即可求解.。
11.1平方根与立方根专题一 算数平方根与绝对值的综合运用1. 20b -=,则2013()a b +=______.2. 已知a 、b 满足7b =,求a b -的平方根.3. 如果1x y -+互为相反数,求3x y +的算术平方根.专题二 被开方数中字母的取值问题4. 已知△ABC 的三边长分别为a b c ,,,2690b b -+=,求c 的取值范围.5.在学习平方根知识时,老师提出一个问题:中的m 的取值范围相同吗?小明说相同,小刚说不同,你同意谁的说法?说出你的理由.专题三 (算术)平方根与立方根的规律探究6. ===,…,请你将猜想到n≥的代数式表示出来.的规律用含自然数n(1)7.n>)的等式来表示你发现的规律吗?(1)你能用含有n(n为整数,且1(2的关系.状元笔记:1. 平方根与立方根=,那么x就叫做a的平方根.(1)一般地,如果2x a(2)一个正数a叫做a的算术平方根.=,那么x就叫做a的立方根.(3)一般地,如果3x a2. 性质(1)平方根的性质:①一个正数有两个平方根,它们互为相反数;②0只有一个平方根,是0本身;③负数没有平方根.(2a≥;①被开方数a非负,即0≥.(3)立方根的性质:①一个正数有一个正的立方根;②一个负数有一个负的立方根;③0的立方根是0.1. 负数没有平方根,但是它有立方根.2. 注意利用绝对值、算术平方根的非负性求解.体会从一般到特殊的数学思想,从中得到规律.参考答案1. 1- 【解析】 0=,20b -=,即3a =-,2b =. ∴2013()a b +=2013(32)1-+=-.2. 解:根据算术平方根的意义,得9090a a -≥⎧⎨-≥⎩, ∴9a =,7b =-,∴16a b -=.故a b - 的平方根是4±.3. 解:根据题意得10x y -+=,即1050x y x y -+=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩. ∴33239x y +=⨯+=,∴3x y +的算术平方根是3.4. 0≥,2269(3)0b b b -+=-≥2690b b -+=,0=,2(3)0b -=,∴1a =,3b =.由三角形三边关系得a b c a b -<<+,∴24c <<.5. 解:同意小刚的说法.中,020m m ≥⎧⎨->⎩,得2m >;020m m ≥⎧⎨->⎩,或020m m ≤⎧⎨-<⎩,得2m >,或0m ≤.中的m 的取值范围是不同的,故小刚的说法正确.6. (1)n n =+≥.7. 解:(1=.(2=.。
八年级数学上册《第十一章平方根》同步练习题及答案(华东师大版)班级姓名学号一、选择题1.数25的算术平方根是( )A.5B.-5C.±5D. 52.化简:9=( )A.2B.3C.4D.53.0.49的算术平方根的相反数是( )A.0.7B.-0.7C.±0.7D.04.9的平方根是( )A.±3B.±13C.3D.-35.下面说法中不正确的是( )A.6是36的平方根B.-6是36的平方根C.36的平方根是±6D.36的平方根是66.下列说法正确的是( )A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根7.若x2=16,则5-x的算术平方根是( )A.±1B.±4C.1或9D.1或38.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为( )A.1 dmB. 2 dmC. 6 dmD.3 dm二、填空题9.若一个数的算术平方根是11,则这个数是 .10.若x-3的算术平方根是3,则x= .11.计算:±425=,-425=,425= .12.如果某数的一个平方根是-6,那么这个数的另一个平方根是,这个数是 .13.若数m,n满足(m-1)2+n+2=0,则(m+n)5= .14.若x+2=3,求2x+5的平方根 .三、解答题15.求x的值:(x+2)2-36=0;16.求x的值:(2x﹣1)2﹣169=0.17.计算下列各式:(1)179; (2)0.81-0.04; (3)412-402.18.兴华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?19.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.20.已知25x2-144=0,且x是正数,求25x+13的值.参考答案1.A2.B3.B4.A5.D6.D7.D8.B9.答案为:11.10.答案为:12.11.答案为:±25,-25和25.12.答案为:6,36.13.答案为:-1.14.答案为:±19.15.解:x=4或x=-8.16.解:(2x﹣1)2=169 2x﹣1=±132x=1±13∴x=7或x=﹣6.17.解:(1)原式=43.(2)原式=0.9-0.2=0.7.(3)原式=81=9.18.解:设每块地砖的边长是x m,则有120x2=10.8,即x2=0.09.∵x>0∴x=0.3.答:每块地砖的边长为0.3 m.19.解:依题意,得2a-1=9且3a+b-1=16 ∴a=5,b=2.∴a+2b=5+4=9.∴a +2b 的平方根为±3. 即±a +2b =±3.20.解:由25x 2-144=0,得x =±125. ∵x 是正数,∴x =125. ∴25x +13=25×125+13=2×5=10.。
平方根、立方根练习题一、选择题1、当x=-8时,则32x 的值是( )A ,-8B ,-4C ,4D ,±42、化简(-3)2 的结果是( )A.3B.-3C.±3 D .93.已知正方形的边长为a ,面积为S ,则( )A .S =a = C .a =.a S =±4、算术平方根等于它本身的数( )A 、0;B 、0;C 、0、1;D 、±1、0;5、如果-()21x -有平方根,则x 的值是( )A 、x =2;B 、x =-1;C 、x=1;D 、x =0;6.若b<0,则b b 22等于( ) A 、21 B 、21- C 、±21 D 、0二、填空题1、如果式子1-x 有意义,则x 的取值范围为 。
2.()27-的算术平方根是3.169的平方根是 它的算术平方根是 4.如果一个数的平方根等于它的立方根,则这个数是5.若x 的立方根等于4,那么x 的平方根是6.已知a 的算术平方根等于8,则a 的立方根等于7.如果3=+n m ,那么()=+2n m8.若7是1+a 的算术平方根,则a =9.若()()33225,5-=-=b a ,则的b a +值是10.计算:412=___;3833-=___;1.4的绝对值等于 .11.若2)1(+x -9=0,则x=___;若273x +125=0,则x=___;12.当x ___时,代数式2x+6的值没有平方根;13.若0|2|1=-++y x ,则x+y= ;14.如果x 、y 满足|2|+++x y x =0,则x= ,y=___;15、如果a 的算术平方根和立方根相等,则a 等于 ;16.若12112--+-=x x y ,则x y 的值为17、 的算术平方根是它本身。
的平方根是它本身。
18、已知一个正数的平方根是3x-2 和 5x+6,则这个数是 。
19、当x= 时,-2x -有意义;当x 时,42-x 表示2x-4的算术平方根20、若15+a 有意义,则a 能取的最小整数值为 。
4.1 平方根一.选择题1.(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.2.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣3.若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤24.±3是9的()A.平方根B.相反数C.绝对值D.算术平方根5.如果一个正数的平方根为2a+1和3a﹣11,则a=()A.±1 B.1 C.2 D.96.下列等式正确的是()A.B.C.D.7.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.8.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2二.填空题9.9的平方根是.10.对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)= .11.若x,y为实数,且|x﹣2|+(y+1)2=0,则的值是.12.将一个长为2,宽为4的长方形通过分割拼成一个等面积的正方形,则该正方形的边长为.13.若(m+2)2+=0,则m﹣n= .14.若x、y为实数,且|x+2|+=0,则(x+y)2016= .15.已知一个正数的两个平方根分别为3a﹣4和12﹣5a,则a= .16.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是.17.若x,y为实数,且|x+2|+=0,则()2016= .三.解答题18.已知:与互为相反数,求(x+y)2016的平方根.19.已知a,b满足+|b﹣2|=0,解关于x的方程(a+2)x+4b=2﹣a.20.已知、、(1)类比上述式子,写出第4个式子.(2)猜想第n个式子,并用字母表示出来.(3)证明(2)问中式子的正确性.参考答案一.选择题1.(2016•怀化)(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.【解答】解:∵(﹣2)2=4,∴4的平方根是:±2.故选:C.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.2.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.(2016•山西模拟)若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤2【分析】根据二次根式的性质可得=|a|,再根据绝对值的性质进行计算即可.【解答】解:∵=|a﹣2|=2﹣a,∴a﹣2≤0,故选:D.【点评】此题主要考查了二次根式的性质,关键是掌握绝对值的性质.4.(2016•高新区一模)±3是9的()A.平方根B.相反数C.绝对值D.算术平方根【分析】根据平方根的定义,即可解答.【解答】解:∵(±3)2=9,∴±3是9的平方根,故选;A.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.5.(2016•古冶区二模)如果一个正数的平方根为2a+1和3a﹣11,则a=()A.±1 B.1 C.2 D.9【分析】根据一个正数的平方根有2个,且互为相反数列出方程,求出方程的解即可得到a 的值.【解答】解:根据题意得:2a+1+3a﹣11=0,移项合并得:5a=10,解得:a=2,故选C【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.6.(2016•南开区校级模拟)下列等式正确的是()A.B.C.D.【分析】A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的管道定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故答案选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.7.(2016•张家口一模)一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.【分析】根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.【解答】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.【点评】本题考查了算术平方根,利用了乘方运算,开方运算.8.(2016•河北模拟)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.二.填空题(共13小题)9.(2016•徐州)9的平方根是±3 .【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.10.对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)= .【分析】求出6*3=1,再求出7*1即可.【解答】解:∵6*3==1,∴7*1==,即7*(6*3)=,故答案为:.【点评】本题考查了对算术平方根的应用,主要考查学生的计算能力和理解能力.11.若x,y为实数,且|x﹣2|+(y+1)2=0,则的值是.【分析】先根据非负数的性质求出x,y的值,再根据算术平方根即可解答.【解答】解:∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴,故答案为:.【点评】本题考查了算术平方根,解决本题的关键是先根据非负数的性质求出x,y的值.12.将一个长为2,宽为4的长方形通过分割拼成一个等面积的正方形,则该正方形的边长为2.【分析】先计算出长方形的面积,再根据算术平方根即可解答.【解答】解:长方形的面积为:2×4=8,则正方形的面积也为8,所以正方形的边长为:,故答案为:2.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根.13.若(m+2)2+=0,则m﹣n= ﹣3 .【分析】根据非负数的性质,可列方程求出m、n的值,再代值计算即可.【解答】解:根据题意得:m+2=0,n﹣1=0,∴m=﹣2,n=1,∴m﹣n=﹣2﹣1=﹣3.故答案为:﹣3.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.若x、y为实数,且|x+2|+=0,则(x+y)2016= 1 .【分析】根据绝对值与算术平方根的和为零,可得绝对值与算术平方根同时为零,可得x、y的值,再根据负数的奇数次幂是负数,可得答案.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,∴(x+y)2016=1.故答案为:1.【点评】本题考查了非负数的性质,利用绝对值与算术平方根的和为零得出绝对值与算术平方根同时为零是解题关键,注意负数的奇数次幂是负数.15.已知一个正数的两个平方根分别为3a﹣4和12﹣5a,则a= 4 .【分析】先依据平方根的性质列出关于a的方程,从而可求得a的值.【解答】解:∵一个正数的两个平方根分别为3a﹣4和12﹣5a,∴3a﹣4+12﹣5a=0.解得:a=4.故答案为:4.【点评】本题主要考查的是平方根的性质,掌握正数的两个平方根互为相反数是解题的关键.16.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是2﹣2..【分析】根据正方形的面积公式求得两个正方形的边长分别是,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.【解答】解:∵矩形内有两个相邻的正方形面积分别为4和2,∴两个正方形的边长分别是,2,∴阴影部分的面积=(2+)×2﹣2﹣4=2﹣2.故答案为2﹣2.【点评】此题要能够由正方形的面积表示出正方形的边长,再进一步表示矩形的长.17.若x,y为实数,且|x+2|+=0,则()2016= 1 .【分析】根先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣2=0,∴x=﹣2,y=2,∴()2016=1,故答案为:1.【点评】本题考查的是非负数的性质,熟知当几个数或式的偶次方或绝对值相加和为0时,则其中的每一项都必须等于0是解答此题的关键.三.解答题(共2小题)18.已知:与互为相反数,求(x+y)2016的平方根.【分析】根据相反数的性质列出算式,根据非负数的性质列出二元一次方程组,解方程组求出x、y的值,根据平方根的概念解答即可.【解答】解:由已知可得:+=0,则,解得,,∴(x+y)2016=1,∴(x+y)2016的平方根是±1.【点评】本题考查的是非负数的性质、二元一次方程组的解法,掌握非负数之和等于0时,各项都等于0是解题的关键.19.已知a,b满足+|b﹣2|=0,解关于x的方程(a+2)x+4b=2﹣a.【分析】根据非负数的性质得出ab的值,代入方程(a+2)x+4b=2﹣a求解即可.【解答】解:由题意得2a﹣4=0,b﹣2=0,解得a=2,b=2.所以4x+8=0,解得x=﹣2.【点评】本题考查了非负数的性质以及解一元一次方程,求得a与b的值是解题的关键.20.已知、、(1)类比上述式子,写出第4个式子.(2)猜想第n个式子,并用字母表示出来。
12.1.1 平方根(第一课时)◆随堂检测1、若 x 2 = a ,则 叫 的平方根,如 16 的平方根是2、3 表示 的平方根, 12 表示 12 的3、 196 的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0 没有平方根; ( 2)— 1 的平方根是 1 ; ( 3) 64 的平方根是 8; (4)5 是 25的平方根; ( 5) 36 65、求下列各数的平方根◆典例分析例 若 2m 4与 3m 1是同一个数的平方根,试确定 m 的值◆课下作业•拓展提高一、选择1、如果一个数的平方根是 a+3和 2a-15 ,那么这个数是()A 、49B 、441C 、7 或 21D 、49或 441 22、 ( 2) 2的平方根是( )A 、 4B 、 2C 、 -2D 、 2、填空1)1002) ( 2) ( 8) ( 3) 1.214)115492 79的平方根是C 、 -8 是 64 的平方根D 、 ( 1)2没有平方根3、若 5x+4 的平方根为 1 ,则 x=4 , 3a+b-1 的平方根是 4 ,则 a+2b 的平方根是 三、解答题1) 求 a 的值22) a 2的平方根体验中考09)若实数 x ,y 满足 x 2 +(3 y) 2 =0,则代数式 xy x 2的值为08)在小于或等于 100 的非负整数中,其平方根是整数的共有4、若 m —4 没有平方根,则 |m —5|=6、 a 的两个平方根是方程3x+2y=2 的一组解7、已知 x 1 +∣ x+y-2 =0 求 x-y 的值3、 08)下列说确的是( A 、 64 的平方根是8B 、 -1 的平方根是 15、已知 2a 1的平方根是 1、 2、12.1.1 平方根(第二课时)◆随堂检测1、9的算术平方根是;81 的算术平方根_________________252、一个数的算术平方根是9,则这个数的平方根是3、若x 2 有意义,则x 的取值围是,若a≥0,则a 04、下列叙述错误的是( )A 、-4 是16 的平方根B、17 是( 17) 2的算术平方根1C 、的算术平方根是1D、0.4 的算术平方根是0.02648◆典例分析例:已知△ ABC的三边分别为a、b、c且a、b满足a 3 |b 4| 0,求c的取值围分析:根据非负数的性质求a、b 的值,再由三角形三边关系确定 c 的围◆课下作业•拓展提高一、选择1、若m 2 2 ,则(m 2)2的平方根为( )A、16 B 、16 C 、4 D 、22、16 的算术平方根是( )A、4 B 、4 C 、 2 D 、2二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是4、若x 2 +(y 4)2=0,则y x=三、解答题5、若a是( 2)2的平方根,b是16 的算术平方根,求a2+2b的值6、已知a为170的整数部分,b-1 是400的算术平方根,求a b的值•体验中考错误!未指定书签。
12.1平方根与立方根(1)1.下列说法正确的个数是( )①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根.A .1B .2C .3D .42.求下列各数的平方根.0,,17,,(-2)2,2,-16.3). A .±4 B .4 C .±2 D .24.求下列各数的算术平方根.(1)0.0025;(2)(-6)2;(3)0;(4)(-2)×(-8).5.下列说法中正确的是( )①12是1728的立方根; ②的立方根是; ③64的立方根是±4; ④0的立方根是0.A .①④B .②③C .①③D .②④6.下列说法中错误的是( )1925641412713A5的平方根 B .-16是256的平方根C .-15是(-15)2的算术平方根 D .±是的平方根7.判断: (1)负数和零没有算术平方根. ()(2)算术平方根等于它本身的数只有一个.()(3)平方根等于它本身的数有两个. ( )8.下列说法中错误的是( )A .负数没有立方根B .1的立方根是1C D .立方根等于它本身的数有3个9.已知x 的平方根是2a+3和1-3a ,y 的立方根为a ,求x+y 的值.10.已知(x-1)2+│x-y+z+1│=0,求x+y+z 的平方根.11.已知:+5,求2x+3y 的值.2744912.观察下列各式:,…… 请你将猜想得到的规律用含自然数n (n ≥1)的代数式表示出来:_________.13.请你观察、思考下列计算过程:因为112=121=11;同样,因为1112=12321=111;……=__________.答案: 1.B 点拨:②、④正确.2.0,±,±2,±,没有平方根 3.D4.(1)0.05 (2)6 (3)0 (4)45.A 6.C7.(1)× 点拨:0的算术平方根为0.(2)× 点拨:有两个,分别是0、1.(3)× 点拨:只有0的平方根等于它本身.8.A 点拨:负数的立方根是负数.9.解:由平方根的性质,得(2a+3)+(1-3a )=0,解得a=4,所以x=121.=a ,∴y=64.===135832故x+y=121+64=185. 10.±311.19 点拨:由+5,得x=2,y=5,故2x+3y=19. 1213.点拨:可根据被开方数居中的数字推出,居中的数字是几,则该被开方数的算术平方根就由几个1组成.(n=+9111个。
新华师大版数学八年级上册第十一章11.1.1平方根同步练习一、选择题1、9的平方根是()A、±3B、±C、3D、﹣32、25的算术平方根是()A、5B、-5C、±5D、3、的平方根是()A、±4B、4C、±2D、 24、以下叙述中错误的是()A、± =±0.5B、=0.5C、0和1的平方根是它们本身D、负数没有平方根5、的平方根是()A、﹣2B、2C、±2D、 46、下列说法正确的是()A、﹣81的平方根是±9B、任何数的平方是非负数,因而任何数的平方根也是非负C、任何一个非负数的平方根都不大于这个数D、2是4的平方根7、a﹣1与3﹣2a是某正数的两个平方根,则实数a的值是()A、4B、C、2D、﹣28、下列说法不正确的是()A、是2的平方根B、是2的平方根C、2的平方根是D、2的算术平方根是9、下列各数中没有平方根的是()A、0B、﹣82C、D、﹣(﹣3)10、求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:n 0.09 9 900 90000 …0.3 3 30 300 …运用你发现的规律解决问题,已知≈1.435,则≈()A、14.35B、1.435C、0.1435D、143.511、己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A、1dmB、dmC、dmD、3dm12、若=0,则(x+y)2015等于()A、﹣1B、1C、32014D、﹣3201413、用计算器求2014的算术平方根时,下列四个键中,必须按的键是()A、B、C、D、14、有一列数如下排列,,,,,…,则第2015个数是()A、B、C、D、15、若a2=4,b2=9,且ab<0,则a-b的值为()A、-2B、±5C、5D、-5二、填空题16、如果a ,b分别是9的两个平方根,那ab=________.17、平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外).________年________月________日.18、在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值:=________.三、解答题19、计算.(1).(2)20、计算:(1)=________,=________,=________,=________,=________,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(3)利用你总结的规律,计算:.21、已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求:3a﹣4b的平方根.22、如图,在长和宽分别是a、b的长方纸片的四个角都剪去一个边长为x的正方形,当a=8,b=6,且剪去部分的面积等于剩余部分的面积的时,求正方形的边长x的值.23、如图①,是由5个边长是1的正方形组成的“十”字形.把图②中的4个浅色直角三角形对应剪拼到4个深色直角三角形的位置从而得到图③,试求:图①图②图③(1)图②中1个浅色直角三角形的面积;(2)图③中大正方形的边长.答案解析部分一、<h3 >选择题</h3>1、【答案】A【考点】平方根【解析】解答:9的平方根是:± =±3.分析:根据平方根的含义和求法,可得9的平方根是:± =±3,据此解答即可.2、【答案】C【考点】算术平方根【解析】【解答】∵(5)2=25,∴25的算术平方根是5.【分析】注意题干中的“算术平方根”,一个正数的平方根有两个,正的那个是算术平方根.3、【答案】C【考点】平方根,算术平方根【解析】解答:=4,± =±2,分析:根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案;.4、【答案】C【考点】平方根,算术平方根【解析】【解答】∵0.52=0.25,∴A,B正确;0的平方根是它的本身,但1的平方根是±1,C错;D正确.【分析】本题考查对平方根的了解.5、【答案】C【考点】平方根【解析】解答:=4,则4的平方根是.分析:做此类题,需要将的结果算出来;易错选A.6、【答案】D【考点】平方根【解析】【解答】A:﹣81是负数,由于负数没有平方根,故A选项错误;B:任何数的平方为非负数,正确;但只有非负数才有平方根,且平方根有正负之分(0的平方根为0).故选项B错误;C:任何一个非负数的平方根都不大于这个数,不一定正确,如:当0<a<1时,a>a2,故选项错误;D:2的平方是4,所以2是4的平方根,故选项正确.【分析】此题考查的平方根的定义;做概念题时,可以举特殊情况来判断,如B,C项.7、【答案】C【考点】平方根,一元一次方程的应用【解析】【解答】∵a﹣1与3﹣2a是某正数的两个平方根,∴a﹣1+3﹣2a=0,解得a=2.【分析】一个正数有两个平方根(除0外,0的平方根只有一个,即它本身),这两个平方根互为相反数,和为0.8、【答案】C【考点】平方根,算术平方根【解析】解答:2的平方根为± ,所以A,B都正确;是2的算术平方根,故C不正确;所以说法不正确的是C.分析:根据平方根和算术平方根的概念求出2的平方根和算术平方根分别为和,然后判断各选项即可得出答案.9、【答案】B【考点】平方根【解析】解答:A.0的平方根是0,故错误;B.﹣82=﹣64<0,没有平方根,故正确;C.有平方根,故错误;D.﹣(﹣3)=3,有平方根,故错误.分析:由于负数没有平方根,那么只要找出选项A、B、C、D中的负数即可.10、【答案】A【考点】算术平方根,计算器—数的开方【解析】解答:根据表格的规律:,,可知≈1.435,则≈14.35.分析:根据被开方数的小数点移动两位,算术平方根的小数点每移动一位求出即可.11、【答案】B【考点】平方根【解析】解答:因为正方体的表面积公式:s=6a2,可得6a2=12,解得a= .分析:根据正方体的表面积公式:s=6a2,解答即可.12、【答案】A【考点】平方的非负性,二次根式的非负性【解析】解答:表示的是(x-1)的算术平方根,是非负数;也是非负数,∴,=0,∴x=1,y=﹣2,∴=(1﹣2)2015=﹣1.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.13、【答案】C【考点】计算器—数的开方【解析】解答:表示求正弦;表示求余弦;表示求平方根;求的是次幂.分析:首先了解各个符号表示的意义,然后结合计算器不同按键功能即可解决问题.14、【答案】D【考点】平方根【解析】解答:观察可以发现:第一个数字是;第二个数字是;第三个数字是;第四个数字是;…;可得第2015个数即是,故选D.分析:本题主要考查了数字变化,算式平方根的性质,数列规律问题,找出一般规律是解题.15、【答案】B【考点】平方根【解析】【解答】∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=-3,a=-2,b=3,则a-b的值为:2-(-3)=5或-2-3=-5.【分析】用平方根的定义得出a ,b的值,进而利用ab的符号得出a ,b异号,即可得出a-b的值;此题有两个答案,勿漏算.二、<h3 >填空题</h3>18、【答案】﹣9【考点】平方根【解析】【解答】∵9的平方根为±3,∴ab=﹣3×3=﹣9.【分析】根据平方根的定义得到9的平方根为±3,然后计算这两个数的积.19、【答案】2036;6;6【考点】算术平方根【解析】【解答】2036年6月6日中,62=36,符合题意.【分析】此题为开放题,答案不唯一;由题意可知月份数与日数相同,且它们的积为两位数,按这两个条件去找数即可.20、【答案】210【考点】算术平方根【解析】【解答】=1,=1+2,=1+2+3,=1+2+3+4,… =1+2+3+4+…+20=210.【分析】先分别求出①②③④的结果,发现的规律①=1;②=1+2;③=1+2+3;④=1+2+3+4.以此类推,=1+2+3+4+…+20=210..三、<h3 >解答题</h3>21、【答案】(1)解答:.(2)解答:.【考点】算术平方根,实数的运算【解析】分析:(1)中,其前面的符号保持不变;(2)任何不为0的实数的0次幂为1;;.22、【答案】(1);0.7;0;6;(2)解:分类讨论:当时,;当时,;当时,;综上所述:= ;(3)解:利用(2)中得到的规律,可得原式=|3.14﹣π|=π﹣3.14.【考点】算术平方根【解析】【分析】(1)【解答】=,=0.7,=0,=6,= .(2)中根据算术的平方根的定义可知,结果是一个正数,但a 不一定是正数,所以需要去分类讨论;(3)在计算时需要注意括号里3.14﹣π的正负性,并利用(2)中得到的结论去做.23、【答案】解:根据题意得:2a+1==9,5a+2b ﹣2=16,即a=4,b=﹣1,∴3a ﹣4b=16,∴3a ﹣4b 的平方根是± =±4.答:3a ﹣4b 的平方根是±4.【考点】平方根,算术平方根【解析】【分析】根据已知得出2a+1=9,5a+2b ﹣2=16,求出a , b ,代入求出即可.24、【答案】解:剪去部分的面积等于剩余部分的面积的,∴4x 2=(ab ﹣4x 2), ∴4x 2= (8×6﹣4x 2),∴12x 2=48﹣4x 2,∴x 2=3,∵x 表示边长,不能为负数,∴x= .【考点】平方根,算术平方根【解析】【分析】根据题意列出等式4x 2=(ab ﹣4x 2),把8和6代入得出4x 2= (8×6﹣4x 2),求出即可.25、【答案】(1)解:图②中1个浅色直角三角形的面积. (2)解:大正方形的面积等于5个小正方形的面积之和=5,∴图③中大正方形的边长为.【考点】算术平方根【解析】【分析】(1)根据直角三角形的面积公式计算即可;(2)根据图中得出大正方形的面积等于5个小正方形的面积之和.。
华师大新版八年级上学期《11.1 平方根与立方根》同步练习卷一.选择题(共15小题)1.9的平方根是()A.3B.C.±3D.2.9的平方根是()A.3B.﹣3C.±3D.±63.4的平方根是()A.2B.﹣2C.±2D.±4.16的算术平方根是()A.±2B.4C.﹣2D.165.计算的结果是()A.﹣2B.2C.﹣4D.46.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是()A.123B.189C.169D.2487.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.18.若=0,则xy的值为()A.1B.﹣1C.2D.﹣29.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个10.下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±211.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0B.2C.0或2D.0或﹣2 12.+=0,则x的值是()A.﹣3B.﹣1C.D.无选项13.用计算器求结果为(保留四个有效数字)()A.12.17B.±1.868C.1.868D.﹣1.868 14.借助计算器可求得=555,…,仔细观察上面几道题的计算结果,试猜想=()A.B.C.D.15.在计算器上按键显示的结果是()A.3B.﹣3C.﹣1D.1二.填空题(共10小题)16.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为.17.已知一个正数的两个平方根分别为2m﹣3和8+3m,则(﹣m)2018的值为.18.下列说法正确的是(只需填写编号)①的算术平方根是5②25的算术平方根是±5③的平方根是5④25的平方根是±519.已知=x,=3,则x﹣y=.20.已知+|x+y﹣2|=0,则x+y=.21.一个数的平方根是2x、x﹣12,则这个数的立方根是.22.若x的立方根是﹣,则x=.23.36的平方根是;的算术平方根是;﹣8的立方根是.24.估算:≈.(精确到0.1)25.用计算器计算:≈.(结果保留三个有效数字)三.解答题(共8小题)26.已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解.27.已知一个正数x的平方根是3a﹣1与a﹣7,求a和x的值.28.一个圆柱的体积为64立方米,高为8米,求这个圆柱的底面半径和侧面积?29.正方形的边长为acm,它的面积与长为96cm、宽为12cm的长方形的面积相等,求a的值.30.求满足下列等式中的x的值:(1)(x+1)2﹣4=0;(2)(x+1)3=27.31.如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.32.用计算器计算:+4×(精确到0.001)33.计算:(1)π﹣2(精确到0.01);(2)﹣+(精确到0.01).华师大新版八年级上学期《11.1 平方根与立方根》同步练习卷参考答案与试题解析一.选择题(共15小题)1.9的平方根是()A.3B.C.±3D.【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.9的平方根是()A.3B.﹣3C.±3D.±6【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3;故选:C.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.3.4的平方根是()A.2B.﹣2C.±2D.±【分析】根据平方根的定义求解即可.【解答】解:4的平方根是±2.故选:C.【点评】本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.4.16的算术平方根是()A.±2B.4C.﹣2D.16【分析】16的算术平方根就是平方是16的非负数,据此即可确定.【解答】解:16的算术平方根是4.故选:B.【点评】此题主要考查了算术平方根的定义,理解定义是关键.5.计算的结果是()A.﹣2B.2C.﹣4D.4【分析】根据算术平方根的含义和求法,求出计算的结果是多少即可.【解答】解:=2.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.6.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是()A.123B.189C.169D.248【分析】根据算术平方根的定义确定出这三个数,然后求解即可.【解答】解:∵密码是1、2、4、6、8、9六个数中的三个数的算术平方根,∴这三个数为1、4、9,∴它们的算术平方根分别为1、2、3,∴这个密码箱的密码可能是123.故选:A.【点评】本题考查了算术平方根的定义,熟记概念并判断出这三个数是解题的关键.7.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.1【分析】根据2a+1≥0,求出当式子的值取最小值时,a的取值为多少即可.【解答】解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.【点评】此题主要考查了算术平方根的非负性质的应用,要熟练掌握.8.若=0,则xy的值为()A.1B.﹣1C.2D.﹣2【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则xy=2.故选:C.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根与立方根的定义即可求出答案.【解答】解:(1)﹣3是的平方根,(1)正确;(2)7是(﹣7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误;故选:C.【点评】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根,本题属于基础题型.10.下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±2【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.11.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0B.2C.0或2D.0或﹣2【分析】根据立方根与平方根的概念即可求出答案.【解答】解:∵(﹣4)2=16,∴a=±4,∵b的一个平方根是2,∴b=4,当a=4时,∴a+b=8,∴8的立方根是2,当a=﹣4时,∴a+b=0,∴0的立方根是0,故选:C.【点评】本题考查立方根与平方根的概念,解题的关键是熟练运用平方根与立方根的概念,本题属于基础题型.12.+=0,则x的值是()A.﹣3B.﹣1C.D.无选项【分析】根据题意,对原方程变形为=﹣,即可得到有2x﹣1=﹣5x ﹣8,解方程即可得出x的值.【解答】解:+=0,即=﹣,故有2x﹣1=﹣5x﹣8解之得x=﹣1,故选:B.【点评】本题主要考查的是对立方根在解方程中的应用,要求学生能够熟练运用.13.用计算器求结果为(保留四个有效数字)()A.12.17B.±1.868C.1.868D.﹣1.868【分析】此题首先熟悉开平方的按键顺序,然后即可利用计算器求平方根,并保留四个有效数字.【解答】解:利用计算器开方求=1.868.故选:C.【点评】此题主要考查了利用计算器求算术平方根,注意有效数字的定义:在一个近似数中,从左边第一个不是0的数字起,到精确到末位数止,所有的数字,都叫这个近似数字的有效数字.14.借助计算器可求得=555,…,仔细观察上面几道题的计算结果,试猜想=()A.B.C.D.【分析】当根式内的两个平方和的底数为1位数时,结果为5,当根式内的两个平方和的底数为2位数时,结果为55,当根式内的两个平方和的底数为3位数时,结果为555,当根式内的两个平方和的底数为2016位数时,结果为2016个5.【解答】解:∵=5,=55=555,…,∴=.故选:D.【点评】此题主要考查了利用计算器进行数的开方,解题时先求出较简单的数,然后找出规律,推理出较大数的结果.15.在计算器上按键显示的结果是()A.3B.﹣3C.﹣1D.1【分析】首先应该熟悉按键顺序,然后即可熟练应用计算器解决问题.【解答】解:在计算器上依次按键转化为算式为﹣7=;计算可得结果为﹣3.故选:B.【点评】本题主要考查了利用计算器计算结果,要求同学们能熟练应用计算器,熟悉计算器的各个按键的功能.二.填空题(共10小题)16.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为81.【分析】根据一个正数的平方根互为相反数,即可得到一个关于x的方程,即可求得x,进而求得所求的正数.【解答】解:根据题意得:(﹣m﹣3)+(2m﹣3)=0,解得:m=6,则这个数是:(﹣3﹣6)2=81.故答案是:81.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17.已知一个正数的两个平方根分别为2m﹣3和8+3m,则(﹣m)2018的值为1.【分析】根据题意得出方程2m﹣3+8+3m=0,求出m,最后,再代入计算即可.【解答】解:∵一个正数的两个平方根分别为2m﹣3和8+3m,∴2m﹣3+8+3m=0,解得:m=﹣1,∴(﹣m)2018=12018=1.故答案为:1.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.18.下列说法正确的是④(只需填写编号)①的算术平方根是5②25的算术平方根是±5③的平方根是5④25的平方根是±5【分析】直接利用算术平方根以及平方根的定义分别判断得出答案.【解答】解:①=5的算术平方根是,故此选项错误;②25的算术平方根是5,故此选项错误;③=5的平方根是±,故此选项错误;,④25的平方根是±5,正确.故答案为:④.【点评】此题主要考查了算术平方根以及平方根,正确把握相关定义是解题关键.19.已知=x,=3,则x﹣y=6.【分析】根据算术平方根的概念分别求出x、y,计算即可.【解答】解:=7,∴x=7,=3,=1,y=1,则x﹣y=7﹣1=6,故答案为:6.【点评】本题考查的是算术平方根的概念,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.20.已知+|x+y﹣2|=0,则x+y=2.【分析】先根据非负数的性质求出x、y的值,再代入可得答案.【解答】解:∵+|x+y﹣2|=0,∴x﹣1=0且x+y﹣2=0,解得:x=1、y=1,则x+y=2,故答案为:2.【点评】本题主要考查算术平方根,解题的关键是掌握算术平方根和绝对值的非负性.21.一个数的平方根是2x、x﹣12,则这个数的立方根是4.【分析】根据一个正数的平方根有2个,且互为相反数求出x的值,确定出这个数,进而求出立方根即可.【解答】解:根据题意得:2x+x﹣12=0,解得:x=4,则这个数为64,立方根是4,故答案为:4【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.22.若x的立方根是﹣,则x=﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣,故答案为:﹣.【点评】本题考查了立方根的应用,主要考查学生的计算能力.23.36的平方根是+6,﹣6;的算术平方根是2;﹣8的立方根是﹣2.【分析】利用立方根,平方根,以及算术平方根定义计算即可求出值.【解答】解:36的平方根是+6,﹣6;的算术平方根是2;﹣8的立方根是﹣2,故答案为:+6,﹣6;2;﹣2【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.24.估算:≈ 5.1.(精确到0.1)【分析】首先熟悉计算器的求算术平方根的键,然后即可利用计算器求出结果,根据有效数字的概念用四舍五入法取近似数即可.【解答】解:≈5.1.故答案为:5.1.【点评】本题主要考查了无理数的估算,关键是把估算的数保留到0.1是本题的关键.25.用计算器计算:≈﹣2.56.(结果保留三个有效数字)【分析】首先利用计算器进行计算,然后再四舍五入即可.【解答】解:原式=﹣3.142≈﹣2.56.故答案为:﹣2.56.【点评】本题主要考查的是计算器﹣数的开方、近似数字和有效数字,利用计算器求得算式的值是解题的关键.三.解答题(共8小题)26.已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解.【分析】(1)、(2)根据一个正数有两个平方根,这两个平方根互为相反数解答.【解答】解:(1)由题意得,a+6+2a﹣9=0,解得,a=1;(2)x2﹣16=0x2=16x=±4.【点评】本题考查的是平方根的概念,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,27.已知一个正数x的平方根是3a﹣1与a﹣7,求a和x的值.【分析】根据平方根的性质可得3a﹣1+a﹣7=0,解出a的值,进而可得3a﹣1的值,从而可得x的值.【解答】解:由题意得:3a﹣1+a﹣7=0,解得:a=2,则3a﹣1=5,x=52=25,答:a的值为2,x的值为25.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.28.一个圆柱的体积为64立方米,高为8米,求这个圆柱的底面半径和侧面积?【分析】因为圆柱的体积为64立方米,即πr2h=64,已知高为8米,可求得圆柱的底面半径,根据侧面积公式为S=2πrh,即可求得侧面积.【解答】解:V=πr2h=64立方米∵h=8米∴r2===(米)∴r=(米)S=2πrh=2×π××8=32(平方米)∴圆柱的底面半径为米,侧面积32平方米.【点评】本题主要考查了圆柱的体积和侧面积公式,熟练掌握公式是解题的关键.29.正方形的边长为acm,它的面积与长为96cm、宽为12cm的长方形的面积相等,求a的值.【分析】根据题意列出等式a2=96×12,利用平方根的定义求解可得.【解答】解:根据题意,得:a2=96×12,解得:a=±24,∵a为正数,∴a=24.【点评】本题主要考查算术平方根,解题的关键是掌握平方根和算术平方根的定义.30.求满足下列等式中的x的值:(1)(x+1)2﹣4=0;(2)(x+1)3=27.【分析】(1)根据平方根的定义,求出x的值即可;(2)根据立方根的定义求出x的值即可;【解答】解:(1)∵(x+1)2=4,∴x+1=±2,∴x=1或﹣3;(2)∵(x+1)3=27,∴x+1=3,∴x=2.【点评】本题考查平方根、立方根的定义,解题的关键是熟练掌握平方根、立方根的性质,属于中考常考题型.31.如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.【分析】根据一个正数的两个平方根互为相反数,可得出关于a的方程,解出即可.【解答】解:由题意知a+1+2a﹣22=0,解得:a=7,则a+1=8,∴这个正数为64,∴这个正数的立方根为4.【点评】本题主要考查了平方根的定义和性质,注意掌握一个正数的两个平方根互为相反数.32.用计算器计算:+4×(精确到0.001)【分析】首先用计算器分别求出、的值各是多少;然后计算乘法和加法,求出算式精确到0.001的近似值是多少即可.【解答】解:+4×≈1.8171+4×1.4142=1.8171+5.6568=7.4739≈7.474【点评】此题主要考查了计算器﹣数的开方问题,以及四舍五入法求近似值问题的应用,要熟练掌握,解答此题的关键是分别求出、的值各是多少.33.计算:(1)π﹣2(精确到0.01);(2)﹣+(精确到0.01).【分析】(1)先求得的近似值,然后再进行计算,最后求近似值即可;(2)先求得与的近似值,然后再进行计算,最后求近似值即可.【解答】解:(1)π﹣2≈3.141﹣2×1.732=﹣0.323≈﹣0.32;(2)原式≈﹣2.236+0.666=﹣1.57.【点评】本题主要考查的是计算的使用,会使用计算求一个算术平方根是解题的关键.。
2019-2020学年数学华师大版八年级上册 11.1.1 平方根同步练习B卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)9的算术平方根是()A . 3B . -3C . ±3D . ±92. (2分)比较3.5,3,的大小,正确的是()A . 3.5<<3B . <3.5<3C . 3<<3.5D . 3<3.5<3. (2分)4的算术平方根是()A . 2B . ﹣2C . ±2D .4. (2分)如果是二次根式,那么x的取值范围()A . x>﹣1B . x≥﹣1C . x≥0D . x>05. (2分)实数a,b在数轴上的位置如图所示,以下说法正确的是A . a+b=0B . b<aC . ab>0D . |b|<|a|6. (2分)下列说法中错误的是()A . 0的算术平方根是0B . 36的平方根为±6C . =5D . -4的算术平方根是-27. (2分)已知a、b、c是三角形的三边长,如果满足 =0,则三角形的形状是()A . 底与边不相等的等腰三角形B . 等边三角形C . 钝角三角形D . 直角三角形8. (2分)下列计算,正确的是()A . ﹣ =B . | ﹣2|=﹣C . =2D . ()﹣1=2二、填空题 (共7题;共7分)9. (1分)若一个数的立方根与它的算术平方根相同,则这个数是________.10. (1分)一个数的平方根是它本身,则这个数的立方根是________ .11. (1分)如果|y-3|+(2x-4)2=0,那么2x-y=________。
12. (1分)的平方根是________.13. (1分)的算术平方根是________14. (1分)已知实数x,y满足|x-4|+ =0,则以x,y的值为两边长的等腰三角形的周长是________.15. (1分)若 3a3b5n−2与−10b3am−1是同类,则mn=________ .三、解答题 (共6题;共50分)16. (5分)计算:.17. (5分)计算:()﹣2+(﹣1)2017﹣(π﹣3)0﹣sin45°.18. (15分)求下列各式中x的值.(1)(x﹣3)2﹣4=21(2)64x3﹣27=0(3)125(x+1)3=8.19. (10分)计算.(1)计算:+ --.(2)先化简,再求值:a(a﹣2b)+(a+b)2 ,其中a=﹣1,b= .20. (5分)有一个边长为9 cm的正方形和一个长为24 cm、宽为6 cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?21. (10分)求式子中x值:(1)x2﹣16=0(2)8(x﹣2)3=﹣27.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共50分)16-1、17-1、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、。
初中数学华东师大版八年级上册平方根同步练习一、选择题1. 若a −b =2+√3,b −c =2−√3,则√a −c 的值为( )A. 2B. 4C. √3D. 2√32. 若√8x m y 与√2x 3y n 的和是单项式,则(m +n)3的算术平方根为( )A. 4B. 8C. ±4D. ±83. 下列说法正确的是( )A. 9的平方根是3B. −2是4的算术平方根C. 3是9的算术平方根D. 0没有平方根4. 925的平方根是( )A. 35B. −35C. ±35D. 816255. 已知2a −7和a +4是某正数的平方根,b −1的算术平方根为3,则b −a 的平方根为( )A. ±3B. 3C. √3D. ±√36. 平方根等于本身的有( )A. 0B. 1C. 0,±1D. 0和17. 下列运算正确的是( )A. √9=±3B. −22=−4C. −|−3|=3D. (−2)3=−68. 已知一个正数的两个平方根分别是a +3和2a −15,则这个正数为( )A. 4B. ±7C. −7D. 499. 下列各式中,正确的是( )A. √(−4)2=4B. √(−4)2=−4C. √16=±4D. ±√4=210.下列说法:①−1的倒数是−1;②3是√81的平方根;③若|a|=a,则a>0;④若∠1=180°−∠2,则∠1与∠2互为补角.其中正确说法的个数有()A. 4个B. 3个C. 2个D. 1个二、填空题11.若4(x−1)2−12=0,则等式中x的值为______.12.若2a−1和a−1是一个正数m的两个平方根,则m=______.13.若2a−3与5−a是一个正数的两个平方根,则a是______.14.若√18−n是整数,则自然数n为______.15.如果一个正数x的平方根是a+3和2a−15,则a=______;x=______.三、解答题16.已知一个正数的两个平方根分别是4a−6和2a+3,求a的值,并求这个正数.17.已知正实数x的平方根是n和n+a.(1)当a=6时,求n;(2)若n2x2+(n+a)2x2=10,求x的值.18.请阅读下列材料:一般的,如果一个正数x的平方等于a,即x2=a,那么正数x就叫做a的算术平分根,记作√a(即√a=√x2=x),如32=9,3就叫做9的算术平方根.(1)计算下列各式的值:√4=______,√25=______,√100=______;(2)观察(1)中的结果,√4,√25,√100这三个数之间存在什么关系?______;(3)由(2)得出的结论猜想:√a⋅√b=______(a≥0,b≥0);(4)根据(3)计算:√2×√8=______,√3×√4=______,27√3×√6×√8=______(写最终结果).答案和解析1.【答案】A【解析】解:∵a−b=2+√3,b−c=2−√3,∴a−c=(a−b)+(b−c)=(2+√3)+(2−√3)=4,∴√a−c=√4=2.故选:A.首先根据a−b=2+√3,b−c=2−√3,求出a−c的值是多少;然后根据算术平方根的含义和求法,求出√a−c的值为多少即可.此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2.【答案】B【解析】解:根据题意得:m=3,n=1,则m+n=3+1=4,∴(m+n)3的算术平方根为8.故选:B.根据题意得到两单项式为同类项,利用同类项定义求出m与n的值,即可确定出(m+n)3的算术平方根.此题考查了算术平方根以及合并同类项,熟练掌握合并同类项法则是解本题的关键.3.【答案】C【解析】解:A、9的平方根是±3,所以A选项错误;B、2是4的算术平方根,所以B选项错误;C、3是9的算术方根,所以C 选项正确;D、0的平方根是0,所以D选项错误.故选:C.根据算术平方根的定义对B和C进行判断;根据平方根的定义对A 进行判断;根据0的平方根是0对D进行判断.本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,0的算术平方根为0.也考查了平方根的定义.4.【答案】C【解析】解:925的平方根是±35;故选:C.根据平方根的定义直接解答即可.此题考查了平方根,掌握平方根的定义是解题的关键.5.【答案】A【解析】解:由题意可知:(2a−7)+(a+4)=0或2a−7=a+4,∴3a−3=0或a=11,∴a=1或11,∵b−1=32,∴b=10,当a=1时,b−a=9,当a=11时,b−a=−1(不合题意,舍去),∴b−a的算术平方根是±3.故选:A.根据平方根与算术平方根的定义即可求出答案.本题考查平方根与算术平方根,解题的关键是熟练运用平方根与算术平方根的定义,本题属于基础题型.6.【答案】A【解析】解:0的平方根是0,1的平方根是±1,−1没有平方根,故选:A.依据平方根的定义进行判断即可.本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.7.【答案】B 【解析】解:A.√9=3,故本选项不合题意;B.−22=−4,故本选项符合题意;C.−|−3|=−3,故本选项不合题意;D.(−2)3=−8,故本选项不合题意.故选:B.分别根据算术平方根的定义,有理数的乘方的定义以及绝对值的定义逐一判断即可.本题考查了算术平方根,有理数的乘方以及绝对值的定义,熟记相关定义是解答本题的关键.8.【答案】D【解析】解:∵一个正数的两个平方根分别是a+3和2a−15,∴a+3+2a−15=0,解得:a=4,a+3=7,则这个正数为49,故选:D.根据一个正数有两个平方根,它们互为相反数得出a+3+2a−15=0,求出a,即可得出答案.本题考查了平方根的应用,能根据题意得出关于a的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.9.【答案】A【解析】解:A、√(−4)2=√16=4,故本选项正确;B、√(−4)2=4,故本选项错误;C、√16=4,故本选项错误;D、±√4=±2,故本选项错误;故选:A.根据算术平方根和平方根的定义求解即可得出答案.本题主要考查的是平方根和算术平方根的性质,熟练掌握平方根、算术平方根性质是解题的关键.10.【答案】B 【解析】解:①−1的倒数是−1,说法正确;②因为√81=9,所以3是√81的平方根,说法正确;③若|a|=a,则a≥0,说法错误;④若∠1=180°−∠2,即∠1+∠2=180°,则∠1与∠2互为补角,说法正确;正确的说法有3个,故选:B.①根据倒数的定义可以判断;②根据算术平方根和平方根的定义可以判断;③根据绝对值的意义可以判断;④根据补角的定义可以判断.此题主要考查了倒数,平方根,算术平方根,绝对值,补角的定义,熟练掌握这些定义是关键.11.【答案】1+√3或1−√3【解析】解:方程整理得:(x−1)2=3,开方得:x−1=±√3,解得:x=1+√3或x=1−√3.故答案为:1+√3或1−√3.方程整理后,利用平方根定义开方即可求出x的值.此题考查了平方根.熟练掌握各自的定义是解本题的关键.12.【答案】19【解析】解:∵2a−1和a−1是一个正数m的两个平方根,∴2a−1+a−1=0,解得a=23,∴2a−1=43−1=13,∴m=(13)2=19,故答案为:19.根据一个正数有两个平方根,它们互为相反数得出2a−1+a−1=0,求出a再求m即可.本题考查了平方根.解题的关键是能够正确求出a 的值,注意:一个正数有两个平方根,它们互为相反数.13.【答案】−2【解析】解:根据题意,得:2a −3+5−a =0,解得a =−2,故答案为:−2.根据平方根的性质得出2a −3+5−a =0,解之可得答案.本题主要考查平方根,解题的关键是掌握正数的平方根互为相反数的性质.14.【答案】2,9,14,17,18【解析】解:∵√18−n 是整数,∴18−n =0,18−n =1,18−n =4,18−n =9,18−n =16,解得:n =18,n =17,n =14,n =9,n =2,则自然数n 的值为2,9,14,17,18;故答案为:2,9,14,17,18.根据算术平方根的结果为整数,确定出自然数n 的值即可;此题考查了算术平方根和一元一次方程,熟练掌握完全平方数是解本题的关键.15.【答案】4 49【解析】解:由题意得a +3+2a −15=0,解得:a =4,所以x =(a +3)2=(4+3)2=49.根据一个正数的平方根有两个,且互为相反数,可得出a 的值,继而得出x 的值.本题考查了平方根的知识,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.16.【答案】解:根据题意,得:4a −6+2a +3=0,解得a =12,则4a −6=4×12−6=−4,所以这个正数为(−4)2=16.【解析】根据平方根的性质得出4a −6+2a +3=0,解之求出a 的值,再计算4a −6或2a +3的值,从而得出这个正数.本题主要考查平方根,解题的关键是掌握平方根的定义和性质.17.【答案】解:(1)∵正实数x 的平方根是n 和n +a ,∴n +n +a =0,∵a =6,∴2n +6=0∴n =−3;(2)∵正实数x 的平方根是n 和n+a,∴(n+a)2=x,n2=x,∵n2x2+(n+a)2x2=10,∴x3+ x3=10,∴x3=5,∵x>0,∴x=√53.【解析】(1)利用正实数平方根互为相反数即可求出a的值;(2)利用平方根的定义得到(n+a)2=x,a2=x,代入式子n2x2+(n+ a)2x2=10即可求出x值.本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.18.【答案】2 5 10 √4⋅√25=√100√ab 4 2312【解析】解:(1)√4=2,√25=5,√100=10;(2)观察(1)中的结果,√4,√25,√100之间存在:√4⋅√25=√100;(3)由(2)的猜想:√a⋅√b=√ab(a≥0,b≥0);(4)根据(3)计算:√2×√8=√2×8=√16=4,√3×√427=√3×427=√49=23,√3×√6×√8=√3×6×8=√144=12.故答案为:2,5,10;√ab;√4⋅√25=√100;4,23,12.根据开方运算,可得一个正数的平方根、算术平方根.本题考查了算术平方根,开方运算,解题关键是注意一个正数有两个平方根,只有一个算术平方根.。
11.1.1平方根一、选择题1、9的平方根是()A、±3B、±C、3D、﹣32、25的算术平方根是()A、5B、-5C、±5D、3、的平方根是()A、±4B、4C、±2D、 24、以下叙述中错误的是()A、± =±0.5B、=0.5C、0和1的平方根是它们本身D、负数没有平方根5、的平方根是()A、﹣2B、2C、±2D、 46、下列说法正确的是()A、﹣81的平方根是±9B、任何数的平方是非负数,因而任何数的平方根也是非负C、任何一个非负数的平方根都不大于这个数D、2是4的平方根7、a﹣1与3﹣2a是某正数的两个平方根,则实数a的值是()A、4B、C、2D、﹣28、下列说法不正确的是()A、是2的平方根B、是2的平方根C、2的平方根是D、2的算术平方根是9、下列各数中没有平方根的是()A、0B、﹣82C、D、﹣(﹣3)10、求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:n 0.09 9 900 90000 …0.3 3 30 300 …运用你发现的规律解决问题,已知≈1.435,则≈()A、14.35B、1.435C、0.1435D、143.511、己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A、1dmB、dmC、dmD、3dm12、若=0,则(x+y)2015等于()A、﹣1B、1C、32014D、﹣3201413、用计算器求2014的算术平方根时,下列四个键中,必须按的键是()A、B、C、D、14、有一列数如下排列,,,,,…,则第2015个数是()A、B、C、D、15、若a2=4,b2=9,且ab<0,则a-b的值为()A、-2B、±5C、5D、-5二、填空题16、如果a ,b分别是9的两个平方根,那ab=________.17、平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外).________年________月________日.18、在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值:=________.三、解答题19、计算.(1).(2)20、计算:(1)=________,=________,=________,=________,=________,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(3)利用你总结的规律,计算:.21、已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求:3a﹣4b的平方根.22、如图,在长和宽分别是a、b的长方纸片的四个角都剪去一个边长为x的正方形,当a=8,b=6,且剪去部分的面积等于剩余部分的面积的时,求正方形的边长x的值.23、如图①,是由5个边长是1的正方形组成的“十”字形.把图②中的4个浅色直角三角形对应剪拼到4个深色直角三角形的位置从而得到图③,试求:图①图②图③(1)图②中1个浅色直角三角形的面积;(2)图③中大正方形的边长.答案解析一、1、【答案】A 【解析】9的平方根是:± =±3.【考点】平方根2、【答案】C 【解析】∵(5)2=25,∴25的算术平方根是5.【考点】算术平方根3、【答案】C 【解析】=4,± =±2,【考点】平方根,算术平方根4、【答案】C 【解析】∵0.52=0.25,∴A,B正确;0的平方根是它的本身,但1的平方根是±1,C错;D正确.【考点】平方根,算术平方根5、【答案】C 【解析】=4,则4的平方根是.【考点】平方根6、【答案】D 【解析】A:﹣81是负数,由于负数没有平方根,故A选项错误;B:任何数的平方为非负数,正确;但只有非负数才有平方根,且平方根有正负之分(0的平方根为0).故选项B错误;C:任何一个非负数的平方根都不大于这个数,不一定正确,如:当0<a<1时,a>a2,故选项错误;D:2的平方是4,所以2是4的平方根,故选项正确.【考点】平方根7、【答案】C 【解析】∵a﹣1与3﹣2a是某正数的两个平方根,∴a﹣1+3﹣2a=0,解得a=2.【考点】平方根,一元一次方程的应用8、【答案】C 【解析】2的平方根为± ,所以A,B都正确;是2的算术平方根,故C不正确;所以说法不正确的是C.【考点】平方根,算术平方根9、【答案】B 【解析】A.0的平方根是0,故错误;B.﹣82=﹣64<0,没有平方根,故正确;C.有平方根,故错误;D.﹣(﹣3)=3,有平方根,故错误.【考点】平方根10、【答案】A 【解析】根据表格的规律:,,可知≈1.435,则≈14.35.【考点】算术平方根,计算器—数的开方11、【答案】B 【解析】因为正方体的表面积公式:s=6a2,可得6a2=12,解得a= .【考点】平方根12、【答案】A 【解析】表示的是(x-1)的算术平方根,是非负数;也是非负数,∴,=0,∴x=1,y=﹣2,∴=(1﹣2)2015=﹣1.【考点】平方的非负性,二次根式的非负性13、【答案】C 【解析】表示求正弦;表示求余弦;表示求平方根;求的是次幂. 【考点】计算器—数的开方14、【答案】D 【解析】观察可以发现:第一个数字是;第二个数字是;第三个数字是;第四个数字是;…;可得第2015个数即是,故选D.【考点】平方根15、【答案】B 【解析】∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=-3,a=-2,b=3,则a-b 的值为:2-(-3)=5或-2-3=-5.【考点】平方根二、16、【答案】﹣9 【解析】∵9的平方根为±3,∴ab=﹣3×3=﹣9.【考点】平方根17、【答案】2036;6;6 【解析】2036年6月6日中,62=36,符合题意.【考点】算术平方根18、【答案】210 【解析】=1,=1+2,=1+2+3,=1+2+3+4,… =1+2+3+4+…+20=210.【考点】算术平方根三、19、【解析】(1)中,其前面的符号保持不变;(2)任何不为0的实数的0次幂为1;;.【解】(1)原式=4+13+5=22.(2)原式=1-1+2=2.【考点】算术平方根,实数的运算20、【解析】(1)=,=0.7,=0,=6,= .(2)中根据算术的平方根的定义可知,结果是一个正数,但a不一定是正数,所以需要去分类讨论;(3)在计算时需要注意括号里3.14﹣π的正负性,并利用(2)中得到的结论去做.【解】(1);0.7;0;6;(2)解:分类讨论:当 时,;当 时,;当 时, ;综上所述: = ; (3)解:利用(2)中得到的规律,可得原式=|3.14﹣π|=π﹣3.14.【考点】算术平方根21、【解析】根据已知得出2a+1=9,5a+2b ﹣2=16,求出a , b , 代入求出即可.【解】根据题意得:2a+1==9,5a+2b ﹣2=16,即a=4,b=﹣1,∴3a ﹣4b=16, ∴3a ﹣4b 的平方根是± =±4.答:3a ﹣4b 的平方根是±4.【考点】平方根,算术平方根22、【解析】根据题意列出等式4x 2= (ab ﹣4x 2),把8和6代入得出4x 2= (8×6﹣4x 2),求出即可.【解】剪去部分的面积等于剩余部分的面积的,∴4x 2= (ab ﹣4x 2),∴4x 2=(8×6﹣4x 2), ∴12x 2=48﹣4x 2 , ∴x 2=3,∵x 表示边长,不能为负数,∴x= .【考点】平方根,算术平方根23、【解析】(1)根据直角三角形的面积公式计算即可;(2)根据图中得出大正方形的面积等于5个小正方形的面积之和.【解】(1)图②中1个浅色直角三角形的面积.(2)大正方形的面积等于5个小正方形的面积之和=5,∴图③中大正方形的边长为 . 【考点】算术平方根。
11.1平方根与立方根—2022-2023学年华东师大版数学八年级上册堂堂练1.下列各数中,没有平方根的是( )A.22-B.2(2)-C.(2)--D.|2|-2.16的算术平方根是( )A.±4B.4C.-4D.83.设x =x 的取值范围是( )A.23x <<B.34x <<C.45x <<D.无法确定4.下列语句写成数学式子正确的是( )A.9是81的算术平方根:9=B.5是2(5)-的算术平方根5C.6±是36的平方根6±D.2-是4的负的平方根2=-5.下列说法正确的是( )A.64的立方根是B.12-是16-的立方根=D.立方根等于它本身的数是0和16.一个正数的平方根分别是1x +和5x -,则x =___________.7.a 的值应为______.8.已知6x -和314x +分别是a 的两个平方根,22y +是a 的立方根.(1)求a ,x ,y 的值;(2)求14x -的平方根和算术平方根.答案以及解析1.答案:A解析:因为2240-=-<,所以22-没有平方根,故选A.2.答案:B4=.3.答案:B解析:91516,34<<∴<.4.答案:B解析:A 项,9是81的算术平方根,9=,错误;B 项,5是2(5)-的算术平方根,5=,正确;C项,6±是36的平方根,即6=±,错误;D 项,-2是4的负的平方根,即2=-,错误故选B.5.答案:C解析:644=,故A 错误;31128⎛⎫-=- ⎪⎝⎭,12∴-是18-的立方根,故B 错误;立方根等于它本身的数是0、1和1-,故D 错误.故选C.6.答案:2解析:∵一个正数的平方根是1x +和5x -, (1)(5)0x x ∴++-=,解得2x =.7.答案:5± 解析:32||a -1-,解得||5a =,5a ∴=±.8.答案:(1)由题意得63140x x -++=,解得2x =-,2664a x ∴=-=().又22y +是a 的立方根,224y ∴+==,1y ∴=. 综上,64a =,2x =-,1y =.(2)149x -=, 14x ∴-的平方根为3±,算术平方根为3.。
华东师大版八年级数学上册第11章 11.1.1平方根同步测试题一、选择题1.4的平方根是( )A.±2B.-2C.2D.± 42.425的平方根是±25,这句话用式子表示为( )A.425=±25B.±425=±25C.425=25D.-425=-253.121的算术平方根是( )A.11B.-11C.±11D.±1214.若a=2,则a的值为( )A.-4B.4C.-2D. 25.下列各数只有一个平方根的是( )A.5B.-2C.0D.-(-3)6.下列说法正确的是(B)A.16的平方根是4B.4是16的平方根C.81的平方根是-9D.0没有平方根7.下列各数没有算术平方根的是( )A.0B.-1C.10D.1028.设x=15,则x的取值范围是( )A.2<x<3B.3<x<4C.4<x<5D.无法确定9.0.49的算术平方根的相反数是( )A.0.7B.-0.7C.±0.7D.010.16的算术平方根是( )A.2B.4C.±2D.±411.估计10+1的值在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间12.一个正数的两个不同的平方根是a+3和2a-6,则这个正数是( )A.1B.4C.9D.16二、填空题13.9的平方根是_______.14.计算:16=_______.15.某数的一个平方根是-5,则这个数为_______. 16.在表格中填写下列各数的平方根和算术平方根:17.我们可以利用计算器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:a =.小明按键输入16=后显示的结果为4,则他按键输入1600=后显示的结果为_______.18.81的平方根是±3,算术平方根是_______.19.计算:(-6)2=_______.,-(-7)2=_______.,±52=_______. 20.观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈_______.,52 170≈_______.;(2)若x =0.022 84,则x≈_______.. 三、解答题21.写出下列各数的平方根:(1)36; (2)0;(3)1.69; (4)196225.22.求下列各式的值:(1)36; (2)-81;(3)125.23.用计算器计算(精确到0.001):(1)800; (2)0.58.24.计算:(1)(-2)2+(-3)×2-9;(2)1381+(-5)2.25.求下列各式中的x:(1)4x2-49=0;(2)9(2x-1)2=36.26.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是0.09的10倍,求a+2b -c2的平方根.27.已知y=x-2+2-x+5,求2x+3y的算术平方根.参考答案一、选择题1.4的平方根是(A)A.±2B.-2C.2D.± 42.425的平方根是±25,这句话用式子表示为(B)A.425=±25B.±425=±25C.425=25D.-425=-253.121的算术平方根是(A)A.11B.-11C.±11D.±1214.若a=2,则a的值为(B)A.-4B.4C.-2D. 25.下列各数只有一个平方根的是(C)A.5B.-2C.0D.-(-3)6.下列说法正确的是(B)A.16的平方根是4B.4是16的平方根C.81的平方根是-9D.0没有平方根7.下列各数没有算术平方根的是(B)A.0B.-1C.10D.1028.设x=15,则x的取值范围是(B)A.2<x<3B.3<x<4C.4<x<5D.无法确定9.0.49的算术平方根的相反数是(B)A.0.7B.-0.7C.±0.7D.010.16的算术平方根是(A)A.2B.4C.±2D.±411.估计10+1的值在(B)A.3和4之间B.4和5之间C.5和6之间D.6和7之间12.一个正数的两个不同的平方根是a+3和2a-6,则这个正数是(D)A.1B.4C.9D.16二、填空题13.9的平方根是±3.14.计算:16=4.15.某数的一个平方根是-5,则这个数为25.16.在表格中填写下列各数的平方根和算术平方根:17.我们可以利用计算器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:a =.小明按键输入16=后显示的结果为4,则他按键输入1600=后显示的结果为40.18.81的平方根是±3,算术平方根是3.19.计算:(-6)2=6,-(-7)2=-7,±52=±5. 20.观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228_4,52 170≈228.4;(2)若x =0.022 84,则x≈0.000_521_7. 三、解答题21.写出下列各数的平方根:(1)36; (2)0; 解:±36=±6. 解:±0=0.(3)1.69; (4)196225.解:± 1.69=±1.3. 解:±196225=±1415. 22.求下列各式的值:(1)36; (2)-81; 解:原式=6. 解:原式=-9.(3)125. 解:原式=15.23.用计算器计算(精确到0.001):(1)800; (2)0.58. 解:28.284. 解:0.762.24.计算:(1)(-2)2+(-3)×2-9; 解:原式=4-6-3=-5.(2)1381+(-5)2. 解:原式=13×9+5=3+5=8.25.求下列各式中的x :(1)4x 2-49=0;解: 4x 2=49,x 2=494, x =±72.(2)9(2x -1)2=36.解:(2x -1)2=4,2x -1=±2,2x -1=2或2x -1=-2,∴x =32或x =-12.26.已知2a -1的算术平方根是3,3a +b -1的平方根是±4,c 是0.09的10倍,求a +2b -c 2的平方根.解:由题意,得2a -1=9,3a +b -1=16,c =0.3×10=3.解得a =5,b =2,c =3.∴a+2b-c2=0.∴a+2b-c2的平方根是0.27.已知y=x-2+2-x+5,求2x+3y的算术平方根. 解:∵负数没有平方根,∴x-2≥0,2-x≥0.∴x=2.∴y=5.∴2x+3y=19.∴2x+3y的算术平方根是19.。
新华师大版数学八年级上册第十一章11.1.1平方根同步练习一、选择题1、9的平方根是()A、±3B、±C、3D、﹣32、25的算术平方根是()A、5B、-5C、±5D、3、的平方根是()A、±4B、4C、±2D、 24、以下叙述中错误的是()A、±=±0.5B、=0.5C、0和1的平方根是它们本身D、负数没有平方根5、的平方根是()A、﹣2B、2C、±2D、 46、下列说法正确的是()A、﹣81的平方根是±9B、任何数的平方是非负数,因而任何数的平方根也是非负C、任何一个非负数的平方根都不大于这个数D、2是4的平方根7、a﹣1与3﹣2a是某正数的两个平方根,则实数a的值是()A、4B、C、2D、﹣28、下列说法不正确的是()A、是2的平方根B、是2的平方根C、2的平方根是D、2的算术平方根是9、下列各数中没有平方根的是()A、0B、﹣82C、D、﹣(﹣3)10、求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:n 0.09 9 900 90000 …0.3 3 30 300 …运用你发现的规律解决问题,已知≈1.435,则≈()A、14.35B、1.435C、0.1435D、143.511、己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A、1dmB、dmC、dmD、3dm12、若=0,则(x+y)2015等于()A、﹣1B、1C、32014D、﹣3201413、用计算器求2014的算术平方根时,下列四个键中,必须按的键是()A、B、C、D、14、有一列数如下排列,,,,,…,则第2015个数是()A、B、C、D、15、若a2=4,b2=9,且ab<0,则a-b的值为()A、-2B、±5C、5D、-5二、填空题16、如果a ,b分别是9的两个平方根,那ab=________.17、平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外).________年________月________日.18、在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值:=________.三、解答题19、计算.(1).(2)20、计算:(1)=________,=________,=________,=________,=________,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(3)利用你总结的规律,计算:.21、已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求:3a﹣4b的平方根.22、如图,在长和宽分别是a、b的长方纸片的四个角都剪去一个边长为x的正方形,当a=8,b=6,且剪去部分的面积等于剩余部分的面积的时,求正方形的边长x的值.23、如图①,是由5个边长是1的正方形组成的“十”字形.把图②中的4个浅色直角三角形对应剪拼到4个深色直角三角形的位置从而得到图③,试求:图①图②图③(1)图②中1个浅色直角三角形的面积;(2)图③中大正方形的边长.答案解析部分一、<h3 >选择题</h3>1、【答案】A【考点】平方根【解析】解答:9的平方根是:±=±3.分析:根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.2、【答案】C【考点】算术平方根【解析】【解答】∵(5)2=25,∴25的算术平方根是5.【分析】注意题干中的“算术平方根”,一个正数的平方根有两个,正的那个是算术平方根.3、【答案】C【考点】平方根,算术平方根【解析】解答:=4,±=±2,分析:根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案;.4、【答案】C【考点】平方根,算术平方根【解析】【解答】∵0.52=0.25,∴A,B正确;0的平方根是它的本身,但1的平方根是±1,C错;D正确. 【分析】本题考查对平方根的了解.5、【答案】C【考点】平方根【解析】解答:=4,则4的平方根是.分析:做此类题,需要将的结果算出来;易错选A.6、【答案】D【考点】平方根【解析】【解答】A:﹣81是负数,由于负数没有平方根,故A选项错误;B:任何数的平方为非负数,正确;但只有非负数才有平方根,且平方根有正负之分(0的平方根为0).故选项B错误;C:任何一个非负数的平方根都不大于这个数,不一定正确,如:当0<a<1时,a>a2,故选项错误;D:2的平方是4,所以2是4的平方根,故选项正确.【分析】此题考查的平方根的定义;做概念题时,可以举特殊情况来判断,如B,C项.7、【答案】C【考点】平方根,一元一次方程的应用【解析】【解答】∵a﹣1与3﹣2a是某正数的两个平方根,∴a﹣1+3﹣2a=0,解得a=2.【分析】一个正数有两个平方根(除0外,0的平方根只有一个,即它本身),这两个平方根互为相反数,和为0.8、【答案】C【考点】平方根,算术平方根【解析】解答:2的平方根为±,所以A,B都正确;是2的算术平方根,故C不正确;所以说法不正确的是C.分析:根据平方根和算术平方根的概念求出2的平方根和算术平方根分别为和,然后判断各选项即可得出答案.9、【答案】B【考点】平方根【解析】解答:A.0的平方根是0,故错误;B.﹣82=﹣64<0,没有平方根,故正确;C.有平方根,故错误;D.﹣(﹣3)=3,有平方根,故错误.分析:由于负数没有平方根,那么只要找出选项A、B、C、D中的负数即可.10、【答案】A【考点】算术平方根,计算器—数的开方【解析】解答:根据表格的规律:,,可知≈1.435,则≈14.35. 分析:根据被开方数的小数点移动两位,算术平方根的小数点每移动一位求出即可.11、【答案】B【考点】平方根【解析】解答:因为正方体的表面积公式:s=6a2,可得6a2=12,解得a= .分析:根据正方体的表面积公式:s=6a2,解答即可.12、【答案】A【考点】平方的非负性,二次根式的非负性【解析】解答:表示的是(x-1)的算术平方根,是非负数;也是非负数,∴,=0,∴x=1,y=﹣2,∴=(1﹣2)2015=﹣1.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.13、【答案】C【考点】计算器—数的开方【解析】解答:表示求正弦;表示求余弦;表示求平方根;求的是次幂.分析:首先了解各个符号表示的意义,然后结合计算器不同按键功能即可解决问题.14、【答案】D【考点】平方根【解析】解答:观察可以发现:第一个数字是;第二个数字是;第三个数字是;第四个数字是;…;可得第2015个数即是,故选D.分析:本题主要考查了数字变化,算式平方根的性质,数列规律问题,找出一般规律是解题.15、【答案】B【考点】平方根【解析】【解答】∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=-3,a=-2,b=3,则a-b的值为:2-(-3)=5或-2-3=-5.【分析】用平方根的定义得出a ,b的值,进而利用ab的符号得出a ,b异号,即可得出a-b的值;此题有两个答案,勿漏算.二、<h3 >填空题</h3>18、【答案】﹣9【考点】平方根【解析】【解答】∵9的平方根为±3,∴ab=﹣3×3=﹣9.【分析】根据平方根的定义得到9的平方根为±3,然后计算这两个数的积.19、【答案】2036;6;6【考点】算术平方根【解析】【解答】2036年6月6日中,62=36,符合题意.【分析】此题为开放题,答案不唯一;由题意可知月份数与日数相同,且它们的积为两位数,按这两个条件去找数即可.20、【答案】210【考点】算术平方根【解析】【解答】=1,=1+2,=1+2+3,=1+2+3+4,…=1+2+3+4+…+20=210.【分析】先分别求出①②③④的结果,发现的规律①=1;②=1+2;③=1+2+3;④=1+2+3+4.以此类推,=1+2+3+4+…+20=210..三、<h3 >解答题</h3>21、【答案】(1)解答: .(2)解答: .【考点】算术平方根,实数的运算【解析】分析:(1)中,其前面的符号保持不变;(2)任何不为0的实数的0次幂为1;;.22、【答案】(1);0.7;0;6;(2)解:分类讨论:当时,;当时,;当时,;综上所述:= ;(3)解:利用(2)中得到的规律,可得原式=|3.14﹣π|=π﹣3.14.【考点】算术平方根【解析】【分析】(1)【解答】=,=0.7,=0,=6,= .(2)中根据算术的平方根的定义可知,结果是一个正数,但a不一定是正数,所以需要去分类讨论;(3)在计算时需要注意括号里3.14﹣π的正负性,并利用(2)中得到的结论去做.23、【答案】解:根据题意得:2a+1= =9,5a+2b﹣2=16,即a=4,b=﹣1,∴3a﹣4b=16,∴3a﹣4b的平方根是±=±4.答:3a﹣4b的平方根是±4.【考点】平方根,算术平方根【解析】【分析】根据已知得出2a+1=9,5a+2b﹣2=16,求出a ,b ,代入求出即可.24、【答案】解:剪去部分的面积等于剩余部分的面积的,∴4x2= (ab﹣4x2),∴4x2= (8×6﹣4x2),∴12x2=48﹣4x2,∴x2=3,∵x表示边长,不能为负数,∴x= .【考点】平方根,算术平方根【解析】【分析】根据题意列出等式4x2= (ab﹣4x2),把8和6代入得出4x2= (8×6﹣4x2),求出即可.25、【答案】(1)解:图②中1个浅色直角三角形的面积.(2)解:大正方形的面积等于5个小正方形的面积之和=5,∴图③中大正方形的边长为.【考点】算术平方根【解析】【分析】(1)根据直角三角形的面积公式计算即可;(2)根据图中得出大正方形的面积等于5个小正方形的面积之和.。