【三维设计】2014届高考数学 (基础知识+高频考点+解题训练)两角和与差的正弦、余弦和正切公式教学案
- 格式:doc
- 大小:276.50 KB
- 文档页数:15
三角函数与向量[例1] (1)(2012·洛阳统考)若cos 2αsin ⎝⎛⎭⎫α+π4=12,则sin 2α的值为( ) A .-78 B.78C .-47D.47 解析:选B cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=2(cos α-sin α)=12, 即cos α-sin α=24, 等式两边分别平方得cos 2α-2sin αcos α+sin 2α=1-sin 2α=18, 解得sin 2α=78. (2)求值1+cos 20°2sin 20°-sin 10°⎝⎛⎭⎫1tan 5°-tan 5°. 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝⎛⎭⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10° =cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10° =cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. [方法总结] 三角恒等变换常考化简与求值问题,多在选择、填空题中考查,在解答题中多用于化简三角函数,此类问题的解决主要抓住“一角,二名,三结构”.即一看角的差异,二看名称的差异,三看结构形式的差异,注意角的拆分变换应用.[例2] (2012·孝感统考)已知f (x )=2sin(ωx +φ)部分图象如图所示,则f (x )的解析式为( ) A .f (x )=2sin ⎝⎛⎭⎫32x +π4 B .f (x )=2sin ⎝⎛⎭⎫32x +5π4 C .f (x )=2sin ⎝⎛⎭⎫43x +2π9 D .f (x )=2sin ⎝⎛⎭⎫43x +25π18解析:选B 法一:由部分图象知34T =5π6-⎝⎛⎭⎫-π6=π,故T =4π3.结合选项知ω>0,故ω=2πT =32.排除C 、D. 又因为函数图象过点⎝⎛⎭⎫5π6,2,代入选项验证可知只有选项B 满足条件.法二:由法一知ω=32,由图象易知⎝⎛⎭⎫-π6,0是由函数y =sin x 中点(π,0)平移之后得到的点,令x 0=-π6,因此ωx 0+φ=π.即φ=π-ωx 0=π-32×⎝⎛⎭⎫-π6=5π4. 故函数解析式为f (x )=2sin ⎝⎛⎭⎫32x +5π4.[例3] (2012·济宁一模)已知函数f (x )=3sin(x -φ)·cos(x -φ)-cos 2(x -φ)+12⎝⎛⎭⎫0≤φ≤π2为偶函数.(1)求函数f (x )的最小正周期及单调减区间;(2)把函数f (x )的图象向右平移π6个单位(纵坐标不变),得到函数g (x )的图象,求函数g (x )的对称中心.解:(1)f (x )=32sin(2x -2φ)-cos (2x -2φ)+12+12 =32sin(2x -2φ)-12cos(2x -2φ) =sin ⎝⎛⎭⎫2x -2φ-π6. ∵函数f (x )为偶函数.∴2φ+π6=k π+π2,k ∈Z . 即φ=k π2+π6,k ∈Z . 又∵0≤φ≤π2, ∴φ=π6. ∴f (x )=sin ⎝⎛⎭⎫2x -π3-π6=-cos 2x , ∴f (x )的最小正周期为T =2π2=π. 由2k π-π≤2x ≤2k π,k ∈Z .得k π-π2≤x ≤k π,k ∈Z . ∴f (x )的单调减区间为⎣⎡⎦⎤k π-π2,k π(k ∈Z ). (2)函数f (x )=-cos 2x 的图象向右平移π6个单位(纵坐标不变),得到g (x )=-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6, 即g (x )=-cos ⎝⎛⎭⎫2x -π3, 令2x -π3=k π+π2,k ∈Z . ∴x =k π2+5π12,k ∈Z . ∴g (x )的对称中心为⎝⎛⎭⎫k π2+5π12,0,k ∈Z .[方法总结] 三角函数图象与性质多以选择题与解答题形式考查,重点是三角函数的图象变换及三角函数的性质.对于表达式较复杂的三角函数性质的研究,一般先将所给函数利用三角恒等变换化为y =A sin(ωx +φ)+B 的形式,然后视ωx +φ为一个整体,再结合三角函数性质研究相应的问题.[例4] (2012·中山一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,π3<C <π2且b a -b=sin 2C sin A -sin 2C .(1)判断△ABC 的形状;(2)若|+|=2,求·的取值范围.解:(1)由b a -b =sin 2C sin A -sin 2C, 知a -b b =sin A -sin 2C sin 2C, ∴a b =sin A sin 2C. 由正弦定理得sin B =sin 2C .∴B =2C 或B +2C =π.若B =2C ,由π3<C <π2,知2π3<2C <π. 即2π3<B <π. ∴B +C >π,与三角形内角和为π矛盾,故B =2C 舍去.∴B +2C =π.∴A =π-(B +C )=π-(π-2C +C )=C .故△ABC 为等腰三角形.(2)由(1)知a =c ,∵|+|=2,∴|+|2=4,∴a 2+c 2+2ac cos B =4,∴cos B =4-a 2-c 22ac =2-a 2a 2, ∴·=ac cos B =2-a 2,∵cos B =cos(π-2C )=-cos 2C ,又∵π3<C <π2,∴2π3<2C <π, ∴-1<cos 2C <-12,即12<cos B <1. 即12<2-a 2a 2<1,解得1<a 2<43, ∴23<2-a 2<1,∴·的取值范围是⎝⎛⎭⎫23,1. [方法总结] 解三角形问题着重考查正余弦定理的应用,多以解答题形式考查,解决此类问题一是要注意三角形中的隐含条件;二是注意面积公式的灵活应用;三是注意正余弦定理的灵活选择及边角互化技巧.[例5](1)(2012·东北三校二模)向量与向量a=(-3,4)的夹角为π,||=10,若点A的坐标是(1,2),则点B的坐标为()A.(-7,8) B.(9,-4)C.(-5,10) D.(7,-6)解析:选D∵a=(-3,4),∴|a|=5,∴·a=10×5×cos π=-50.设B(x,y),则=(x-1,y-2),∴·a=-3(x-1)+4(y-2)=-50,∴3(x-1)-4(y-2)=50,即3x-4y=45,①又||=10,∴(x-1)2+(y-2)2=100,②由①②解得x=7,y=-6,∴B(7,-6).(2)(2012·石家庄质检)△ABC中,∠C=90°,且CA=CB=3,点M满足=2,则·=________.解析:法一:∵=2AM―→,∴A是MB的中点,∴·=(+)·=(+2)·=·+2·=2×32×3cos 45°=18.法二:如图以CA、CB所在的直线分别为x轴,y轴建立直角坐标系,由CA=CB =3,知A(3,0),B(0,3),又=2,∴A是MB的中点,∴M(6,-3),∴·=(6,-3)·(3,0)=18.答案:18(3)(2012·“江南十校”联考)如图放置的正方形ABCD,AB=1,A、D分别在x轴、y轴的正半轴(含原点)上滑动,则·的最大值是________.解析:设∠BAx=θ(0°≤θ≤90°),则∠OAD=90°-θ,于是OA=AD·cos∠OAD=sin θ,于是B点坐标为(sin θ+cos θ,sin θ),即=(sin θ+cos θ,sin θ),又∠CDy=90°-θ,所以C点坐标为(DC·sin∠CDy,OD+DC·cos∠CDy),即为(cos θ,sin θ+cos θ),即=(cos θ,sin θ+cos θ),于是·=cos 2θ+2cos θsin θ+sin 2θ=1+sin 2θ≤2,而且仅当θ=45°时取最大值2.答案:2[方法总结] 平面向量的运算包括线性运算与代数运算,多以选择、填空题形式考查.若已知条件中涉及向量运算的几何意义应根据向量加、减法的运算法则求解;若已知条件中涉及向量的坐标运算需综合利用向量的坐标运算公式求解;若已知条件中涉及与图形有关的数量积时,需根据图形特征及数量积的运算性质或建立直角坐标系转化为向量的坐标运算求解.[例6] (2012·南通模拟)已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解:(1)m·n =3sin x 4·cos x 4+cos 2x 4 =32sin x 2+1+cos x 22=sin ⎝⎛⎭⎫x 2+π6+12, ∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12.cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B -sin C cos B =sin B cos C .∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0.∴cos B =12,∵0<B <π,∴B =π3,∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12.∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. [方法总结] 向量与三角函数结合是高考命题的一大热点.解决此类问题的关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.若在三角形中,要注意隐含条件的挖掘.。
第五节两角和与差的正弦、余弦和正切公式[知识能否忆起]1.两角和与差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β;(3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T(α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α. 3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.[小题能否全取]1.(2011·福建高考)若tan α=3,则sin 2αcos 2α的值等于( ) A .2 B .3 C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝ ⎛⎭⎪⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝ ⎛⎭⎪⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝ ⎛⎭⎪⎫α+π4=25,则tan α=________. 解析:tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=25, 即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-371.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.典题导入[例1] (2011·广东高考)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.[自主解答] (1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,∴f ⎝⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2.(2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65.即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665. 由题悟法两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,则cos 2α2sin ⎝⎛⎭⎪⎫α+π4=________.(2)(2012·济南模拟)已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1-431+43=-17.答案:(1)-75 (2)B典题导入[例2] (2013·德州一模)已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎪⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x 2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎪⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝ ⎛⎭⎪⎫α-π3=13,∴1+2cos α=13,即cos α=-13.∵α为第二象限角,∴sin α=223.∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.由题悟法运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1)(2012·赣州模拟)已知sin ⎝ ⎛⎭⎪⎫α+π6+cos α=435,则sin ⎝ ⎛⎭⎪⎫α+π3的值为( )A.45B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435,即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎪⎫α+π3=45.(2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2典题导入[例3] (1)(2012·温州模拟)若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2)(2012·江苏高考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.[自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan β-α-tan α1+tan β-αtan α=-2-21+-2×2=43.(2)因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝ ⎛⎭⎪⎫α+π6=2425,cos 2⎝⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=2425×22-725×22=17250. [答案] (1)43 (2)17250由题悟法1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α);α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)];π4+α=π2-⎝ ⎛⎭⎪⎫π4-α;α=π4-⎝ ⎛⎭⎪⎫π4-α. 以题试法3.设tan ()α+β=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( ) A.1318 B.1322C.322D.16解析:选C tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=tan α+β-tan ⎝⎛⎭⎪⎫β-π41+tan α+βtan ⎝⎛⎭⎪⎫β-π4=322.1.(2012·重庆高考)设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( )A .-3B .-1C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2.(2012·南昌二模)已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是( )A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=-1.3. (2012·乌鲁木齐诊断性测验)已知α满足sin α=12,那么sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α的值为( )A.14 B .-14C.12D .-12解析:选 A 依题意得,sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α·cos ⎝ ⎛⎭⎪⎫π4+α=12sin ⎝ ⎛⎭⎪⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b ,f ′(1)=3+b =4,b =1.所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,故函数的最大值为2,最小正周期为π.5. (2012·东北三校联考)设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( )A.2525B.255 C.2525或255D.55或525解析:选A 依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin2α+β=±45.又α、β均为锐角,因此0<α<α+β<π,cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7.(2012·苏锡常镇调研)满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎪⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan 45°-α1-tan 245°-α·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin 90°-2αcos90°-2α·12sin 2αcos 2α=cos 2αsin 2α·12sin 2αcos 2α=12.答案:129.(2013·烟台模拟)已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β =-35×⎝ ⎛⎭⎪⎫-13+45×223=3+8215. 答案:3+821510.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=12,求tan 2α和sin ⎝ ⎛⎭⎪⎫2α+π3的值.解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43, 且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈⎝⎛⎭⎪⎫0,π2,∴sin α=55,cos α=255.∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝ ⎛⎭⎪⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝ ⎛⎭⎪⎫β-π4=45.(1)求sin 2β的值; (2)求cos ⎝⎛⎭⎪⎫α+π4的值.解:(1)法一:∵cos ⎝ ⎛⎭⎪⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13,∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎪⎫π2-2β=2cos 2⎝⎛⎭⎪⎫β-π4-1=-79.(2)∵0<α<π2<β<π,∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎪⎫β-π4>0,cos (α+β)<0.∵cos ⎝ ⎛⎭⎪⎫β-π4=13,sin (α+β)=45, ∴sin ⎝ ⎛⎭⎪⎫β-π4=223, cos (α+β)=-35.∴cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝ ⎛⎭⎪⎫β-π4=cos (α+β)cos ⎝ ⎛⎭⎪⎫β-π4=-35×13+45×223=82-315.12.(2012·衡阳模拟) 函数f(x)=cos ⎝ ⎛⎭⎪⎫-x 2+sin ⎝ ⎛⎭⎪⎫π-x 2,x ∈R .(1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝ ⎛⎭⎪⎫0,π2,求tan ⎝⎛⎭⎪⎫α+π4的值.解:(1)f (x )=cos ⎝ ⎛⎭⎪⎫-x 2+sin ⎝ ⎛⎭⎪⎫π-x 2=sin x 2+cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π4,故f (x )的最小正周期T =2π12=4π.(2)由f (α)=2105,得sin α2+cos α2=2105,则⎝ ⎛⎭⎪⎫sin α2+cos α22=⎝ ⎛⎭⎪⎫21052,即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎪⎫0,π2,则cos α=1-sin 2α=1-925=45, 故tan α=sin αcos α=34,所以tan ⎝⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为( )A .1B.110C .1或110D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg10a +lg ⎝ ⎛⎭⎪⎫1a 1-lg 10a ·l g ⎝ ⎛⎭⎪⎫1a =1⇒lg 2a +lga =0,所以lg a =0或lg a =-1,即a =1或110.2.化简sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝ ⎛⎭⎪⎫α+π6-sin 2α的结果是________.解析:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:123.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95,即1+sin 2α=95,∴sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝⎛⎭⎪⎫β-π4=-cos 2β,∴cos 2β=-2425,又∵2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4,∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β =255 ×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.1.(2012·北京西城区期末)已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎪⎫2x -π3+32.因为x ∈⎣⎢⎡⎦⎥⎤π2,π,所以2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3.所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3;当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32.2.已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值;解:∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π.∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=1-⎝ ⎛⎭⎪⎫232=53, sin ⎝ ⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2= 1-⎝ ⎛⎭⎪⎫-192=459.∴cosα+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=-19×53+459×23=7527.∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。
[课堂练通考点]1.(2014·青岛高三期末)已知sin ⎝ ⎛⎭⎪⎫π4+x =35,则sin 2x 的值为( )A .-2425 B.2425 C .-725D.725解析:选C sin 2x =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π2 =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫x +π4=-725. 2.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是( )A .-233 B .±233 C .-1D .±1解析:选C cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=-1.3.若f (α)=2tan α-2sin 2α2-1sin α2cos α2,则f⎝ ⎛⎭⎪⎫π12=________. 解析:∵f (α)=2tan α--cos α12sin α=2sin αcos α+2cos αsin α=4sin 2α,∴f ⎝ ⎛⎭⎪⎫π12=4sin π6=8. 答案:84.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________. 解析:因为cos(α+β)=16, 所以cos αcos β-sin αsin β=16.① 因为cos(α-β)=13,所以cos αcos β+sin αsin β=13.② ①+②得cos αcos β=14. ②-①得sin αsin β=112. 所以tan αtan β=sin αsin βcos αcos β=13.答案:135.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求 cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45. cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310. [课下提升考能]第Ⅰ组:全员必做题1.化简cos 15°cos 45°-cos 75°sin 45°的值为( ) A.12B.32 C .-12D .-32解析:选A cos 15°cos 45°-cos 75°sin 45°=cos 15°cos 45°-sin 15°sin 45°=cos(15°+45°)=cos 60°=12.2.设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, 则tan(α+β)=tan α+tan β1-tan αtan β=-3.3.(2013·洛阳统考)函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x ⎝ ⎛⎭⎪⎫π4≤x ≤π2的最大值为( )A .2B .3C .2+ 3D .2- 3解析:选B 依题意,f (x )=1-cos 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x =sin 2x -3cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,当π4≤x ≤π2时,π6≤2x -π3≤2π3,12≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,此时f (x )的最大值是3,选B.4.(2014·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4 B.π3 C.π2D.3π4解析:选A 由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.5.对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为( ) A.12 B.13C.14D .与a 0有关的一个值解析:选A 集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”ω=sin 2⎝ ⎛⎭⎪⎫π2-a 0+sin 2⎝ ⎛⎭⎪⎫5π6-a 0+sin 2⎝ ⎛⎭⎪⎫7π6-a 03=cos 2a 0+sin 2⎝ ⎛⎭⎪⎫π6+a 0+sin 2⎝ ⎛⎭⎪⎫π6-a 03=cos 2a 0+⎝ ⎛⎭⎪⎫12cos a 0+32sin a 02+⎝ ⎛⎭⎪⎫12cos a 0-32sin a 023=cos 2a 0+12cos 2a 0+32sin 2a 03=32(sin 2a 0+cos 2a 0)3 =12.6.已知α是第二象限的角,tan(π+2α)=-43,则tan α=________. 解析:因为tan(π+2α)=tan 2α=-43, 所以tan 2α=2tan α1-tan 2α=-43, 整理得2tan 2α-3tan α-2=0, 解得tan α=2或tan α=-12,又α是第二象限的角,所以tan α=-12. 答案:-127.化简sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝ ⎛⎭⎪⎫α+π6-sin 2α的结果是________.解析:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝ ⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12 8.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________.解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12·sin 2αcos 2α=cos 2αsin 2α·12·sin 2αcos 2α=12.答案:129.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=12,求tan 2α和sin ⎝ ⎛⎭⎪⎫2α+π3的值.解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α,又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=55,cos α=255.∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝ ⎛⎭⎪⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310.10.已知函数f (x )=sin x 2sin ⎝ ⎛⎭⎪⎫π2+x 2.(1)求函数f (x )在[-π,0]上的单调区间.(2)已知角α满足α∈⎝ ⎛⎭⎪⎫0,π2,2f (2α)+4f ⎝ ⎛⎭⎪⎫π2-2α=1,求f (α)的值.解:f (x )=sin x 2sin ⎝ ⎛⎭⎪⎫π2+x 2=sin x 2cos x 2=12sin x .(1)函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-π2,单调递增区间为⎣⎢⎡⎦⎥⎤-π2,0.(2)2f (2α)+4f ⎝ ⎛⎭⎪⎫π2-2α=1⇒sin 2α+2sin ⎝ ⎛⎭⎪⎫π2-2α=1 ⇒2sin αcos α+2(cos 2α-sin 2α)=1 ⇒cos 2α+2sin αcos α-3sin 2α=0⇒(cos α+3sin α)(cos α-sin α)=0. ∵α∈⎝ ⎛⎭⎪⎫0,π2, ∴cos α-sin α=0⇒tan α=1得α=π4, 故sin α=22,∴f (α)=12sin α=24. 第Ⅱ组:重点选做题1.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为( )A .1B.110 C .1或110D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝ ⎛⎭⎪⎫1a 1-lg (10a )·lg ⎝ ⎛⎭⎪⎫1a =1 ⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110.2.(2014·烟台模拟)已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45. 又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35. ∴cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β =-35×⎝ ⎛⎭⎪⎫-13+45×223=3+8215.3+82答案:15。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二节等差数列及其前n 项和[知识能否忆起]一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd . 3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.[小题能否全取]1.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( ) A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n .答案:1 14n 2+14n1.与前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.等差数列的判断与证明典题导入[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列.等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)(2012·江西联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5. 解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44. (2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案:(1)44 (2)6等差数列的性质典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7.答案:(1)35 (2)B1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941.答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎨⎧⎭⎬⎫1T n 是首项为2,公差为1的等差数列. (2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2. 12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22.(1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值.解:(1)∵S 10=a 1+a 2+…+a 10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0,即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0. 又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2. (2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256.法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值,应有1<n <32,从而S n ≤⎝ ⎛⎭⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .156B .52C .26D .13解析:选C ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴6(a 4+a 10)=24,故a 4+a 10=4.∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=26. 2.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84解析:选C 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,故T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.3.数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若{a n }是等差数列,求其通项公式;(2)若{a n }满足a 1=2,S n 为{a n }的前n 项和,求S 2n +1.解:(1)由题意得a n +1+a n =4n -3,①a n +2+a n +1=4n +1,②②-①得a n +2-a n =4,∵{a n }是等差数列,设公差为d ,∴d =2.∵a 1+a 2=1,∴a 1+a 1+d =1,∴a 1=-12, ∴a n =2n -52. (2)∵a 1=2,a 1+a 2=1,∴a 2=-1.又∵a n +2-a n =4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a 2n -1=4n -2,a 2n =4n -5,S 2n +1=(a 1+a 3+…+a 2n +1)+(a 2+a 4+…+a 2n )=(n +1)×2+(n +1)n 2×4+n ×(-1)+n (n -1)2×4 =4n 2+n +2.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. ∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1 =a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52. ∴数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知,b n =n -72, 则a n =1+1b n =1+22n -7, 设函数f (x )=1+22x -7, 易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. 故当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.2.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70, 即⎩⎪⎨⎪⎧ a 1+2d =7,a 1+3d =10,解得⎩⎪⎨⎪⎧ a 1=1,d =3.所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥2 3n ·48n-1=23, 当且仅当3n =48n,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.3.已知数列{a n },对于任意n ≥2,在a n -1与a n 之间插入n 个数,构成的新数列{b n }成等差数列,并记在a n -1与a n 之间插入的这n 个数均值为C n -1.(1)若a n =n 2+3n -82,求C 1,C 2,C 3; (2)在(1)的条件下是否存在常数λ,使{C n +1-λC n }是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由.解:(1)由题意a 1=-2,a 2=1,a 3=5,a 4=10,∴在a 1与a 2之间插入-1,0,C 1=-12. 在a 2与a 3之间插入2,3,4,C 2=3.在a 3与a 4之间插入6,7,8,9,C 3=152. (2)在a n -1与a n 之间插入n 个数构成等差数列,d =a n -a n -1n +1=1, ∴C n -1=n (a n -1+a n )2n =a n -1+a n 2=n 2+2n -92. 假设存在λ使得{C n +1-λC n }是等差数列. ∴(C n +1-λC n )-(C n -λC n -1)=C n +1-C n -λ(C n -C n -1)=2n +52-λ·2n +32=(1-λ)n +52-32λ=常数,∴λ=1. 即λ=1时,{C n +1-λC n }是等差数列.。
第二节同角三角函数的根本关系与诱导公式[ 知识能否忆起 ]1.同角三角函数的根本关系式(1 平方关系: sin2α+cos2α=1(α∈R.(2 商数关系: tan α=.2.六组诱导公式角2kπ+α(k∈Zπ +α-απ-α-α+α函数正弦sin_α-sin_α-sin_αsin_αcos_αcos_α余弦cos_α-cos_αcos_α-cos_αsin_α-sin_α正切tan_ αtan_α-tan_α-tan_α对于角“±α〞(k∈Z 的三角函数记忆口诀“奇变偶不变,符号看象限〞,“奇变偶不变〞是指“当 k 为奇数时,正弦变余弦,余弦变正弦;当 k 为偶数时,函数名不变〞.“符号看象限〞是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号〞.[ 小题能否全取 ]1.sin 585°的值为 (A.- B.C.- D.解析:选 A sin 585 °= sin(360 °+225°=s in 225°= sin(180°+45°=- sin 45°=-.2.(教材习题改编 sin( π+θ=-cos(2π-θ,|θ|< ,那么θ等于 (A.- B.-C. D.解析:选 D∵sin(π+θ=-cos(2π-θ,∴- sin θ=-cos θ,∴ tan θ= .∵|θ|< ,∴θ= .3. tan θ= 2,那么= (A.2 B.- 2C.0 D.解析:选 B原式====- 2.4. (教材习题改编如果sin( +πA =,那么c os 的值是 ________.解析:∵ sin( π+ A =,∴- sin A = .∴c os=- sin A =.答案:5.α是第二象限角,tan α=-,那么cos α= ________.解析:由题意知cos α<0,又 sin 2α+cos2α=1,tan α==- .∴ cos α=- .答案:-应用诱导公式时应注意的问题(1 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号确实定.(2 在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号.(3 注意求值与化简后的结果要尽可能有理化、整式化.同角三角函数的根本关系式典题导入[例 1](1(2021 江·西高考假设tan θ+= 4,那么 sin 2θ=(A. B.C. D.(2 sin(3π+α=2sin,那么= ________.[自主解答]+=,(1∵ tan θ4∴+=4,∴=4,即=4,∴sin 2θ=.(2 法一:由 sin(3π+α=2sin 得 tan α=2.原式===- .法二:由得 sin α= 2cos α.原式==- .[答案] (1D (2-在(2 的条件下, sin2α+sin 2α= ________.解析:原式= sin2α+2sin αcos α=== .答案:由题悟法1.利用 sin2α+cos2α=1 可以实现角α的正弦、余弦的互化,利用= tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用 (sin α±cos α2=1±2sin αcos α,可以知一求二 (参阅本节题型技法点拨.3.注意公式逆用及变形应用:1= sin2α+ cos2α, sin2α=1- cos2α, cos2α= 1- sin2α.以题试法1. (1(2021 长·沙模拟假设角α的终边落在第三象限,那么+的值为( A.3 B.- 3C.1 D.- 1(2 sin α= 2sin β, tan α= 3tan β,那么 cos α= ________.解析: (1 由角α的终边落在第三象限得sin α<0, cos α<0,故原式=+=+=-1- 2=- 3.(2∵ sin α= 2sin β, tan α= 3tan β,∴sin2α= 4sin2β,①tan2α= 9tan2β,②由①÷②得: 9cos2α= 4cos2β,③①+③得: sin2α+ 9cos2α=4,∵c os2α+ sin2α= 1,∴cos2α=,即 cos α=±.答案: (1B(2 ±三角函数的诱导公式典题导入[例 2](1= ________.(2 A=+ (k∈Z,那么 A 的值构成的集合是(A . {1 ,- 1,2,- 2}B. { - 1,1}C. {2 ,- 2} D .{1 ,- 1,0,2,- 2}[自主解答 ] (1 原式====-=-·=- 1.(2 当 k 为偶数时, A=+= 2;k 为奇数时, A=-=- 2.[答案 ] (1- 1(2C由题悟法利用诱导公式化简求值时的原那么(1 “负化正〞,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数.(2 “大化小〞,利用 k·360 °+α(k∈Z的诱导公式将大于 360 °的角的三角函数化为 0°到360 °的三角函数.(3 “小化锐〞,将大于90°的角化为0°到 90°的角的三角函数.(4 “锐求值〞,得到 0°到 90°的三角函数后,假设是特殊角直接求得,假设是非特殊角可由计算器求得.以题试法2. (1(2021 滨·州模拟sin 600 +°tan 240 的°值等于 (A.- B.C.-D. +(2 f(x= asin( xπ+α+ bcos( xπ-β,其中α,β, a, b 均为非零实数,假设f(2 012=- 1,那么 f(2 013 等于 ________.解析: (1sin 600°+ tan 240°= sin(720 °- 120°+ tan(180 °+ 60°=- sin 120°+ tan 60°=-+=.(2 由诱导公式知f(2 012 = asin α+bcos β=- 1,∴f(2 013 = asin( π+α+bcos( π-β=- (asin α+ bcos β= 1.答案: (1B (21诱导公式在三角形中的应用典题导入[例 3]在△ABC中,假设sin(2-πA=-sin(π-B,cos A=-cos (π-B,求△ABC的三个内角.[自主解答 ]由得sin A =sin B , cos A= cos B 两式平方相加得2cos2A = 1,即 cos A =或 cos A=- .(1 当 cos A=时, cos B=,又角 A 、 B 是三角形的内角,∴A =, B =,∴C=π- (A + B = .(2 当 cos A=-时, cos B=-,又角 A 、B 是三角形的内角,∴A=,B=,不合题意.综上知, A=, B=, C= .由题悟法1.诱导公式在三角形中经常使用,常用的角的变形有: A + B =π- C,2A + 2B = 2π-2C,++=等,于是可得sin(A + B = sin C, cos= sin 等;2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.以题试法3.在三角形ABC 中,(1 求证: cos2+ cos2= 1;(2 假设 cossintan (C-π <0,求证:三角形ABC 为钝角三角形.证明: (1 在△ ABC 中, A+B=π- C,那么=-,所以 cos= cos= sin,故 cos2+ cos2= 1.(2 假设 cossintan (C-π <0,那么(- sin A(-cos Btan C<0,即 sin Acos Btan C<0,∵在△ ABC 中, 0<A<π,0< B<π,0<C<π,∴s in A>0 ,或∴B 为钝角或 C 为钝角,故△ ABC 为钝角三角形.1. sin(θ+π <0, cos(θ-π >0,那么以下不等关系中必定成立的是( A . sin θ<0,cos θ>0B. sin θ>0, cos θ<0C. sin θ>0,cos θ>0 D . sin θ<0 , cos θ<0解析:选 B sin(θ+π<0,∴- sin θ<0, sin θ>0.∵c os(θ-π>0,∴- cos θ>0.∴ cos θ<0.2. (2021 ·徽名校模拟安tan x= 2,那么 sin2x+ 1= (A.0 B.C. D.解析:选 B sin2x+ 1=== .3. (2021 ·西高考假设=,那么江tan 2α= (A.- B.C.- D.解析:选 B∵ ==,∴ tanα=-3.∴tan 2α== .4. (2021 ·博模拟淄sin 2α=-,α∈,那么 sin α+cos α=( A.- B.C.- D.解析:选 B(sin α+cos α2= 1+ 2sin αcos α=1+ sin 2α=,又α∈, sin α+ cos α>0,所以 sin α+cos α=.5. cos=,且 |φ|<,那么 tan φ= (A.- B.C.- D.解析:选 D cos= sin φ=,又|φ|<,那么 cos φ=,所以 tan φ= .6. 2tan α·sin α= 3,-<α< 0,那么 sin α= (A.B .-C.D.-解析:选 B由2tanα·sinα=3得,=3,即 2cos2α+ 3cos α- 2= 0,又-<α< 0,解得 cos α= (cos α=- 2 舍去,故 sin α=- .7. cos- sin 的值是 ________.解析:原式= cos+ sin = cos+ sin= .答案:8.假设= 2,那么 sin( θ- 5π sin= ________.解析:由= 2,得sin θ+ cos θ= 2(sin θ- cos θ,两边平方得:1+ 2sin θcos θ=4(1- 2sin θcos θ,故 sin θcos θ=,∴sin(θ- 5πsin= sin θcos θ= .答案:9. (2021 ·山模拟中cos=,那么 sin= ________.解析: sin= sin=- sin =- cos=- .答案:-10.求值: sin(- 1 200 ·°cos 1 290 +°cos(-1 020 °·sin( - 1 050 +°tan 945 . °解:原式=- sin 1 200 ·°cos 1 290 +° cos 1 020 °·(- sin 1 050 +°tan 945 °=- sin 120 ·°cos 210 °+ cos 300 °·(- sin 330 °+ tan 225 °=(- sin 60 ·°(- cos 30 °+ cos 60 °·sin 30 +°tan 45 °=×+×+ 1= 2.11. cos( π+α=-,且α是第四象限角,计算:(1sin(2 -πα;(2(n∈Z.解:∵ cos(π+α=-,∴-cos α=-, cos α=.又∵ α是第四象限角,∴s in α=-=- .(1sin(2π-α= sin [2π+(-α]= sin(-α=-sinα=;(2=====-=- 4.12.(2021 ·信阳模拟角α的终边经过点 P.(1 求 sin的α值;(2 求·的值.解:(1∵ |OP|=1,∴点 P 在单位圆上.由正弦函数的定义得sinα=-.(2 原式=·==,由余弦函数的定义得cos α=.故所求式子的值为 . 1.=-,那么的值是 (A.B .-C.2 D.- 2解析:选 A由于·==-1,故=.2.假设角α的终边上有一点P(- 4, a,且 sinα· cos=,那么α a的值为(A.4 B.±4C.- 4 或- D.解析:选 C依题意可知角α的终边在第三象限,点P(- 4,a 在其终边上且sinα· cos=α易得 tan α=或,那么a=- 4 或- .3. A 、 B、 C 是三角形的内角,sin A ,- cos A 是方程 x2- x+ 2a=0 的两根.(1求角 A;(2 假设=- 3,求 tan B.解: (1 由可得,sin A -cos A =1.①又 sin2A + cos2A= 1,所以 sin2A +(sin A - 12= 1,即 4sin2A - 2sin A = 0,得 sin A = 0(舍去或 sin A =,那么 A=或,将 A =或代入①知 A =时不成立,故 A=.(2 由=- 3,得 sin2B - sin Bcos B - 2cos2B= 0,∵c os B ≠0,∴ tan2B -tan B- 2=0,∴tan B = 2 或 tan B=- 1.∵tan B =- 1 使 cos2B- sin2B= 0,舍去,故 tan B = 2.1. sin= m,那么 cos 等于 (A . mB .- mC.D.-解析:选 A∵sin=m,∴cos= sin= m.2.求证: sinθ+(1tan+θcos=θ+.证明:左边= sinθ+cosθ=s in +θ+ cos θ+=+=+=+=右边.3. sin( -πα- cos( π+α= .求以下各式的值:(1sin α- cos α;(2sin3+ cos3.解:由 sin( π-α- cos(π+α=,得 sin α+ cos α=,①将①两边平方,得1+ 2sin α·cos α=,故 2sin α·cos α=- .又<α<π,∴ sin α>0, cos α<0.(1(sin α- cos α2= 1- 2sin α·cos α= 1-=,∴ sin α- cos α= .(2sin3+ cos3=cos3α-sin3α= (cos α- sin α(cos2α+ cos α·sin α+sin2α=-×=- .。
4.5两角和与差的正弦、余弦和正切考情分析运用两角和与差的三角公式进行化简变形、求值,二倍角公式的正用、逆用和变形使用是高考的常考内容,面对如:的化简是高考每年的必考内容。
基础知识1、两角和与差的正弦、余弦和正切公式2、二倍角的正弦、余弦、正切公式.sin α=, cos α= 3、形如asin α+bcos α的化简asin α+bcos α=sin(α+β).其中cos β=,sin β= 注意事项1.(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)化简技巧:切化弦、“1”的代换等.2.(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.题型一 三角函数式的化简【例1】cos85°+sin25°cos30°cos25°=( )A. -32B.22C. 12 D. 1答案:C解析:cos85°+sin25°cos30°cos25°=++sin25°cos30°cos25°=cos60°cos25°-sin60°sin25°+sin25°cos30°cos25°=cos60°cos25°cos25°=cos60°=12,选C.【变式1】 化简:α+cos α-α-cos α+sin 2α.解 原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsinα2cos α2cos α=tan α2.题型二 三角函数式的求值【例2】已知tan(α-β)=12,tan β=13,且α∈(0,π),则α=________.答案:π4解析:∵α=(α-β)+β,∴tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ,∵tan(α-β)=12,tan β=13,tan α=12+131-12×13=1,又∵α∈(0,π),∴α=π4.【变式2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.解 ∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2,又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴1cos2α-β=1+tan 2(α-β)=109.cos(α-β)=31010,sin(α-β)=-1010.又∵sin α=45,∴cos α=35.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =35×31010+45×⎝ ⎛⎭⎪⎫-1010=1010. 题型三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.解 ∵0<β<α<π2,∴0<α-β<π2.又∵cos(α-β)=1314,∵cos α=17,β<α<π2,∴sin α=1-cos 2α=437∴sin(α-β)=1-cos2α-β=3314, ∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∵0<β<π2.∴β=π3.【变式3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.解 由根与系数的关系得:tan α+tan β=-33,tan αtan β=4, ∴tan α<0,tan β<0,-π<α+β<0.又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3.∴α+β=-2π3.题型四 三角函数的综合应用【例4】设函数f (x )=2cos 2(π4-x )+sin(2x +π3)-1,x ∈R .(1)求函数f (x )的最小正周期;(2)当x ∈[0,π2]时,求函数f (x )的值域.解:(1)因为f (x )=12sin2x +32cos2x +cos(π2-2x )=32sin2x +32cos2x =3sin(2x +π6), 所以函数f (x )的最小正周期是T =2π2=π.(2)因为x ∈[0,π2],所以2x +π6∈[π6,7π6],于是3sin(2x +π6)∈[-32,3],所以当x ∈[0,π2]时,函数f (x )的值域是[-32,3].【变式4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值. 解:f (x )=2sin x cos x =sin 2x (1)f (x )的最小正周期T =2π2=π.(2)∵-π6≤x ≤π2,∴-π3≤2x ≤π.∴-32≤sin 2x ≤1.∴f (x )的最大值为1,最小值为-32. 巩固提高一、选择题1.若sin α+cos αsin α-cos α=12,则tan2α=( )A. -34B. 34C. -43D. 43答案:B解析:由tan α+1tan α-1=12,得tan α=-3,∴tan2α=2tan α1-tan 2α=34,选B 项. 2. 若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A. 103B. 53C. 23 D. -2答案:A解析:由3sin α+cos α=0得cos α=-3sin α,则1cos 2α+sin2α=sin 2α+cos 2αcos 2α+2sin αcos α=9sin 2α+sin 2α9sin 2α-6sin 2α=103,故选A. 3.若函数f (x )=sin 2(x +π4)+cos 2(x -π4)-1,则函数f (x )是( )A. 周期为π的偶函数B. 周期为2π的偶函数C. 周期为2π的奇函数D. 周期为π的奇函数答案:D解析:f (x )=sin 2(π4+x )+sin 2(π4+x )-1=2sin 2(π4+x )-1=-cos(π2+2x )=sin2x∴故D 正确.4.把函数y =sin x -3cos x 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A. π6B. π3C. 2π3D. 5π6答案:D解析:y =sin x -3cos x =2sin(x -π3),图象向左平移m (m >0)个单位长度后,得y =2sin(x +m -π3),由于图象关于y 轴对称,∴m -π3=k π+π2,m =k π+5π6(k ∈Z ),∴m 的最小正数为5π6,故选D.5.若sin(π6-α)=13,则cos(2π3+2α)的值为( )A. 13 B. -13C. 79 D. -79答案:D解析:因为sin(π6-α)=13,所以cos(π3+α)=13,即cos(2π3+2α)=2cos 2(π3+α)-1=2×19-1=-79.6.已知cos(α+π4)=13,α∈(0,π2),则cos α=________.答案:2+46解析:∵α∈(0,π2),cos(α+π4)=13>0,∴α∈(0,π4),α+π4∈ (π4,π2),∴sin(α+π4)=223,cos α=cos(α+π4-π4)=cos(α+π4)cos π4+sin(α+π4)·sin π4=2+46.。
两直线的位置关系[知识能否忆起]一、两条直线的位置关系 斜截式 一般式方 程 y =k 1x +b 1 y =k 2x +b 2 A 1x +B 1y +C 1=0(A 21+B 21≠0) A 2x +B 2y +C 2=0(A 22+B 22≠0)相 交 k 1≠k 2 A 1B 2-A 2B 1≠0⎝⎛⎭⎫当A 2B 2≠0时,记为A 1A 2≠B 1B 2垂 直k 1=-1k 2或k 1k 2=-1A 1A 2+B 1B 2=0⎝⎛⎭⎫当B 1B 2≠0时,记为A 1B 1·A 2B 2=-1平 行k 1=k 2 且b 1≠b 2{ A 1B 2-A 2B 1=0,B 2C 1-B 1C 2≠0或{ A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0⎝⎛⎭⎫当A 2B 2C 2≠0时,记为A 1A 2=B 1B 2≠C 1C 2 重 合 k 1=k 2 且b 1=b 2A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)⎝⎛⎭⎫当A 2B 2C 2≠0时,记为A 1A 2=B 1B 2=C 1C 2二、两条直线的交点设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组{ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.三、几种距离 1.两点间的距离平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=|AB |=(x 1-x 2)2+(y 1-y 2)2.2.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C |A 2+B 2.3.两条平行线间的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(4)[小题能否全取]1.(教材习题改编)已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ).若l 1⊥l 2,则实数m 为( )A .6 B .-6 C .5D .-5解析:选B 由已知得k 1=1,k 2=m +15.暑期报名海外游学的人数增长达到∵l 1⊥l 2,∴k 1k 2=-1, ∴1×m +15=-1,即m =-6.2.(教材习题改编)点(0,-1)到直线x +2y =3的距离为( )A.55B.5教案目的是用更严格的监管、更严厉的处罚、更严肃的问责化学教案切实保障“舌尖上的安全C .5D.15解析:选B d =|0+2×(-1)-3|5= 5.3.点(a ,b )关于直线x +y +1=0的对称点是( ) A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析:选B 设对称点为(x ′,y ′),则⎩⎨⎧y ′-b x ′-a×(-1)=-1,x ′+a 2+y ′+b2+1=0,解得x ′=-b -1,y ′=-a -1.4.l 1:x -y =0与l 2:2x -3y +1=0的交点在直线mx +3y +5=0上,则m 的值为( )A .3B .5C .-5D .-8解析:选D 由{x -y =0,2x -3y +1=0,得l 1与l 2的交点坐标为(1,1).所以m+3+5=0,m=-8.5.与直线4x+3y-5=0平行,并且到它的距离等于3的直线方程是______________________.|m+5|,得m=10或-20.解析:设所求直线方程为4x+3y+m=0,由3=42+32答案:4x+3y+10=0或4x+3y-20=01.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2.在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为Ax +By+C=0的形式,否则会出错.两直线的平行与垂直典题导入[例1](2012·浙江高考)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x +(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答]由a=1,可得l1∥l2;反之,由l1∥l2,可得a=1或a=-2.[答案] A在本例中若l1⊥l2,试求a.解:∵l1⊥l2,∴a×1+2×(a+1)=0,∴a=-23.由题悟法1.充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.(1)若直线l 1和l 2有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则直线l 1⊥l 2的充要条件是k 1·k 2=-1.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.则l 1⊥l 2⇔A 1A 2+B 1B 2=0.以题试法1.(2012·大同模拟)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行 B .重合C .垂直D .相交但不垂直解析:选C 由已知得a ≠0,sin B ≠0,所以两直线的斜率分别为k 1=-sin A a ,k 2=bsin B ,由正弦定理得k 1·k 2=-sin A a ·bsin B=-1,所以两条直线垂直.两直线的交点与距离问题典题导入[例2] (2012·浙江高考)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.[自主解答] 因曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为0-(-4)2-2=22-2=2,所以曲线C 1与直线l 不能相交,故x 2+a >x ,即x 2+a -x >0.设C 1:y =x 2+a上一点为(x 0,y 0),则点(x 0,y 0)到直线l 的距离d =|x 0-y 0|2=-x 0+x 20+a2=⎝⎛⎭⎫x 0-122+a -142≥4a -142=2,所以a =94.”化学教案结合全文化学教案概述作者这样认为的依据试卷试题[答案] 94由题悟法1.点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2.点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P (x 0,y 0)到与y 轴垂直的直线y =a 的距离d =|y 0-a |.(2)点P (x 0,y 0)到与x 轴垂直的直线x =b 的距离d =|x 0-b |.以题试法2.(2012·通化模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c的值是________.解析:由题意得63=a -2≠c-1,得a =-4,c ≠-2,则6x +ay +c =0可化为3x -2y +c2=0,则⎪⎪⎪⎪c 2+113=21313,解得c =2或-6.答案:2或-6对 称 问 题典题导入[例3] (2012·成都模拟)在直角坐标系中,A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210 B .6C .3 3D .25②________试卷试题它们使用着同样的文字化学教案③__________________化学[自主解答] 如图,设点P 关于直线AB ,y 轴的对称点分别为D ,C ,易求得D (4,2),C (-2,0),由对称性知,D ,M ,N ,C 共线,则△PMN 的周长=|PM |+|MN |+|PN |=|DM |+|MN |+|NC |=|CD |=40=210即为光线所经过的路程.[答案] A由题悟法对称问题主要包括中心对称和轴对称 (1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足{ x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎨⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.以题试法3.(2012·南京调研)与直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0 D .-3x +4y +5=0解析:选A 与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.1.(2012·海淀区期末)已知直线l 1:k 1x +y +1=0与直线l 2:k 2x +y -1=0,那么“k 1=k 2”是“l 1∥l 2”的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由k 1=k 2,1≠-1,得l 1∥l 2;由l 1∥l 2知k 1×1-k 2×1=0,所以k 1=k 2.故“k 1=k 2”是“l 1∥l 2”的充要条件.2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限 B .第二象限C .第三象限D .第四象限解析:选B 解方程组{ kx -y =k -1,ky -x =2k ,得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以k k -1<0,2k -1k -1>0,故交点在第二象限.3.(2012·长沙检测)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( )A.85B.32(C .4D .8解析:选B ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即为3x +4y +12=0,∴直线l 1与直线l 2的距离为⎪⎪⎪⎪12+732+42=32.4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).5.已知直线l 1:y =2x +3,若直线l 2与l 1关于直线x +y =0对称,又直线l 3⊥l 2,则l 3的斜率为( )A .-2 B .-12C.12D .2解析:选A 依题意得,直线l 2的方程是-x =2(-y )+3,即y =12x +32,其斜率是12,由l 3⊥l 2,得l 3的斜率等于-2.6.(2012·岳阳模拟)直线l 经过两直线7x +5y -24=0和x -y =0的交点,且过点(5,1).则l 的方程是( )A .3x +y +4=0 B .3x -y +4=0 C .x +3y -8=0D .x -3y -4=0解析:选C 设l 的方程为7x +5y -24+λ(x -y )=0,即(7+λ)x +(5-λ)y -24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4.l 的方程为x +3y -8=0.7.(2012·郑州模拟)若直线l 1:ax +2y =0和直线l 2:2x +(a +1)y +1=0垂直,则实数a 的值为________.解析:由2a +2(a +1)=0得a =-12.答案:-128.已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的所有取值为0,1,2.答案:0,1,29.(2013·临沂模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得,0≤a ≤10,所以a ∈[0,10].答案:[0,10]10.(2013·舟山模拟)已知1a +1b =1(a >0,b >0),求点(0,b )到直线x -2y -a =0的距离的最小值.解:点(0,b )到直线x -2y -a =0的距离为d =a +2b 5=15(a +2b )⎝⎛⎭⎫1a +1b =15⎝⎛⎭⎫3+2b a +a b ≥15(3+22)=35+2105,当且仅当a 2=2b 2,a +b =ab ,即a =1+2,b =2+22时取等号.所以点(0,b )到直线x -2y -a =0的距离的最小值为35+2105.11.(2012·荆州二检)过点P (1,2)的直线l 被两平行线l 1:4x +3y +1=0与l 2:4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程.解:设直线l 的方程为y -2=k (x -1),由{y =kx +2-k ,4x +3y +1=0,解得A ⎝ ⎛⎭⎪⎫3k -73k +4,-5k +83k +4;由{y =kx +2-k ,4x +3y +6=0,解得B ⎝⎛⎭⎪⎫3k -123k +4,8-10k 3k +4.∵|AB |=2, ∴⎝ ⎛⎭⎪⎫53k +42+⎝ ⎛⎭⎪⎫5k 3k +42=2,整理,得7k 2-48k -7=0, 解得k 1=7或k 2=-17.因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0.12.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③ y ′=3x +4y +35. ④ (1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.1.点P 到点A (1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为22,这样的点P 的个数是( )A .1 B .2 C .3D .4解析:选C ∵点P 到点A 和定直线距离相等, ∴P 点轨迹为抛物线,方程为y 2=4x . 设P (t 2,2t ),则22=|t 2-2t |2,解得t 1=1,t 2=1+2,t 3=1-2,故P 点有三个.2.(2012·福建模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3解析:选C 设原点到点(m ,n )的距离为d ,所以d 2=m 2+n 2,又因为(m ,n )在直线4x +3y -10=0上,所以原点到直线4x +3y -10=0的距离为d 的最小值,此时d =|-10|42+32=2,所以m 2+n 2的最小值为4.3.在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大.解:如图所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|P A |-|PB |的值最大.设B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a =-1. 则a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,则3×a 2-b +42-1=0,即3a -b -6=0.②解①②,得a =3,b =3,即B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解{ 3x -y -1=0,2x +y -9=0,得{ x =2,y =5,即l 与AB ′的交点坐标为P (2,5).1.点(1,cos θ)(其中0≤θ≤π)到直线x sin θ+y cos θ-1=0的距离是14,那么θ等于( )A.5π6B.π6或5π6mLC.π6D.π6或7π6图①可判断可逆反应“A2(g)+3B2(g)2AB3(g)”的解析:选B 由已知得|sin θ+cos 2θ-1|sin 2θ+cos 2θ=14,即|sin θ-sin 2θ|=14, ∴4sin 2θ-4sin θ-1=0或4sin 2θ-4sin θ+1=0,∴sin θ=1±22或sin θ=12.∵0≤θ≤π,∴0≤sin θ≤1,∴sin θ=12,即θ=π6或5π6.2.已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点(x ,y ),则⎩⎨⎧ x +02-y -22-1=0,y +2x ×1=-1,得{ x =-1,y =-1.即(1,0),(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0.3.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:法一:由{ x -2y +5=0,3x -2y +7=0,得{ x =-1,y =2.即反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.充其量只算得小河沟罢了试卷试题然而毕竟有水化学教案便是理直气壮的河了试卷试题有水化而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,即3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧ y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎨⎧ x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,即3×x +x 02-2×y +y 02+7=0,由⎩⎨⎧ y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的坐标为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, 故所求反射光线所在的直线方程为29x -2y +33=0.。
1 •双曲线的定义平面内与定点F i 、F 2的距离的差的绝对值等于常数 (小于|FF 2|)的点的轨迹叫做双曲线, 这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. ______2•双曲线的标准方程和几何性质标准方程---------------- 2 --- 2 ----------------------------------- x ya 2 —b^= 1(a >,b >0)--------- 2 ---- 2 ----------------------------y x孑一孑=1(a >0,b >0)图形¥k性质范围 x > a 或 x < — ay w — a 或y 》a对称性 对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原占 八、、顶点 A ( — a,0) , A(a,0)A 1(0,— a ) , A(0 , a )渐近线,1 1 i x i c ra离心率e = C , e € (1 ,+s ),其中 c =胡a 2+ b 2 a *实虚轴线段AA 叫做双曲线的实轴,它的长| AA| = 2a ;线段BB2叫做双曲线的 虚轴,它的长|BB |= 2b ; a 叫做双曲线的实半轴长, b 叫做双曲线的虚 半轴长通径 2 b 2过焦点垂直于实轴的弦叫通径,其长为aa 、b 、c 的关系2 2 2c = a + b (c >a >0, c >b >0)[小题能否全取]1 •(教材习题改编)若双曲线方程为 x 2— 2y 2= 1,则它的左焦点的坐标为 (D.(—丿3, 0)双曲线[知识能否忆起]• 2 1 , 21• 2 2 丄屮 --a = 1, b = ~2'…c = a + bg — y 2= 1的一个焦点为(2,0),则它的离心率为()3 B'2C 233解析:选C •••双曲线方程可化为22y 一 X ― 1 =1,2•••左焦点坐标为V ,0.解析:选C 依题意得22a +1 = 4, a = 3,22 2护 故°=壽=〒丁3•设F i , F 2是双曲线22yX 2— 24= 1的两个焦点,P 是双曲线上的一点, 且3| PF | = 4| PR| ,则厶PFF 2的面积等于(A. 4 2 B . 8 3 C. 24D. 48解析:选C 由P 是双曲线上的一点和 3|PF | = 4|PF |可知,|PF | - | PF a | = 2,解得| PF |=8, | P^| = 6.又| F 1F 2I = 2c = 10,所以△ PFF 2为直角三角形,所以△ PFF 2的面积S =£x 6X8 =24. 2X 2 4 .双曲线p — y = 1( a > 0)的离心率为2 ,则该双曲线的渐近线方程为 解析:由题意知亠山 = 1 + 1 2= 2,解得a = ¥,故该双曲线的渐近线方程是 3a ©/ 3x ± y = 0,即 y =± . 3x . 答案:y =± 3x 5•已知F (0,— 5) , F 2(0,5),—曲线上任意一点 M 满足|MF | — | MF | = 8,若该曲线的 一条渐近线的斜率为 k ,该曲线的离心率为 e ,则| k | • e= ____________ . 解析:根据双曲线的定义可知,该曲线为焦点在 y 轴上的双曲线的上支, c 5 4 ••• c = 5, a = 4,• b = 3, e = :=4, | k | = 3.2.(教材习题改编)若双曲线 D. 253.5答案:31. 区分双曲线与椭圆中a、b、c的关系,在椭圆中a2= b2+ c2,而在双曲线中c2= a2+ b2.双曲线的离心率e> 1;椭圆的离心率e€ (0,1).2 •渐近线与离心率:X-2-y-2= 1(a>0,b>0)的一条渐近线的斜率为b=、: b^= ‘。
专题14 两角和与差的三角函数1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).热点题型一 三角函数式的化简、求值例1、 (1)化简:(1+sin α+cos α)·⎝⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.(2)计算:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°=________.=3 2.【答案】(1)cosα(2)3 2【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x =________.(2)已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.【答案】(1)12cos 2x (2)-142∴cos ⎝⎛⎭⎪⎫α-π4=144,热点题型二 三角函数的给值求值、给值求角例2、(1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【解析】(1)∵0<β<π2<α<π,∴π4<α-β2<π,-π4<α2-β<π2, ∴sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=1-sin 2⎝ ⎛⎭⎪⎫α2-β=53,∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示:①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β, β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.(3)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【举一反三】已知cos α=17,cos(α-β)=1314⎝ ⎛⎭⎪⎫0<β<α<π2.(1)求tan 2α的值; (2)求β的值.【解析】(1)∵cos α=17,0<α<π2,热点题型三 三角变换的简单应用例3.已知f (x )=⎝ ⎛⎭⎪⎫1+1tan x sin 2x -2sin ⎝ ⎛⎭⎪⎫x +π4·sin ⎝ ⎛⎭⎪⎫x -π4. (1)若tan α=2,求f (α)的值; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的取值范围.【解析】(1)f (x )=(sin 2x +sin x cos x )+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝⎛⎭⎪⎫x +π4=1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎪⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝ ⎛⎭⎪⎫2x +π4+12.由x ∈⎣⎢⎡⎦⎥⎤π12,π2,得5π12≤2x +π4≤5π4.∴-22≤sin ⎝⎛⎭⎪⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12. 【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B2的最大值.=2.1.【2017江苏,5】 若π1tan(,46α-= 则tan α= ▲ .【答案】75【解析】11tan(tan7644tan tan[()14451tan()tan 1446ππαππααππα+-+=-+===---.故答案为75.2.【2017北京】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A(B(C)- (D)-【答案】C2.【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.3.【2016高考新课标3理数】若3tan 4α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.【2016年高考四川理数】22cossin 88ππ-= .【答案】2【解析】由二倍角公式得22cossin 88ππ-=cos4=π【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 【2015高考福建,理19】已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2p个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程;(Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围;(2)证明:22cos ) 1.5m a b -=-( 【答案】(Ⅰ) f()2sin x x =,(k Z).2x k pp =+?;(Ⅱ)(1)(-;(2)详见解析.)x j =+(其中sin j j =)依题意,sin(x j +在区间[0,2)p 内有两个不同的解,a b当且仅当|1<,故m的取值范围是(-.当-时, 3+=2(),+3();2pa b j a j p b j -=-+即 所以cos +)cos()a j b j =-+(于是cos )cos[()()]cos()cos()sin()sin()a b a j b j a j b j a j b j -=+-+=+++++(22222cos ()sin()sin()[1] 1.5m b j a j b j =-++++=--+=-【2015高考山东,理16】设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫==⎪⎝⎭,求ABC ∆面积的最大值. 【答案】(I )单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(II )ABC ∆面积的最大值为24+ 【解析】(I )由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=- sin 21sin 21sin 2222x x x -=-=-可得:2212b c bc +=+≥即:2bc ≤+ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24+(2014·福建卷)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.方法二:f (x )=s in x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎪⎫2x +π4.(1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎪⎫2α+π4=22sin 3π4=12.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.(2014·重庆卷)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝⎛⎭⎪⎫α+3π2的值.【解析】(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.=sin α=sin ⎣⎢⎡⎦⎥⎤(α-π6)+π6 =sin ⎝ ⎛⎭⎪⎫α-π6cos π6+cos ⎝ ⎛⎭⎪⎫α-π6sin π6 =14×32+154×12 =3+158.1.(1+ta n 17°)(1+tan 28°)的值是( ) A.-1 B.0 C.1 D.2 【答案】D【解析】原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2.2.设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( ) A.a <c <b B.a <b <c C.b <c <a D.c <a <b 【答案】D【解析】由题意可知,a =sin 28°,b =tan 28°,c =sin 25°, ∴c <a <b .3.已知sin x + 3 cos x =65,则cos ⎝ ⎛⎭⎪⎫π6-x =( )A.-35B.35C.-45D.45【答案】B【解析】sin x + 3 cos x =2⎝ ⎛⎭⎪⎫12sin x +32cos x=2⎝ ⎛⎭⎪⎫sin π6sin x +cos π6cos x =2cos ⎝ ⎛⎭⎪⎫π6-x =65,∴cos ⎝ ⎛⎭⎪⎫π6-x =35.4.若sin ⎝ ⎛⎭⎪⎫α-π4=-cos 2α,则sin 2α的值可以为( )A.-12或1B.12C.34D.-34【答案】A则sin 2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π4=2cos 2⎝ ⎛⎭⎪⎫α-π4-1 =2×14-1=-12或sin 2α=1.5.已知f (x )=2tan x -2sin 2x2-1sin x 2cosx 2,则f ⎝ ⎛⎭⎪⎫π12的值为________.【答案】8【解析】∵f (x )=2tan x +2cos x sin x =2⎝ ⎛⎭⎪⎫sin x cos x +cos x sin x=2cos x sin x =4sin 2x ,∴f ⎝ ⎛⎭⎪⎫π12=4sinπ6=8. 6.设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. 【答案】-1057.已知θ∈⎝ ⎛⎭⎪⎫0,π2,且sin ⎝ ⎛⎭⎪⎫θ-π4=210,则tan 2θ=________.【答案】-247【解析】sin ⎝⎛⎭⎪⎫θ-π4=210,得sin θ-cos θ=15,① θ∈⎝⎛⎭⎪⎫0,π2,①平方得2sin θcos θ=2425,可求得sin θ+cos θ=75,∴sin θ=45,cos θ=35,∴tan θ=43,tan 2θ=2tan θ1-tan 2θ=-247. 8.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值.9.已知cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.(1)求sin 2α的值; (2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=12.(2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B.π3 C.π4 D.π6【答案】C11.已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4等于( )A.-255B.-3510C.-31010D.255【答案】A【解析】由tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=12,得tan α=-13. 又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin α()sin α+cos α22()sin α+cos α=22sin α=-255.12.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫2α+π3=________.【答案】2-156【解析】∵co s 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23,又α∈⎝ ⎛⎭⎪⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos 22α=53,∴cos ⎝ ⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156. 13.已知函数f (x )=cos x ·sin ⎝ ⎛⎭⎪⎫x +π3-3cos 2x +34,x ∈R.(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.。
第八节正弦定理和余弦定理的应用[知识能否忆起]1.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).2.解三角形应用题的一般步骤(1)审题,理解问题的实际背景,明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形模型;(3)选择正弦定理或余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算要求.[小题能否全取]1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是( ) A .α>β B .α=β C .α+β=90°D .α+β=180°答案:B2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示, ∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.(教材习题改编)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522 m解析:选A 由正弦定理得AB =AC ·sin ∠ACB sin B=50×2212=502(m).4.(2011·上海高考)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为________千米.解析:如图所示,由题意知∠C =45°,由正弦定理得AC sin 60°=2sin 45°,∴AC =222·32= 6. 答案: 65.(2012·泰州模拟)一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行________海里.解析:如图,由题意知在△ABC 中,∠ACB =75°-60°=15°,B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8海里.答案:8解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.测量距离问题典题导入[例1] 郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由). [自主解答] (1)在△ABC 中,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7,②由∠C =∠D 得cos C =cos D . 解得AB =7,所以AB 的长度为7米. (2)小李的设计使建造费用最低. 理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D , 所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用较低.若环境标志的底座每平方米造价为5 000元,试求最低造价为多少? 解:因为AD =BD =AB =7,所以△ABD 是等边三角形, ∠D =60°,∠C =60°. 故S △ABC =12AC ·BC sin C =103,所以所求的最低造价为5 000×103=50 000 3≈86 600元.由题悟法求距离问题要注意:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.以题试法1.如图所示,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A 、B ,观察对岸的点C ,测得∠CAB =105°,∠CBA =45°,且AB =100 m.(1)求sin ∠CAB 的值; (2)求该河段的宽度. 解:(1)sin ∠CAB =sin 105° =sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45° =32×22+12×22=6+24. (2)因为∠CAB =105°,∠CBA =45°, 所以∠ACB =180°-∠CAB -∠CBA =30°. 由正弦定理,得AB sin ∠ACB =BCsin ∠CAB ,则BC =AB ·sin 105°sin 30°=50(6+2)(m).如图所示,过点C 作CD ⊥AB ,垂足为D ,则CD 的长就是该河段的宽度.在Rt △BDC 中,CD =BC ·sin 45°=50(6+2)×22=50(3+1)(m). 所以该河段的宽度为50(3+1)m.测量高度问题典题导入[例2] (2012·九江模拟)如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度. [自主解答] (1)在△ABC 中,∠ACB =β-α, 根据正弦定理得BC sin ∠BAC =ABsin ∠ACB,所以BC =l sin αsin β-α.(2)由(1)知BC =l sin αsin β-α=24×sin 15°s in 30°=12(6-2)米.在△BCD 中,∠BDC =π2+π6=2π3,sin ∠BDC =32,根据正弦定理得BC sin ∠BDC =CDsin ∠CBD , 所以CD =24-83米.由题悟法求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.以题试法2.(2012·西宁模拟)要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得,BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40米.测量角度问题典题导入[例3] (2012·太原模拟)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[自主解答] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2. 故AC =28,BC =20.根据正弦定理得BC sin α=ACsin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.由题悟法1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.以题试法3.(2012·无锡模拟)如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 的大小是________.解析:∵AD 2=602+202=4 000,AC 2=602+302=4 500. 在△CAD 中,由余弦定理得cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22,∴∠CAD =45°.答案:45°1.在同一平面内中,在A 处测得的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D.19解析:选D ∵∠BAC =120°,AB =2,AC =3. ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19. ∴BC =19.2.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.3.(2012·天津高考) 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2B -1=2×⎝ ⎛⎭⎪⎫452-1=725.4.(2013·厦门模拟)在不等边三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π4,π2C.⎝⎛⎭⎪⎫π6,π3D.⎝⎛⎭⎪⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0.则cos A =b 2+c 2-a 22bc>0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎪⎫π3,π2.5.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 2 海里D .20 3 海里解析:选A 如图所示,由已知条件可得,∠CAB =30°,∠ABC =105°,∴∠BCA =45°.又AB =40×12=20(海里),∴由正弦定理可得20sin 45°=BCsin 30°.∴BC =20×1222=102(海里).6.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km)( )A .11.4B .6.6C .6.5D .5.6解析:选B ∵AB =1 000×1 000×160=50 0003 m ,∴BC =ABsin 45°·sin 30°=50 00032m.∴航线离山顶h =50 00032×sin 75°≈11.4 km.∴山高为18-11.4=6.6 km.7.(2012·南通调研)“温馨花园”为了美化小区,给居民提供更好的生活环境,在小区内的一块三角形空地上(如图,单位:m)种植草皮,已知这种草皮的价格是120元/m 2,则购买这种草皮需要________元.解析:三角形空地的面积S =12×123×25×sin 120°=225,故共需225×120=27 000元.答案:27 0008.(2012·潍坊模拟)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°, 由正弦定理得82sin 30°=12v sin 45°,则v =32. 答案:329.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN = 900+300-2×30×103×32=300=103(m).答案:10 310.如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°, ∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B=10sin 60°sin 45°=10×3222=5 6.11.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得 BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =140 3.答:该仪器的垂直弹射高度CH 为1403米.12.(2012·兰州模拟)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 km 的C ,D 两地测得∠ACD =45°,∠ADC =75°,∠BDC =15°,∠BCD =30°(如图,其中A ,B ,C ,D在同一平面上),假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约应该是A ,B 之间距离的1.2倍,问施工单位至少应该准备多长的电线?解:在△ACD 中,∠ACD =45°,CD =6,∠ADC =75°,所以∠CAD =60°.因为CD sin ∠CAD =AD sin ∠ACD, 所以AD =CD ×sin ∠ACD sin ∠CAD =6×2232=2 6. 在△BCD 中,∠BCD =30°,CD =6,∠BDC =15°,所以∠CBD =135°.因为CD sin ∠CBD =BDsin ∠BCD ,所以BD =CD ×sin ∠BCD sin ∠CBD =6×1222=3 2. 又因为在△ABD 中,∠BDA =∠BDC +∠ADC =90°,所以△ABD 是直角三角形.所以AB =AD 2+BD 2=262+322=42.所以电线长度至少为l =1.2×AB =6425(单位:km) 答:施工单位至少应该准备长度为6425km 的电线.1.某城市的电视发射塔CD 建在市郊的小山上,小山的高BC 为35 m ,在地面上有一点A ,测得A ,C 间的距离为91 m ,从A 观测电视发射塔CD 的视角(∠CAD )为45°,则这座电视发射塔的高度CD 为________米.解析:AB =912-352=84,tan ∠CAB =BC AB =3584=512.由CD +3584=tan(45°+∠CAB )=1+5121-512=177,得CD =169. 答案:1692.2012年10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A 处沿正北方向行进x m 到达B 处发现一个生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x =________.解析:∵由题知,∠CBA =75°,∠BCA =45°,∴∠BAC =180°-75°-45°=60°,∴xsin 45°=10sin 60°.∴x =1063 m. 答案:1063m3.(2012·泉州模拟)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C处的乙船.(1)求处于C处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB方向前往B处救援,其方向与CA―→成θ角,求f(x)=sin2θsinx+34cos2θcos x(x∈R)的值域.解:(1)连接BC,由余弦定理得BC2=202+102-2×20×10cos 120°=700.∴BC=107,即所求距离为107海里.(2)∵sin θ20=sin 120°107,∴sin θ=37.∵θ是锐角,∴cos θ=47.f(x)=sin2θsin x+34cos2θcos x=37sin x+37cos x=237sin⎝⎛⎭⎪⎫x+π6,∴f(x)的值域为⎣⎢⎡⎦⎥⎤-237,237.1.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?解:如图,连接A1B2由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2. 由已知,A 1B 1=20, ∴∠B 1A 1B 2=105°-60°=45°, 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=30 2(海里/时). 2.如图,扇形AOB 是一个观光区的平面示意图,其中圆心角∠AOB 为2π3,半径OA 为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段DB 组成,其中D 在线段OB 上,且CD ∥AO .设∠AOC =θ.(1)用θ表示CD 的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?解:(1)在△OCD 中,由正弦定理,得CDsin ∠COD =OD sin ∠DCO =CO sin ∠CDO=23, 所以CD =23sin ⎝ ⎛⎭⎪⎫2π3-θ=cos θ+13sin θ,OD =23sin θ, 因为OD <OB ,即23sin θ<1, 所以sin θ<32,所以0<θ<π3, 所以CD =cos θ+33sin θ,θ的取值范围为⎝ ⎛⎭⎪⎫0,π3. (2)设观光道路长度为L (θ),则L (θ)=BD +CD +弧CA 的长=1-23sin θ+cos θ+13sin θ+θ =cos θ-13sin θ+θ+1,θ∈⎝ ⎛⎭⎪⎫0,π3, L ′(θ)=-sin θ-33cos θ+1, 由L ′(θ)=0,得sin ⎝⎛⎭⎪⎫θ+π6=32, 又θ∈⎝⎛⎭⎪⎫0,π3,所以θ=π6, 列表:所以当θ=π6时,L (θ)达到最大值,即当θ=π6时,观光道路最长.。
第五节合情推理与演绎推理[知识可否忆起]一、合情推理归纳推理类比推理由某类事物的部分对象拥有某些特由两类对象拥有近似特色和此中一征,推出该类事物的所有对象都具定义类对象的某些已知特色推出另一类有这些特色的推理,或许由个别事对象也拥有这些特色的推理实归纳出一般结论的推理由部分到整体、由个别到一般的推特色由特别到特别的推理理(1找出两类事物之间的相像性或一(1经过察看个别状况发现某些相同致性;(2用一类事物的性质去推测一般步骤性质;(2从已知的相同性质中推出另一类事物的性质,得出一个明确一个明确的一般性命题(猜想的命题(猜想二、演绎推理1.定义:从一般性的原理出发,推出某个特别状况下的结论,我们把这类推理称为演绎推理.2.特色:演绎推理是由一般到特别的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包含:①大前提—已知的一般原理;“三段论”的构造②小前提—所研究的特别状况;③结论—依据一般原理,对特别状况做出的判断①大前提—M是P;“”②小前提—S是M;三段论的表示③结论—S是P[小题可否全取]1.(教材习题改编命题“有些有理数是无穷循环小数,整数是有理数,所以整数是无穷循环小数”是假命题,推理错误的原由是(A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误分析:选C由条件知使用了三段论,但推理形式是错误的.2.数列2,5,11,20,x,47,⋯中的x等于(A.28B.32C.33D.27分析:选B由5-2=3,11-5=6,20-11=9.则x-20=12,所以x=32.3.(教材习题改编给出以下三个类比结论.(abn=anbn与(a+bn类比,则有(a+bn=an+bn;loga(xy=logax+logay与sin(α+β类比,则有sin(α+β=sinαsinβ;(a+b2=a2+2ab+b2与(a+b2类比,则有(a+b2=a2+2a·b+b2.此中结论正确的个数是(A.0B.1C.2D.3分析:选B只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.近似地,在空间中,若两个正四周体的棱长的比为1∶2,则它们的体积比为________.分析:==·=×=.答案:1∶85.(2012·陕西高考察看以下不等式1+<,1++<,1+++<⋯⋯照此规律,第五个不等式为___________________________________________________.分析:察看得出规律,左边为项数个连续自然数平方的倒数和,右侧为项数的2倍减1的差除以项数,即1+++++⋯+<(n∈N*,n≥2,所以第五个不等式为1+++++<.答案:1+++++<1.合情推理主要包含归纳推理和类比推理,合情推理拥有猜想和发现结论,探究和供给思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应第一明确什么是大前提,什么是小前提,假如大前提、小前提与推理形式是正确的,结论必然是正确的.假如大前提错误,只管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1] (2012·河南调研已知函数f(x=(x>0.以下定义一列函数:f1(x=f(x,f2(x=f(f1(x,f3(x=f(f2(x,,fn(x=f(fn-1(x,,n∈N*,那么由归纳推理可得函数fn(x的分析式是fn(x=________.[自主解答]依题意得,f1(x=,f2(x===,f3(x===,,由此归纳可得fn(x=(x>0.[答案](x>0由题悟法1.归纳是依照特别现象推测出一般现象,因此由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特别的状况,所以归纳是立足于察看、经验或试验的基础之上的.[注意]归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1.(2012枣·庄模拟将正奇数按以下图的规律摆列,则第21行从左向右的第5个数为(A.809B.852C.786D.893分析:选第5个数是第A 前20行共有正奇数1+3+5++39=202=400个,则第405个正奇数,所以这个数是2×405-1=809.21行从左向右的类比推理典题导入[例2]在平面几何里,有“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=(a+b+cr”,拓展到空间,类比上述结论,“若四周体ABCD的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,则四周体的体积为________________”.[自主解答]三角形的面积类比为四周体的体积,三角形的边长类比为四周体四个面的面积,内切圆半径类比为内切球的半径.二维图形中类比为三维图形中的,得V四周体ABCD=(S1+S2+S3+S4r.[答案]V四周体ABCD=(S1+S2+S3+S4r由题悟法1.类比推理是由特别到特别的推理,命题有其特色和求解规律,能够从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比构造.2.类比推理的一般步骤:(1找出两类事物之间的相像性或一致性;(2用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想.以题试法2.若{an}是等差数列,m、n、p是互不相等的正整数,则有:(m-nap+(n-pam+(p-man=0,类比上述性质,相应地,平等比数列{bn},有__________________.=分析:设{bn}的首项为b1,公比为q,则b·b·b==(b1qp-1m-n·(b1qm-1n-p·(b1qn-1p-m=b·q0=1.答案:b·b·b=1演绎推理典题导入[例3]数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n∈N*.证明:(1数列是等比数列;(2Sn+1=4an.[自主解答](1∵an+1=Sn+1-Sn,an+1=Sn,(n+2Sn=n(Sn+1-Sn,即nSn+1=2(n+1Sn.故=2·,(小前提故是以2为公比,1为首项的等比数列.(结论(大前提是等比数列的定义,这里省略了(2由(1可知=4·(n≥2,Sn+1=4(n+1·=4··Sn-1=4an(n≥2.(小前提又∵a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提∴关于随意正整数n,都有Sn+1=4an.(结论由题悟法演绎推理是从一般到特别的推理,其一般形式是三段论,应用三段论解决问题时,应当第一明确什么是大前提和小前提,假如前提是明显的,则能够省略.以题试法3.以下图,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,且DE∥BA.求证:ED=AF(要求注明每一步推理的大前提、小前提和结论,并最后把推理过程用简单的形式表示出来.证明:(1同位角相等,两条直线平行,(大前提BFD与∠A是同位角,且∠BFD=∠A,(小前提所以DF∥EA.(结论(2两组对边分别平行的四边形是平行四边形,(大前提DE∥BA且DF∥EA,(小前提所以四边形AFDE为平行四边形.(结论(3平行四边形的对边相等,(大前提ED和AF为平行四边形的对边,(小前提所以ED=AF.(结论上边的证明可简单地写成:四边形AFDE是平行四边形?ED=AF.1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(A.①B.②C.③D.①和②分析:选B由演绎推理三段论可知,①是大前提;②是小前提;③是结论.应选 B.2.(2012·肥模拟正弦函数是奇函数,合f(x=sin(x2+1是正弦函数,所以f(x=sin(x2+1是奇函数,以上推理(A.结论正确B.大前提不正确C.小前提不正确D.全不正确分析:选C由于f(x=sin(x2+1不是正弦函数,所以小前提不正确.3.(2012·兴模拟在平面几何中有以下结论:正三角形泰ABC的内切圆面积为S1,外接圆面积为S2,则=,推行到空间能够获得近似结论;已知正四周体P-ABC的内切球体积为V1,外接球体积为V2,则=(A.B.C.D.分析:选D正四周体的内切球与外接球的半径之比为1∶3,故=.4.(2012·州模拟给出下边类比推理德(此中Q为有理数集,R为实数集,C为复数集:①“若a,b∈R,则a-b=0?a=b”类比推出“a,c∈C,则a-c=0?a=c”;②“若a,b,c,d∈R,则复数a+bi=c+di?a=c,b=d”类比推出“a,b,c,d∈Q,则a+b=c+d?a=c,b=d”;③“a,b∈R,则a-b>0?a>b”类比推出“若a,b∈C,则a-b>0?a>b”;④“若x∈R,则|x|<1?-1<x<1”类比推出“若z∈C,则|z|<1?-1<z<1”.此中类比结论正确的个数为(A.1B.2C.3D.4分析:选B类比结论正确的有①②.5.察看以下图的正方形图案,每条边(包含两个端点有n(n≥2,n∈N*个圆点,第n个图案中圆点的总数是Sn.按此规律推测出Sn与n的关系式为(A.Sn=2nB.Sn=4nC.Sn=2nD.Sn=4n-4分析:选D由n=2,n=3,n=4的图案,推测第成正方形的四条边,每条边上有n个圆点,则圆点的个数为n个图案是这样组成的:各个圆点排Sn=4n-4.6.(2012·汉市适应性训练以下推理中属于归纳推理且结论正确的选项是武(A.设数列{an}的前n项和为Sn.由an=2n-1,求出S1=12,S2=22,S3=32,,推断:Sn=n2B.由f(x=xcosx知足f(-x=-f(x对?x∈R都建立,推测:f(x=xcosx为奇函数C.由圆x2+y2=r2的面积S=πr2,推测:椭圆+=1(a>b>0的面积S=πabD.由(1+12>21,(2+12>22,(3+12>23,,推测:对全部n∈N*,(n+12>2n其前分析:选n项和等于A 选项 A由一些特别案例得出一般性结论,且注意到数列{an}是等差数列,Sn==n2,选项D中的推理属于归纳推理,但结论不正确.所以选 A.7.(2013·杭州模拟设n为正整数,f(n=1++++,计算得f(2=,f(4>2,f(8>,f(16>3,察看上述结果,可推测一般的结论为________.分析:由前四个式子可得,第的结论为f(2n≥.n个不等式的左边应当为f(2n,右侧应当为,即可得一般答案:f(2n≥8.(2011·西高考察看以下等式陕1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为________.分析:每行最左边数分别为1、2、3、,所以第n行最左边的数为n;每行数的个数分别为1、3、5、,则第n行的个数为2n-1.所以第n行数挨次是n、n+1、n+2、、3n-2.其和为n+(n+1+(n+2++(3n-2=(2n-12.答案:n+(n+1+(n+2++(3n-2=(2n-129.(2012杭·州模拟在平面上,我们假如用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.假想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,假如用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比获得的结论是________.分析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S+S+S=S.答案:S+S+S=S10.平面中的三角形和空间中的四周体有好多相近似的性质,比如在三角形中:(1三角形两边之和大于第三边;(2三角形的面积S=×底×高;(3三角形的中位线平行于第三边且等于第三边的;请类比上述性质,写出空间中四周体的有关结论.解:由三角形的性质,可类比得空间四周体的有关性质为:(1四周体的随意三个面的面积之和大于第四个面的面积;(2四周体的体积V=×底面积×高;(3四周体的中位面平行于第四个面且面积等于第四个面的面积的.11.定义“等和数列”:在一个数列中,假如每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为 5.(1求a18的值;(2求该数列的前n项和Sn.解:(1由等和数列的定义,数列{an}是等和数列,且a1=2,公和为5,易知a2n-1=2,a2n=3(n=1,2,故a18=3.(2当n为偶数时,Sn=a1+a2++an=(a1+a3++an-1+(a2+a4++an=2+2+++3+3++=n;当n为奇数时,Sn=Sn-1+an=(n-1+2=n-.综上所述:Sn=12.某少量民族的刺绣有着悠长的历史,如图(1、(2、(3、(4为她们刺绣最简单的四个图案,这些图案都是由小正方形组成,小正方形数越多刺绣越美丽.现按相同的规律刺绣(小正方形的摆放规律相同,设第n个图形包含f(n个小正方形.(1求出f(5的值;(2利用合情推理的“归纳推理思想”归纳出f(n+1与f(n之间的关系式,并依据你获得的关系式求出f(n的表达式;(3求++++的值.解:(1f(5=41.(2由于f(2-f(1=4=4×1,f(3-f(2=8=4×2,f(4-f(3=12=4×3,f(5-f(4=16=4×4,由上式规律,所以得出f(n+1-f(n=4n.由于f(n+1-f(n=4n,所以f(n+1=f(n+4n,f(n=f(n-1+4(n-1f(n-2+4(n-1+4(n-2f(n-3+4(n-1+4(n-2+4(n-3=f(1+4(n-1+4(n-2+4(n-3++42n2-2n+1.(3当n≥2时,(-,∴++++1+1+=-.1.(2012江·西高考察看以下各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,,则a10+b10=(A.28B.76C.123D.199分析:选C记an+bn=f(n,则f(3=f(1+f(2=1+3=4;f(4=f(2+f(3=3+4=7;f(5=f(3+f(4=11.经过察看不难发现f(n=f(n-1+f(n-2(n∈N*,n≥3,则f(6=f(4+f(5=18;f(7=f(5+f(6=29;f(8=f(6+f(7=47;f(9=f(7+f(8=76;f(10=f(8+f(9=123.所以a10+b10=123.2.关于命题:若O是线段AB上一点,则有||·+||·=0.将它类比到平面的情况是:若O是△ABC内一点,则有到空间情况应当是:若O是四周体S△OBC·+S△OCA·+S△OBA·ABCD内一点,则有________.=0,将它类比分析:将平面中的有关结论类比到空间,往常是将平面中的图形的面积类比为空间中的几何体的体积,所以依题意可知若O为四周体ABCD内一点,则有VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=0.答案:VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=03.(2012·建高考某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常福数:(1sin213°+cos217°-sin13cos°17;°(2sin215°+cos215°-sin15cos°15;°(3sin218°+cos212°-sin18cos°12;°(4sin2(-18°+cos248°-sin(-18°cos48;°(5sin2(-25°+cos255°-sin(-25°cos55.°(1试从上述五个式子中选择一个,求出这个常数;(2依据(1的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解:(1选择(2式,计算以下:sin215°+cos215°-sin15cos°15=°1-sin30°1-=.(2三角恒等式为sin2α+cos2(30°-α-sinα·cos(30-°α=.证明以下:法一:sin2α+cos2(30°-α-sinαcos(30°-α=sin2α+(cos30°cosα+sin30sin°α2-sinα(cos30°·cosα+sin30°sinαsin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2αsin2α+cos2α.法二:sin2α+cos2(30°-α-sinαcos(30°-α=+-sinα(cos30°cosα+sin30sin°α=-cos2α++(cos60cos°2α+sin60°sin2α-sinαcosα-sin2α=-cos2α++cos2α+sin2α-sin2α-(1-cos2α1-cos2α-+cos2α=.1.(2012·西高考察看以下事实:江|x|+|y|=1的不一样整数解(x,y的个数为4,|x|+|y|=2的不一样整数解(x,y的个数为8,|x|+|y|=3的不一样整数解(x,y的个数为12,,则|x|+|y|=20的不一样整数解(x,y的个数为(A.76B.80C.86D.92分析:选B由特别到一般,先分别计算|x|+|y|的值为1,2,3时,对应的(x,y的不一样整数解的个数,再猜想|x|+|y|=n时,对应的不一样整数解的个数.经过察看能够发现|x|+|y|的值为1,2,3时,对应的(x,y的不一样整数解的个数为4,8,12,可推出当|x|+|y|=n时,对应的不一样整数解(x,y的个数为4n,所以|x|+|y|=20的不一样整数解(x,y的个数为80.2.(2012·东、豫北名校测试已知以低等式:豫3-4=(32-42,32-3×4+42=(33+43,33-32×4+3×42-43=(34-44,34-33×4+32×42-3×43+44=(35+45,则由上述等式可归纳获得3n-3n-1×4+3n-2×42-+(-1n4n=________(n∈N*.分析:依题意及不完整归纳法得,3n-3n-1×4+3n-2×42-+(-1n4n=[3n+1-(-4n+1].答案:[3n+1-(-4n+1]。
第五节两角和与差的正弦、余弦和正切公式[知识能否忆起]1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan α. 3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.[小题能否全取]1.(2011²福建高考)若tan α=3,则sin 2αcos 2α的值等于( ) A .2 B .3 C .4D .6解析:选D sin 2αcos2α=2sin αcos αcos2α=2tan α=2³3=6.2.sin 68°sin 67°-sin 23°cos 68°的值为( )A.-22B.22C.32D.1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22.3.已知sin α=23,则cos(π-2α)等于( )A.-53B.-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin2α)=2sin2α-1=2³49-1=-19. 4.(教材习题改编)若cos α=-45,α是第三象限角,则sin⎝⎛⎭⎪⎫α+π4=________解析:由已知条件sin α=-1-cos2α=-35,sin⎝⎛⎭⎪⎫α+π4=22sin α+22cos α=-7210.答案:-72105.若tan⎝⎛⎭⎪⎫α+π4=25,则tan α=________.解析:tan⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=25,即5tan α+5=2-2tan α.则7tan α=-3,故tan α=-37.答案:-371.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.典题导入[例1] (2011²广东高考)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.[自主解答] (1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,∴f ⎝⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2.(2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65.即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=1213³35-513³45=1665. 由题悟法两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,则cos 2α2sin ⎝⎛⎭⎪⎫α+π4=________.(2)(2012²济南模拟)已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3 B .-17C .-43D .-7解析:(1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2³21-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1-431+43=-17.答案:(1)-75 (2)B典题导入[例2] (2013²德州一模)已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎪⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x 2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎪⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝ ⎛⎭⎪⎫α-π3=13,∴1+2cos α=13,即cos α=-13.∵α为第二象限角,∴sin α=223.∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.由题悟法运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)²(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1)(2012²赣州模拟)已知sin ⎝ ⎛⎭⎪⎫α+π6+cos α=435,则sin ⎝ ⎛⎭⎪⎫α+π3的值为( )A.45B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎪⎫α+π3=45.(2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β.∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2典题导入[例3] (1)(2012²温州模拟)若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2)(2012²江苏高考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.[自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan β-α-tan α1+tan β-αtan α=-2-21+-2³2=43.(2)因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝ ⎛⎭⎪⎫α+π6=2425,cos 2⎝⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=2425³22-725³22=17250. [答案] (1)43 (2)17250由题悟法1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧:α=2²α2;α=(α+β)-β;α=β-(β-α);α=12[(α+β)+(α-β)]; β=12[(α+β)-(α-β)];π4+α=π2-⎝ ⎛⎭⎪⎫π4-α;α=π4-⎝ ⎛⎭⎪⎫π4-α. 以题试法3.设tan ()α+β=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A.1318 B.1322C.322D.16解析:选C tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=tan α+β-tan ⎝⎛⎭⎪⎫β-π41+tan α+βtan ⎝⎛⎭⎪⎫β-π4=322.1.(2012²重庆高考)设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( )A .-3B .-1C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α²tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2.(2012²南昌二模)已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是( )A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=-1.3. (2012²乌鲁木齐诊断性测验)已知α满足sin α=12,那么sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α的值为( )A.14 B .-14C.12D .-12解析:选 A 依题意得,sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α²cos ⎝ ⎛⎭⎪⎫π4+α=12sin ⎝ ⎛⎭⎪⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b ,f ′(1)=3+b =4,b =1.所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,故函数的最大值为2,最小正周期为π.5. (2012²东北三校联考)设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( )A.2525B.255 C.2525或255D.55或525解析:选A 依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin 2α+β=±45.又α、β均为锐角,因此0<α<α+β<π,cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45³55+35³255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)²(cos α+sin α)=-53. 7.(2012²苏锡常镇调研)满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎪⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan 45°-α1-tan 245°-α²sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)²12sin 2αcos 2α=sin 90°-2αcos 90°-2α²12sin 2αcos 2α=cos 2αsin 2α²12sin 2αcos 2α=12.答案:129.(2013²烟台模拟)已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β =-35³⎝ ⎛⎭⎪⎫-13+45³223=3+8215. 答案:3+821510.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=12,求tan 2α和sin ⎝ ⎛⎭⎪⎫2α+π3的值.解:∵tan α=12,∴tan 2α=2tan α1-tan α=2³121-14=43, 且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈⎝⎛⎭⎪⎫0,π2,∴sin α=55,cos α=255.∴sin 2α=2sin αcos α=2³55³255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝ ⎛⎭⎪⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45³12+35³32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝ ⎛⎭⎪⎫β-π4=45.(1)求sin 2β的值; (2)求cos ⎝⎛⎭⎪⎫α+π4的值.解:(1)法一:∵cos ⎝ ⎛⎭⎪⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13,∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎪⎫π2-2β=2cos 2⎝⎛⎭⎪⎫β-π4-1=-79.(2)∵0<α<π2<β<π,∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎪⎫β-π4>0,cos (α+β)<0.∵cos ⎝ ⎛⎭⎪⎫β-π4=13,sin (α+β)=45, ∴sin ⎝ ⎛⎭⎪⎫β-π4=223, cos (α+β)=-35.∴cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝ ⎛⎭⎪⎫β-π4=cos (α+β)cos ⎝ ⎛⎭⎪⎫β-π4=-35³13+45³223=82-315.12.(2012²衡阳模拟) 函数f(x)=cos ⎝ ⎛⎭⎪⎫-x 2+sin ⎝ ⎛⎭⎪⎫π-x 2,x ∈R .(1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝ ⎛⎭⎪⎫0,π2,求tan ⎝⎛⎭⎪⎫α+π4的值.解:(1)f (x )=cos ⎝ ⎛⎭⎪⎫-x 2+sin ⎝ ⎛⎭⎪⎫π-x 2=sin x 2+cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π4,故f (x )的最小正周期T =2π12=4π.(2)由f (α)=2105,得sin α2+cos α2=2105,则⎝ ⎛⎭⎪⎫sin α2+cos α22=⎝ ⎛⎭⎪⎫21052,即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎪⎫0,π2,则cos α=1-sin 2α=1-925=45, 故tan α=sin αcos α=34,所以tan ⎝⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为( )A .1B.110C .1或110D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg 10a +lg ⎝ ⎛⎭⎪⎫1a1-lg 10a ²lg ⎝ ⎛⎭⎪⎫1a =1⇒lg 2a +lga =0,所以lg a =0或lg a =-1,即a =1或110.2.化简sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝ ⎛⎭⎪⎫α+π6-sin 2α的结果是________.解析:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α²cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:123.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95,即1+sin 2α=95,∴sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β, ∴cos 2β=-2425,又∵2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4,∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β =255 ³⎝ ⎛⎭⎪⎫-2425-55³725=-11525.1.(2012²北京西城区期末)已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ²(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎪⎫2x -π3+32. 因为x ∈⎣⎢⎡⎦⎥⎤π2,π,所以2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3;当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32.2.已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值;解:∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π.∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=1-⎝ ⎛⎭⎪⎫232=53, sin ⎝ ⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2= 1-⎝ ⎛⎭⎪⎫-192=459.∴cosα+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=-19³53+459³23=7527.∴cos(α+β)=2cos 2α+β2-1=2³49³5729-1=-239729.。