physI-09
- 格式:doc
- 大小:194.50 KB
- 文档页数:6
中文名 拉丁名发表时间刊物 科、属 基因组大小拟南芥Arab idopsis th alian a2000、12 Nature 十字花科、鼠耳芥属 125M水稻Oryza sativa 、 ssp 、 ind ica2002、04 Sc ienc e禾本科、稻属 466M水稻 O ryz a sa tiva 、 ssp 、 japonica2002、04 S ci ence禾本科、稻属 466M杨树 Popul us tr ichoca rpa2006、09S cien ce 杨柳科、杨属 480M 葡萄 Viti s vi nif era2007、09 Na tur e 葡萄科、葡萄属 490M 衣藻Ch lam ydo mon as reinhardt ii2007、01 S cience衣藻科、衣藻属130 M小立碗藓 Ph ysit re ll a pattens 2008、01 S c ie nce 葫芦藓科、小立碗藓属 480M 番木瓜 Carica papa ya 2008、04N ature番木瓜科、番木瓜属 370M 百脉根 Lotus ja poni cus 2008、05 DNA R es 、 豆科 472 Mb 三角褐指藻 P haeodac ty lum tricornu tum2008、11Na ture褐指藻属 27、4M 高粱 So rghum bicolo r 2009、01 N atu re 禾本科、高粱属 730M 玉米Zea mays ss p、 may s2009、11 Scie nce禾本科、玉米属2300M黄瓜Cucumi s sa tiv us2009、11N atu re Ge net ic s 葫芦科、黄瓜属 350M大豆 Glycine max 2010、01Nature豆科、大豆属 1100M二穗短柄草 Brachypodium distachyo n 2010、02 Nat ure 禾本科、短柄草属 260M 褐藻 Ec toca rpus 2010、06 N a ture 水云属 196M 团藻 V olv ox carter i 2010、07 Scie nc e团藻属138M 蓖麻R icinu s mu nis2010、08 Nature Biotech nol ogy大戟科、蓖麻属350M 小球藻 Chlorella v ariab ilis 2010、09 Plant Ce ll 小球藻科46M 苹果Malus × do mesti ca 2010、09 Natur e Genetic s 蔷薇科、苹果属 742M 森林草莓 Frag aria vesca 2010、12 Na ture Gene ti cs 蔷薇科、草莓属240M 可可树 Theo broma cacao2010、12 Nature G ene tics 梧桐科、可可属430-Mb野生大豆 Gl yc ine s oja 2010、12 PNAS 豆科、大豆属 915、4 Mb 褐潮藻类 Aureoc oc cus a nophagefferens2011、02 P NA S57M 麻风树 Ja tro ph a c urc as 2010、12 DNA R es 、 大戟科、麻风树属 410M 卷柏Sel ag in ella moel le nd or ffii2011、05 Scie nc e 卷柏属212M枣椰树 P hoenix dact ylifera2011、05 Na ture bio technol ogy棕榈科685M琴叶拟南芥Arabid ops is lyra ta 2011、05 N atur e Gen etics十字花科、鼠耳芥属 206、7 Mb马铃薯 Solanum tubero sum2011、07 N ature茄目、茄科、茄属 844M 条叶蓝芥 Thel lug iella parvula 2011、08N at ureGenetics 盐芥属140M白菜Bra ssica rapa2011、08Nature Ge netic s十字花科、芸薹属 485M印度大麻 Ca nnabis sativ a2011、1 G en ome b iology 大麻属534M木豆 Caj an us caj an 2011、11Nature bio technol ogy豆科、木豆属 833M 蒺藜苜蓿 Medicago trunc atu la 2011、11 Natur e 豆科苜蓿属 500M 蓝载藻 Cyanophor a par adox a 2012、02 Sci enc e 灰胞藻门 70M 谷子Se ta ria i talica 2012、05Natur e biotec hnol ogy禾本科、狗尾草属490M 谷子 Set aria ita li ca2012、05Nature biotechnolo gy禾本科、狗尾草属预估510M,组装出400M 番茄 So lanu m lycop ersicu m 2012、05 Natur e茄科、茄属 900M b 甜瓜 Cucumi s melo2012、07 PNAS葫芦科、甜瓜属 450Mb 亚麻 Li num usitatiss imum 2012、07 Pla nt Journal亚麻科、亚麻属 373M b 盐芥 The ll un giell a salsugin ea 2012、07 PNAS 十字花科、盐芥属 260Mb 香蕉Musa a cuminata2012、07 Nature芭蕉科、芭蕉属523M b 雷蒙德氏棉 Gossypi um r ai mond ii2012、08 Natu re Genet ics 锦葵科、棉属775、2Mb 大麦 H or deum vulg ar e 2012、1 Na ture 禾本科、大麦属 5、1G b 梨P yrus bretsch ne ide ri2012、11Ge no me Research蔷薇科、梨属527Mb西瓜 Cit ru llus l anatus2012、11 Nature Geneti cs 葫芦科、西瓜属425 Mb甜橙 C itrus sin en si s 2012、11 N atur e Genet ics 芸香科、柑橘属367 Mb 小麦Tri ticu m aestiv um2012、11 Nature禾本科、小麦属17Gb 两种小型藻 Bige lowi ella n ata ns ,Guil lard ia t het a 2012、11 N a ture95Mb 87Mb棉花(雷蒙德氏棉) Go ssypi um rai mondii2012、12 N ature 锦葵科、棉属761、4M b梅花P runus mume2012、12Natur emunications蔷薇科、梨属 280M鹰嘴豆 Ci ce r arietinu m2013、01 N atu re bi otechnolo gy 豆科、鹰嘴豆属738M b橡胶树 H evea bra siliensi s2013、02 BMC Ge nomi cs 大戟科、橡胶树属2、15Gb毛竹 Phyll ost ac hys het eroc ycla2013、02Nat ure G enetics竹科、钢竹属2、075 Gb短花药野生稻O ryza bra chyantha 2013、03Nature m uni cat ions禾本科稻属 342Mb —362Mb 小麦A Triticum ur art u 2013、03 N atu re 禾本科、小麦属 4、94 Gb 小麦DgrassAegilo ps ta uschi i2013、03 Natu re 禾本科、小麦属4、36Gb桃树 Pr unus persi ca2013、03Na tur e Gene tic s蔷薇科、梨属 265 Mb 丝叶狸藻 Utricul aria gib ba 2013、05 Natu re 狸藻科、狸藻属 82Mb 中国莲Nelumb o n ucifer a Gaertn2013、05Ge nom ebiology 睡莲科、莲属 929 Mb 挪威云杉 Pi ce a abi es 2013、05 Nature 松科、云杉属 19、6G 海洋球石藻 Emil iani a huxleyi2013、06 N ature定鞭藻纲141、7M b虫黄藻Sy mb io di nium minutum2013、07 C urrent Bio logy甲藻门1、5G油棕榈Ela ei s guine en sis 2013、07 Natur e棕榈科、油棕榈属1、8G枣椰树 Pho en ix dact ylifera2013、08Na tu re muni cati ons棕榈科、刺葵属 671 M b醉蝶花 Tarena ya ha ssl er ian a2013、08 Pl ant Ce ll 醉蝶花科、醉蝶花属 290 Mb莲 Nelumbo nuci fera 2013、08 Pla nt Jo urnal 睡莲科、莲属 879 M b 桑树Mor us notabilis2013、09N atu re municat io ns桑科、桑属357 Mb猕猴桃 Actin idia ch inen si s 2013、10 Natur e m unications 猕猴桃属616、1 Mb胡杨 Populu s euphr ati ca 2013、11Nat ure municati ons杨属 496、5 Mb 八倍体草莓F 、 x ananassa 2013、12 D NA Researc h草莓属698 Mb康乃馨ﻫ Dianthu s c aryo phyllus L、2013、12 DNA Re search 石竹属ﻫ622 M b甜菜 Beta vulgari s ssp 、 vu lg ar is2013、12 Nat ure 藜科甜菜属566、6 Mb无油樟(互叶梅)Ambo rella tr ich opoda2013、12 S cience无油樟属 748 Mb ﻫ辣椒Capsicum annu um (Criolo de More los 334)ﻫ2014、1ﻫ Nat ure Gen eti cs 辣椒属ﻫ3、48G芝麻ﻫSesam um i nd icu m2014、2ﻫGeno me B iology ﻫ 胡麻科胡麻属274 M b辣椒 C apsicum a nn uum (Zunla-1)2014、3PNAS辣椒属3、48G火炬松 Pi nus tae da(Lo blo lly p ine)2014、3 G enom e Biolog yﻫ 松属 23、2G棉花(亚洲棉) Gossy pium arbor eum ﻫ2014、5ﻫ Natur e Genetics ﻫ 锦葵科、棉属 1694Mb ﻫ萝卜Rapha nus sativus L、 2014、5 DN A Resear ch ﻫ十字花科、萝卜属 402Mb甘蓝Br as sica ole racea2014、5ﻫ Natur e mu nicatio ns十字花科、芸薹属 630Mb菜豆Phaseolus vulgarisL、2014、6 Nature Geneticsﻫ豆科,菜豆属587Mb野生大豆Glycinesojaﻫ2014、7Nature municationsﻫ豆科、大豆属868Mb普通小麦ﻫTriticumaestivum2014、7ﻫScience禾本科ﻫ17Gbﻫ野生西红柿Solanum pennellii2014、7 Nature Geneticsﻫﻫ茄科ﻫ942Mbﻫ非洲野生稻Oryzaglaberrima2014、8 Nature Genetics禾本科ﻫ316Mb油菜ﻫBrassicanapus 2014、8 Science十字花科ﻫ630Mb中果咖啡Coffeacanephora2014、9Science 茜草科,咖啡属710 Mb茄子Solanum melongena2014、9DNA Research茄科、茄属1093Mb多个野生大豆Glycine soja2014、9Naturebiotechnology豆科、大豆属889、33~1,118、34 Mb绿豆Vigna radiata2014、10Nature munications豆科、豇豆属543Mb啤酒花Humulus lupulus 2014、11Plant and CellPhysiology大麻科、葎草属2、57 Gbﻫ蝴蝶兰Phalaenopsisequestri2014、11Nature Genetics兰科、蝴蝶兰属ﻫ1、16 Gb DNA有哪些种类?一、染色体DNA原核生物与真核生物均含有染色体DNA,基因组大小物种间差异较大。
·论 著·水通道蛋白5在乳腺浸润性导管癌中表达及与肿瘤转移之间的关系姜廷枢1,赵恒成2,张 红3,徐德魁4,李胜岐1 〔摘要〕 目的:探讨水通道蛋白5在乳腺浸润性导管癌组织中的表达与分布及与乳腺浸润性导管癌组织学分级和转移之间的关系。
方法:采用免疫组织化学方法,对90例乳腺浸润性导管癌组织及作为对照的癌旁组织中水通道蛋白表达情况进行检测,并与淋巴结转移和组织学分级进行分析。
结果:水通道蛋白5主要表达于正常乳腺和癌组织细胞膜和细胞浆中。
组织学分级Ⅲ级癌组织水通道蛋白高表达率明显高于组织学分级Ⅰ级和Ⅱ级患者;淋巴结转移的乳腺癌组织中水通道蛋白5高表达率明显高于无淋巴结转移者。
结论:水通道蛋白5可能在乳腺癌肿瘤形成和发展过程中起重要作用,有望成为预测乳腺癌转移和评估预后的重要指标和治疗靶点。
〔关键词〕 乳腺癌;水通道蛋白5;肿瘤转移 中图分类号:R737.9 文献标识码:A 文章编号:1674-3474(2010)03-0229-02Expression of aquaporin5in breast infiltrating duct carcinoma and its correlation with tumor metastasis JIANG Ting shu,ZHAO H engcheng,ZH ANG H ong,et al.Depar tment of Respirato ry,Shengjing Affiliated H ospital to China Medical U niversity,Shenyang110004,China 〔Abstract〕Objective To study the expressio n and distribution of aquapo rin5in breast infiltrating duct carcinoma and to analy ze its cor relation w ith patholo gical g rades and metastasis.Methods SPim muno chem ical method w as used to detect the ex pression of aquaporin5in the tissues o f90patients with breast infiltrating duct carcinom a.The patho logical g rades and metastasis factor s w ere statistically analy zed.Results Aquapo rin5w as mainly expressed in cell membrane,cy toplasm ofno rmal breast ductal epithelial cells and cancer cells.T he hig h expressio n rate of aquapo rin5w ashig her in cells o f breast ca rcino ma histological stageⅢthan that in stag eⅠandⅡ,and increased significantly in patients w ith lym phatic me tastasis.Conclusion Aquapo rin5ex pression may play anim po rtant ro le in the breast carcinogenesis and prog ressio n.The expression of aquapo rin5can be taken as the biological m arker of prog no sis and metastasis and be used as a target of therapies fo r breast carcinoma. 〔Key words〕Breast carcino ma;aquapo rin5;neoplasm metastasis 水通道蛋白(aquapo rins,AQ P)作为水转运通道在体内液体转运和某些腺体的分泌方面起重要生理作用。
冠状动脉钙化的相关研究进展李颖1,李志勇2,苏婷21.重庆医科大学第五临床医学院,重庆402160;2.重庆医科大学附属永川医院心内科,重庆402160[摘要]冠状动脉钙化(coronary artery calcification, CAC)是冠状动脉粥样硬化性心脏病(简称冠心病)患者中常见的病理改变,反映了粥样硬化斑块的总负荷,CAC使冠心病患者发生主要不良心脏事件的概率大幅增加。
目前关于CAC的形成机制尚未明确,药物治疗尚未成功,手术治疗疗效欠佳,患者临床结局差。
过去认为CAC是与自然衰老密切相关的被动过程,近年来,人们更倾向于CAC是一种受多种复杂的信号通路共同调节的主动过程,具有代谢综合征和2型糖尿病的系统性炎症特征。
血管成像技术,如血管内超声(intrave⁃nous ultrasound,IVUS)、光学相关断层扫描(optical coherence tomography, OCT)等的发展,正在改变CAC的介入治疗决策。
故本文综述了关于CAC的病理生理学、流行病学、影像学检查及治疗等方面的最新研究成果,旨在为临床工作中CAC高危人群的早期筛查,合理选择CAC检查手段及手术方式,提高患者预后提供参考。
[关键词]冠状动脉钙化;病理生理学;影像学检查;治疗[中图分类号]R59 [文献标识码]A [文章编号]2096-1782(2023)09(b)-0187-04 Research Progress of Coronary Artery CalcificationLI Ying1, LI Zhiyong2, SU Ting21.The Fifth Clinical Medical College of Chongqing Medical University, Chongqing, 402160 China;2.Department of Cardiology, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, 402160 China [Abstract] Coronary artery calcification (CAC) is a common pathological change in patients with coronary atheroscle⁃rotic cardiopathy (also called coronary heart disease), reflecting the total burden of atherosclerotic plaque. CAC greatly increases the probability of major adverse cardiac events in patients with coronary heart disease. At present, the forma⁃tion mechanism of CAC is not clear, drug therapy has not been successful, surgical treatment is not effective, and the clinical outcome of patients is poor. In the past, CAC was considered to be a passive process closely related to natural aging. In recent years, CAC is more likely to be an active process regulated by multiple complex signaling pathways, with systemic inflammatory features of metabolic syndrome and type 2 diabetes. The development of vascular imaging technologies, such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT), is changing the inter⁃ventional treatment decisions for CAC. Therefore, this paper summarized the latest research results on the pathophysi⁃ology, epidemiology, imaging examination and treatment of CAC, aiming to provide references for early screening of high-risk CAC patients in clinical work, reasonable selection of CAC examination methods and surgical methods, and improvement of patient prognosis.[Key words] Coronary artery calcification; Pathophysiology; Imaging examination; Treatment近年来,冠状动脉钙化(coronary artery calcifica⁃tion, CAC)作为冠状动脉粥样斑块总负荷的重要标志物受到众多关注,钙化病变通常与较大的斑块负担和更大程度的病变复杂性有关,包括累及冠状动脉分叉或慢性完全闭塞[1]。
a r X i v :h e p -p h /9812285v 1 8 D e c 1998The Standard Model of Particle PhysicsMary K.Gaillard 1,Paul D.Grannis 2,and Frank J.Sciulli 31University of California,Berkeley,2State University of New York,Stony Brook,3Columbia UniversityParticle physics has evolved a coherent model that characterizes forces and particles at the mostelementary level.This Standard Model,built from many theoretical and experimental studies,isin excellent accord with almost all current data.However,there are many hints that it is but anapproximation to a yet more fundamental theory.We trace the development of the Standard Modeland indicate the reasons for believing that it is incomplete.Nov.20,1998(To be published in Reviews of Modern Physics)I.INTRODUCTION:A BIRD’S EYE VIEW OF THE STANDARD MODEL Over the past three decades a compelling case has emerged for the now widely accepted Standard Model of elementary particles and forces.A ‘Standard Model’is a theoretical framework built from observation that predicts and correlates new data.The Mendeleev table of elements was an early example in chemistry;from the periodic table one could predict the properties of many hitherto unstudied elements and compounds.Nonrelativistic quantum theory is another Standard Model that has correlated the results of countless experiments.Like its precursors in other fields,the Standard Model (SM)of particle physics has been enormously successful in predicting a wide range of phenomena.And,just as ordinary quantum mechanics fails in the relativistic limit,we do not expect the SM to be valid at arbitrarily short distances.However its remarkable success strongly suggests that the SM will remain an excellent approximation to nature at distance scales as small as 10−18m.In the early 1960’s particle physicists described nature in terms of four distinct forces,characterized by widely different ranges and strengths as measured at a typical energy scale of 1GeV.The strong nuclear force has a range of about a fermi or 10−15m.The weak force responsible for radioactive decay,with a range of 10−17m,is about 10−5times weaker at low energy.The electromagnetic force that governs much of macroscopic physics has infinite range and strength determined by the finestructure constant,α≈10−2.The fourth force,gravity,also has infinite range and a low energy coupling (about 10−38)too weak to be observable in laboratory experiments.The achievement of the SM was the elaboration of a unified description of the strong,weak and electromagnetic forces in the language of quantum gauge field theories.Moreover,the SM combines the weak and electromagnetic forces in a single electroweak gauge theory,reminiscent of Maxwell’s unification of the seemingly distinct forces of electricity and magnetism.By mid-century,the electromagnetic force was well understood as a renormalizable quantum field theory (QFT)known as quantum electrodynamics or QED,described in the preceeding article.‘Renormalizable’means that once a few parameters are determined by a limited set of measurements,the quantitative features of interactions among charged particles and photons can be calculated to arbitrary accuracy as a perturbative expansion in the fine structure constant.QED has been tested over an energy range from 10−16eV to tens of GeV,i.e.distances ranging from 108km to 10−2fm.In contrast,the nuclear force was characterized by a coupling strength that precluded a perturbativeexpansion.Moreover,couplings involving higher spin states(resonances),that appeared to be onthe same footing as nucleons and pions,could not be described by a renormalizable theory,nor couldthe weak interactions that were attributed to the direct coupling of four fermions to one another.In the ensuing years the search for renormalizable theories of strong and weak interactions,coupledwith experimental discoveries and attempts to interpret available data,led to the formulation ofthe SM,which has been experimentally verified to a high degree of accuracy over a broad range ofenergy and processes.The SM is characterized in part by the spectrum of elementaryfields shown in Table I.The matterfields are fermions and their anti-particles,with half a unit of intrinsic angular momentum,or spin.There are three families of fermionfields that are identical in every attribute except their masses.Thefirst family includes the up(u)and down(d)quarks that are the constituents of nucleons aswell as pions and other mesons responsible for nuclear binding.It also contains the electron and theneutrino emitted with a positron in nuclearβ-decay.The quarks of the other families are constituentsof heavier short-lived particles;they and their companion charged leptons rapidly decay via the weakforce to the quarks and leptons of thefirst family.The spin-1gauge bosons mediate interactions among fermions.In QED,interactions among elec-trically charged particles are due to the exchange of quanta of the electromagneticfield called photons(γ).The fact that theγis massless accounts for the long range of the electromagnetic force.Thestrong force,quantum chromodynamics or QCD,is mediated by the exchange of massless gluons(g)between quarks that carry a quantum number called color.In contrast to the electrically neutralphoton,gluons(the quanta of the‘chromo-magnetic’field)possess color charge and hence couple toone another.As a consequence,the color force between two colored particles increases in strengthwith increasing distance.Thus quarks and gluons cannot appear as free particles,but exist onlyinside composite particles,called hadrons,with no net color charge.Nucleons are composed ofthree quarks of different colors,resulting in‘white’color-neutral states.Mesons contain quark andanti-quark pairs whose color charges cancel.Since a gluon inside a nucleon cannot escape its bound-aries,the nuclear force is mediated by color-neutral bound states,accounting for its short range,characterized by the Compton wavelength of the lightest of these:theπ-meson.The even shorter range of the weak force is associated with the Compton wave-lengths of thecharged W and neutral Z bosons that mediate it.Their couplings to the‘weak charges’of quarksand leptons are comparable in strength to the electromagnetic coupling.When the weak interactionis measured over distances much larger than its range,its effects are averaged over the measurementarea and hence suppressed in amplitude by a factor(E/M W,Z)2≈(E/100GeV)2,where E is the characteristic energy transfer in the measurement.Because the W particles carry electric charge theymust couple to theγ,implying a gauge theory that unites the weak and electromagnetic interactions,similar to QCD in that the gauge particles are self-coupled.In distinction toγ’s and gluons,W’scouple only to left-handed fermions(with spin oriented opposite to the direction of motion).The SM is further characterized by a high degree of symmetry.For example,one cannot performan experiment that would distinguish the color of the quarks involved.If the symmetries of theSM couplings were fully respected in nature,we would not distinguish an electron from a neutrinoor a proton from a neutron;their detectable differences are attributed to‘spontaneous’breakingof the symmetry.Just as the spherical symmetry of the earth is broken to a cylindrical symmetry by the earth’s magneticfield,afield permeating all space,called the Higgsfield,is invoked to explain the observation that the symmetries of the electroweak theory are broken to the residual gauge symmetry of QED.Particles that interact with the Higgsfield cannot propagate at the speed of light,and acquire masses,in analogy to the index of refraction that slows a photon traversing matter.Particles that do not interact with the Higgsfield—the photon,gluons and possibly neutrinos–remain massless.Fermion couplings to the Higgsfield not only determine their masses; they induce a misalignment of quark mass eigenstates with respect to the eigenstates of the weak charges,thereby allowing all fermions of heavy families to decay to lighter ones.These couplings provide the only mechanism within the SM that can account for the observed violation of CP,that is,invariance of the laws of nature under mirror reflection(parity P)and the interchange of particles with their anti-particles(charge conjugation C).The origin of the Higgsfield has not yet been determined.However our very understanding of the SM implies that physics associated with electroweak symmetry breaking(ESB)must become manifest at energies of present colliders or at the LHC under construction.There is strong reason, stemming from the quantum instability of scalar masses,to believe that this physics will point to modifications of the theory.One shortcoming of the SM is its failure to accommodate gravity,for which there is no renormalizable QFT because the quantum of the gravitationalfield has two units of spin.Recent theoretical progress suggests that quantum gravity can be formulated only in terms of extended objects like strings and membranes,with dimensions of order of the Planck length10−35m. Experiments probing higher energies and shorter distances may reveal clues connecting SM physics to gravity,and may shed light on other questions that it leaves unanswered.In the following we trace the steps that led to the formulation of the SM,describe the experiments that have confirmed it,and discuss some outstanding unresolved issues that suggest a more fundamental theory underlies the SM.II.THE PATH TO QCDThe invention of the bubble chamber permitted the observation of a rich spectroscopy of hadron states.Attempts at their classification using group theory,analogous to the introduction of isotopic spin as a classification scheme for nuclear states,culminated in the‘Eightfold Way’based on the group SU(3),in which particles are ordered by their‘flavor’quantum numbers:isotopic spin and strangeness.This scheme was spectacularly confirmed by the discovery at Brookhaven Laboratory (BNL)of theΩ−particle,with three units of strangeness,at the predicted mass.It was subsequently realized that the spectrum of the Eightfold Way could be understood if hadrons were composed of three types of quarks:u,d,and the strange quark s.However the quark model presented a dilemma: each quark was attributed one half unit of spin,but Fermi statistics precluded the existence of a state like theΩ−composed of three strange quarks with total spin3A combination of experimental observations and theoretical analyses in the1960’s led to anotherimportant conclusion:pions behave like the Goldstone bosons of a spontaneously broken symmetry,called chiral symmetry.Massless fermions have a conserved quantum number called chirality,equalto their helicity:+1(−1)for right(left)-handed fermions.The analysis of pion scattering lengths andweak decays into pions strongly suggested that chiral symmetry is explicitly broken only by quarkmasses,which in turn implied that the underlying theory describing strong interactions among quarksmust conserve quark helicity–just as QED conserves electron helicity.This further implied thatinteractions among quarks must be mediated by the exchange of spin-1particles.In the early1970’s,experimenters at the Stanford Linear Accelerator Center(SLAC)analyzed thedistributions in energy and angle of electrons scattered from nuclear targets in inelastic collisionswith momentum transfer Q2≈1GeV/c from the electron to the struck nucleon.The distributions they observed suggested that electrons interact via photon exchange with point-like objects calledpartons–electrically charged particles much smaller than nucleons.If the electrons were scatteredby an extended object,e.g.a strongly interacting nucleon with its electric charge spread out by acloud of pions,the cross section would drop rapidly for values of momentum transfer greater than theinverse radius of the charge distribution.Instead,the data showed a‘scale invariant’distribution:across section equal to the QED cross section up to a dimensionless function of kinematic variables,independent of the energy of the incident electron.Neutrino scattering experiments at CERN andFermilab(FNAL)yielded similar parison of electron and neutrino data allowed adetermination of the average squared electric charge of the partons in the nucleon,and the result wasconsistent with the interpretation that they are fractionally charged quarks.Subsequent experimentsat SLAC showed that,at center-of-mass energies above about two GeV,thefinal states in e+e−annihilation into hadrons have a two-jet configuration.The angular distribution of the jets withrespect to the beam,which depends on the spin of thefinal state particles,is similar to that of themuons in anµ+µ−final state,providing direct evidence for spin-1√where G F is the Fermi coupling constant,γµis a Dirac matrix and12fermions via the exchange of spinless particles.Both the chiral symmetry of thestrong interactions and the V−A nature of the weak interactions suggested that all forces except gravity are mediated by spin-1particles,like the photon.QED is renormalizable because gauge invariance,which gives conservation of electric charge,also ensures the cancellation of quantum corrections that would otherwise result in infinitely large amplitudes.Gauge invariance implies a massless gauge particle and hence a long-range force.Moreover the mediator of weak interactions must carry electric charge and thus couple to the photon,requiring its description within a Yang-Mills theory that is characterized by self-coupled gauge bosons.The important theoretical breakthrough of the early1970’s was the proof that Yang-Mills theories are renormalizable,and that renormalizability remains intact if gauge symmetry is spontaneously broken,that is,if the Lagrangian is gauge invariant,but the vacuum state and spectrum of particles are not.An example is a ferromagnet for which the lowest energy configuration has electron spins aligned;the direction of alignment spontaneously breaks the rotational invariance of the laws ofphysics.In QFT,the simplest way to induce spontaneous symmetry breaking is the Higgs mech-anism.A set of elementary scalarsφis introduced with a potential energy density function V(φ) that is minimized at a value<φ>=0and the vacuum energy is degenerate.For example,the gauge invariant potential for an electrically charged scalarfieldφ=|φ|e iθ,V(|φ|2)=−µ2|φ|2+λ|φ|4,(3)√λ=v,but is independent of the phaseθ.Nature’s choice forθhas its minimum atspontaneously breaks the gauge symmetry.Quantum excitations of|φ|about its vacuum value are massive Higgs scalars:m2H=2µ2=2λv2.Quantum excitations around the vacuum value ofθcost no energy and are massless,spinless particles called Goldstone bosons.They appear in the physical spectrum as the longitudinally polarized spin states of gauge bosons that acquire masses through their couplings to the Higgsfield.A gauge boson mass m is determined by its coupling g to theHiggsfield and the vacuum value v.Since gauge couplings are universal this also determines the√Fermi constant G for this toy model:m=gv/2,G/2|φ|=212F=246GeV,leaving three Goldstone bosons that are eaten by three massive vector bosons:W±and Z=cosθw W0−sinθw B0,while the photonγ=cosθw B0+sinθw W0remains massless.This theory predicted neutrino-induced neutral current(NC)interactions of the typeν+atom→ν+anything,mediated by Z exchange.The weak mixing angleθw governs the dependence of NC couplings on fermion helicity and electric charge, and their interaction rates are determined by the Fermi constant G Z F.The ratioρ=G Z F/G F= m2W/m2Z cos2θw,predicted to be1,is the only measured parameter of the SM that probes thesymmetry breaking mechanism.Once the value ofθw was determined in neutrino experiments,the√W and Z masses could be predicted:m2W=m2Z cos2θw=sin2θwπα/QUARKS:S=1LEPTONS:S=13m3m Q=0m quanta mu1u2u3(2–8)10−3e 5.11×10−4c1c2c3 1.0–1.6µ0.10566t1t2t3173.8±5.0τ 1.77705/3g′,where g1isfixed by requiring the same normalization for all fermion currents.Their measured values at low energy satisfy g3>g2>g1.Like g3,the coupling g2decreases with increasing energy,but more slowly because there are fewer gauge bosons contributing.As in QED,the U(1)coupling increases with energy.Vacuum polarization effects calculated using the particle content of the SM show that the three coupling constants are very nearly equal at an energy scale around1016GeV,providing a tantalizing hint of a more highly symmetric theory,embedding the SM interactions into a single force.Particle masses also depend on energy;the b andτmasses become equal at a similar scale,suggesting a possibility of quark and lepton unification as different charge states of a singlefield.V.BRIEF SUMMARY OF THE STANDARD MODEL ELEMENTSThe SM contains the set of elementary particles shown in Table I.The forces operative in the particle domain are the strong(QCD)interaction responsive to particles carrying color,and the two pieces of the electroweak interaction responsive to particles carrying weak isospin and hypercharge. The quarks come in three experimentally indistinguishable colors and there are eight colored gluons. All quarks and leptons,and theγ,W and Z bosons,carry weak isospin.In the strict view of the SM,there are no right-handed neutrinos or left-handed anti-neutrinos.As a consequence the simple Higgs mechanism described in section IV cannot generate neutrino masses,which are posited to be zero.In addition,the SM provides the quark mixing matrix which gives the transformation from the basis of the strong interaction charge−1Finding the constituents of the SM spanned thefirst century of the APS,starting with the discovery by Thomson of the electron in1897.Pauli in1930postulated the existence of the neutrino as the agent of missing energy and angular momentum inβ-decay;only in1953was the neutrino found in experiments at reactors.The muon was unexpectedly added from cosmic ray searches for the Yukawa particle in1936;in1962its companion neutrino was found in the decays of the pion.The Eightfold Way classification of the hadrons in1961suggested the possible existence of the three lightest quarks(u,d and s),though their physical reality was then regarded as doubtful.The observation of substructure of the proton,and the1974observation of the J/ψmeson interpreted as a cp collider in1983was a dramatic confirmation of this theory.The gluon which mediates the color force QCD wasfirst demonstrated in the e+e−collider at DESY in Hamburg.The minimal version of the SM,with no right-handed neutrinos and the simplest possible ESB mechanism,has19arbitrary parameters:9fermion masses;3angles and one phase that specify the quark mixing matrix;3gauge coupling constants;2parameters to specify the Higgs potential; and an additional phaseθthat characterizes the QCD vacuum state.The number of parameters is larger if the ESB mechanism is more complicated or if there are right-handed neutrinos.Aside from constraints imposed by renormalizability,the spectrum of elementary particles is also arbitrary.As discussed in Section VII,this high degree of arbitrariness suggests that a more fundamental theory underlies the SM.VI.EXPERIMENTAL ESTABLISHMENT OF THE STANDARD MODELThe current picture of particles and interactions has been shaped and tested by three decades of experimental studies at laboratories around the world.We briefly summarize here some typical and landmark results.FIG.1.The proton structure function(F2)versus Q2atfixed x,measured with incident electrons or muons,showing scale invariance at larger x and substantial dependence on Q2as x becomes small.The data are taken from the HERA ep collider experiments H1and ZEUS,as well as the muon scattering experiments BCDMS and NMC at CERN and E665at FNAL.A.Establishing QCD1.Deep inelastic scatteringPioneering experiments at SLAC in the late1960’s directed high energy electrons on proton and nuclear targets.The deep inelastic scattering(DIS)process results in a deflected electron and a hadronic recoil system from the initial baryon.The scattering occurs through the exchange of a photon coupled to the electric charges of the participants.DIS experiments were the spiritual descendents of Rutherford’s scattering ofαparticles by gold atoms and,as with the earlier experi-ment,showed the existence of the target’s substructure.Lorentz and gauge invariance restrict the matrix element representing the hadronic part of the interaction to two terms,each multiplied by phenomenological form factors or structure functions.These in principle depend on the two inde-pendent kinematic variables;the momentum transfer carried by the photon(Q2)and energy loss by the electron(ν).The experiments showed that the structure functions were,to good approximation, independent of Q2forfixed values of x=Q2/2Mν.This‘scaling’result was interpreted as evi-dence that the proton contains sub-elements,originally called partons.The DIS scattering occurs as the elastic scatter of the beam electron with one of the partons.The original and subsequent experiments established that the struck partons carry the fractional electric charges and half-integer spins dictated by the quark model.Furthermore,the experiments demonstrated that three such partons(valence quarks)provide the nucleon with its quantum numbers.The variable x represents the fraction of the target nucleon’s momentum carried by the struck parton,viewed in a Lorentz frame where the proton is relativistic.The DIS experiments further showed that the charged partons (quarks)carry only about half of the proton momentum,giving indirect evidence for an electrically neutral partonic gluon.1011010101010FIG.2.The quark and gluon momentum densities in the proton versus x for Q 2=20GeV 2.The integrated values of each component density gives the fraction of the proton momentum carried by that component.The valence u and d quarks carry the quantum numbers of the proton.The large number of quarks at small x arise from a ‘sea’of quark-antiquark pairs.The quark densities are from a phenomenological fit (the CTEQ collaboration)to data from many sources;the gluon density bands are the one standard deviation bounds to QCD fits to ZEUS data (low x )and muon scattering data (higher x ).Further DIS investigations using electrons,muons,and neutrinos and a variety of targets refined this picture and demonstrated small but systematic nonscaling behavior.The structure functions were shown to vary more rapidly with Q 2as x decreases,in accord with the nascent QCD prediction that the fundamental strong coupling constant αS varies with Q 2,and that at short distance scales (high Q 2)the number of observable partons increases due to increasingly resolved quantum fluc-tuations.Figure 1shows sample modern results for the Q 2dependence of the dominant structure function,in excellent accord with QCD predictions.The structure function values at all x depend on the quark content;the increases at larger Q 2depend on both quark and gluon content.The data permit the mapping of the proton’s quark and gluon content exemplified in Fig.2.2.Quark and gluon jetsThe gluon was firmly predicted as the carrier of the color force.Though its presence had been inferred because only about half the proton momentum was found in charged constituents,direct observation of the gluon was essential.This came from experiments at the DESY e +e −collider (PETRA)in 1979.The collision forms an intermediate virtual photon state,which may subsequently decay into a pair of leptons or pair of quarks.The colored quarks cannot emerge intact from the collision region;instead they create many quark-antiquark pairs from the vacuum that arrange themselves into a set of colorless hadrons moving approximately in the directions of the original quarks.These sprays of roughly collinear particles,called jets,reflect the directions of the progenitor quarks.However,the quarks may radiate quanta of QCD (a gluon)prior to formation of the jets,just as electrons radiate photons.If at sufficiently large angle to be distinguished,the gluon radiation evolves into a separate jet.Evidence was found in the event energy-flow patterns for the ‘three-pronged’jet topologies expected for events containing a gluon.Experiments at higher energy e +e −colliders illustrate this gluon radiation even better,as shown in Fig.3.Studies in e +e −and hadron collisions have verified the expected QCD structure of the quark-gluon couplings,and their interference patterns.FIG.3.A three jet event from the OPAL experiment at LEP.The curving tracks from the three jets may be associated with the energy deposits in the surrounding calorimeter,shown here as histograms on the middle two circles,whose bin heights are proportional to energy.Jets1and2contain muons as indicated,suggesting that these are both quark jets(likely from b quarks).The lowest energy jet3is attributed to a radiated gluon.3.Strong coupling constantThe fundamental characteristic of QCD is asymptotic freedom,dictating that the coupling constant for color interactions decreases logarithmically as Q2increases.The couplingαS can be measured in a variety of strong interaction reactions at different Q2scales.At low Q2,processes like DIS,tau decays to hadrons,and the annihilation rate for e+e−into multi-hadronfinal states give accurate determinations ofαS.The decays of theΥinto three jets primarily involve gluons,and the rate for this decay givesαS(M2Υ).At higher Q2,studies of the W and Z bosons(for example,the decay width of the Z,or the fraction of W bosons associated with jets)measureαS at the100GeV scale. These and many other determinations have now solidified the experimental evidence thatαS does indeed‘run’with Q2as expected in QCD.Predictions forαS(Q2),relative to its value at some reference scale,can be made within perturbative QCD.The current information from many sources are compared with calculated values in Fig.4.4.Strong interaction scattering of partonsAt sufficiently large Q2whereαS is small,the QCD perturbation series converges sufficiently rapidly to permit accurate predictions.An important process probing the highest accessible Q2 scales is the scattering of two constituent partons(quarks or gluons)within colliding protons and antiprotons.Figure5shows the impressive data for the inclusive production of jets due to scattered partons in pp collisions reveals the structure of the scattering matrix element.These amplitudes are dominated by the exchange of the spin1gluon.If this scattering were identical to Rutherford scattering,the angular variable0.10.20.30.40.511010FIG.4.The dependence of the strong coupling constant,αS ,versus Q using data from DIS structure functions from e ,µ,and νbeam experiments as well as ep collider experiments,production rates of jets,heavy quark flavors,photons,and weak vector bosons in ep ,e +e −,and pt ,is sensitive not only to to perturbative processes,but reflectsadditional effects due to multiple gluon radiation from the scattering quarks.Within the limited statistics of current data samples,the top quark production cross section is also in good agreement with QCD.FIG.6.The dijet angular distribution from the DØexperiment plotted as a function ofχ(see text)for which Rutherford scattering would give dσ/dχ=constant.The predictions of NLO QCD(at scaleµ=E T/2)are shown by the curves.Λis the compositeness scale for quark/gluon substructure,withΛ=∞for no compositness(solid curve);the data rule out values of Λ<2TeV.5.Nonperturbative QCDMany physicists believe that QCD is a theory‘solved in principle’.The basic validity of QCD at large Q2where the coupling is small has been verified in many experimental studies,but the large coupling at low Q2makes calculation exceedingly difficult.This low Q2region of QCD is relevant to the wealth of experimental data on the static properties of nucleons,most hadronic interactions, hadronic weak decays,nucleon and nucleus structure,proton and neutron spin structure,and systems of hadronic matter with very high temperature and energy densities.The ability of theory to predict such phenomena has yet to match the experimental progress.Several techniques for dealing with nonperturbative QCD have been developed.The most suc-cessful address processes in which some energy or mass in the problem is large.An example is the confrontation of data on the rates of mesons containing heavy quarks(c or b)decaying into lighter hadrons,where the heavy quark can be treated nonrelativistically and its contribution to the matrix element is taken from experiment.With this phenomenological input,the ratios of calculated par-tial decay rates agree well with experiment.Calculations based on evaluation at discrete space-time points on a lattice and extrapolated to zero spacing have also had some success.With computing advances and new calculational algorithms,the lattice calculations are now advanced to the stage of calculating hadronic masses,the strong coupling constant,and decay widths to within roughly10–20%of the experimental values.The quark and gluon content of protons are consequences of QCD,much as the wave functions of electrons in atoms are consequences of electromagnetism.Such calculations require nonperturbative techniques.Measurements of the small-x proton structure functions at the HERA ep collider show a much larger increase of parton density with decreasing x than were extrapolated from larger x measurements.It was also found that a large fraction(∼10%)of such events contained afinal。
Ultomiris® (ravulizumab‐cwvz)(Intravenous/Subcutaneous)Document Number: IC‐0427 Last Review Date: 09/01/2022Date of Origin: 02/04/2019Dates Reviewed: 02/2019, 10/2019, 12/2019, 11/2020, 07/2021, 10/2021, 06/2022, 09/2022I.Length of AuthorizationCoverage will be provided for twelve (12) months and may be renewed.II.Dosing LimitsA.Quantity Limit (max daily dose) [NDC Unit]:-Ultomiris 10 mg/mL** – 30 mL SDV: 10 vials on day zero followed by 13 vials starting on day 14 and every 8 weeks thereafter-Ultomiris 100 mg/mL – 3 mL SDV: 10 vials on day zero followed by 13 vials starting on day 14 and every 8 weeks thereafter-Ultomiris 100 mg/mL – 11 mL SDV: 3 vials on day zero followed by 3 vials starting on day 14 and every 8 weeks thereafter-Ultomiris 245 mg/3.5 mL single-dose cartridge on-body delivery system: 2 on-body delivery systems weeklyB.Max Units (per dose and over time) [HCPCS Unit]:-Ultomiris IVo PNH/aHUS/gMG: 300 units on Day 0 followed by 360 units on Day 14 and every8 weeks thereafter-Ultomiris SQo PNH/aHUS: 49 units weeklyIII.Initial Approval Criteria 1Coverage is provided in the following conditions:∙Patient is at least 1 month of age (unless otherwise specified); AND∙Prescriber is enrolled in the Ultomiris Risk Evaluation and Mitigation Strategy (REMS) program; ANDUniversal Criteria 1∙Patients must be administered a meningococcal vaccine at least two weeks prior to initiation of therapy and will continue to be revaccinated according to current medicalguidelines for vaccine use (If urgent Ultomiris therapy is indicated in an unvaccinated ©2016 Health New England, Inc. Page 1 of 9©2016 Health New England, Inc. Page 2 of 9patient, administer meningococcal vaccine(s) as soon as possible and provide patients withtwo weeks of antibacterial drug prophylaxis.); AND∙ Will not be used in combination with other immunomodulatory biologic therapies (i.e.,efgartigimod, eculizumab, pegcetacoplan, satralizumab, inebilizumab, etc.); ANDParoxysmal Nocturnal Hemoglobinuria (PNH) † Ф 1,4,8,9,18∙ Used as switch therapy; ANDo Patient is currently receiving treatment with Soliris and has shown a beneficialdisease response and absence of unacceptable toxicity while on therapy; OR∙ Patient is complement inhibitor treatment-naïve; ANDo Diagnosis must be accompanied by detection of PNH clones of at least 5% by flowcytometry diagnostic testing; AND▪ Demonstrate the presence of at least 2 different glycosylphosphatidylinositol(GPI) protein deficiencies (e.g., CD55, CD59, etc.) within at least 2 differentcell lines (e.g., granulocytes, monocytes, erythrocytes); AND▪ Patient has laboratory evidence of significant intravascular hemolysis (i.e.,LDH ≥1.5 x ULN) with symptomatic disease and at least one other indicationfor therapy from the following (regardless of transfusion dependence):– Patient has symptomatic anemia (i.e., hemoglobin < 7 g/dL orhemoglobin < 10 g/dL, in at least two independent measurements in apatient with cardiac symptoms– Presence of a thrombotic event related to PNH– Presence of organ damage secondary to chronic hemolysis (i.e., renalinsufficiency, pulmonary insufficiency/hypertension)– Patient is pregnant and potential benefit outweighs potential fetalrisk– Patient has disabling fatigue– Patient has abdominal pain (requiring admission or opioid analgesia),dysphagia, or erectile dysfunction; AND▪ Documented baseline values for one or more of the following (necessary forrenewal): serum lactate dehydrogenase (LDH), hemoglobin level, and packedRBC transfusion requirement, history of thrombotic eventsAtypical Hemolytic Uremic Syndrome (aHUS) † 1,5,7∙ Used as switch therapy; ANDo Patient is currently receiving treatment with Soliris and has shown a beneficialdisease response and absence of unacceptable toxicity while on therapy; OR∙ Patient is complement inhibitor treatment-naïve; ANDo Patient shows signs of thrombotic microangiopathy (TMA) (e.g., changes in mental status, seizures, angina, dyspnea, thrombosis, increasing blood pressure, decreasedplatelet count, increased serum creatinine, increased LDH, etc.); AND o Thrombotic Thrombocytopenic Purpura (TTP) has been ruled out by evaluating ADAMTS-13 level (ADAMTS-13 activity level ≥ 10%); ANDo Shiga toxin E. coli related hemolytic uremic syndrome (STEC-HUS) has been ruled out; ANDo Other causes have been ruled out such as coexisting diseases or conditions (e.g., bone marrow transplantation, solid organ transplantation, malignancy, autoimmunedisorder, drug-induced, malignant hypertension, HIV infection, Streptococcuspneumoniae sepsis or known genetic defect in cobalamin C metabolism, etc.); AND o Documented baseline values for one or more of the following (necessary for renewal): serum lactate dehydrogenase (LDH), serum creatinine/eGFR, platelet count, anddialysis requirementGeneralized Myasthenia Gravis (gMG) †Ф1,11,12-17∙Used as switch therapy; ANDo Patient is at least 18 years of age; ANDo Patient is currently receiving treatment with Soliris and has shown a beneficial disease response and absence of unacceptable toxicity while on therapy; OR∙Patient is complement inhibitor treatment-naïve; AND∙Patients must have failed, or have a contraindication, or intolerance to to efgartigimod alfa-fcab [Vyvgart™]; ANDo Patient is at least 18 years of age; ANDo Patient has Myasthenia Gravis Foundation of America (MGFA) Clinical Classification of Class II to IV disease §; ANDo Patient has a positive serologic test for anti-acetylcholine receptor (AChR) antibodies; ANDo Patient has had a thymectomy (Note: Applicable only to patients with thymomas OR non-thymomatous patients who are 50 years of age or younger); AND o Physician has assessed objective signs of neurological weakness and fatiguability ona baseline neurological examination (e.g., including, but not limited to, theQuantitative Myasthenia Gravis (QMG) score, etc.); ANDo Patient has a MG-Activities of Daily Living (MG-ADL) total score of ≥6; ANDo Patient will avoid or use with caution medications known to worsen or exacerbate symptoms of MG (e.g., certain antibiotics, beta-blockers, botulinum toxins,hydroxychloroquine, etc.); AND©2016 Health New England, Inc. Page 3 of 9o Patient had an inadequate response after a minimum one-year trial with two (2) or more immunosuppressive therapies (e.g., corticosteroids plus animmunosuppressant such as azathioprine, cyclosporine, mycophenolate, etc.); OR Patient required chronic treatment with plasmapheresis or plasma exchange (PE) or intravenous immunoglobulin (IVIG) in addition toimmunosuppressant therapy14-Class I: Any ocular muscle weakness; may have weakness of eye closure. All other muscle strength is normal.-Class II: Mild weakness affecting muscles other than ocular muscles; may also have ocular muscle weakness ofany severity.∙IIa. Predominantly affecting limb, axial muscles, or both. May also have lesser involvement of oropharyngeal muscles.∙IIb. Predominantly affecting oropharyngeal, respiratory muscles, or both. May also have lesser or equal involvement of limb, axial muscles, or both.-Class III: Moderate weakness affecting muscles other than ocular muscles; may also have ocular muscleweakness of any severity.∙IIIa. Predominantly affecting limb, axial muscles, or both. May also have lesser involvement of oropharyngeal muscles.∙IIIb. Predominantly affecting oropharyngeal, respiratory muscles, or both. May also have lesser or equal involvement of limb, axial muscles, or both.-Class IV: Severe weakness affecting muscles other than ocular muscles; may also have ocular muscle weakness of any severity.∙IVa. Predominantly affecting limb, axial muscles, or both. May also have lesser involvement of oropharyngeal muscles.∙IVb. Predominantly affecting oropharyngeal, respiratory muscles, or both. May also have lesser or equal involvement of limb, axial muscles, or both.-Class V: Defined as intubation, with or without mechanical ventilation, except when employed during routinepostoperative management. The use of a feeding tube without intubation places the patient in class IVb.† FDA Approved Indication(s); ‡ Compendia Recommended Indication(s);Ф Orphan Drug IV.Renewal Criteria 1Coverage may be renewed based upon the following criteria:∙Patient continues to meet the universal and other indication-specific relevant criteria identified in section III; AND∙Absence of unacceptable toxicity from the drug. Examples of unacceptable toxicity include: serious meningococcal infections (septicemia and/or meningitis), infusion-related reactions, other serious infections, thrombotic microangiopathy (TMA) complications, etc.; AND Paroxysmal Nocturnal Hemoglobinuria (PNH) 1,4,8,18∙Patient has not developed severe bone marrow failure syndrome (i.e., aplastic anemia or myelodysplastic syndrome) OR experienced a spontaneous disease remission OR receivedcurative allogeneic stem cell transplant; AND∙Disease response indicated by one or more of the following:©2016 Health New England, Inc. Page 4 of 9▪Decrease in serum LDH from pretreatment baseline Stabilization/improvement in hemoglobin level from pretreatment baseline▪Decrease in packed RBC transfusion requirement from pretreatment baseline (i.e., reduction of at least 30%)▪Reduction in thromboembolic eventsAtypical Hemolytic Uremic Syndrome (aHUS) 1,5,7∙Disease response indicated by one or more of the following:▪Decrease in serum LDH from pretreatment baseline▪Stabilization/improvement in serum creatinine/eGFR from pretreatment baseline▪Increase in platelet count from pretreatment baseline▪Decrease in plasma exchange/infusion requirement from pretreatment baseline Generalized Myasthenia Gravis (gMG) 1,11-17∙Patient experienced an improvement (i.e., reduction) of at least 3-points from baseline in the Myasthenia Gravis-Specific Activities of Daily Living scale (MG-ADL) total score; OR ∙Patient experienced an improvement of at least 5-points from baseline in the Quantitative Myasthenia Gravis (QMG) total scoreSwitch therapy from Soliris to Ultomiris∙Refer to Section III for criteriaV.Dosage/Administration 1Paroxysmal nocturnal hemoglobinuria (PNH); Atypical Hemolytic Uremic Syndrome (aHUS); Generalized Myasthenia Gravis (gMG) IV Dosing for Complement-Inhibitor Therapy Naïve*Administer the INTRAVENOUS doses based on the patient’s body weight. Starting 2 weeks after the loading dose, begin maintenance doses once every 4 weeks or every 8 weeks (depending on body weight)PNH, aHUS≥5 kg - <10 kg600300Every 4 weeks≥10 kg - <20 kg600600Every 4 weeks≥20 kg - <309002,100Every 8 weeks≥30 kg - <40 kg1,2002,700Every 8 weeks PNH, aHUS,gMG≥40 kg - <60 kg2,4003,000Every 8 weeks≥60 kg - <100 kg2,7003,300Every 8 weeks≥100 kg3,0003,600Every 8 weeksIV Dosing for Switch Therapy from Eculizumab OR Ultomiris SQ to Ultomiris IV*©2016 Health New England, Inc. Page 5 of 9Currently treated with eculizumab At time of next scheduledeculizumab dose2 weeks after Ultomiris IVloading doseCurrently treated with Ultomiris SQ on-body delivery system§Not applicable 1 week after last UltomirisSQ maintenance doseSQ Dosing for Complement-Inhibitor Therapy Naïve §PNH & aHUS (adult patients weighing ≥40 kg ONLY): 490 mg SQ via on-body injector once weekly starting 2 weeks after the initial IV weight-based loading dose (see IV weight-based dosing table above)SQ Dosing for Switch Therapy from Eculizumab OR Ultomiris IV to Ultomiris SQ §Currently treated with eculizumab At time of next scheduledeculizumab dose2 weeks after Ultomiris IVloading doseCurrently treated with Ultomiris IV Not applicable 8 weeks after last UltomirisIV maintenance dose§ Adult patients with PNH and aHUS only*Note: For Supplemental Dose Therapy after plasma exchange (PE), plasmapheresis (PP), andintravenous immunoglobulin (IVIg), please refer to the package insert for appropriate dosing. VI.Billing Code/Availability InformationHCPCS Code:∙J1303 − Injection, ravulizumab-cwvz, 10 mg; 1 billable unit = 10 mgNDC(s):∙Ultomiris 300 mg/3 mL single-dose vials for injection: 25682-0025-xx∙Ultomiris 300 mg/30 mL single-dose vials for injection: 25682-0022-xx**∙Ultomiris 1100 mg/11 mL single-dose vials for injection: 25682-0028-xx∙Ultomiris 245 mg/3.5 mL single-dose cartridge on-body subcutaneous delivery system: 25682-0031-xx**Note: This NDC has been discontinued as of 06/11/2021.VII.References1.Ultomiris [package insert]. Boston, MA; Alexion Pharmaceuticals, Inc; July 2022. AccessedJuly 2022.©2016 Health New England, Inc. Page 6 of 92.Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria andrelated disorders by flow cytometry. Borowitz MJ, Craig FE, DiGiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR, Wittwer CT, Richards SJ. Cytometry B Clin Cytom. 2010 Jul;78(4):211-30. doi: 10.1002/cyto.b.20525.3.Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnalhemoglobinuria. Blood. 2005 Dec 1. 106(12):3699-709.4.Sahin F, Akay OM, Ayer M, et al. Pesg PNH diagnosis, follow-up and treatment guidelines.Am J Blood Res. 2016;6(2): 19-27.5.Loirat C, Fakhouri F, Ariceta G, et al. An international consensus approach to themanagement of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016 Jan;31(1):15-39.6.Taylor CM, Machin S, Wigmore SJ, et al. Clinical practice guidelines for the managementof atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010 Jan;148(1):37-47.7.Cheong HI, Kyung Jo S, Yoon SS, et al. Clinical Practice Guidelines for the Management ofAtypical Hemolytic Uremic Syndrome in Korea. J Korean Med Sci. 2016 Oct;31(10):1516-1528.8.Brodsky RA, Peffault de Latour R, Rottinghaus ST, et al. Characterization of breakthroughhemolysis events observed in the phase 3 randomized studies of ravulizumab versuseculizumab in adults with paroxysmal nocturnal hemoglobinuria. Haematologica. 2020 Jan16. pii: haematol.2019.236877. doi: 10.3324/haematol.2019.236877. [Epub ahead of print]9.Patriquin CJ, Kiss T, Caplan S, et al. How we treat paroxysmal nocturnal hemoglobinuria:A consensus statement of the Canadian PNH Network and review of the national registry.Eur J Haematol. 2019;102(1):36. Epub 2018 Oct 25.10.Lee H, Kang E, Kang HG, et al. Consensus regarding diagnosis and management ofatypical hemolytic uremic syndrome. Korean J Intern Med. 2020;35(1):25-40.doi:10.3904/kjim.2019.388.11.Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance for managementof myasthenia gravis-Executive Summary. Neurology. 2016 Jul 26; 87(4): 419-25.12.Vu T, Meisel A, Mantegazza R, et al. Efficacy and Safety of Ravulizumab, a Long-actingTerminal Complement Inhibitor, in Adults with Anti-Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis: Results from the Phase 3 CHAMPION MG Study (P1-1.Virtual). Neurology May 2022, 98 (18 Supplement) 791.13.Narayanaswami P, Sanders D, Wolfe G, Benatar M, et al. International consensus guidancefor management of myasthenia gravis, 2020 update. Neurology® 2021;96:114-122.doi:10.1212/WNL.0000000000011124.14.Jayam-Trouth A, Dabi A, Solieman N, Kurukumbi M, Kalyanam J. Myasthenia gravis: areview. Autoimmune Dis. 2012;2012:874680. doi:10.1155/2012/87468015.Gronseth GS, Barohn R, Narayanaswami P. Practice advisory: Thymectomy for myastheniagravis (practice parameter update): Report of the Guideline Development, Dissemination, ©2016 Health New England, Inc. Page 7 of 9and Implementation Subcommittee of the American Academy of Neurology. Neurology.2020;94(16):705. Epub 2020 Mar 25.16.Sussman J, Farrugia ME, Maddison P, et al. Myasthenia gravis: Association of BritishNeurologists’ management guidelines. Pract Neurol 2015; 15: 199-206.17.Institute for Clinical and Economic Review. Eculizumab and Efgartigimod for theTreatment of Myasthenia Gravis: Effectiveness and Value. Draft evidence report. July 22, 2021. https:///wp-content/uploads/2021/03/ICER_Myasthenia-Gravis_Draft-Evidence-Report_072221.pdf. Accessed December 22, 2021.18.Cançado RD, Araújo AdS, Sandes AF, et al. Consensus statement for diagnosis andtreatment of paroxysmal nocturnal haemoglobinuria. Hematology, Transfusion and CellTherapy, v43, Iss3, 2021, 341-348. ISSN 2531-1379,https:///10.1016/j.htct.2020.06.006.19.Kulagin A, Chonat S, Maschan A, et al. Pharmacokinetics, pharmacodynamics, efficacy,and safety of ravulizumab in children and adolescents with paroxysmal nocturnalhemoglobinuria: interim analysis of a phase 3, open-label study. Presented at the European Hematology Association 2021 Virtual Congress, June 9-17, 2021.20.Tanaka K, Adams B, Aris AM, et al. The long-acting C5 inhibitor, ravulizumab, isefficacious and safe in pediatric patients with atypical hemolytic uremic syndromepreviously treated with eculizumab. Pediatr Nephrol. 2021 Apr;36(4):889-898. doi:10.1007/s00467-020-04774-2.21.Rondeau E, Scully M, Ariceta G, et al; 311 Study Group. The long-acting C5 inhibitor,Ravulizumab, is effective and safe in adult patients with atypical hemolytic uremicsyndrome naïve to complement inhibitor treatment. Kidney Int. 2020 Jun;97(6):1287-1296.doi: 10.1016/j.kint.2020.01.035.Appendix 1 – Covered Diagnosis Codes1010D59.32 Hereditary hemolytic-uremic syndromeD59.39 Other hemolytic-uremic syndromehemoglobinuria [Marchiafava-Micheli]nocturnalD59.5 Paroxysmalwithout (acute) exacerbationG70.00 MyastheniagravisG70.01 Myasthenia gravis with (acute) exacerbation©2016 Health New England, Inc. Page 8 of 9Appendix 2 – Centers for Medicare and Medicaid Services (CMS)Medicare coverage for outpatient (Part B) drugs is outlined in the Medicare Benefit Policy Manual (Pub. 100-2), Chapter 15, §50 Drugs and Biologicals. In addition, National Coverage Determination (NCD), Local Coverage Articles (LCAs) and Local Coverage Determinations (LCDs) may exist and compliance with these policies is required where applicable. They can be found at: https:///medicare-coverage-database/search.aspx. Additional indications may be covered at the discretion of the health plan.Medicare Part B Covered Diagnosis Codes (applicable to existing NCD/LCA/LCD): N/AJurisdiction Applicable State/US Territory ContractorE (1) CA, HI, NV, AS, GU, CNMI Noridian Healthcare Solutions, LLCF (2 & 3) AK, WA, OR, ID, ND, SD, MT, WY, UT, AZ Noridian Healthcare Solutions, LLC5 KS, NE, IA, MO Wisconsin Physicians Service Insurance Corp (WPS)6 MN, WI, IL National Government Services, Inc. (NGS)H (4 & 7) LA, AR, MS, TX, OK, CO, NM Novitas Solutions, Inc.8 MI, IN Wisconsin Physicians Service Insurance Corp (WPS) N (9) FL, PR, VI First Coast Service Options, Inc.J (10) TN, GA, AL Palmetto GBA, LLCM (11) NC, SC, WV, VA (excluding below) Palmetto GBA, LLCL (12) DE, MD, PA, NJ, DC (includes Arlington &Novitas Solutions, Inc.Fairfax counties and the city of Alexandria in VA)K (13 & 14) NY, CT, MA, RI, VT, ME, NH National Government Services, Inc. (NGS)15 KY, OH CGS Administrators, LLC©2016 Health New England, Inc. Page 9 of 9。
动物营养学报2012,24(1):20-28C hi n es e J ournal of A ni m al N ut r i t i ondoi:10.3969/j.i s sn.1006-267x.2012.01.004饲粮物理有效中性洗涤纤维和瘤胃可降解淀粉的平衡关系及其对奶牛瘤胃液pH和生产性能的影响马燕芬王丽芳高民(内蒙古农牧业科学院动物营养与饲料研究所,呼和浩特010031)摘要:奶牛饲粮物理有效中性洗涤纤维对于维持奶牛最佳瘤胃功能、减少代谢失调发生、预防生产性能下降等具有重要作用。
奶牛瘤胃可降解淀粉含量与谷物类型、谷物加工处理方法、奶牛瘤网胃中食糜流通速率有很大关系。
本文主要就奶牛饲粮物理有效中性洗涤纤维和瘤胃可降解淀粉的平衡关系及其对奶牛瘤胃液pH和生产性能的影响做一综述,以期为生产实践提供理论依据。
关键词:物理有效中性洗涤纤维;瘤胃可降解淀粉;瘤胃液pH;生产性能中图分类号:$823文献标识码:A文章编号:1006-267X(2012)O l-0020-09保证饲粮物理有效中性洗涤纤维(physi cal ef-f ect i veness neut r a l de t er gent f i ber,peN D F)的足量供给对于维持高产奶牛最佳瘤胃功能、降低代谢失调危害以及避免因纤维消化不足而引起的采食量、产奶量和乳营养成分下降等均具有重要作用。
但是如果饲喂过量则会降低奶牛采食量,同时使瘤胃微生物蛋白的合成量降低,进而降低奶牛的饲料转化率u J。
对奶牛饲粮pe N D F水平的评定到目前为止还是非常困难的,主要是由于peN D F水平取决于饲粮纤维含量、粗饲料粒度以及淀粉发酵能力等重要因素∽。
3J。
已有一些研究针对单一饲粮因素(如粗饲料粒度或粗饲料来源HJ、纤维水平旧1、谷物来源及其在瘤胃中有效降解率Ho)对奶牛瘤胃内环境和产奶性能的影响,但是有关以上因素的相互作用影响奶牛瘤胃内环境和产奶性能的研究到目前为止还相当少。
第39卷 第3期2019年3月 物 理 实 验 PHYSICS EXPERIMENTATION Vol.39 No.3 Mar.,櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶2019 收稿日期:2018-09-20;修改日期:2018-10-12 作者简介:宋元军(1971-),男,河北宣化人,河北北方学院理学院高级实验师,硕士,主要从事量子物理研究和近代物理实验教学工作.文章编号:1005-4642(2019)03-0012-03密立根油滴实验数据处理的多重差值法宋元军(河北北方学院理学院,河北张家口075000) 摘 要:利用多层次作差和求平均的多重差值法改进了密立根油滴电量逐项相减法.多重差值法既保留了油滴电量逐项相减法简单直观而且易于得到电荷不连续性的优点,又克服了其一般情况下得到的基本电荷电量测量值偏小的缺点.关键词:多重差值法;基本电荷;密立根油滴实验中图分类号:O562.2;O4-34 文献标识码:A DOI:10.19655/j.cnki.1005-4642.2019.03.003 密立根油滴实验[1]作为近代物理实验中的典型实验,不仅可以让学生切身体会到测量微观物理量的巧妙设计思想,而且多种可供选择的测量方法也是培养学生创新思维的重要素材.密立根油滴实验还有许多数据处理方法,从使用的数学工具角度来说,有简单代数法[2-4]、函数法[5]、统计处理方法[6-7]、几何作图法等[8].目前,高校实验室的油滴实验设备多数配有CCD成像系统,相比传统的显微观测系统,测量起来比较容易,这就为在实验课堂上收集容量较大油滴电量样本提供了可能,也为学生尝试用多种方法处理实验数据奠定了基础.本文研究了密立根油滴实验数据处理的简单代数方法中的油滴电量逐项相减法,将针对其缺点,尝试对其进行改进.1 多重差值法1.1 多重差值法的基本思路油滴电量逐项相减法把样本电量从小到大排序,相邻的大序号电量减去小序号电量,然后对差值进行分析,从而得到基本电荷电量估计值.该方法处理油滴实验数据,容易得出电荷的不连续性,得到的基本电荷电量的估计值一般会偏小[2].文献[2]给出了改进方法———油滴电量平均值逐项相减法.油滴电量平均值逐项相减法在油滴电量逐项相减法的样本电量排序、依次作差的基础上,按照油滴带基本电荷个数多少对油滴电量进行分类,并对各类的平均值再次实施逐项相减法.但油滴电量平均值逐项相减法也存在不足,即在样本中各个油滴带基本电荷个数连续分布情况下,基本电荷电量的估计值只受带基本电荷个数最多的油滴电量和带基本电荷个数最少的油滴电量的影响,而不受带基本电荷个数为其他值的油滴电量测量值影响.本文对油滴电量逐项相减法的改进思路是:把相邻作差改为多重作差,即不仅相邻作差,不相邻也要作差,然后把所有差值进行分类,最后把对应1个基本电荷的一类差值求平均得到基本电荷电量估计值.1.2 多重差值法处理实验数据步骤首先,把实验测得的油滴电量从小到大排序.其次,选取序号间距为1,油滴电量依次作差.分析作差得到的数据分布情况,把所有差值分为3类:小值类、中值类和大值类.然后,把作差对应的序号间距增加1,再依次作差;把作差对应的序号间距增加2,再依次作差;以此类推……直到小值类差值不出现,且中值类差值只有1个或不出现时,作差计算结束.最后,把属于中值类的差值求平均,得到基本电荷电量的估计值.1.3 数据处理举例整个作差过程如表1所示.表1中i为油滴电量从小到大排序后的油滴序号,Qi为第i个油滴的带电量,ΔQj=Qi+j-Qi为油滴序号间距为j时的油滴电量依次相减所得的差值.表1 样本a的多重作差数据表(10-19 C)QiΔQ1ΔQ2ΔQ3ΔQ4ΔQ5ΔQ61.64 1.53 1.55 3.04 3.08 3.09 3.093.17 0.02 1.51 1.55 1.56 1.56 1.753.19 1.49 1.53 1.54 1.54 1.73 3.234.68 0.04 0.05 0.05 0.24 1.74 4.854.72 0.01 0.01 0.20 1.70 4.814.73 0.000.19 1.69 4.804.73 0.19 1.69 4.804.92 1.50 4.616.42 3.119.53从表1可看出,ΔQ1列的差值可以分为3类:第1类为小值,包括0.02×10-19,0.04×10-19,0.01×10-19,0.00,0.19×10-19 C;第2类为中值,包括1.53×10-19,1.49×10-19,1.50×10-19C;第3类为大值,为3.11×10-19 C.考虑到误差因素和带电量相邻油滴可能带基本电荷数之差大于1的情况,显然第2类差值对应着相差1个基本电荷电量的情况.需指出的是,给其他各列差值分类时应注意:后1列每类差值中的最小值一定大于前1列对应类别的最小值.通过上述分析,容易看出多重作差后得到的中值类差值有1.53×10-19,1.49×10-19,1.50×10-19,1.55×10-19,1.51×10-19,1.53×10-19,1.69×10-19,1.55×10-19,1.54×10-19,1.69×10-19,1.56×10-19,1.54×10-19,1.70×10-19,1.56×10-19,1.73×10-19,1.74×10-19,1.75×10-19 C,取平均值后得1.60×10-19 C,此值已非常接近基本电荷电量的公认值1.602×10-19 C.从表1也容易看出,ΔQ1列中第2类差值的最大值为1.53×10-19 C,因而,油滴电量逐项相减法得到的基本电荷电量估计值为1.53×10-19 C.此值与基本电荷电量公认值的相对偏差为4.5%.可见,采用多重差值法可以明显改善油滴电量逐项相减法处理数据结果偏小的不足.样本a是在实验室利用学生实验设备———南京培中MOD-5型油滴仪测得的样本.选用文献[2]中的样本(简称样本b)作为处理对象.利用多重差值法对样本b的处理过程见表2.表2 样本b的多重作差数据表(10-19 C)QiΔQ1ΔQ2ΔQ3ΔQ43.17 1.45 1.59 1.66 3.044.62 0.14 0.21 1.59 1.794.76 0.07 1.45 1.65 3.064.83 1.38 1.58 2.99 4.536.21 0.20 1.61 3.15 3.306.41 1.41 2.95 3.10 7.727.82 1.54 1.69 6.319.36 0.15 4.779.51 4.6214.13从表2第2列可以看出,由油滴电量逐项相减法得到的基本电荷电量的估计值为1.54×10-19 C,利用多重差值法得到的估计值为1.57×10-19 C.多重差值法的处理结果明显优于油滴电量逐项相减法的处理结果.文献[2]中,根据油滴电量平均值逐项相减法处理上述样本得到的基本电荷电量估计值为1.57×10-19 C.尽管多重差值法和油滴电量平均值逐项相减法的处理结果基本相同,但利用多重差值法处理该样本,1,2~6,8~9这8个油滴电量任一变化都要影响估计值,而利用油滴电量平均值逐项相减法处理该样本,只有1,8和9这3个油滴电量变化影响估计值.由此可见,多重差值法比油滴电量平均值逐项相减法更具有科学性.2 对多重差值法的几点分析表1和表2中的样本具有共同特点,就是样本中多次出现带某种数目基本电荷的油滴.这样的油滴在样本中出现的次数越多,作差的层次就越多,处理结果一般也会更好.显然,使多重作差法发挥优点的前提是,带某种数目基本电荷(或某几种数目基本电荷)的油滴重复出现.由于操作者选择某种参量的油滴的倾向性,这种特点的样本在实际实验中比较容易得到.当样本中不同油滴带基本电荷数全部不同时,多重差值法回归到油滴电量逐项相减法.考虑到测量误差,样本中带电荷最多的油滴带基本电荷个数7个以上时,组内作差(带基本电荷个数相同的不同油滴电量之间的作差)和组间作差(带基本电荷个数相差为1的2个油滴电量之间的作差)得到的2类差值大小的区分有可能31第3期 宋元军:密立根油滴实验数据处理的多重差值法会不明显.所以,样本中每个油滴带基本电荷个数一般不能太多.实际实验中,可以通过控制平衡电压和下落时间的取值范围来达到上述要求.另外,油滴带基本电荷数目种类要丰富(3种以上).为此,可以选择平衡电压和下落时间不同的油滴进行测量.鉴于上述分析,样本容量不能太小,同时为了作差简单,一般情况下,样本容量可取10.除此之外,油滴电量测量误差越小,多重差值法处理结果也会越好.3 结束语运用多层次作差和求平均的思想,给出了多重差值法.多重差值法既保留了油滴电量逐项相减法简单直观且易于得到电荷不连续性的优点,又克服了其一般情况下得到的基本电荷电量测量值偏小的缺点,还具有估计值敏感依赖于样本中绝大多数油滴电量值的科学性.用多重差值法对不同样本进行处理,得到较好的结果.这种方法丰富了密立根油滴实验的数据处理方法的种类.在对实验室仪器误差进行准确评价测定的基础上,适当控制实验条件(控制平衡电压和下落时间),多重差值法在密立根油滴实验教学中有应用参考价值.参考文献:[1] 钱钧.密立根油滴实验[J].物理实验,2017,37(5):34.[2] 刘才明.密立根油滴实验数据处理方法分析[J].浙江大学学报(自然科学版),1996,30(6):736-741.[3] 丁红星,戴丽莉.密立根油滴实验数据处理方法的分析与改进[J].大学物理,2005,24(7):40-43.[4] 赵仁.密立根实验数据的一种处理方法[J].物理实验,2000,20(6):39-40.[5] 宋五洲.密立根油滴实验数据处理[J].大学物理,2005,24(12):57-58,62.[6] 李娟,李蜀晋,胡再国.密立根油滴实验数据分析[J].物理实验,2008,28(4):28-30.[7] 温猛,洪朱旭,冯运军,等.密立根油滴实验的概率统计分析[J].中山大学学报(自然科学版),2004,43(增):33-35.[8] 陈远容.油滴实验中数据处理的一种新方法[J].物理实验,1993,13(2):54-55.Multiple subtraction method for data processing ofMillikan oil drop experimentSONG Yuan-jun(School of Science,Hebei North University,Zhangjiakou 075000,China)Abstract:The idea of multi-level subtraction and average was used to improve the usual method ofsuccessive subtraction which was applied to the data processing of Millikan oil drop experiment.Themultiple subtraction method not only retained the advantages of simple and direct subtraction term byterm,but also overcame the disadvantage that the measured value was smaller than the elementarycharge.Key words:multiple subtraction method;elementary charge;Millikan oil drop experiment[责任编辑:任德香]41 物 理 实 验第39卷。
sound Med Biol,2021,47(12):3372-3383.[17]Idrees A,Shahzad R,Fatima I,et al.Strain elastography for differenti-ation between benign and malignant thyroid nodules [J].J Coll Physi-cians Surg Pak,2020,30(4):369-372.[18]Li M,Feng F,Lian J,et parison of diagnostic value of ultra-sound elastography color scoring system,two-dimensional ultra-sound,and energy spectrum CT on benign and malignant thyroid nod-ules [J].Chinese Journal of CT and MRI,2021,19(12):24-26,56.李苗,冯凡,连俊,等.超声弹性成像色彩评分系统,二维超声及能谱CT 对甲状腺良恶性结节诊断鉴别价值比较[J].中国CT 和MRI 杂志,2021,19(12):24-26,56.[19]Cheng C,Wu YH,Xu ZS,et al.Risk factors for tumor recurrence af-ter radical resection of stage Ⅱ-Ⅲcolon cancer and application val-ue of its nomogram prediction model [J].Chin J Digest Surg,2021,20(3):331-338.程晨,吴云桦,徐正水,等.Ⅱ~Ⅲ期结肠癌根治术后复发危险因素分析及其列线图预测模型的应用价值[J].中华消化外科杂志,2021,20(3):331-338.[20]Fang H,Wang CH,Xie YJ,et al.A nomogram model for predicting re-currence after catheter ablation in patients with atrial fibrillation [J].Chinese Journal of Interventional Cardiology,2022,30(10):741-748.方浩,王昌会,解杨婧,等.预测心房颤动患者导管消融术后复发的列线图模型[J].中国介入心脏病学杂志,2022,30(10):741-748.(收稿日期:2023-09-26)大面积脑梗死患者血清Visfatin 、TN-C 、IL-17水平与神经功能缺损程度的相关性及对预后的预测价值李小磊,李华丽,石伟纲平顶山市第一人民医院神经重症监护病区,河南平顶山467099【摘要】目的探讨大面积脑梗死(LHI)患者血清内脂素(Visfatin)、肌腱蛋白C (TN-C)、白介素-17(IL -17)水平与神经功能缺损程度的相关性及对患者预后的预测价值。
基于口含烟原料的国内晾晒烟分析刘佩佩1,窦玉青1∗,汪旭2,赵文涛2,刘仕民3,李玉辉3,张忠锋1㊀(1.中国农业科学院烟草研究所,山东青岛266101;2.上海烟草集团有限责任公司,上海200082;3.山东中烟有限责任公司,山东济南250014)摘要㊀[目的]明确国内晾晒烟作为口含烟原料的可行性㊂[方法]收集了国内不同地域及类型的晾晒烟为研究对象,分析烟叶样品的常规化学成分㊁物理特性及感官质量的指标,并对所得数据进行相关性分析㊂[结果]国内晾晒烟样品烟碱㊁还原糖含量差异很大;黄花烟㊁晒红烟的烟碱含量显著高于晒黄烟㊂还原糖含量从高到低依次为晒黄烟㊁香料烟㊁晒红烟㊁黄花烟㊁雪茄烟,晒黄烟还原糖含量显著高于其他晾晒烟类型;不同区域间还原糖含量也存在差异㊂国内晾晒烟烟叶pH均值为5.33,偏酸性;以pH可调度来看,调节后pH可升高至原pH的1.14 1.49倍㊂国内晾晒烟烟叶中大粒径粉末得率较高,变幅为68.00% 87.00%,均值78.38%;35.38%的样品中大粒径粉末得率超过80.00%㊂国内晾晒烟烟叶的烟碱含量㊁总氮含量㊁氮碱比与口含烟感官质量有较为紧密的相关关系㊂[结论]国内晾晒烟原料在多维度上均较符合口含烟制作质量标准㊂关键词㊀口含烟;地方晾晒烟;常规化学成分;感官评价中图分类号㊀TS41+1㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2023)16-0182-05doi:10.3969/j.issn.0517-6611.2023.16.043㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):AnalysisofDomesticAirandSun⁃curedTobaccoBasedonSnusRawMaterialsLIUPei⁃pei1,DOUYu⁃qing1,WANGXu2etal㊀(1.TobaccoResearchInstituteofCAAS,Qingdao,Shandong266101;2.ShanghaiTobac⁃coGroupCo.,Ltd.,Shanghai200082)Abstract㊀[Objective]ToclarifythefeasibilityofdomesticairandsuncuredtobaccoasarawmaterialforSnus.[Method]AirandsuncuredtobaccofromdifferentregionsandtypesinChinawerecollectedastheresearchobject,analyzedtheconventionalchemicalcomposition,physi⁃calcharacteristicsandsensoryqualityindicatorsoftobaccoleafsamples,andmadecorrelationanalysisonthedataobtained.[Result]Thecon⁃tentsofnicotineandreducingsugarindomesticairandsuncuredtobaccosampleswasgreatlydifferent;thenicotinecontentofsun⁃curedredtobaccoandsundriedredtobaccowassignificantlyhigherthanthatofsun⁃curedyellowtobacco.Thecontentofreducingsugarfromhightolowwassun⁃curedyellowtobacco,orientaltobacco,sun⁃curedredtobacco,yellowflowertobacco,cigartobacco.Thecontentofreducingsugarinsun⁃curedyellowtobaccowassignificantlyhigherthanothertypes;therewerealsodifferencesbetweendifferentregions.TheaveragepHofdo⁃mesticairandsuncuredtobaccoleaveswas5.33,whichwasslightlyacidic;intermsofpHregulation,theadjustedpHcouldriseto1.14-1 49timesoftheoriginalpH.③Theyieldofmediumandlargeparticlesizepowderindomesticairandsuncuredtobaccoleaveswasrelative⁃lyhigh,rangingfrom68.00%to87.00%,withanaverageof78.38%;theyieldofmediumandlargesizepowderin35.38%ofthesamplesex⁃ceeded80.00%.Nicotine,totalnitrogen,nitrogen⁃alkaliratioofdomesticaircuredtobaccoleaveswerecloselyrelatedtothesensoryqualityofSnus.[Conclusion]TherawmaterialsforairandsuncuredtobaccoinChinaareinlinewiththequalitystandardsforSnusproductionintermsofmulti⁃dimensional.Keywords㊀Snus;Localairandsuncuredtobacco;Conventionalchemicalcomposition;Sensoryevaluation基金项目㊀中国烟草总公司科技项目(110201501004(XX-04))㊂作者简介㊀刘佩佩(1999 ),女,山西吕梁人,硕士研究生,研究方向:农产品加工㊂∗通信作者,研究员,博士,从事烟草功能成分与综合利用研究㊂收稿日期㊀2022-09-27㊀㊀在世界卫生组织烟草控制框架公约(WHOFCTC)要求的时代背景下,传统烟草产品的生产及销售受到限制,新型烟草制品的研究逐渐发展[1-3]㊂国际上,口含烟生产和烟销售的历史悠久,市场大多分布于北欧㊁北美区域[4]㊂口含烟作为一种新型烟草制品,相比于传统烟草,口含烟不需要点燃,不产生焦油和有害烟气[5-6],对于有吸食烟草习惯的人群来说,既能在一定程度上满足个人需要,又减少了对他人及环境的危害,有潜在的发展空间㊂一般认为无烟气烟草制品相比于传统卷烟的致癌影响小[7]㊂Arimilli等[8]研究也认为无烟气烟草制品对细胞的毒害作用小于传统卷烟㊂相较于传统卷烟,消费者认为口含烟危害较小,有很大市场,纽约市调查显示无烟烟草在2001 2013年增加400%[9]㊂杨雄等[10]对国内外新型烟草制品的特点以及市场趋势进行阐述,认为口含烟等新型烟草在我国有很好的发展前景㊂但国内口含烟研究集中于烟气释放及工艺研究,有关口含烟原料的相关研究较少㊂国内晾晒烟现有资源丰富,种植历史悠久,有良好的发展基础,因其独特性质,常被用于烤烟加工中降低焦油含量且提升产品的香气[11-12]㊂当今市场口含烟原料主要是明火烤烟和晾晒烟,在国内发展口含烟,由于木材资源受限,主要依靠晾晒烟,同时选择的烟叶原料应当符合质量要求㊂该研究对我国不同产地晾晒烟的常规化学成分㊁pH可调度㊁磨粉得率㊁感官评价质量进行综合分析,旨在明确国内晾晒烟烟叶作为口含烟烟叶原料的可行性,为未来推广口含烟市场时原料选择提供一定的基础㊂1㊀材料与方法1.1㊀试验材料㊀黑龙江㊁吉林㊁辽宁㊁内蒙古㊁江西㊁山东㊁四川㊁云南㊁浙江㊁海南10个省(自治区)采集晒红烟烟叶样品131份;广西㊁湖南㊁吉林㊁辽宁㊁云南5省(自治区)采集晒黄烟烟叶样品7份;海南省采集黄花烟烟叶样品3份,雪茄烟烟叶样品32份㊂云南省㊁海南省采集香料烟烟叶样品3份㊂具体试验材料如表1所示㊂1.2㊀烟叶样品常规化学成分检测方法㊀检测烟叶样品的常规化学成分,指标包括烟碱㊁总氮㊁还原糖㊂烟碱的检测方法参照YC/T468 2013‘烟草及烟草制品总植物碱的测定连续流动(硫氰酸钾)法“[13];还原糖的检测方法参照YC/T㊀㊀㊀安徽农业科学,J.AnhuiAgric.Sci.2023,51(16):182-186159 2002‘烟草及烟草制品水溶性糖的测定连续流动法“[14]㊂总氮的检测方法参照YC/T161 2002‘烟草及烟草制品总氮的测定连续流动法“[15]㊂表1㊀烟叶样品信息Table1㊀Informationoftobaccoleafsamples样品类型Sampletypes样本数Numberofsampleʊ份品种名称Samplename产地Origin晒红烟Sun⁃curedredtobacco131亚布力烟㊁晒红一号㊁晒红二号㊁黑老虎㊁小黑烟㊁柳叶尖㊁万毛三号㊁世纪一号㊁小团叶㊁督叶尖杆种㊁山东大叶㊁稀格巴小黑烟㊁柳叶尖㊁迈多叶㊁小香叶5㊁人和烟㊁塘蓬㊁云罗03㊁广西公会烟㊁伟俄小柳叶㊁德江大鸡尾㊁黄平小广烟鸡翅膀㊁龙里白花烟㊁麻江小叶红花㊁盘县红花大黑烟㊁仁怀竹笋烟㊁铜仁二黄匹㊁兴仁大柳叶-1㊁付耳转刀小柳叶㊁光柄柳叶-2㊁光柄柳叶-3㊁二青杆㊁黑苗柳叶尖㊁黄苗2220㊁光把烟㊁牡晒05-1㊁密山烟草尚志一朵花㊁五峰小香叶㊁州852㊁枇杷叶㊁镇江㊁大伏烟㊁辰杂一号㊁辰溪晒烟㊁小扇子烟㊁小尖叶㊁小样尖叶㊁无耳烟㊁毛烟一号㊁凤凰柳叶㊁小样㊁毛烟㊁凤农家四号㊁吉信大花㊁凤农家五号㊁平坝犁口㊁金枇杷㊁苦沫叶㊁大晒烟㊁龙山转角楼㊁二绺子㊁马兰烟㊁泸溪柳叶尖㊁麻阳大叶烟㊁邵严一号㊁中叶子㊁大南花㊁南花烟㊁红花南花㊁中山尖叶㊁毛大烟㊁茄把㊁沅陵枇杷㊁万宝二号㊁青湖晚熟㊁元峰烟㊁太兴烟㊁龙井香叶子㊁大蒜柳叶尖㊁朝阳早熟㊁丹阳烟㊁铁赤烟㊁龙井香叶子㊁凤凰香烟㊁牛舌头㊁大青筋㊁沂南柳叶尖㊁沂水大弯筋㊁沂水香烟㊁新香烟㊁江油烟㊁泸烟1号㊁什烟1号㊁红花铁杆子㊁白花铁杆子㊁什邡枇杷柳㊁万毛9号㊁万毛2012㊁宣双晒烟76-2㊁云罗03㊁沂水大弯筋-1㊁MZ6-03㊁垫江农家晒烟㊁绿春土烟-2㊁把烟㊁元阳草烟㊁桐乡晒烟黑龙江省㊁吉林省㊁辽宁省㊁内蒙古自治区㊁江西省㊁山东省㊁四川省㊁云南省㊁浙江省㊁海南省晒黄烟Sun⁃curedyellowtobacco7烟瘴村小叶㊁大宁烟㊁晒黄二号㊁辽宁晒黄烟㊁云南晒黄烟广西壮族自治区㊁湖南省㊁吉林省㊁辽宁省㊁云南省黄花烟Nicotianarustica3镇雄黄花烟㊁莫合烟㊁N.rustica(2)海南省雪茄烟Cigar32H382㊁海南三号㊁海南二号㊁品种试验7#14#18#24#㊁建恒短叶㊁建恒长叶㊁建恒二级㊁茄芯建恒3号㊁茄芯建恒2号㊁YA2㊁YA3㊁YA4㊁YA1康州阔叶㊁多米尼加2号㊁印尼博苏基㊁古巴芯叶㊁康州芯叶㊁多米尼加长芯㊁古巴2号㊁多米尼加短芯㊁尼加拉瓜短芯㊁Beihart1000-1㊁H211海南省香料烟Orientaltobacco3土耳其香料烟㊁XA-S㊁巴斯玛AJ云南省㊁海南省1.3㊀pH及pH可调度㊀取不同烟草原料粉末20g添加碳酸钠㊁碳酸氢钠水溶液,以溶质计每100g分别添加2.65和2.10g,调节水分至含水率40%,搅拌烟粉混匀㊁静置过夜㊂分别按照YC/T222 2007[16]测量烟草pH,调节后pH与调节前pH之比计为pH可调度㊂1.4㊀磨粉得率检测㊀将收集烟叶原料去梗的烟草叶片烘干水分至含水率10%左右,上粉碎机粉碎,将粉碎后的烟草碎片及碎末加入振动筛分机,依次过500㊁250μm筛,振动15min,分别称量所得烟草粉末的重量,粒径>500μm为大粒径粉末,粒径ɤ500μm且>250μm为中粒径粉末,粒径ɤ250μm为小粒径粉末,中粒径和大粒径粉末合并质量占总投料质量的比例为磨粉得率[17]㊂1.5㊀烟叶感官质量评价㊀烟叶样品在60ħ烘箱中至干燥,旋风磨粉碎后过60目筛,得到烟叶样品粉末,制成口含烟,组织评价小组对口含烟样品进行定量打分㊂在符合GB/T13868 2009要求的实验室进行㊂感官评价指标包括色泽㊁嗅香㊁嗅觉刺激㊁烟草本香㊁刺激性㊁余味㊁杂味㊁酸味㊁苦味㊁咸味㊁涩味㊁劲头以及感官综合得分㊂按照烟草行业口含烟通用评价方法[17],对不同烟叶样品统一制作的口含烟样品进行评价㊂取待评价样品,按10mL/袋,取适量温水制备口含烟浸出液,浸泡后取出样品,分装于一次性品尝杯㊂感受其味觉特征,填写口含烟原料感官质量评价表㊂1.6㊀数据处理㊀利用Excel进行数据初步处理,SPSS软件进行相关性分析㊂2㊀结果与分析2.1㊀国内地方晾晒烟烟碱含量分析㊀烟碱是口含烟中的重要成分,而烟碱含量主要由口含烟的原料成分所决定㊂一般情况下,烟碱含量高,有利于口含烟的配方设计㊂通过对国内晾晒烟烟叶样品烟碱含量的分析(图1),发现国内地方晾晒烟烟叶烟碱含量差异很大,处于0.64% 8.33%,平均值为4.70%,变异系数153.65%㊂其中,烟碱超过4.0%的样品占68.51%㊂图1㊀国内晾晒烟烟叶烟碱含量特征Fig.1㊀Characteristicsofnicotinecontentindomesticairandsuncuredtobaccoleaves㊀㊀把收集到的国内晾晒烟分为晒红烟㊁晒黄烟㊁雪茄烟㊁黄花烟㊁香料烟5种类型,分别统计其烟碱含量状况,结果见表2㊂结果显示,国内晾晒烟中烟碱含量从高到低依次为黄花烟㊁晒红烟㊁雪茄烟㊁香料烟㊁晒黄烟;其中黄花烟㊁晒红烟的烟碱含量显著高于晒黄烟㊂以晒红烟为例分析不同产地烟碱含量,选取不同省份晒红烟样品的烟碱含量进行统计分析,结果见表3㊂由表3可知,各地晒红烟样品的烟碱含量存在一定差异,江西省的烟38151卷16期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀刘佩佩等㊀基于口含烟原料的国内晾晒烟分析碱含量最高,其次是山东省㊁浙江省㊁四川省㊁海南省㊁东三省(黑龙江省㊁吉林省)㊁云南省;各省份间晒红烟样品的烟碱含量差异未达到显著水平(P>0.05)㊂表2㊀国内不同类型晾晒烟烟叶样品烟碱含量情况Table2㊀Nicotinecontentofdifferenttypesofairandsuncuredtobac⁃coleafsamplesinChina单位:%烟草类型Tobaccotype最大值Maximum最小值Minimum平均值Average变异系数CV晒红烟Sun⁃curedredtobacco8.330.644.87a32.64晒黄烟Sun⁃curedyellowtobacco4.861.482.88b41.83雪茄烟Cigar7.302.624.30ab26.93黄花烟Nicotianarustica7.515.406.13a19.56香料烟Orientaltobacco3.503.503.50ab ㊀注:同列不同小写字母表示差异显著(P<0.05)㊂㊀Note:Differentlowercaselettersinthesamecolumnindicatesignificantdifference(P<0.05).表3㊀国内不同省份晒红烟样品烟碱含量情况Table3㊀Nicotinecontentofsun⁃curedredtobaccosamplesfromdif⁃ferentprovincesinChina单位:%产地Origin最大值Maximum最小值Minimum平均值Average标准差SD变异系数CV东三省NortheastChina5.083.364.23a0.7617.96江西Jiangxi6.325.165.87a0.498.42山东Shandong8.241.064.91a1.5631.72四川Sichuan5.084.574.83a0.367.47云南Yunnan5.322.063.63a1.6335.95浙江Zhejiang5.074.494.86a0.214.40海南Hainan8.330.644.33a2.1349.20㊀注:同列相同小写字母表示差异不显著(P>0.05)㊂㊀Note:Thesamelowercaselettersinthesamecolumnindicatenosignificantdifference(P>0.05).2.2㊀国内晾晒烟还原糖含量分析㊀通过对国内晾晒烟烟叶部分样品还原糖含量进行统计分析,结果显示(图2),国内晾晒烟还原糖含量差异很大,分布于0.03% 37.00%,平均值为2.58%;96%的晾晒烟样品中还原糖含量小于2.00%㊂图2㊀国内晾晒烟样品还原糖含量特征Fig.2㊀Characteristicsofreducingsugarcontentindomesticairandsuncuredtobaccosamples㊀㊀分别统计分析国内5种类型晾晒烟还原糖含量,结果显示(表4),还原糖含量从高到低依次为晒黄烟㊁香料烟㊁晒红烟㊁黄花烟㊁雪茄烟,晒黄烟还原糖含量显著高于其他晾晒烟类型㊂表4㊀国内晾晒烟样品还原糖含量情况Table4㊀Reducingsugarcontentindomesticairandsuncuredtobaccosamples单位:%烟草类型Tobaccotype最大值Maximum最小值Minimum平均值Average变异系数CV晒红烟Sun⁃curedredtobacco11.740.061.56b157.59晒黄烟Sun⁃curedyellowtobacco37.000.1211.49a119.84雪茄烟Cigar1.650.030.28b109.72黄花烟Nicotianarustica0.350.270.30b15.57香料烟Orientaltobacco20.780.205.65b178.83㊀注:同列不同小写字母表示差异显著(P<0.05)㊂㊀Note:Differentlowercaselettersinthesamecolumnindicatesignificantdifference(P<0.05).㊀㊀对国内不同省份晾晒烟样品的还原糖含量进行分析,结果显示(表5),云南省㊁山东省㊁东三省的晾晒烟样品中还原糖含量较高,江西省㊁浙江省㊁海南省的晾晒烟样品中还原糖含量较低㊂表5㊀国内不同省份晾晒烟样品还原糖含量情况Table5㊀ReducingsugarcontentindomesticairandsuncuredtobaccosamplesfromdifferentprovincesinChina单位:%产地Origin最大值Maximum最小值Minimum平均值Average变异系数CV东三省NortheastChina10.380.122.64a105.44江西Jiangxi1.000.060.48a82.39山东Shandong11.740.103.92a121.84四川Sichuan3.001.001.78a47.91云南Yunnan37.000.1712.81a125.18浙江Zhejiang0.570.090.27a67.10海南Hainan1.650.030.26a92.57㊀注:同列相同小写字母表示差异不显著(P>0.05)㊂㊀Note:Thesamelowercaselettersinthesamecolumnindicatenosignificantdifference(P>0.05).2.3㊀国内晾晒烟pH及可调性分析㊀统计国内烟叶样品的酸碱度,结果显示(图3),国内晾晒烟烟叶pH呈现酸性,样品pH变幅为4.70 6.18,均值5.33,变异系数9.55%;pH6.3以上的样品占62.5%㊂口含烟商品的酸碱度一般为中偏碱性,而烟草原料的pH一般为酸性,因此烟叶原料的酸碱度可调节性就成为口含烟烟叶原料的一个重要指标㊂随机选取21份烟叶样品,检测其酸碱度可调节性,结果见图4㊂从pH可调度来看,变异系数较小,pH平均增加1.69,调节后pH可图3㊀国内晾晒烟样品酸碱度情况Fig.3㊀OverviewofpHofdomesticairandsuncuredtobaccosamples481㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年升高至原pH的1.14 1.49倍,以调至原pH的1.2 1.5倍最为普遍,在1.3 1.4倍最多㊂图4㊀国内晾晒烟样品pH可调度Fig.4㊀pHadjustablefordomesticairandsuncuredtobaccosamples2.4㊀国内晾晒烟粉末粒径及得率分析㊀选取65份国内晾晒烟样品,磨粉过筛,测定其烟粉颗粒的粒径分布㊂图5显示,总体中大粒径粉末得率较高,变幅为68.00% 87.00%,均值78.38%,变异系数5.65%,整体水平较为一致;35.38%的样品中大粒径粉末得率超过80.00%㊂2.5㊀国内晾晒烟常规化学成分与口含烟感官评价质量关系㊀选取部分晾晒烟样品统计分析烟叶样品的烟碱㊁总氮㊁还原糖㊁糖碱比㊁氮碱比5项指标与感官评价指标得分的相图5㊀国内晾晒烟样品中、大粒径颗粒占比Fig.5㊀Proportionoflargeandmediumsizeparticlesindomesticairandsuncuredtobaccosamples关系数,结果见表6㊂从表6可以看出,口含烟感官评价总分与5项化学成分协调性指标的相关性均未达到显著水平(P>0.05)㊂从感官评价单项指标看,烟碱含量与口含烟嗅香㊁嗅觉刺激㊁酸味得分均达到极显著正相关(P<0.01),与口含烟本香得分呈显著负相关(P<0.05);晾晒烟总氮含量与口含烟劲头得分之间存在极显著正相关(P<0.01);氮碱比与嗅香得分呈极显著负相关(P<0.01),与嗅觉刺激㊁酸味得分呈显著负相关(P<0.05),与口含烟本香得分呈显著正相关(P<0.05)㊂因此,口含烟烟叶原料的烟碱含量㊁总氮含量和氮碱比与口含烟感官质量有较为紧密的相关关系㊂表6㊀国内晾晒烟常规化学成分协调性指标与口含烟感官评价质量的相关关系Table6㊀Correlationbetweenthecoordinationindexofroutinechemicalcomponentsofdomesticairandsuncuredtobaccoandthesensoryevalua⁃tionqualityoforaltobacco变量Variables烟碱Nicotine总氮TN还原糖Reducingsugar糖碱比Suger⁃alkaliratio氮碱比Nitrogen⁃alkaliratio色泽Colour0.1517-0.05080.11820.1050-0.0887嗅香Smellincense0.3325∗∗-0.01060.01380.0393-0.3083∗∗嗅觉刺激Olfactorystimulation0.3375∗∗0.02310.07090.0741-0.2786∗烟草本香Tobaccofragrance-0.2867∗-0.11140.17880.23990.2695∗刺激性Stimulate-0.01880.0523-0.0410-0.05960.0277余味Aftertaste-0.07130.1739-0.0150-0.00080.1679杂味Miscellaneoustaste-0.19900.0566-0.02490.01170.2143酸味Sourtaste0.3305∗∗-0.0594-0.1676-0.1513-0.2881∗苦味Bittertaste-0.05170.0647-0.0560-0.11380.0047咸味Salttaste0.11660.11750.18790.1968-0.0653涩味Astringenttaste0.0787-0.1149-0.0096-0.0023-0.1098劲头Strength0.11260.3149∗∗0.14990.04880.0034感官评价总分Totalsensoryscore-0.19480.09830.02720.00900.2047㊀注:∗表示显著相关(P<0.05);∗∗表示极显著相关(P<0.01)㊂㊀Note:∗indicatessignificantcorrelation(P<0.05)∗∗indicatesextremelysignificantcorrelation(P<0.01).3㊀讨论烟碱含量是口含烟的重要指征,作为口含烟的功能成分,满足消费者的生理需求㊂一般来说,口含烟烟叶原料选择需要满足产品劲头足的特点,宜选择烟碱含量高的原料㊂瑞典口含烟的烟碱含量在不同产品之前差异较大,为5.8516.28mg/g,美国口含烟产品烟碱含量相对差异较小,为8.04 13.37mg/g,但瑞典与美国的口含烟产品烟碱含量均值非常接近,分别为11.10和10.63mg/g[17]㊂国内晾晒烟烟碱含量超过4.0%的烟叶样品占比68.51%,因此该研究初步认为国内晾晒烟烟碱含量能满足口含烟的产品设计需要㊂美国市售含化型烟草制品pH在6.85 8.12,产品呈现弱碱性,pH上升,含氮化合物尤其是烟碱释放量增加[18]㊂章平泉等[19]研究认为pH间接作用于游离烟碱,提高pH可提高口含烟游离烟碱的释放量㊂艾明欢等[20]研究表明口含烟中烟碱浓度与pH有一定协同作用,随着pH升高,烟碱更容易转化为游离烟碱,更易为黏膜所吸收,而且pH较高时口含烟游离态烟碱含量下降速率降低,但过高的碱性条件对黏膜产生损伤㊂该研究发现,国内晾晒烟pH为4.70 6.18,而口含58151卷16期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀刘佩佩等㊀基于口含烟原料的国内晾晒烟分析烟商品的酸碱度一般为中偏碱性[21],因此烟叶原料的酸碱度可调节性就成为口含烟烟叶原料的一个重要指标㊂该研究结果显示,国内晾晒烟经加入碳酸氢钠等调节后pH可升高至原pH的1.14 1.49倍,以调至原pH的1.2 1.5倍最为普遍,在1.3 1.4倍最多㊂国内晾晒烟pH6.3以上的样品占62.5%,通过调节后pH可达到中偏碱性㊂因此,国内口含烟产品可以较为容易地得到所需烟叶原料㊂烟叶原料的粉末粒径也作为口含烟烟叶原料的一个重要指标加以考量,为符合口含烟商品的加工,一般选择中大粒径的粉末[18]㊂烟草粒径过小容易导致烟草产品的透气性不够,但过大会导致烟草外观不均一,所采集样品的粒径分布比例相对合理㊂曹芸等[22]提出减小粒径均有利于缩短烟草颗粒起始释烟时间,提高释烟速率,且释放总量整体呈上升趋势㊂林珊珊[23]研究粒径对口含烟烟碱释放量的影响得出二者关系总体成正比㊂该研究数据显示,总体中大粒径粉末得率较高,变幅为68.00% 87.00%㊂因此,国内晾晒烟烟叶粉碎后的烟末粒径符合口含烟原料粒径预期㊂口含烟产品原料优劣主要通过感官评价反映出来,烟草的化学成分与感官质量之间的相关关系前人研究较多,大多基于烤烟与传统卷烟方面,薛琳等[24-25]研究认为,烟叶常规化学成分与卷烟感官评价质量关系密切㊂该研究显示,晾晒烟烟叶的常规化学成分也与其感官质量存在较为密切的关系,烟叶的烟碱含量㊁氮碱比与口含烟嗅香㊁嗅觉刺激㊁烟草本香㊁酸味4项指标的得分密切相关,劲头得分与晾晒烟烟叶总氮含量关系密切㊂但其他指标无显著相关,说明口含烟的感官评价与某些理化性质无必然相关性,一方面口含烟评吸过程中可能对于感官判定有一定主观性,另一方面口含烟制作过程还添加了其他辅助材料,也会对其感官评定产生影响,这需要进一步研究㊂4 结论通过分析样品的常规化学成分㊁物理特性及常规化学成分与感官质量的相关性,得到以下结论:(1)国内晾晒烟样品烟碱含量差异很大,黄花烟㊁晒红烟的烟碱含量显著高于晒黄烟㊂国内晾晒还原糖含量差异很大,还原糖含量从高到低依次为晒黄烟㊁香料烟㊁晒红烟㊁黄花烟㊁雪茄烟;晒黄烟还原糖含量显著高于其他晾晒烟类型㊂(2)国内晾晒烟烟叶pH均值为5.33,偏酸性;以pH可调度来看,调节后pH可升高至原pH的1.14 1.49倍㊂国内晾晒烟烟叶中大粒径粉末得率较高,变幅为68.00% 87.00%,均值78.38%;35.38%的样品中大粒径粉末得率超过80.00%㊂(3)国内晾晒烟烟叶的烟碱㊁总氮㊁氮碱比与口含烟感官质量有较为紧密的相关关系㊂参考文献[1]刘亚丽,王金棒,郑新章,等.加热不燃烧烟草制品发展现状及展望[J].中国烟草学报,2018,24(4):91-106.[2]窦玉青,沈轶,张继旭,等.口含烟发展现状及原料研究进展[J].贵州农业科学,2016,44(12):133-136.[3]罗一鸣,张献英.新型烟草制品发展综述[J].广东化工,2021,48(13):111-112,131.[4]DIGARDH,ERRINGTONG,RICHTERA,etal.PatternsandbehaviorsofsnusconsumptioninSweden[J].NicotineTobRes,2009,11(10):1175-1181.[5]SwedishMatch.Annualreport2018[EB/OL].(2019-09-16)[2020-05-01].https://www.swedishmatch.com/globalasets/reports/annual⁃reports/2018_swedishmatchannualreport_en.pdf.[6]陈超英.变革与挑战:新型烟草制品发展展望[J].中国烟草学报,2017,23(3):14-18.[7]蔡洁云,王惠平,李雪梅,等.无烟气烟草制品现状及发展趋势[J].云南民族大学学报(自然科学版),2019,28(2):121-124.[8]ARIMILLIS,DAMRATOSKIBE,BOMBICKB,etal.Evaluationofcyto⁃toxicityofdifferenttobaccoproductpreparations[J].RegulToxicolPhar⁃macol,2012,64(3):350-360.[9]ELFASSYT,YISS,KANSAGRASM.Trendsincigarette,cigar,andsmokelesstobaccouseamongNewYorkCitypublichighschoolyouthsmokers,2001-2013[J].PrevMedRep,2015,2:488-491.[10]杨雄,李桃,康涵昌,等.全球烟草多元化发展背景下的新型烟草产业发展分析[J].质量与市场,2021(7):127-130.[11]闫新甫,王欣,孔劲松,等.全国近十年晾烟生产及市场变化分析[J].中国烟草科学,2021,42(2):98-104.[12]闫新甫,罗安娜,王欣,等.全国近十年晒烟生产和市场变化分析[J].中国烟草科学,2020,41(5):97-104.[13]国家烟草专卖局.烟草及烟草制品总植物碱的测定连续流动(硫氰酸钾)法:YC/T468 2013[S].北京:中国标准出版社,2013.[14]国家烟草专卖局.烟草及烟草制品水溶性糖的测定连续流动法:YC/T159-2002[S].北京:中国标准出版社,2002.[15]国家烟草专卖局.烟草及烟草制品总氮的测定连续流动法:YC/T161 2002[S].北京:中国标准出版社,2002.[16]国家烟草专卖局.烟草及烟草制品pH的测定:YC/T222 2007[S].北京:中国标准出版社,2007.[17]窦玉青,汪旭.中国口含烟烟叶原料质量评价与加工工艺[M].北京:中国农业科学技术出版社,2020.[18]秦亚琼,王晓瑜,贾云祯,等.无烟气烟草制品化学成分研究进展[J].烟草科技,2018,51(2):95-106.[19]章平泉,许蔼飞.口含烟中主要成分和游离烟碱含量的多元分析[J].农学学报,2021,11(1):67-70.[20]艾明欢,郑赛晶,王申,等.含水率和pH对口含烟中游离烟碱含量的影响[J].上海烟业,2016(专刊):12-16.[21]汪刚,张怡春,王雨青,等.国外袋装型口含烟产品调研分析[J].烟草科技,2021,54(2):94-102.[22]曹芸,张劲,王鹏,等.烟草颗粒热解与释烟特性影响因素研究[J].中国烟草学报,2021,27(1):18-26.[23]林姗姗.不同烟叶原料对口含烟烟碱释放影响研究[D].北京:中国农业科学院,2019.[24]薛琳,朱启法,季学军,等.皖南烤烟烟叶化学成分与感官品质的相关性[J].烟草科技,2016,49(11):26-32.[25]胡建军,马明,李耀光,等.烟叶主要化学指标与其感官质量的灰色关联分析[J].烟草科技,2001,34(1):3-7.681㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年。
•心理卫生评估•海军某部官兵的自杀意念及相关因素高淇张懿占毅楠江倩许惠静刘涛生(海军军医大学心理系精神医学教研室,上海202435通信作者:刘涛生Uapheng@adyun.cam)【摘要】目的:调查海军官兵自杀意念的流行现状并初步探讨其相关因素。
方法:选取海军某部官兵99人,完成自编人口学调查表、抑郁焦虑压力自评量表中文简体版(DASS-C21)、艾森克人格问卷简式量表中国版(EPQ-RSC)和自杀意念自评量表(SIOSS)o结果:本样本1年自杀意念检出率为3.56%。
多因素logistic回归分析显示,与父母关系一般和差、经常和偶尔出现口腔溃疡症状、重度和极重度抑郁、重度和极重度压力、高神经质、高精神质是自杀意念的危险因素(OR=2.74、3.48、9.77、3.54、5380、6.44)o结论:与父母关系、口腔溃疡症状、抑郁、压力和人格特质是与海军官兵自杀意念相关的危险因素。
提示在海军官兵自杀预防中,除传统的心理和社会学因素外,也应重视官兵身体健康异常的问题。
【关键词】海军;自杀意念;检岀率;相关因素中图分类号:C913.9文献标识码:A文章编号:900-6729(2429003-0248-05doi:14.3969/j.issn.900-6729.202303.006(中国心理卫生杂志,2021,35(3):208-29.)Suicidal ideation and related factors in a navy unitGAO Qi,ZHANG Yi,ZHAN Yinac,JIANG Qian,XU Huijing,LIU Taosheng DepaVment of Psychiatrv,Navel Medical Universitu,Shanghai270433,ChinaCorresponding authoe:LIU TaosPeng:ltaosPeng@.[Abstract i Objective:To invesOgaW the preveledca rate of suicidal ideation ack its related factors in navy officers ank soldiers.Methods:Totally99Chinese navy officers and soldiers from a navy unit were selected h finish he self-maCe general characteristics uu es Oopnaira,Chinese ShoV Version of Depression Anxieto and Stress Scale(DASS-C21),EysencC Persynalito Questionnaira-Revised ShoV Scala fov Chinese(EPQ-RSC)ank Self-rating Idee of Suicide Scale(SIOSS).ReshUs:TCe preveledca of suicidal ideation in one year was3.87%.Logistic dgdSi sion analysis showed thct factors fov suicidal ideation included average and poov relatiokshin with parents,recurreni aphhovs ulcev,severe ack very severe depression,severe and very severe stress,high neuroticism ack high psychosis(OR=7.74,3.48,9.27,3.84,5330,6.44).Conclusion:ReUhonship with parents,aphhovs ulcev,depdSi sion,stress,persynalito Waits may Oe VsO factors fov suicidal ideation in navy officers and soldiers,which suggests Wat in aCdition h those traCitionci psychological and sociological factors,attention shovld also Oe paid h the physical health problems of navy officers ack saldiero【Key wonlsi navy soldiev;suicidal ideation;prevelenca rate;related factov(Chin Menu Health J,2021,35(3):208-29.)研究显示多国军人中有较高的自杀率[16],军人被认为是可能与自杀行为有特别相关的职业类别。
ChinaPharmaceuticals2021年5月5日第30卷第9期Vol.30牞No.9牞May5牞2021基金项目:广西壮族自治区玉林市科学研究与技术开发计划项目犤玉市科20180102犦。
第一作者:周丽娟,女,硕士,主管药师,研究方向为医院药学,(电话)0775-2683985(电子信箱)xixi545@126.com。
doi:10.3969/j.issn.1006-4931.2021.09.025檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨洋葱伯克霍尔德菌的耐药性与抗菌药物使用强度相关性分析周丽娟,蒙光义,梁春宏,彭评志,钟丽球,梁河,韦凤华(广西壮族自治区玉林市第一人民医院,广西玉林537000)摘要:目的为临床合理使用抗菌药物提供参考。
方法收集医院各科室2013年至2018年送检的痰、气管抽出液、血液、伤口拭子、支气管分泌物、腹腔积液等标本中分离的洋葱伯克霍尔德菌(BC),采用纸片扩散牗K-B牘法和最低抑菌浓度牗MIC牘法检测耐药率,使用VITEK-ⅡCompact型全自动微生物鉴定仪进行药物敏感性试验,以美国临床实验室标准化研究所(CLSI)标准判定结果。
收集医院抗菌药物监测网数据库相关药物使用数据,计算抗菌药物使用强度(AUD),采用Pearson相关分析法对耐药性与AUD的相关性进行分析。
结果共检出常见非发酵菌10462株,BC550株牗检出率为5.26%牘;BC标本来源以痰和气管抽出液为主,占79.45%(437/550);BC临床分布主要在重症监护病房、呼吸内科、神经内科、心胸外科。
BC对头孢他啶的耐药率与阿米卡星的AUD呈正相关(r=0.880,P<0.05),与苯唑西林的AUD呈负相关(r=-0.910,P<0.05);对左氧氟沙星的耐药率与头孢噻肟的AUD呈正相关(r=0.829,P<0.05);对复方磺胺甲SurgRelatRes,2018,30(3):247-254.犤22犦COLLEONIJL,RIBEIROFN,MOSPAC,etal.Venousthrom boembolismprophylaxisaftertotalkneearthroplasty(TKA):aspirinvs.rivaroxaban犤J犦.RevBrasOrtop,2018,53牗1牘:22-27.犤23犦陈治学,殷力,张翼,等.TKA术后应用阿司匹林、低分子肝素钙和利伐沙班预防VTE疗效分析犤J犦.医药论坛杂志,2019,40(3):31-33.犤24犦马涛.阿哌沙班和利伐沙班在全膝关节表面置换术后抗凝效果的对比犤D犦.重庆:重庆医科大学,2015.犤25犦张传广.阿哌沙班和利伐沙班在全膝关节表面置换术后抗凝效果的对比犤J犦.双足与保健,2017,26牗9牘:127.犤26犦ERIKSSONBI,BORRISLC,FRIEDMANRJ,etal.Rivaroxabanversusenoxaparinforthromboprophylaxisafterhiparthroplasty犤J犦.JournalofVascularSurgery,2008,48牗3牘:770-771.犤27犦LASSENMR,AGENOW,BORRISLC,etal.Rivaroxabanversusenoxaparinforthromboprophylaxisaftertotalkneearthroplasty犤J犦.NEnglJMed,2008,358牗26牘:2776-2786.犤28犦HUANGHF,LISS,YANGXT,etal.Rivaroxabanversusenoxaparinforthepreventionofvenousthromboembolismaftertotalkneearthroplasty:Ameta-analysis犤J犦.Medicine,2018,97:e13465.犤29犦FALCKYY,FRANCISCW,JOHANSONNA,etal.PreventionofVTEinorthopedicsurgerypatients:AntithromboticTherapyandPreventionofThrombosis,9th:AmericanCollegeofChestPhysi ciansEvidence-BasedClinicalPracticeGuidelines犤J犦.Chest,2012,141(Suppl2):e278S-e325S.犤30犦曾敬,尹德龙,赵洪普,等.阿司匹林预防髋膝关节置换术后静脉血栓栓塞症的研究进展犤J犦.中华骨与关节外科杂志,2019,12(8):635-640.犤31犦XUJS,KANAGARATNAMA,CAOJY,etal.Acomparisonofaspirinagainstrivaroxabanforvenousthromboembolismprophy laxisafterhiporkneearthroplasty:Ameta-analysis犤J犦.JournalofOrthopaedicSurgery,2020,28(1):1-8.犤32犦ALVESC,BATEL-MARQUESF,MACEDOAF.ApixabanandRivaroxabanSafetyAfterHipandKneeArthroplasty:AMeta-Analysis犤J犦.JournalofCardiovascularPharmacologyandTherapeutics,2012,17(3):266-276.犤33犦LOKEYK,KWOKCS.Dabigatranandrivaroxabanforpreventionofvenousthromboembolism-systematicreviewandadjustedindirectcomparison犤J犦.JournalofClinicalPharmacyandThera peutics,2011,36牗1牘:111-124.犤34犦TRKULJAV,KOLUND IR.RivaroxabanvsDabigatranforThromboprophylaxisAfterJoint-replacementSurgery:ExploratoryIndirectComparisonBasedonMeta-analysisofPivotalClinicalTrials犤J犦.CroatMedJ,2010,51牗2牘:113-123.牗收稿日期:2020-07-07;修回日期:2020-09-12牘ChinaPharmaceuticals2021年5月5日第30卷第9期Vol.30牞No.9牞May5牞2021标本痰气管抽出液血液伤口拭子支气管分泌物腹腔积液气管插管尿液中央导管肾脏尿关节腔积液脓液活检组织合计2013年牗例牘471821100100000702014年牗例牘63221325127010101172015年牗例牘5824557202000201052016年牗例牘50913120110000682017年牗例牘511744333221100912018年牗例牘59195303053000299合计牗例牘3281093018171151862132550占比(%)59.6419.825.453.273.092.000.913.271.090.360.180.550.36100.00·药学监护·PharmaceuticalCaretum,trachealextract,blood,woundswab,bronchialsecretion,ascitesandothersamplesfromeachdepartmentofourhospitalfrom2013to2018werecollected.Kirby-Bauer(K-B)methodandminimuminhibitoryconcentration(MIC)methodwereusedtodetectthedrugre sistancerate,VITEK-ⅡCompactautomaticmicrobialidentificationinstrumentwasusedtocarryoutthedrugsensitivitytest,andtheClinicalandLaboratoryStandardsInstitute(CLSI)standardwasusedtodeterminetheresults.Thedataofantimicrobialuseinthedatabaseofhospitalantimicrobialmonitoringnetworkwerecollected,theantibioticsusedensity(AUD)wascalculated,andthecorrelationbetweenthedrugresistanceandAUDwasanalyzedbyPearsoncorrelationanalysis.ResultsAtotalof10462strainsofcommonnon-fermentingbacteriaweredetected,550strainswereBurkholderiacepacia(thedetectionratewas5.26%),thesamplesofBurkholderiacepaciaweremainlyfromsputumandtracheaextract,accountingfor79.45%(437/550),andtheclinicaldistributionofBurkholderiacepaciawasmainlyinICU,respiratorymedicine,neurologyandcardiothoracicsurgery.TheresistancerateofBurkholderiacepaciatoceftazidimewaspositivelycorrelatedwiththeAUDofamikacin(r=0.880,P<0.05),andnegativelycorrelatedwiththeAUDofoxacillin(r=-0.910,P<0.05).TheresistancerateofBurkholderiacepaciatolevofloxacinwaspositivelycorrelatedwiththeAUDofcefotaxima(r=0.829,P<0.05).TheresistancerateofBurkholderiacepaciatocompoundsulfamethoxazdewashighlypositivelycorrelatedwiththeAUDofpiperacillin-tazobactam(r=0.928,P<0.01).TheresistancerateofBurkholderiacepaciatomeropenemwaspositivelycorrelatedwiththeAUDofcefoperazone-sulbactamandimipenem(r=0.892,0.967,P<0.05).ConclusionTheresis tanceofBurkholderiacepaciatoacertainantibioticisrelatedtotheAUDoftheantibioticorotherantibiotics,especiallycorrelatedwiththeAUDofβ-lactamsandaminoglycosides.MonitoringthecorrelationbetweenthedrugresistancerateandtheAUDofantibi oticsishelpfultocontrolandreducethedrugresistancerate.Rationaluseofantibioticsisaneffectivemethodtopreventandcontrolbacterialresistance.Keywords:Burkholderiacepacia;antibioticsusedensity;defineddailydoses;clinicaldistribution;drugresistancerate表12013年至2018年BC标本来源分布(n=550)Tab.1SourcesofBurkholderiacepaciasamplesfrom2013to2018(n=550)洋葱伯克霍尔德菌(BC)为医院常见非发酵菌之一,检出率仅次于铜绿假单胞菌、鲍曼不动杆菌和嗜麦芽窄食单胞菌犤1-2犦。
远端肾小管酸中毒一家系ATP6VOA4基因突变分析发布时间:2021-09-02T00:52:30.327Z 来源:《医师在线》2021年5月9期作者:金小艳[导读]金小艳( 安徽省儿童医院肾内科;安徽合肥230001)[摘要] 目的对临床确诊的2例来自同一家庭的肾小管酸中毒(RAT)患儿进行基因分析并总结致病基因ATP6VOA4突变情况。
方法通过收集2例远端肾小管酸中毒患儿病历资料,对患儿全外显子组DNA 进行检测,对其临床特征和基因检测结果进行分析。
结果测序结果显示2例患儿均携带 ATP6V0A4 基因 c.2249(exon20)C>T、 c.1029+5(IVS11)G>A 和c.816+42(IVS10)G>A复合杂合突变;2 例患儿的突变均遗传自父母。
遗传特点符合常染色体隐形遗传。
结论发现 ATP6V0A4 基因 3 个突变位点,为基因检测和诊断治疗提供借鉴。
[关键词] 远端肾小管酸中毒;ATP6V0A4 基因;基因变异远端肾小管酸中毒(dRTA)是一种远端肾小管排氢离子障碍,这种缺陷导致无法排出酸性负荷,造成氢离子滞留和高氯代谢性酸中毒,碱性尿。
主要表现为高氯血症、正常阴离子间隙代谢性酸中毒、电解质紊乱、骨病及泌尿道症状[1-2]。
dRTA的可能发病机制为氢离子泵衰竭,不能泌氢建立梯度,还可能因细胞膜的渗透有变化,已经分泌的氢离子很快扩散返回细胞内,因而不能保持梯度[3-4]。
dRTA的遗传模式常为常染色体隐形或常染色体显性遗传,ATP6V0A4基因突变可伴发听觉障碍[1]。
本研究对确诊的2例兄妹的临床资料及基因检测结果进行总结,分析该病的临床表型及基因突变特点,以提高对本病的认识,为临床诊断提供依据。
1 资料与方法1.1 研究对象例1患儿于2019年8月因“反复发热半月伴精神差、呕吐”入院,入院时年龄7月龄,体重5.5kg(<P3),查体未见异常。
查相关指标示:K1.8mmmol/L,钠142mmmol/L,氯114mmol/L,CO27.1mmol/L;尿常规:尿蛋白2+;肾脏B超:双肾椎体内弥漫性钙盐沉积。
浙江大学2008–2009学年春、夏学期《 PHYSICS I 》课程期末考试试卷请考生仔细阅读以下注意事项:1. 诚信考试,沉着应考,杜绝违纪。
2. 开课学院:_理学院_3. 考试形式:闭卷,允许带_计算器、字典_入场4. 考试日期: 2009 年 06 月 24 日,考试时间: 120 分钟考生姓名:学号:所属院系: _When the frame S’ moves relative to the frame S with velocity u along xx’direction,,/1/',',',/1'22222cucuxttzzyycuutxx--===--=2222222/1/1',/1/1',/1'cuvcuvvcuvcuvvcuvuvvxzzxyyxxx--=--=--=The mass, momentum and kinetic energy of a particle, with velocity v, are 'm=p=22K m c=-I. Multiple choices (one correct answer only, score of 2.5 for each):1.An object travels dependent on a formula of 2ˆˆ3r t i tj=-(m), the magnitude of its tangent acceleration is 1.6 m/s2atA. t =2.0s.B. t =1.5s.C. t =1.0s.D. t=0.5s.2. A toy yo-yo, with a disk of mass M and radius R, connected by athin shaft of radius r. The mass of the shaft is much less than Mand r =0.1R. A string is wrapped around the shaft, as show in thefigure. The yo-yo starts its motion from rest. The ratio of rotationalkinetic energy to translational kinetic energy isA. 25B. 50C. 1/25D.1/503. A container holds a quantity of a liquid whose top surface is open to the atmosphere. A syphon is a device for removing liquid from the container. TheA. 2143 P P P P >>>B. 1234 P P P P >>>C. 3412 P P P P >>>D. 2134 P P P P >>>4. A spinning top, with a mass m , makes a processional motion about a vertical axis. The angular momentum of the top is L . The separation between the mass center of the top and the contact point is r as shown in the figure. The angular speed of processional motion isA. Lm grB. m g r LC.m gLrD.rL m g5. A rocket is moving at speed 0.8c relative to the earth. A light emits from the end of the rocket. By an earth observer, the time interval of light from the end to the head of the rocket is 0.1 μs . The rest length of the rocket is A. 100 m B. 50 m C. 10 m D. 5 m6. A particle, with mass m at rest, adsorbs a photon with kinetic energy K . The rest mass of the resulting particle isA. D.7. An electron, with mass m at rest, is accelerated with kinetic energy K . The momentum of the electron isA. B.m C. 2(1)2K m c m c+D. K m c c+8. The mass of two particles is m and 2m respectively. The interaction between them is a massless spring with the force constant k . During the oscillation, the difference between the maximum and minimum separation of two particles is D , the maximum of the relative velocity between them is A.B.C.D.P P 49. The displacement of an object oscillating on a spring is given by x (t )=x m cos(ωt +φ). If the object is initially at x m /2 and given a negative velocity, then the phase constant φ isA. π/3.B. 2π/3.C. -π/3.D. -2π/3.10. In the case as above, if the object comes back its original position in 1 second, the angular frequency is A.5π/3 B. 4π/3 C. 2π/3 D. π/311. A pendulum is made of a uniform hoop. In the case a , it oscillates with small displacements in the plane of the hoop. In the case b , it oscillates in the plane perpendicular to the hoop. Find the ratio of angular frequency of oscillation in the cases of a and b .A.12. A violin string is fixed between two screws. The tension force of the string is F . Now the separation between two screws is twice as before, but the fundamental frequency is not change. The tension force of the string isA. /2B.C. 2FD. 4F13. A sound wave of 1.14 m wavelength enters a tube as shown in the figure. What is the smallest radius r , such that a minimum will be heard at the detector? A. 2.0m B. 1.0m C. 0.5m D. 0.25m14. A student in Chu Kochen Honors College asked me a question what is the Doppler Effect in the case of an observer or sound source moving away from the line between observer and source? If you can answer the question, please look at follows: a sound, with a frequency of 1000 Hz and speed of 340 m/s , is set to a plane. The plane moves with speed of 200m/s , its direction is 30°away from the line between the observer and source. The frequency of the sound come back to the source is A.276 Hz B. 300 Hz C.326 Hz D. 362 Hz15. One mole of ideal gas undergoes in a reversible adiabatic process. The temperature is T and the volume is V, which one is not constant: A.1TV γ- B. VC R T V C. VPC C T V D. /VR C TVm/sSource Detector16. A chamber filled with nitrogen molecule, the mean free path of nitrogen moleculein the chamber is λ. If the temperature of the chamber increases from T to 2T, the mean free path of the nitrogen molecule in the chamber isA.2λB.λC./2λλ D./417. In the case a, six identical molecules are in two boxes, three are in each box. Inthe case b, two boxes are brought together and the molecules mix together. In the case c, two boxes are brought together one molecule in a box and five in another box. The entropy ranking from large to small isA. c, b, aB. b, c, aC. c, a, bD. b, a, c18. One mole of an ideal gas undergoes in a constant pressure process. When thevolume increases from V to 2V, the increase in entropy isA. C v ln2B. C p ln2C. (C p+R) ln2D. R ln219. One mole of an ideal gas is expanded freely from V o to 2V o which one is notchangedA. pressureB. temperatureC. entropyD. temperature and entropy20. A Carnot refrigerator operates between 500 and 400 K. If it extracts heat from thelow-temperature reservoir is 500 J, then the work is done on the refrigerator isa) 100 J b) 125 J c) 150 J d) 400 JⅡ.Calculation problems (score of 10 for each):1. A solid ball, with radius r, can roll without slipping near the bottom of a bowl. The radius of the bowl is R, R>>rnear the bottom of a bowl?2. A solid cylinder, with mass 4m and radius R, is at rest on a rough surface of a table.A bullet of mass m, moving with speed v, collides with the cylinder at the height of 5R/4, as shown in the figure. After collision, the bullet moves back with speed v/2. During the collision the internal force between the cylinder and the bullet is much larger than the friction force between the cylinder and the table. When the cylinder starts its rotational motion without slipping, what is its velocity?3. A spaceship is far away from the sun, it moves with a velocityofv ,where G is the gravitational constant, M is the mass of the sun which is much larger than that of the spaceship, and b is the separation between the sun and the line along which the spaceship moves. (1)Under the gravitational force between the sun and the spaceship, what is the minimum separation between the sun and the spaceship? (2)What is the velocity of spaceship when the separation between the sun and the spaceship is the minimum?4. The speed distribution of particle in a chamber is 20()a vv v in the region o f 0<v <v 0, (1) To determine the constant a with N and v o , where N is the total number of the particle; (2) To calculate the most probable speed v p , the average speed v av and the root-mean-square speed v rms ; (3) To find the distribution of kinetic energy, if the mass of one particle is m ; (4) To calculate the average energy.5. One mole of monatomic ideal gas initially at a volume of V o and a temperature T is allowed to expand to 2V o isothermally. Then the gas reduces its temperature to T ’ in a constant pressure process, and finally compressed to its original state in a reversible adiabatic process. (1) To determine T ’ with T(2) To calculate the change in entropy in the constant pressure process (3) To plot the cycle on a p-V diagram. (4) To plot the cycle on a T-S diagram.。