2019年天津中考数学试卷
- 格式:doc
- 大小:122.04 KB
- 文档页数:6
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。
故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)×9 的结果等于()A.﹣27B.﹣6C.27D.62.(3分)2sin60°的值等于()A.1B.C.D.23.(3分)据2019年3月21日《天津日报》报道,“伟大的变革﹣﹣庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×104 4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算+的结果是()A.2B.2a+2C.1D.8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A .B.4C.4D.209.(3分)方程组的解是()A .B .C .D .10.(3分)若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 11.(3分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 12.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:且当x=﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算x5•x的结果等于.14.(3分)计算(+1)(﹣1)的结果等于.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)直线y=2x﹣1与x轴的交点坐标为.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠P AC=∠PBC =∠PCB,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)已知P A,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的批发店购买数量多.24.(10分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).25.(10分)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.2019年天津市中考数学试卷答案与解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】由正数与负数的乘法法则得(﹣3)×9=﹣27;【解答】解:(﹣3)×9=﹣27;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin60°=2×=,故选:C.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4230000有7位,所以可以确定n=7﹣1=6.【解答】解:4230000=4.23×106.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6.【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7.【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:原式===2.故选:A.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.8.【分析】根据菱形的性质和勾股定理解答即可.【解答】解:∵A,B两点的坐标分别是(2,0),(0,1),∴AB=,∵四边形ABCD是菱形,∴菱形的周长为4,故选:C.【点评】此题考查菱形的性质,关键是根据菱形的性质和勾股定理解答.9.【分析】运用加减消元分解答即可.【解答】解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.【点评】本题主要考查了二元一次方程组的解法,熟练掌握二元一次方程组的基本解法是解答本题的关键.10.【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,从而得到y1,y2,y3的大小关系.【解答】解:当x=﹣3,y1=﹣=4;当x=﹣2,y2=﹣=6;当x=1,y3=﹣=﹣12,所以y3<y1<y2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.11.【分析】根据旋转的性质得到AC=CD,BC=CE,AB=DE,故A错误,C错误;得到∠ACD=∠BCE,根据三角形的内角和得到∠A=∠ADC=,∠CBE =,求得∠A=∠EBC,故D正确;由于∠A+∠ABC不一定等于90°,于是得到∠ABC+∠CBE不一定等于90°,故B错误.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.【点评】本题考查了旋转的性质,等腰三角形的性质,正确的识别图形是解题的关键.12.【分析】①当x=0时,c=﹣2,当x=1时,a+b=0,abc>0,①正确;②x=是对称轴,x=﹣2时y=t,则x=3时,y=t,②正确;③m+n=4a﹣4;当x=﹣时,y>0,0<a<,m+n<,③错误;【解答】解:当x=0时,c=﹣2,当x=1时,a+b﹣2=﹣2,∴a+b=0,∴y=ax2﹣ax﹣2,∴abc>0,①正确;x=是对称轴,x=﹣2时y=t,则x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a﹣2,n=4a﹣2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x=﹣时,y>0,∴a>,∴m+n>,③错误;故选:C.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.二、填空题(本大题共6小题,每小题3分,共18)13.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x5•x=x6.故答案为:x6【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.14.【分析】利用平方差公式计算.【解答】解:原式=3﹣1=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.15.【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.【分析】当直线y=2x﹣1与x轴相交时,y=0;将y=0代入函数解析式求x值.【解答】解:根据题意,知,当直线y=2x﹣1与x轴相交时,y=0,∴2x﹣1=0,解得,x=;∴直线y=2x+1与x轴的交点坐标是(,0);故答案是:(,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标一定满足该函数的解析式.17.【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF ≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解答】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠F AH+∠AFH=90°,又∵∠F AH+∠BAH=90°,∴∠AFH=∠BAH,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ADF中,BF===13,S△ABF=AB•AF=BF•AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE﹣AG=13﹣=,故答案为:.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.18.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,于是得到结论.【解答】解:(Ⅰ)AB==,故答案为:;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB,故答案为:取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB 与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB.【点评】本题考查了作图﹣复杂作图,勾股定理,圆周角定理,正确的作出图形是解题的关键.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥﹣2;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x≤1.故答案为:x≥﹣2,x≤1,﹣2≤x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;(Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:4÷10%=40,m%==25%,故答案为:40,25;(Ⅱ)平均数是:=1.5,众数是1.5,中位数是1.5;(Ⅲ)800×=720(人),答:该校每天在校体育活动时间大于1h的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(Ⅰ)连接OA、OB,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°计算;(Ⅱ)连接CE,根据圆周角定理得到∠ACE=90°,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】解:(Ⅰ)连接OA、OB,∵P A,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB=∠AOB=50°;(Ⅱ)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.22.【分析】根据正切的定义用CD表示出AD,根据题意列出方程,解方程得到答案.【解答】解:在Rt△CAD中,tan∠CAD=,则AD=≈CD,在Rt△CBD中,∠CBD=45°,∴BD=CD,∵AD=AB+BD,∴CD=CD+30,解得,CD=45,答:这座灯塔的高度CD约为45m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【分析】(Ⅰ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);6×30=180,6×150=900;而乙批发店花费y2(元),当一次购买数量不超过50kg时,y2=7××30=210元;一次购买数量超过50kg时,y2=7×50+5(150﹣50)=850元.(Ⅱ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);而乙批发店花费y2(元)在一次购买数量不超过50kg时,y2(元)=7×购买数量x(千克);一次购买数量超过50kg时,y2(元)=7×50+5(x﹣50);即:花费y2(元)是购买数量x(千克)的分段函数.(Ⅲ)①花费相同,即y1=y2;可利用方程解得相应的x的值;②求出在x=120时,所对应的y1、y2的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当y=360时,两店所对应的x的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】解:(Ⅰ)甲批发店:6×30=180元,6×150=900元;乙批发店:7××30=210元,7×50+5(150﹣50)=850元.故依次填写:180 900 210 850.(Ⅱ)y1=6x(x>0)当0<x≤50时,y2=7x(0<x≤50)当x>50时,y2=7×50+5(x﹣50)=5x+100 (x>50)因此y1,y2与x的函数解析式为:y1=6x(x>0);y2=7x(0<x≤50)y2=5x+100 (x>50)(Ⅲ)①当y1=y2时,有:6x=7x,解得x=0,不和题意舍去;当y1=y2时,也有:6x=5x+100,解得x=100,故他在同一个批发店一次购买苹果的数量为100千克.②当x=120时,y1=6×120=720元,y2=5×120+100=700元,∵720>700∴乙批发店花费少.故乙批发店花费少.③当y=360时,即:6x=360和5x+100=360;解得x=60和x=52,∵60>52∴甲批发店购买数量多.故甲批发店购买的数量多.【点评】此题主要考查了一次函数的应用,分段函数,就是要根据自变量在不同的取值范围函数的关系不一样,需要分段进行讨论,分别进行计算,根据函数关系式可以已知自变量的值求函数值,也可以已知函数值求相应的自变量的值.24.【分析】(Ⅰ)由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,即可得出答案;(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,得出∠E′FM=∠ABO=30°,在Rt△MFE′中,MF=2ME′=2t,FE′===t,求出S△MFE′=ME′•FE′=×t×t=,S矩形C′O′D′E′=O′D′•E′D′=2×4=8,即可得出答案;②当S=时,O'A=OA﹣OO'=6﹣t,由直角三角形的性质得出O'F=O'A=(6﹣t),得出方程,解方程即可;当S=5时,O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,由直角三角形的性质得出O'G=(6﹣t),D'F=(4﹣t),由梯形面积公式得出S=[(6﹣t)+(4﹣t)]×2=5,解方程即可.【解答】解:(Ⅰ)∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,∴∠E′FM=∠ABO=30°,∴在Rt△MFE′中,MF=2ME′=2t,FE′===t,∴S△MFE′=ME′•FE′=×t×t=,∵S矩形C′O′D′E′=O′D′•E′D′=2×4=8,∴S=S矩形C′O′D′E′﹣S△MFE′=8﹣,∴S=﹣t2+8,其中t的取值范围是:0<t<2;②当S=时,如图③所示:O'A=OA﹣OO'=6﹣t,∵∠AO'F=90°,∠AFO'=∠ABO=30°,∴O'F=O'A=(6﹣t)∴S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),∴t=6﹣;当S=5时,如图④所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,∴O'G=(6﹣t),D'F=(4﹣t),∴S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,∴当≤S≤5时,t的取值范围为≤t≤6﹣.【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质、梯形面积公式等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质时是解题的关键.25.【分析】(Ⅰ)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b >0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q 作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,所以[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,解方程即可.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,∴b=4.【点评】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题关键是能够根据给定参数判断点的位置,从而构造特殊三角形来求解.第21页(共21页)。
{来源}2019年天津中考数学 {适用范围:3. 九年级}{标题}2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷{题型:1-选择题}一、选择题(本大题12小题,每小题3分,共36分) {题目}1.(2019年天津)计算(-3)×9的 结果等于( ) A. -27 B. -6 C. 27 D. 6 {答案}A{解析}本题考查了有理数的 乘法,两数相乘,同号得正,异号得负,并把绝对值相乘,故原式=-3×9=-27,因此本题选A . {分值}3{章节:[1-1-4-1]有理数的 乘法} {考点:有理数的 乘法法则} {类别:常考题} {难度:1-最简单}{题目}2.(2019年天津)︒60sin 的 值等于( )C. 3D. 2 【解析】锐角三角函数计算,故选A. {答案}B{解析}本题考查了特殊角的 锐角三角形函数,由于sin 60︒=︒60sin 2=2×23=3,因此本题选B .{分值}3{章节:[1-28-3]锐角三角函数} {考点:特殊角的 三角函数值} {类别:常考题} {难度:1-最简单}{题目}3.(2019年天津)据2019年3月21日《天津日报》报道:“伟大的 变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4 230 000人次,将4 230 000用科学记数法表示为( )A. 0.423×107B.4.23×106C.42.3×105D.423×104{答案}B{解析}本题考查了科学记数法,将一个数写成a ×10n的 形式,叫做科学记数法.其中a 是整数数位有且仅有一位的 数,即a 应满足1≤|a|<10;当原数的 绝对值不小于1时,n 等于原数的 整数位数减去1所得的 差;当原数的 绝对值小于1时,n 等于原数左起第一位非零数字前面所有0的 个数的 相反数.4 230 000=4.23×106,因此本题选B . 本题考查了,,因此本题选. {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的 数科学计数法} {类别:常考题}{难度:1-最简单}{题目}4.(2019年天津)在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.{答案}A{解析}本题考查了轴对称图形的识别,看一个图形是否轴对称图形,关键是看它能否沿着某条直线折叠后使得两边能完全重合,以此来判断可知:“”可以看做轴对称图形.因此本题选A.{分值}3{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.{答案}B{解析}本题考查了三视图,从前面看到的图形叫做物体的主视图,容易看出图中的立体图形主视图为,因此本题选B.{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{难度:1-最简单}{题目}(2019年天津)6.估计33的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间{答案}D{解析}本题考查了算术平方根型的无理数的<335<33<6,因此本题选D.{分值}3{章节:[1-6-3]实数}{考点:无理数的估值}{类别:常考题} {难度:2-简单}{题目}7.(2019年天津)计算2211a a a +++的 结果是( ) A. 2 B. 22+a C. 1 D.14+a a{答案}A{解析}本题考查了同分母分式的 加减,21221212=++=+++a a a a a ,因此本题选A . {分值}3{章节:[1-15-2-2]分式的 加减} {考点:两个分式的 加减} {类别:常考题} {难度:2-简单}{题目}8.(2019年天津)如图,四边形ABCD 为菱形,A 、B 两点的 坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的 周长等于( )A.5B.34C.54D. 20{答案}C{解析}本题考查了菱形的 性质,∵A (2,0),B (0,1),∴OA=2,OB=1,由勾股定理可得AB=由菱形的 性质可知所以其周长等C.{分值}3{章节:[1-18-2-2]菱形} {考点:菱形的 性质} {类别:常考题} {难度:2-简单}{题目}9.(2019年天津)方程组⎩⎨⎧=-=+1126723y x y x 的 解是( )A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.31x y =⎧⎨=-⎩D.⎪⎩⎪⎨⎧==212y x{答案}D{解析}本题考查了二元一次方程组的 解法,用加减消元法解方程组⎩⎨⎧=-=+②①1126723y x y x ,①+②,得9x=18,∴x=2, 将x=2代入①得,726=+y ,解得21=y ,从而方程组的 解为⎪⎩⎪⎨⎧==212y x,因此本题选D. {分值}3{章节:[1-8-2]消元——解二元一次方程组} {考点:加减消元法} {类别:常考题} {难度:2-简单}{题目}10.(2019年天津)若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的 图象上,则1y ,2y ,3y 的 大小关系是( )A.312y y y <<B.213y y y <<C.321y y y <<D.123y y y << {答案}B{解析}本题考查了反比例函数的 性质,将(-3,1y ),(-2,2y ),(1,3y )代入xy 12-=,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,因此本题选B . {分值}3{章节:[1-26-1]反比例函数的 图像和性质} {考点:反比例函数的 性质} {类别:常考题} {难度:2-简单}{题目}11.(2019年天津)如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的 对应点D 恰好落在边AB 上,点B 的 对应点为E ,连接BE ,下列结论一定正确的 是( )A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC{答案}D{解析}本题考查了图形旋转的 性质,由旋转性质可知,AC=CD ,AC 不一定等于AD ,∴A 选项错;由旋转性质可知,BC=EC ,BC 不一定等于DE ,∴C 错;由旋转性质可知,∠ACB=∠DCE ,∠ACD=∠ECB , AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ),∴∠A=∠EBC ,∴D 正确;要想∠ABE=90°,需∠ABC+∠EBC=∠ABC+∠A=90°,这就需要∠ACB=90°,而由题意不能得到∠ACB=90°,∴B 选项错误.因此本题选D . {分值}3{章节:[1-23-1]图形的 旋转} {考点:旋转的 性质} {类别:常考题}{难度:3-中等难度}{题目}12.(2019年天津)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的 自变量x 与函数值y且当x=12-时,与其对应的函数值0>y,有下列结论:①abc>0;②-2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<203.其中,正确结论的个数是()A.0B.1C. 2D.3{答案}C{解析}本题考查了二次函数的图象与性质.由表格可知,抛物线y=ax2+bx+c过点(0,-2),(1,-2),∴c=﹣2,a+b﹣2=﹣2,∴a+b=0,∵a≠0,∴ab<0,从而可得abc>0,∴①正确;抛物线为y=ax2﹣ax﹣2,x=12是对称轴,x=﹣2时y=t,故由抛物线的轴对称性可知当x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根,故②正确;将(-1,m)、(2,n)代入解析式y=ax2﹣ax﹣2得m=n=2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x=12-时,y>0,∴112042a a+->,∴a>83,∴m+n>203,故③错误.因此本题选C.{分值}3{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:二次函数y=ax2+bx+c的性质}{类别:常考题}{难度:4-较高难度}第II 卷二、填空题(本大题共6小题,每小题3分,共18分){题目}13.(2019年天津)计算x 5•x 的 结果等于 . {答案}x 6{解析}本题考查了同底数幂的 乘法,根据“同底数幂相乘,底数不变,指数相加”,可知x 5•x =x 6.因此本题答案为:x 6. {分值}3{章节:[1-14-1]整式的 乘法} {考点:同底数幂的 乘法} {类别:常考题} {难度:1-最简单}{题目}14.(20191)(13-)的 结果等于 . {答案}2{解析}本题考查了二次根式的 乘除,由平方差公式得原式=221-=3﹣1=2.因此本题答案为:2. {分值}3{章节:[1-16-2]二次根式的 乘除} {考点:二次根式的 乘法法则} {类别:常考题} {难度:2-简单}{题目}15.(2019年天津)不透明袋子中装有7个球,其中有2个红球,3个绿球和2个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的 概率是 . {答案}37{解析}本题考查了等可能条件下的 概率的 计算,因为不透明袋子装有7个球,其中3个绿球,所以从袋子中随机取出一个球,有7种等可能的 结果,其中是绿球的 有三种,∴P (摸出1个球是绿球)=37.因此本题答案为:37. {分值}3{章节:[1-25-1-2]概率} {考点:一步事件的 概率} {类别:常考题} {难度:1-最简单}{题目}16.(2019年天津)直线12-=x y 与x 轴交点坐标为 . {答案}(21,0) {解析}本题考查了一次函数图象的 性质,求直线与x 轴的 交点坐标,就要求出当y=0时,x 的 值为多少.令0=y ,得21=x ,所以直线12-=x y 与x 轴交点坐标为(21,0).因此本题答案为:(21,0). {分值}3{章节:[1-19-2-2]一次函数} {考点:一次函数的 性质} {类别:常考题}{难度:2-简单}{题目}17.(2019年天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的 G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为 .{解析}本题考查了正方形的性质、勾股定理及折叠的有关性质.设AE、BF交于点H.在正方形ABCD中,AB=AD=12,∠BAD=∠D=90°,由折叠知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠FAH+∠AFH=90°,又∵∠FAH+∠BAH=90°,∴∠AFH=∠BAH,∴△ABF≌△DAE(AAS),∴AF=DE=5,由勾股定理得,AE=BF==13,S△ABF=12AB•AF=12BF•AH,∴AB•AF=BF•AH,∴12×5=13AH,∴AH=6013,∴AG=2AH=12013,∴GE=AE﹣AG=13-12013=4913.因此本题答案为:4913.{分值}3{章节:[1-18-2-3] 正方形}{考点:正方形的性质}{类别:常考题}{难度:4-较高难度}{题目}18.(2019年天津)如图,在每个小正方形得边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A、B的圆的圆心在边AC上.(1)线段AB的长等于;(2)请用无刻度...的直尺,在如图所示的网格中,画出一个点P,使其满足∠PAC=∠PBC=∠PCB,并简要说说明点P的位置是如何找到的(不要求证明) .{答案}(1;(2)利用圆与网格线的交点画出一条直径与AC相交得到圆心O,取AB与网格线的交点F,连接FO并延长交⊙O于点G,连接GC并延长交BO于点P,连接AP,即可找到点P.{解析}本题第(1)问考查了勾股定理,由勾股定理得AB=;第(2)问考查了正方形网格和圆的背景下的网格直尺作图问题,综合性较强.先利用90°的圆周角所对的弦是直径,两条直径的交点为圆心找出圆心.如图,取圆与网格线的交点D,E,连接DE交AC于点O,则点O是圆心.再取AB与网格线的交点F,连接FO并延长交⊙O于点G,连接GC并延长交BO于点P,连接AP,则点P就是满足条件∠PAC=∠PBC=∠PCB的点.简要证明如下:根据题意容易知道∠OAF=∠OBF=30°,∠AOF=∠BOF=∠BOC=∠GOC=60°,从而可得∠OBC=20°,利用“SAS”证明△GOC≌△GBC,得到∠G=∠OBC=20°,从而可求出∠OPG=40°,从而可得∠PCB=∠OPG-∠PBC=20°=∠PBC.利用“SAS”证明△GOP≌△AOP,得到∠PAC=∠G=20°,从而可证出∠PAC=∠PBC=∠PCB.因此本题答案为:(1);(2)利用圆与网格线的交点画2出一条直径与AC相交得到圆心O,取AB与网格线的交点F,连接FO并延长交⊙O于点G,连接GC并延长交BO于点P,连接AP,即可找到点P.{分值}3{章节:[1-24-1-4]圆周角} {考点:圆周角定理}{考点:直径所对的 圆周角} {考点:几何综合} {类别:高度原创} {类别:发现探究} {难度:6-竞赛题}三、解答题(本大题共7小题,共66分,解答题写出文字说明、演算步骤或推理过程) {题目}19.(2019年天津)(本小题8分) 解不等式11,211x x +≥-⎧⎨-≤⎩①,②请结合题意填空,完成本题的 解答:(I )解不等式①,得 ; (II )解不等式②,得 ; (III )把不等式①和②的 解集在数轴上表示出来:(IV )原不等式组的 解集为 .{解析}本题考查了一元一次不等式组的 解法,由于采用了填空的 形式,因此考生只需按题中所提供的 解题步骤依次完成即可. {答案}(Ⅰ)x ≥﹣2; (Ⅱ)x ≤1; (Ⅲ)(Ⅳ)﹣2≤x ≤1. {分值}8{章节:[1-9-3]一元一次不等式组} {难度:2-简单} {类别:常考题}{考点:解一元一次不等式组}{题目}20.(2019年天津)(本小题8分)某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的 部分初中学生,根据随机调查结果,绘制出如下的 统计图①和图②.请根据相关信息,解答下列问题:图① 图②(I )本次接受调查的 初中生人数为 ,图①中m 的 值为 ;(II )求统计的 这组每天在校体育活动时间数据的 平均数、众数和中位数;(Ⅲ)根据统计的 这组每天在校体育活动时间的 样本数据,若该校共有800名初中生,估计该校每天在校体育活动时间大于1h 的 学生人数.{解析}本题考查了统计图,求平均数、众数、中位数,以及利用样本估计总体.(I )根据公式频率=频数÷样本容量进行计算即可,样本容量=1.2÷20%=40,m%=10÷40=25%,所以m=25,故本小题答案为40、25;(II )根据平均数、众数、中位数的 定义计算即可;(Ⅲ)利用样本中体育活动时间大于1h 的 学生人数的 占比对总体作出估计即可. {答案}解: (I )40,25;(II )5.1310158431.2108.1155.182.149.0=++++⨯+⨯+⨯+⨯+⨯=x∵在这组数据中,1.5出现了15次,出现的 次数最多,∴这组数据的 众数是1.5;∵将这组数据按从小到大的 顺序排列,其中处于中间的 两个数都是1.5,故这两个数的 平均数即这组数据的 中位数是1.5.答:这组数据的 平均数、众数、中位数都是1.5h.(III )∵在统计的 这组每天在校体育活动时间的 样本中,每天在校体育活动时间大于1h 的 学生人数占的 比例为1-10%=90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h 的 人数约占90%,从而可计算得:800×90%=720,答:该校每天在校体育活动时间大于1h 的 学生约有720人. {分值}3{章节:[1-10-1]统计调查} {章节:[1-20-1-1]平均数}{章节:[1-20-1-2]中位数和众数} {难度:3-中等难度} {类别:常考题}{考点:用样本估计总体} {考点:扇形统计图} {考点:条形统计图}{考点:加权平均数(频数为权重)} {考点:中位数} {考点:众数}{题目}21.(2019年天津)(本小题10分)已经PA,PB 分别与⊙O 相切于点A ,B ,∠APB=80°,C 为⊙O 上一点.如图①,求∠ACB 的 大小;(II )如图②,AE 为⊙O 的 直径,AE 与BC 相交于点D ,若AB=AD ,求∠EAC 的 大小.图①图②{解析}本题考查了切线的性质、切线长定理、圆心角与圆周角的关系等相关知识.(I)连接OA、OB,根据切线的性质结合四边形内角和先求出∠AOB,再利用在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半即可求出答案;(II)先求出∠PAB=50°,再求出∠BAD=40°,再根据AB=AD求出∠ADB=70°,再根据三角形外角的性质可得∠EAC=∠ADB-∠ACB=20°.{答案}解:(Ⅰ)连接OA、OB,∵PA,PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∵∠APB=80°,∴在四边形OAPB中,∠AOB=360°-∠OAP-∠OBP-∠APB=100°,∴∠ACB=12∠AOB=50°;图①图②(II)如图②,∵PA,PB是⊙O的切线,∴PA=PB,∵∠APB=80°,∴∠PAB=∠PBA=50°,由(Ⅰ)知∠PAD=90°,∠ACB=50°,∴∠BAD=∠PAD-∠PAB=40°,∵AB=AD,∴∠ADB=∠B=70°,∵∠ADB=∠EAC+∠ACB,∴∠EAC=∠ADB-∠ACB=20°.{分值}10{章节:[1-24-2-2]直线和圆的位置关系}{难度:3-中等难度}{类别:常考题}{考点:切线长定理}{题目}22.(2019年天津)(本小题10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°.根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据: sin31°≈0.52,cos31°≈0.86,tan31°≈0.60 .{解析}本题考查了解直角三角形的应用问题(增长率).设所求灯塔高度为x,利用直角三角形的边角关系表示出AD和BD的长,再列出方程即可求解.{答案}解:设CD=x.在Rt△CAD中,∵tan∠CAD=CDAD≈0.60,∴AD=tan31x≈53x.在Rt △CBD 中,∠CBD =45°,∴BD =CD =x ,∵AD =AB +BD ,∴53x =x +30,解得x =45. 答:这座灯塔的 高度CD 约为45m .{分值}10{章节:[1-28-1-2]解直角三角形}{难度:3-中等难度}{类别:常考题}{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的 应用—测高测距离}{题目}23.(2019年天津)(本小题10分)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的 价格仍为7元/kg ,超过50kg 部分的 价格为5元/kg .设小王在同一个批发店一次购买苹果的 数量为xkg (x >0).(Ⅰ)根据题意填表:一次购买数量/kg 30 50 150 …甲批发店花费/元 300 …乙批发店花费/元 350 …(Ⅱ)设在甲批发店花费y 1元,在乙批发店花费y 2元,分别求y 1,y 2关于x 的 函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的 数量相同,且花费相同,则他在同一个批发店一次购买苹果的 数量为 kg ;②若小王在同一个批发店一次购买苹果的 数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.{解析}本题考查了一次函数的 简单应用.(Ⅰ)根据题意计算即可,6×30=180,6×150=900,7×30=210,7×50+5×(150﹣50)=850,因此本小题答案为:(从左到右,从上往下)依次为180,900,210,850.(Ⅱ)根据题意直接列式即可,甲批发店花费 y 1(元)=6×购买数量x (千克);而乙批发店花费 y 2(元)是购买数量x (千克)的 分段函数:花费 y 2(元)在一次购买数量不超过50kg 时,y 2(元)=7×购买数量x (千克);一次购买数量超过50kg 时,y 2(元)=7×50+5(x ﹣50).(Ⅲ)①根据花费相同,即y 1=y 2列方程即可求出相应的 x 的 值;②求出在x =120时,所对应的 y 1、y 2的 值,比较得出结论;③求出当y =360时,两店所对应的 x 的 值,再通过比较得出结论.{答案}解:(Ⅰ)(从左到右,从上往下)依次为:180,900,210,850;(Ⅱ)y 1=6x (x >0);当0<x ≤50时,y 2=7x (0<x ≤50);当x >50时,y 2=7×50+5(x ﹣50)=5x +100 (x >50).因此y 1,y 2与x 的 函数解析式分别为:y 1=6x (x >0);⎩⎨⎧>+=-+⨯≤<=)50(,1005)50(5507)500(,72x x x x x y .(Ⅲ)①当0<x ≤50时,由题知6x =7x ,解得x =0,不合题意舍去;当x >50时,由题知6x =5x +100,解得x =100,故他在同一个批发店一次购买苹果的 数量为100千克,因此本小题的 答案为:100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴乙批发店花费少.故本小题答案为:乙;③当y 1=6x =360时,解得x =60;当y 2=7x =360时,解得x=3607(大于50,舍去);当y 2=5x +100=360时,解得x =52.∵60>52,∴甲批发店购买数量多.本小题答案为:甲.{分值}10{章节:[1-19-2-2]一次函数}{{难度:3-中等难度}{类别:常考题}{考点:分段函数的 应用}{题目}24.(2019年天津)(本题10分)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的 正半轴上,∠ABO =30°.矩形CODE 的 顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.(Ⅰ)如图①,求点E 的 坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C ′O ′D ′E ′,点C ,O ,D ,E 的 对应点分别为C ′,O ′,D ′,E ′.设OO ′=t ,矩形C ′O ′D ′E ′与△ABO 重叠部分的 面积为S . ①如图②,当矩形C ′O ′D ′E ′与△ABO 重叠部分为五边形时,C ′E ′,E ′D ′分别与AB 相交于点M ,F ,试用含有t 的 式子表示S ,并直接写出t 的 取值范围;②S ≤时,求t 的 取值范围(直接写出结果即可).图① 图②{解析}一次函数图像与几何图形的 综合问题.(Ⅰ)先求出AD 的 长,再解直角三角形ADE 求出ED ,即可得答案;(Ⅱ)①将阴影部分的 面积化为矩形C ′O ′D ′E ′与ME ′F 的 面积的 差来求即可得S ;利用点C ′、E ′在直线AB 上这两种极端情况,可求得t 的 取值范围.由(I )知当点E ′落在AB 上时,t=0;当点C ′落在AB 上时,C ′O ′=43,可求出A ′O ′=4,从而得到C ′O ′=2,故t 的 取值范围是0<t <2.②先通过计算①中函数的 值的 范围确定S ≤时,t 超过2.再分重叠部分为直角梯形、直角三角形两种情况进行探究,先分别确定重叠部分形状,再求出S 与t 的 函数关系式.然后计算当S 为 t 的 值,就能得到t 的 取值范围.{答案}解: (I )由A (6,0),得OA=6,又OD=2,∴AD=OA-OD=4.在矩形CODE 中,由DE ∥CO ,得∠AED=∠ABO=30°,∴在Rt △AED 中,AE=2AD=8.∴由勾股定理得:ED=AE-AD=43,有∴E (2,43);(II )①由平移可知,2=''D O ,D E ''=43,t O O E M ='=',由D E ''∥BO ,得∠FM E '=∠ABO=30°,在Rt △MF E '中,MF=2t E M 2=',∴由勾股定理得t E M MF E F 322='-='.∴211222MFE S ME FE t '∆''=⋅==,而C O D E S O D E D ''''''''=⋅=矩形 ∴38232+-=t s (0<t <2).②由①知当20≤≤t 时,2S =+S 随着t 的 增大而减小.当t=0时,S 最大=;当t=2时,S 最小=∴S ≤时,t >2.当2<t <4时,矩形C ′O ′D ′E ′与△ABO 重叠部分为直角梯形,如图③,设O ′C ′交AB 于N ,D ′E ′仍交AB 于F.∵AD ′=4-t ,AO ′=6-t ,∴D ′(4-t ),O ′(6-t ),O ′D ′=2,∴S=124-t )(6-t )]×2=-+,显然S 随着t 的 增大而减小.当S=-+t=2.5;当t=4时,,∴当2<t <4时,S >.∴当2<t <4≤S ≤ t 的 取值范围是2.5≤t <4;(图③) (图④)当4≤t <6时,矩形C ′O ′D ′E ′与△ABO 重叠部分为直角三角形,如图④,设O ′C ′仍交AB 于N ,则AO ′=6-t ,O ′6-t ),∴S=12(6-t )(6-t )(6-t )2,显然S 随着t 的 增大而减小.当6-t )2,解得16t =,26t =∴264-≤<t .∴当4≤t <6≤S ≤ t 的 取值范围是4≤t ≤6.综上,本小题答案为:562t ≤≤{分值}10{章节:[1-19-4]课题学习 选择方案}{难度:4-较高难度}{类别:常考题}{考点:一次函数与几何图形综合}{题目}25.(本小题10分)已知抛物线y =x 2﹣bx +c (b ,c 为常数,b >0)经过点A (﹣1,0),点M (m ,0)是x 轴正半轴上的 动点.(Ⅰ)当b =2时,求抛物线的 顶点坐标;(Ⅱ)点D (b ,y D )在抛物线上,当AM =AD ,m =5时,求b 的 值;(Ⅲ)点Q (21+b ,y Q )在抛物线上,当2AM +2QM 的 最小值为4233时,求b 的 值. {解析}本题考查了二次函数的 图像与性质,综合性较强.(Ⅰ)将点A (﹣1,0)代入y =x 2﹣2x +c ,求出c 的 值,进一步便可根据抛物线的 解析式及求出其顶点坐标;(Ⅱ)将点D (b ,y D )代入抛物线y =x 2﹣bx ﹣b ﹣1,求出点D ,利用条件AM =AD 构造方程即可求出b 的 值;AM+2QM=2(2AM+QM ),再通过构造以AM 为斜边的等腰直角三角形,将2AM+QM 及其最小值通过图形表示出来,“以形显数”,再利用等腰直角三角形的 性质及点Q 的 坐标列方程组求出m 和b ,就能解决问题.{答案}解: (I )当b=2时,抛物线为y =x 2﹣2x +c ,将A (-1,0)代入,得1-2+c=0,∴c= - 3 ,∴抛物线解析式为4)1(3222--=--=x x x y ,∴其顶点坐标为(1,- 4);(II )A (-1,0)代入抛物线解析式得,1+b +c =0,∴c =﹣b ﹣1,∴抛物线为y =x 2﹣bx ﹣b ﹣1. 设抛物线与y 轴交于点C ,则C (0,﹣b ﹣1).当x=b 时,y D =b 2﹣b •b ﹣b ﹣1=﹣b ﹣1,∴D (b ,﹣b ﹣1).∵b >0,∴D 与C 不重合,点D 在第四象限.如图①,过点D 作DE ⊥x 轴,垂足为E ,则点E (b ,0),∴AE =DE =b +1,∴(b +1).∵m =5,∴M (m ,0),∴AM=6.由已知AM =AD b +1)=6,∴b =3√2−1;图① 图②(Ⅲ)把Q (21+b ,Q y )代入12---=b bx x y ,得432--=b y Q ,∵b >0,抛物线对称轴为直线x=2b ,∴点Q (21+b ,432--b )在第四象限、对称轴右侧.AM+2QM=w ,则w=2AM+2QM=2(2AM+QM ).如图,在x 轴上方取一点N ,使得△AMN 是以AM 为斜边的 等腰直角三角形,则MN=2AM ,此时2AM+QM=MN+QM ≥NQ,∴w 最小=2NQ=4,∴NQ=8.∵∠MNH=45°,∴△NQH 为等腰直角三角形,∴NH=QH=338,∵AF=NF=12AM=12(m+1).∴1333(1)()22481133(1)(1)228bmb m⎧+++=⎪⎪⎨⎪++-+=⎪⎩,解得474bm=⎧⎪⎨=⎪⎩.综上,b=4.{分值}10{章节:[1-22-2]二次函数与一元二次方程} {难度:5-高难度}{类别:高度原创}{类别:发现探究}{考点:其他二次函数综合题}。
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算(−3)×9的结果等于()A.−27B.−6C.27D.6【答案】A【考点】有理数的乘法【解析】由正数与负数的乘法法则得(−3)×9=−27;【解答】(−3)×9=−27;2. 2sin60∘的值等于()A.1B.√2C.√3D.2【答案】C【考点】特殊角的三角函数值【解析】根据特殊角三角函数值,可得答案.【解答】2sin60∘=2×√3=√3,23. 据2019年3月21日《天津日报》报道,“伟大的变革–庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【考点】科学记数法–表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4230000有7位,所以可以确定n=7−1=(6)【解答】4230000=4.23×106.4. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【考点】轴对称图形【解析】根据轴对称图形的概念求解.【解答】解:如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.A,是轴对称图形,故本选项正确;B,不是轴对称图形,故本选项错误;C,不是轴对称图形,故本选项错误;D,不是轴对称图形,故本选项错误.故选A.5. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】画出从正面看到的图形即可得到它的主视图.【解答】从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、(2)6. 估计√33的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小【解析】由于25<33<36,于是√25<√33<√36,从而有5<√33<(6)【解答】∵25<33<36,∴√25<√33<√36,∴5<√33<(6)7. 计算2aa+1+2a+1的结果是()A.2B.2a+2C.1D.4aa+1【答案】A【考点】分式的加减运算【解析】直接利用分式的加减运算法则计算得出答案.【解答】原式=2a+2a+1=2(a+1) a+1=(2)8. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2, 0),(0, 1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.√5B.4√3C.4√5D.20【答案】C【考点】坐标与图形性质菱形的性质【解析】根据菱形的性质和勾股定理解答即可.【解答】∵A,B两点的坐标分别是(2, 0),(0, 1),∴AB=√22+12=√5,∵四边形ABCD是菱形,∴ 菱形的周长为4√5,9. 方程组{3x +2y =76x −2y =11的解是( )A.{x =−1y =5B.{x =1y =2C.{x =3y =−1D.{x =2y =12【答案】 D【考点】加减消元法解二元一次方程组 【解析】运用加减消元分解答即可. 【解答】 {3x +2y =76x −2y =11 , ①+②得,x =2,把x =2代入①得,6+2y =7,解得y =12, 故原方程组的解为:{x =2y =12.10. 若点A(−3, y 1),B(−2, y 2),C(1, y 3)都在反比例函数y =−12x 的图象上,则y 1,y 2,y 3的大小关系是( ) A.y 2<y 1<y 3 B.y 3<y 1<y 2 C.y 1<y 2<y 3 D.y 3<y 2<y 1 【答案】 B【考点】反比例函数图象上点的坐标特征 【解析】分别计算出自变量为−3、−2和1对应的函数值,从而得到y 1,y 2,y 3的大小关系. 【解答】当x =−3,y 1=−12−3=4; 当x =−2,y 2=−12−2=6; 当x =1,y 3=−121=−12,所以y 3<y 1<y 2.11. 如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A.AC =ADB.AB ⊥EBC.BC =DED.∠A =∠EBC【答案】 D【考点】 旋转的性质 【解析】此题暂无解析 【解答】解:∵ 将△ABC 绕点C 顺时针旋转得到△DEC ,∴ AC =CD ,BC =CE ,AB =DE ,故A 错误,C 错误; ∴ ∠ACD =∠BCE , ∴ ∠A =∠ADC =180∘−∠ACD2,∠CBE =180∘−∠BCE2,∴ ∠A =∠EBC ,故D 正确; ∵ ∠A +∠ABC 不一定等于90∘,∴ ∠ABC +∠CBE 不一定等于90∘,故B 错误. 故选D .12. 二次函数y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如下表:且当x =−12时,与其对应的函数值y >0.有下列结论:①abc >0;②−2和3是关于x 的方程ax 2+bx +c =t 的两个根;③0<m +n <203.其中,正确结论的个数是( )A.0B.1C.2D.3 【答案】 C【考点】二次函数图象上点的坐标特征 抛物线与x 轴的交点二次函数图象与系数的关系 【解析】①当x =0时,c =−2,当x =1时,a +b =0,abc >0,①正确; ②x =12是对称轴,x =−2时y =t ,则x =3时,y =t ,②正确; ③m +n =4a −4;当x =−12时,y >0,a >83,m +n >203,③错误;当x=0时,c=−2,当x=1时,a+b−2=−2,∴a+b=0,∴y=ax2−ax−2,∴abc>0,①正确;x=1是对称轴,2x=−2时y=t,则x=3时,y=t,∴−2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a−2,n=4a−2a−2,∴m=n=2a−2,∴m+n=4a−4,∵当x=−1时,y>0,2∴a>8,3∴m+n>20,3③错误;二、填空题(本大题共6小题,每小题3分,共18)计算x5⋅x的结果等于________.【答案】x6【考点】同底数幂的乘法【解析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】x5⋅x=x6.计算(√3+1)(√3−1)的结果等于________.【答案】2【考点】二次根式的混合运算【解析】利用平方差公式计算.【解答】原式=3−1=(2)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是________.37【考点】概率公式【解析】根据概率公式求解.【解答】从袋子中随机取出1个球,则它是绿球的概率=37.直线y=2x−1与x轴的交点坐标为________.【答案】(12, 0)【考点】一次函数图象上点的坐标特点【解析】当直线y=2x−1与x轴相交时,y=0;将y=0代入函数解析式求x值.【解答】根据题意,知,当直线y=2x−1与x轴相交时,y=0,∴2x−1=0,解得,x=12;∴直线y=2x+1与x轴的交点坐标是(12, 0);如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为________.【答案】4913【考点】翻折变换(折叠问题)正方形的性质【解析】由折叠及轴对称的性质可知,△ABF≅△GBF,BF垂直平分AG,先证△ABF≅△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解答】∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90∘,由折叠及轴对称的性质可知,△ABF≅△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90∘,又∵∠FAH+∠BAH=90∘,∴∠ABH=∠FAH,∴△ABF≅△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF=√AB2+AF2=√122+52=13,S△ABF=12AB⋅AF=12BF⋅AH,∴12×5=13AH,∴AH=6013,∴AG=2AH=12013,∵AE=BF=13,∴GE=AE−AG=13−12013=4913,如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50∘,∠BAC=30∘,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于________;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠PAC=∠PBC =∠PCB,并简要说明点P的位置是如何找到的(不要求证明)________.【答案】√172,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠PAC=∠PBC=∠PCB【考点】勾股定理圆周角定理作图—复杂作图【解析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB 与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P ,连接AP ,于是得到结论. 【解答】(2)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交⊙O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足∠PAC =∠PBC =∠PCB ,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交⊙O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足∠PAC =∠PBC =∠PCB .三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)解不等式组{x +1≥−12x −1≤1请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为________.【答案】x ≥−2,x ≤1,−2≤x ≤1 【考点】在数轴上表示不等式的解集 解一元一次不等式组 【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】(1)解不等式①,得x ≥−2; (2)解不等式②,得x ≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为−2≤x ≤(1)某校为了解初中学生每天在校体育活动的时间(单位:ℎ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为________,图①中m的值为________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1ℎ的学生人数.【答案】40,25【考点】用样本估计总体扇形统计图条形统计图算术平均数中位数众数【解析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;(Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1ℎ的学生人数.【解答】=1.5,(2)平均数是:0.9×4+1.2×8+1.5×15+1.8×10+2.1×340=720(人),众数是1.5,中位数是1.5(1)(Ⅲ)800×40−440答:该校每天在校体育活动时间大于1ℎ的学生有720人.已知PA,PB分别与⊙O相切于点A,B,∠APB=80∘,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.【答案】(1)连接OA、OB,∵PA,PB是⊙O的切线,∴∠OAP=∠OBP=90∘,∴∠AOB=360∘−90∘−90∘−80∘=100∘,∠AOB=50∘;由圆周角定理得,∠ACB=12(2)连接CE,∵AE为⊙O的直径,∴∠ACE=90∘,∵∠ACB=50∘,∴∠BCE=90∘−50∘=40∘,∴BAE=∠BCE=40∘,∵AB=AD,∴∠ABD=∠ADB=70∘,∴∠EAC=∠ADB−∠ACB=20∘.【考点】圆周角定理切线的性质【解析】(Ⅰ)连接OA、OB,根据切线的性质得到∠OAP=∠OBP=90∘,根据四边形内角和等于360∘计算;(Ⅱ)连接CE,根据圆周角定理得到∠ACE=90∘,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】(1)连接OA、OB,∵PA,PB是⊙O的切线,∴∠OAP=∠OBP=90∘,∴∠AOB=360∘−90∘−90∘−80∘=100∘,∠AOB=50∘;由圆周角定理得,∠ACB=12(2)连接CE,∵AE为⊙O的直径,∴∠ACE=90∘,∵∠ACB=50∘,∴∠BCE=90∘−50∘=40∘,∴BAE=∠BCE=40∘,∵AB=AD,∴∠ABD=∠ADB=70∘,∴∠EAC=∠ADB−∠ACB=20∘.如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31∘,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45∘,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31∘≈0.52,cos31∘≈0.86,tan31∘≈0.60.【答案】这座灯塔的高度CD约为45m【考点】解直角三角形的应用-仰角俯角问题【解析】根据正切的定义用CD表示出AD,根据题意列出方程,解方程得到答案.【解答】在Rt△CAD中,tan∠CAD=CDAD,则AD=CDtan31≈53CD,在Rt△CBD中,∠CBD=45∘,∴BD=CD,∵AD=AB+BD,∴53CD=CD+30,解得,CD=45,甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(Ⅰ)根据题意填表:1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.【答案】180,900,210,850,100kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的乙,甲【考点】一次函数的应用【解析】(Ⅰ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);6×30=180,6×150=900;而乙批发店花费y2(元),当一次购买数量不超过50kg时,y2=7×30=210元;一次购买数量超过50kg时,y2=7×50+5(150−50)=850元.(Ⅱ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);而乙批发店花费y2(元)在一次购买数量不超过50kg时,y2(元)=7×购买数量x(千克);一次购买数量超过50kg时,y2(元)=7×50+5(x−50);即:花费y2(元)是购买数量x(千克)的分段函数.(Ⅲ)①花费相同,即y1=y2;可利用方程解得相应的x的值;②求出在x=120时,所对应的y1、y2的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当y=360时,两店所对应的x的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】(1)甲批发店:6×30=180元,6×150=900元;乙批发店:7×30=210元,7×50+5(150−50)=850元.故依次填写:180 900 210 850.(2)y1=6x (x>0)当0<x≤50时,y2=7x (0<x≤50)当x>50时,y2=7×50+5(x−50)=5x+100 (x>50)因此y1,y2与x的函数解析式为:y1=6x (x>0);y2=7x (0<x≤50)y2=5x+100 (x>50)(Ⅲ)①当y1=y2时,有:6x=7x,解得x=0,不合题意,舍去;当y1=y2时,也有:6x=5x+100,解得x=100,故他在同一个批发店一次购买苹果的数量为100千克.②当x=120时,y1=6×120=720元,y2=5×120+100=700元,∵720>700∴乙批发店花费少.故乙批发店花费少.③当y=360时,即:6x=360和5x+100=360;解得x=60和x=52,∵60>52∴甲批发店购买数量多.故甲批发店购买的数量多.在平面直角坐标系中,O为原点,点A(6, 0),点B在y轴的正半轴上,∠ABO=30∘.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当√3≤S≤5√3时,求t的取值范围(直接写出结果即可).【答案】(1)∵点A(6, 0),∴OA=6,∵OD=2,∴AD=OA−OD=6−2=4,∵四边形CODE是矩形,∴DE // OC,∴∠AED=∠ABO=30∘,在Rt△AED中,AE=2AD=8,ED=√AE2−AD2=√82−42=4√3,∵OD=2,∴点E的坐标为(2, 4√3);(2)①由平移的性质得:O′D′=2,E′D′=4√3,ME′=OO′=t,D′E′ // O′C′ // OB,∴∠E′FM=∠ABO=30∘,∴在Rt△MFE′中,MF=2ME′=2t,FE′=√MF2−ME′2=√(2t)2−t2=√3t,∴S△MFE′=12ME′⋅FE′=12×t×√3t=√3t22,∵S矩形C′0′D′E′=O′D′⋅E′D′=2×4√3=8√3,∴S=S矩形C′0′D′E′−S△MFE′=8√3−√3t22,∴S=−√32t2+8√3,其中t的取值范围是:0<t<2;②当S=√3时,如图③所示:O′A=OA−OO′=6−t,∵∠AO′F=90∘,∠AFO′=∠ABO=30∘,∴O′F=√3O′A=√3(6−t)∴S=12(6−t)×√3(6−t)=√3,解得:t=6−√2,或t=6+√2(舍去),∴t=6−√2;当S=5√3时,如图④所示:O′A=6−t,D′A=6−t−2=4−t,∴O′G=√3(6−t),D′F=√3(4−t),∴S=12[√3(6−t)+√3(4−t)]×2=5√3,解得:t=52,∴当√3≤S≤5√3时,t的取值范围为52≤t≤6−√2.【考点】四边形综合题【解析】(Ⅰ)由已知得出AD=OA−OD=4,由矩形的性质得出∠AED=∠ABO=30∘,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4√3,即可得出答案;(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4√3,ME′=OO′=t,D′E′ // O′C′ // OB,得出∠E′FM=∠ABO=30∘,在Rt△MFE′中,MF=2ME′=2t,FE′=√MF2−ME′2=√(2t)2−t2=√3t,求出S△MFE′=12ME′⋅FE′=12×t×√3t=√3t22,S矩形C′0′D′E′=O′D′⋅E′D′=2×4√3=8√3,即可得出答案;②当S=√3时,O′A=OA−OO′=6−t,由直角三角形的性质得出O′F=√3O′A=√3(6−t),得出方程,解方程即可;当S=5√3时,O′A=6−t,D′A=6−t−2=4−t,由直角三角形的性质得出O′G=√3(6−t),D′F=√3(4−t),由梯形面积公式得出S=12[√3(6−t)+√3(4−t)]×2=5√3,解方程即可.【解答】(1)∵点A(6, 0),∴OA=6,∵OD=2,∴AD=OA−OD=6−2=4,∵四边形CODE是矩形,∴DE // OC,∴∠AED=∠ABO=30∘,在Rt△AED中,AE=2AD=8,ED=√AE2−AD2=√82−42=4√3,∵OD=2,∴点E的坐标为(2, 4√3);(2)①由平移的性质得:O′D′=2,E′D′=4√3,ME′=OO′=t,D′E′ // O′C′ // OB,∴∠E′FM=∠ABO=30∘,∴在Rt△MFE′中,MF=2ME′=2t,FE′=√MF2−ME′2=√(2t)2−t2=√3t,∴S△MFE′=12ME′⋅FE′=12×t×√3t=√3t22,∵S矩形C′0′D′E′=O′D′⋅E′D′=2×4√3=8√3,∴S=S矩形C′0′D′E′−S△MFE′=8√3−√3t22,∴S=−√32t2+8√3,其中t的取值范围是:0<t<2;②当S=√3时,如图③所示:O′A=OA−OO′=6−t,∵∠AO′F=90∘,∠AFO′=∠ABO=30∘,∴O′F=√3O′A=√3(6−t)∴S=12(6−t)×√3(6−t)=√3,解得:t=6−√2,或t=6+√2(舍去),∴t=6−√2;当S=5√3时,如图④所示:O′A=6−t,D′A=6−t−2=4−t,∴O′G=√3(6−t),D′F=√3(4−t),∴S=12[√3(6−t)+√3(4−t)]×2=5√3,解得:t=52,∴当√3≤S≤5√3时,t的取值范围为52≤t≤6−√2.已知抛物线y =x 2−bx +c(b ,c 为常数,b >0)经过点A(−1, 0),点M(m, 0)是x 轴正半轴上的动点.(Ⅰ)当b =2时,求抛物线的顶点坐标;(Ⅱ)点D(b, y D )在抛物线上,当AM =AD ,m =5时,求b 的值; (Ⅲ)点Q(b +12, y Q )在抛物线上,当√2AM +2QM 的最小值为33√24时,求b 的值. 【答案】(1)∵ 抛物线y =x 2−bx +c 经过点A(−1, 0), ∴ 1+b +c =0, 即c =−b −1, 当b =2时,y =x 2−2x −3=(x −1)2−4, ∴ 抛物线的顶点坐标为(1, −4);(2)由(Ⅰ)知,抛物线的解析式为y =x 2−bx −b −1, ∵ 点D(b, y D )在抛物线y =x 2−bx −b −1上, ∴ y D =b 2−b ⋅b −b −1=−b −1, 由b >0,得b >b 2>0,−b −1<0,∴ 点D(b, −b −1)在第四象限,且在抛物线对称轴x =b2的右侧,如图1,过点D 作DE ⊥x 轴,垂足为E ,则点E(b, 0), ∴ AE =b +1,DE =b +1,得AE =DE , ∴ 在Rt △ADE 中,∠ADE =∠DAE =45∘, ∴ AD =√2AE ,由已知AM =AD ,m =5, ∴ 5−(−1)=√2(b +1), ∴ b =3√2−1;(Ⅲ)∵ 点Q(b +12, y Q )在抛物线y =x 2−bx −b −1上, ∴ y Q =(b +12)2−b(b +12)−b −1=−b2−34,可知点Q(b +12, −b2−34)在第四象限,且在直线x =b 的右侧, ∵ √2AM +2QM =2(√22AM +QM),∴ 可取点N(0, 1),如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M , 由∠GAM =45∘,得√22AM =GM ,则此时点M 满足题意,过点Q作QH⊥x轴于点H,则点H(b+12, 0),在Rt△MQH中,可知∠QMH=∠MQH=45∘,∴QH=MH,QM=√2MH,∵点M(m, 0),∴0−(−b2−34)=(b+12)−m,解得,m=b2−14,∵√2AM+2QM=33√24,∴√2[(b2−14)−(−1)]+2√2[(b+12)−(b2−14)]=33√24,∴b=(4)【考点】二次函数综合题【解析】(Ⅰ)将点A(−1, 0)代入y=x2−bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b, y D)代入抛物线y=x2−bx−b−1,求出点D纵坐标为−b−1,由b>0判断出点D(b, −b−1)在第四象限,且在抛物线对称轴x=b2的右侧,过点D作DE⊥x 轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+12, y Q)代入抛物线y=x2−bx−b−1,求出Q纵坐标为−b2−34,可知点Q(b+12, −b2−34)在第四象限,且在直线x=b的右侧,点N(0, 1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+12, 0),在Rt△MQH中,可知∠QMH=∠MQH=45∘,设点M(m, 0),则可用含b的代数式表示m ,因为√2AM +2QM =33√24,所以√2[(b 2−14)−(−1)]+2√2[(b +12)−(b 2−14)]=33√24,解方程即可. 【解答】(1)∵ 抛物线y =x 2−bx +c 经过点A(−1, 0), ∴ 1+b +c =0, 即c =−b −1, 当b =2时,y =x 2−2x −3=(x −1)2−4, ∴ 抛物线的顶点坐标为(1, −4);(2)由(Ⅰ)知,抛物线的解析式为y =x 2−bx −b −1, ∵ 点D(b, y D )在抛物线y =x 2−bx −b −1上, ∴ y D =b 2−b ⋅b −b −1=−b −1, 由b >0,得b >b2>0,−b −1<0,∴ 点D(b, −b −1)在第四象限,且在抛物线对称轴x =b2的右侧,如图1,过点D 作DE ⊥x 轴,垂足为E ,则点E(b, 0), ∴ AE =b +1,DE =b +1,得AE =DE , ∴ 在Rt △ADE 中,∠ADE =∠DAE =45∘, ∴ AD =√2AE ,由已知AM =AD ,m =5, ∴ 5−(−1)=√2(b +1), ∴ b =3√2−1;(Ⅲ)∵ 点Q(b +12, y Q )在抛物线y =x 2−bx −b −1上, ∴ y Q =(b +12)2−b(b +12)−b −1=−b2−34,可知点Q(b +12, −b2−34)在第四象限,且在直线x =b 的右侧, ∵ √2AM +2QM =2(√22AM +QM),∴ 可取点N(0, 1),如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M , 由∠GAM =45∘,得√22AM =GM ,则此时点M 满足题意,过点Q 作QH ⊥x 轴于点H ,则点H(b +12, 0), 在Rt △MQH 中,可知∠QMH =∠MQH =45∘, ∴ QH =MH ,QM =√2MH , ∵ 点M(m, 0),∴ 0−(−b2−34)=(b +12)−m , 解得,m =b2−14,∵√2AM+2QM=33√24,∴√2[(b2−14)−(−1)]+2√2[(b+12)−(b2−14)]=33√24,∴b=(4)。
2019年天津市中考数学试卷(解析版)一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于( )A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于( )A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为( )A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是( )【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。
故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是( )【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是( ) A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于 ( )A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是( )A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系( )A. 312y y y <<B.213y y y <<C.321y y y <<D.123y y y <<【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。
数学试卷第1页(共6页)数学试卷第2页(共6页)【本文由书林工作坊整理发布,欢迎下载使用!】绝密★启用前天津市2019年初中学生毕业和高中阶段学校招生考试数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:(3)9-⨯的结果等于 ( )A .27-B .6-C .27D .6 2.2sin 60︒的值等于( ) A .1BCD .23.据2019年3月21日《天津日报》报道,“伟大的变革——庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4 230 000人次。
将4 230 000用科学记数法表示应为( )A .70.42310⨯B .64.2310⨯C .542.310⨯D .442310⨯ 4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )ABCD5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )ABC D6.( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 7.计算2211a a a +++的结果是( )A .2B .22a +C .1D .41aa + 8.如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )AB .C .D .20 9.方程组3276211x y x y +=⎧⎨-=⎩,的解是( )A .15x y =-⎧⎨=⎩,B .12x y =⎧⎨=⎩,C .31x y =⎧⎨=-⎩,D .212x y =⎧⎪⎨=⎪⎩,10.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.如图,将ABC △绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对且当2x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共6页)数学试卷第4页(共6页)于x 的方程2ax bx c t ++=的两个根;③2003m n <+<.其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分) 13.计算5x x 的结果等于 .14.计算1)+的结果等于 .15.不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 . 16.直线21y x =-与x 轴交点坐标为 .17.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为 .18.如图,在每个小正方形的边长为1的网格中,ABC △的顶点A 在格点上,B 是小正方形边的中点,50ABC ︒∠=,30BAC ︒∠=,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于 ;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.解不等式组11211x x +-⎧⎨-⎩①≤②…;请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20.某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为 ,图①中m 的值为 ; (Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数.21.已知PA ,PB 分别与O 相切于点A ,B ,80APB ︒∠=,C 为O 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O 的直径,AE 与BC 相交于点D ,若A B A D =,求EAC ∠的大小.数学试卷第5页(共6页)数学试卷第6页(共6页)22.如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒.根据测得的数据,计算这座灯塔的高度CD (结果取整数).参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.23.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50 kg 时,价格为7元/kg ;一次购买数量超过50 kg 时,其中有50 kg 的价格仍为7元/kg ,超出50 kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为( kg 0)x x >.(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果数量为120 kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,ABO 30∠︒=.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C ODE '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO △重叠部分的面积为S .①如图②,当矩形C O D E ''''与ABO △重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;S时,求t 的取值范围(直接写出结果即可).25.已知抛物线2y x bx c =-+(b ,c 为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQb y +在抛物线上,2QM +的最小值为4时,求b 的值. -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________ 考生号________________________________ _____________。
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•天津)计算(3)9-⨯的结果等于()A.27-B.6-C.27 D.62.(3分)(2019•天津)2sin60︒的值等于()A.3B.2 C.1 D.23.(3分)(2019•天津)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)(2019•天津)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)(201933的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)(2019•天津)计算2211aa a+++的结果是()A.2 B.22a+C.1 D.41 a a+8.(3分)(2019•天津)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )A .5B.43C .45D .209.(3分)(2019•天津)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)(2019•天津)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)(2019•天津)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)(2019•天津)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:x⋯ 2-1-0 1 2⋯ 2y ax bx c=++⋯tm2- 2-n⋯且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)(2019•天津)计算5x x g 的结果等于 .14.(3分)(2019•天津)计算(31)(31)+-的结果等于 .15.(3分)(2019•天津)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 . 16.(3分)(2019•天津)对于直线21y x =-与x 轴的交点坐标是 .17.(3分)(2019•天津)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为 .18.(3分)(2019•天津)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于 ;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分,解答写出文字说明、演算步骤或推理过程)19.(8分)(2019•天津)解不等式组11 211 xx+-⎧⎨-⎩……请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2019•天津)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)(2019•天津)已知PA ,PB 分别与O e 相切于点A ,B ,80APB ∠=︒,C 为O e 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O e 的直径,AE 与BC 相交于点D .若AB AD =,求EAC ∠的大小.22.(10分)(2019•天津)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.23.(10分)(2019•天津)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >.(Ⅰ)根据题意填表: 一次购买数量/kg30 50 150⋯甲批发店花费/元 300 ⋯ 乙批发店花费/元350⋯(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)(2019•天津)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =. (Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当353S 剟时,求t 的取值范围(直接写出结果即可).25.(10分)(2019•天津)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(2Q b +,)Q y 22QM +332时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯ 的结果等于( ) A .27-B .6-C .27D .6【考点】有理数的乘法【分析】由正数与负数的乘法法则得(3)927-⨯=-; 【解答】解:(3)927-⨯=-; 故选:A .2.(3分)2sin60︒的值等于( )A B .2C .1D 【考点】特殊角的三角函数值【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin 602︒== 故选:A .3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为( ) A .70.42310⨯B .64.2310⨯C .542.310⨯D .442310⨯【考点】科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值是易错点,由于4230000有7位,所以可以确定716n =-=. 【解答】解:64230000 4.2310=⨯. 故选:B .4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.6.(333的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小【分析】由于253336<<253336,从而有5336.【解答】解:253336<<Q,∴2533365336∴<<.故选:D . 7.(3分)计算2211a a a +++的结果是( ) A .2B .22a +C .1D .41aa + 【考点】分式的加减法【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )A 5B .43C .5D .20【考点】坐标与图形性质;菱形的性质 【分析】根据菱形的性质和勾股定理解答即可. 【解答】解:A Q ,B 两点的坐标分别是(2,0),(0,1),22215AB ∴=+, Q 四边形ABCD 是菱形,∴菱形的周长为5故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【考点】解二元一次方程组 【分析】运用加减消元分解答即可. 【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【考点】反比例函数图象上点的坐标特征【分析】分别计算出自变量为3-、2-和1对应的函数值,从而得到1y ,2y ,3y 的大小关系.【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【考点】旋转的性质【分析】根据旋转的性质得到AC CD =,BC CE =,AB DE =,故A 错误,C 错误; 得到ACD BCE ∠=∠,根据三角形的内角和得到1802ACDA ADC ︒-∠∠=∠=,1802BCECBE ︒-∠∠=,求得A EBC ∠=∠,故D 正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故B 错误. 【解答】解:Q 将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠,1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠Q 不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:x⋯ 2-1-0 1 2⋯ 2y ax bx c=++⋯tm2- 2-n⋯且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【考点】二次函数图象与系数的关系;抛物线与x 轴的交点;二次函数图象上点的坐标特征 【分析】①当0x =时,2c =-,当1x =时,0a b +=,0abc >,①正确; ②12x =是对称轴,2x =-时y t =,则3x =时,y t =,②正确; ③44m n a +=-;当12x =-时,0y >,803a <<,203m n +<,③错误;【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--,22m n a ∴==-, 44m n a ∴+=-,Q 当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算5x x g的结果等于6x.【考点】同底数幂的乘法【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:56x x x=g.故答案为:6x14.(3分)计算1)的结果等于2.【考点】二次根式的混合运算【分析】利用平方差公式计算.【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是37.【考点】概率公式【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率37 =.故答案为37.16.(3分)对于直线21y x=-与x轴的交点坐标是1(2,0).【考点】一次函数图象上点的坐标特征【分析】当直线21y x=-与x轴相交时,0y=;将0y=代入函数解析式求x值.【解答】解:根据题意,知,当直线21y x=-与x轴相交时,0y=,210x∴-=,解得,12x=;∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【考点】正方形的性质;PB :翻折变换(折叠问题)【分析】由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,先证ABF DAE ∆≅∆,推出AF 的长,再利用勾股定理求出BF 的长,最后在Rt ADF ∆中利用面积法可求出AH 的长,可进一步求出AG 的长,GE 的长. 【解答】解:Q 四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒Q ,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,222212513BF AB AF =++, 1122ABF S AB AF BF AH ∆==g g , 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==, 13AE BF ==Q ,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上. (Ⅰ)线段AB 的长等于172; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【考点】作图-复杂作图;圆周角定理;勾股定理 【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O e 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,于是得到结论. 【解答】解:(Ⅰ)221172()2AB +=,17;(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O e 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O e 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩……请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 2x -… ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【考点】在数轴上表示不等式的解集;解一元一次不等式组【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:(Ⅰ)解不等式①,得2x -…; (Ⅱ)解不等式②,得1x …;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -剟. 故答案为:2x -…,1x …,21x -剟.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为 40 ,图①中m 的值为 ; (Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数.【考点】众数;扇形统计图;算术平均数;用样本估计总体;条形统计图;中位数 【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m 的值; (Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h 的学生人数. 【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=, 10%100%25%40m =⨯=, 故答案为:40,25; (Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是,中位数是;(Ⅲ)40480072040-⨯=(人), 答:该校每天在校体育活动时间大于1h 的学生有720人.21.(10分)已知PA ,PB 分别与O e 相切于点A ,B ,80APB ∠=︒,C 为O e 上一点. (Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O e 的直径,AE 与BC 相交于点D .若AB AD =,求EAC ∠的大小.【考点】切线的性质;圆周角定理【分析】(Ⅰ)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,根据四边形内角和等于360︒计算;(Ⅱ)连接CE ,根据圆周角定理得到90ACE ∠=︒,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】解:(Ⅰ)连接OA 、OB ,PA Q ,PB 是O e 的切线,90OAP OBP ∴∠=∠=︒,360909080100AOB ∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB ∠=∠=︒;(Ⅱ)连接CE ,AE Q 为O e 的直径,90ACE ∴∠=︒,50ACB ∠=︒Q ,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =Q ,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【考点】解直角三角形的应用-仰角俯角问题【分析】根据正切的定义用CD 表示出AD ,根据题意列出方程,解方程得到答案. 【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+Q ,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多. 【考点】一次函数的应用【分析】(Ⅰ)根据题意,甲批发店花费1y (元)6=⨯购买数量x (千克);630180⨯=,6150900⨯=;而乙批发店花费2y (元),当一次购买数量不超过50kg 时,2730210y =⨯⨯=元;一次购买数量超过50kg 时,27505(15050)850y =⨯+-=元.(Ⅱ)根据题意,甲批发店花费1y (元)6=⨯购买数量x (千克);而乙批发店花费2y (元)在一次购买数量不超过50kg 时,2y (元)7=⨯购买数量x (千克);一次购买数量超过50kg 时,2y (元)7505(50)x =⨯+-;即:花费2y (元)是购买数量x (千克)的分段函数. (Ⅲ)①花费相同,即12y y =;可利用方程解得相应的x 的值;②求出在120x =时,所对应的1y 、2y 的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当360y =时,两店所对应的x 的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850.(Ⅱ)16y x = (0)x >当050x <…时,27y x = (050)x <…当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+… (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去;当12y y =时,也有:65100x x =+,解得100x =,故他在同一个批发店一次购买苹果的数量为100千克.②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元,720700>Q∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>Q∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =. (Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当353S 剟时,求t 的取值范围(直接写出结果即可).【考点】四边形综合题【分析】(Ⅰ)由已知得出4AD OA OD =-=,由矩形的性质得出30AED ABO ∠=∠=︒,在Rt AED ∆中,28AE AD ==,由勾股定理得出43ED =,即可得出答案; (Ⅱ)①由平移的性质得:2O D ''=,43E D ''=ME OO t '='=,////D E O C OB '''',得出30E FM ABO ∠'=∠=︒,在Rt MFE ∆'中,22MF ME t ='=,2222(2)3FE MF ME t t t '-'-=,求出2113322MFE t S ME FE t t ∆'=''=⨯=g ,24383C O D E S O D E D ''''=''⋅''=⨯=矩形②当3S 6O A OA OO t ''=-=-,由直角三角形的性质得出33(6)O F O A t ''==-,得出方程,解方程即可;当53S =6O A t '=-,624D A t t '=--=-,由直角三角形的性质得出3(6)O G t '=-,3(4)D F t '=-,由梯形面积公式得出1[3(6)3(4)]2532S t t =-+-⨯=【解答】解:(Ⅰ)Q 点(6,0)A ,6OA ∴=,2OD =Q ,624AD OA OD ∴=-=-=,Q 四边形CODE 是矩形,//DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED === 2OD =Q ,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE '=,1122MFE S ME FE t ∆'∴=''=⨯g ,2C O D E S O D E D ''''=''⋅''=⨯Q 矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S6O A OA OO t ''=-=-,90AO F '∠=︒Q ,30AFO ABO '∠=∠=︒,)O F A t ''∴==-1(6))2S t t ∴=--=,解得:6t =6t =,6t ∴=S =6O A t '=-,624D A t t '=--=-, 3(6)O G t '∴=-,3(4)D F t '=-,1[3(6)3(4)]2532S t t ∴=-+-⨯=, 解得:52t =, ∴当353S 剟时,t 的取值范围为5622t -剟.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(2Q b +,)Q y 22QM +332时,求b 的值. 【考点】二次函数综合题【分析】(Ⅰ)将点(1,0)A -代入2y x bx c =-+,求出c 关于b 的代数式,再将b 代入即可求出c 的值,可进一步写出抛物线解析式及顶点坐标; (Ⅱ)将点(,)D D b y 代入抛物线21y x bx b =---,求出点D 纵坐标为1b --,由0b >判断出点(,1)D b b --在第四象限,且在抛物线对称轴2b x =的右侧,过点D 作DE x ⊥轴,可证ADE ∆为等腰直角三角形,利用锐角三角函数可求出b 的值; (Ⅲ)将点1(2Q b +,)Q y 代入抛物线21y x bx b =---,求出Q 纵坐标为324b --,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,点(0,1)N ,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0),在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,设点(,0)M m ,则可用含b 的代数式表示m ,2QM +1112[()(1)])()]24224b b b ---++--=,解方程即可.【解答】解:(Ⅰ)Q 抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=, 即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, Q 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--g ,由0b >,得02b b >>,10b --<, ∴点(,1)D b b --在第四象限,且在抛物线对称轴2b x =的右侧, 如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b , 1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)Q 点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--, 可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,Q 2)QM AM QM +=+, ∴可取点(0,1)N ,如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,由45GAM ∠=︒AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,QH MH ∴=,QM =, Q 点(,0)M m ,310()()242b b m ∴---=+-, 解得,124b m =-,Q 2QM +,∴1112[()(1)])()]24224bb b ---++--=, 4b ∴=.。
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)×9 的结果等于()A.﹣27B.﹣6C.27D.62.(3分)2sin60°的值等于()A.1B.C.D.23.(3分)据2019年3月21日《天津日报》报道,“伟大的变革﹣﹣庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×1044.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算+的结果是()A.2B.2a+2C.1D.8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A .B.4C.4D.209.(3分)方程组的解是()A .B .C .D .10.(3分)若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 11.(3分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 12.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x =﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n <.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算x5•x的结果等于.14.(3分)计算(+1)(﹣1)的结果等于.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)直线y=2x﹣1与x轴的交点坐标为.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠P AC=∠PBC =∠PCB,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)已知P A,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(Ⅰ)根据题意填表:一次购买数量/kg3050150…甲批发店花费/元300…乙批发店花费/元350…(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的批发店购买数量多.24.(10分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).25.(10分)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)×9 的结果等于()A.﹣27B.﹣6C.27D.6【分析】由正数与负数的乘法法则得(﹣3)×9=﹣27;【解答】解:(﹣3)×9=﹣27;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.(3分)2sin60°的值等于()A.1B.C.D.2【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin60°=2×=,故选:C.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革﹣﹣庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于4230000有7位,所以可以确定n=7﹣1=6.【解答】解:4230000=4.23×106.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7.(3分)计算+的结果是()A.2B.2a+2C.1D.【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:原式===2.故选:A.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.B.4C.4D.20【分析】根据菱形的性质和勾股定理解答即可.【解答】解:∵A,B两点的坐标分别是(2,0),(0,1),∴AB=,∵四边形ABCD是菱形,∴菱形的周长为4,故选:C.【点评】此题考查菱形的性质,关键是根据菱形的性质和勾股定理解答.9.(3分)方程组的解是()A.B.C.D.【分析】运用加减消元分解答即可.【解答】解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.【点评】本题主要考查了二元一次方程组的解法,熟练掌握二元一次方程组的基本解法是解答本题的关键.10.(3分)若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,从而得到y1,y2,y3的大小关系.【解答】解:当x=﹣3,y1=﹣=4;当x=﹣2,y2=﹣=6;当x=1,y3=﹣=﹣12,所以y3<y1<y2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.11.(3分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 【分析】根据旋转的性质得到AC=CD,BC=CE,AB=DE,故A错误,C错误;得到∠ACD=∠BCE,根据三角形的内角和得到∠A=∠ADC=,∠CBE =,求得∠A=∠EBC,故D正确;由于∠A+∠ABC不一定等于90°,于是得到∠ABC+∠CBE不一定等于90°,故B错误.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC =,∠CBE =,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.【点评】本题考查了旋转的性质,等腰三角形的性质,正确的识别图形是解题的关键.12.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x =﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n <.其中,正确结论的个数是()A.0B.1C.2D.3【分析】①当x=0时,c=﹣2,当x=1时,a+b=0,abc>0,①正确;②x =是对称轴,x=﹣2时y=t,则x=3时,y=t,②正确;③m+n=4a﹣4;当x =﹣时,y>0,0<a <,m+n <,③错误;【解答】解:当x=0时,c=﹣2,当x=1时,a+b﹣2=﹣2,∴a+b=0,∴y=ax2﹣ax﹣2,∴abc>0,①正确;x =是对称轴,x=﹣2时y=t,则x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a﹣2,n=4a﹣2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x=﹣时,y>0,∴a>,∴m+n>,③错误;故选:C.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算x5•x的结果等于x6.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x5•x=x6.故答案为:x6【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.14.(3分)计算(+1)(﹣1)的结果等于2.【分析】利用平方差公式计算.【解答】解:原式=3﹣1=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.(3分)直线y=2x﹣1与x轴的交点坐标为(,0).【分析】当直线y=2x﹣1与x轴相交时,y=0;将y=0代入函数解析式求x值.【解答】解:根据题意,知,当直线y=2x﹣1与x轴相交时,y=0,∴2x﹣1=0,解得,x=;∴直线y=2x+1与x轴的交点坐标是(,0);故答案是:(,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标一定满足该函数的解析式.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF ≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解答】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠F AH+∠AFH=90°,又∵∠F AH+∠BAH=90°,∴∠AFH=∠BAH,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ADF中,BF===13,S△ABF=AB•AF=BF•AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE﹣AG=13﹣=,故答案为:.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠P AC=∠PBC =∠PCB,并简要说明点P的位置是如何找到的(不要求证明)取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,于是得到结论.【解答】解:(Ⅰ)AB==,故答案为:;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB,故答案为:取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB 与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB.【点评】本题考查了作图﹣复杂作图,勾股定理,圆周角定理,正确的作出图形是解题的关键.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣2;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x≤1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥﹣2;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x≤1.故答案为:x≥﹣2,x≤1,﹣2≤x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为40,图①中m的值为25;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;(Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:4÷10%=40,m%==25%,故答案为:40,25;(Ⅱ)平均数是:=1.5,众数是1.5,中位数是1.5;(Ⅲ)800×=720(人),答:该校每天在校体育活动时间大于1h的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(10分)已知P A,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.【分析】(Ⅰ)连接OA、OB,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°计算;(Ⅱ)连接CE,根据圆周角定理得到∠ACE=90°,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】解:(Ⅰ)连接OA、OB,∵P A,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB=∠AOB=50°;(Ⅱ)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.【分析】根据正切的定义用CD表示出AD,根据题意列出方程,解方程得到答案.【解答】解:在Rt△CAD中,tan∠CAD=,则AD=≈CD,在Rt△CBD中,∠CBD=45°,∴BD=CD,∵AD=AB+BD,∴CD=CD+30,解得,CD=45,答:这座灯塔的高度CD约为45m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(Ⅰ)根据题意填表:一次购买数量/kg3050150…甲批发店花费/元180300900…乙批发店花费/元210350850…(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为100kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的乙批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的甲批发店购买数量多.【分析】(Ⅰ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);6×30=180,6×150=900;而乙批发店花费y2(元),当一次购买数量不超过50kg时,y2=7××30=210元;一次购买数量超过50kg时,y2=7×50+5(150﹣50)=850元.(Ⅱ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);而乙批发店花费y2(元)在一次购买数量不超过50kg时,y2(元)=7×购买数量x(千克);一次购买数量超过50kg时,y2(元)=7×50+5(x﹣50);即:花费y2(元)是购买数量x(千克)的分段函数.(Ⅲ)①花费相同,即y1=y2;可利用方程解得相应的x的值;②求出在x=120时,所对应的y1、y2的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当y=360时,两店所对应的x的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】解:(Ⅰ)甲批发店:6×30=180元,6×150=900元;乙批发店:7××30=210元,7×50+5(150﹣50)=850元.故依次填写:180 900 210 850.(Ⅱ)y1=6x(x>0)当0<x≤50时,y2=7x(0<x≤50)当x>50时,y2=7×50+5(x﹣50)=5x+100 (x>50)因此y1,y2与x的函数解析式为:y1=6x(x>0);y2=7x(0<x≤50)y2=5x+100 (x>50)(Ⅲ)①当y1=y2时,有:6x=7x,解得x=0,不和题意舍去;当y1=y2时,也有:6x=5x+100,解得x=100,故他在同一个批发店一次购买苹果的数量为100千克.②当x=120时,y1=6×120=720元,y2=5×120+100=700元,∵720>700∴乙批发店花费少.故乙批发店花费少.③当y=360时,即:6x=360和5x+100=360;解得x=60和x=52,∵60>52∴甲批发店购买数量多.故甲批发店购买的数量多.【点评】此题主要考查了一次函数的应用,分段函数,就是要根据自变量在不同的取值范围函数的关系不一样,需要分段进行讨论,分别进行计算,根据函数关系式可以已知自变量的值求函数值,也可以已知函数值求相应的自变量的值.24.(10分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).【分析】(Ⅰ)由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,即可得出答案;(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,得出∠E′FM=∠ABO=30°,在Rt△MFE′中,MF=2ME′=2t,FE′===t,求出S△MFE′=ME′•FE′=×t×t=,S矩形C′O′D′E′=O′D′•E′D′=2×4=8,即可得出答案;②当S=时,O'A=OA﹣OO'=6﹣t,由直角三角形的性质得出O'F=O'A=(6﹣t),得出方程,解方程即可;当S=5时,O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,由直角三角形的性质得出O'G=(6﹣t),D'F=(4﹣t),由梯形面积公式得出S=[(6﹣t)+(4﹣t)]×2=5,解方程即可.【解答】解:(Ⅰ)∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,∴∠E′FM=∠ABO=30°,∴在Rt△MFE′中,MF=2ME′=2t,FE′===t,∴S△MFE′=ME′•FE′=×t×t=,∵S矩形C′O′D′E′=O′D′•E′D′=2×4=8,∴S=S矩形C′O′D′E′﹣S△MFE′=8﹣,∴S=﹣t2+8,其中t的取值范围是:0<t<2;②当S=时,如图③所示:O'A=OA﹣OO'=6﹣t,∵∠AO'F=90°,∠AFO'=∠ABO=30°,∴O'F=O'A=(6﹣t)∴S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),∴t=6﹣;当S=5时,如图④所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,∴O'G=(6﹣t),D'F=(4﹣t),∴S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,∴当≤S≤5时,t的取值范围为≤t≤6﹣.【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质、梯形面积公式等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质时是解题的关键.25.(10分)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.【分析】(Ⅰ)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b >0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q 作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,所以[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,解方程即可.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,∴b=4.【点评】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题关键是能够根据给定参数判断点的位置,从而构造特殊三角形来求解.。
2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。
故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得,所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。
2019年天津市中考数学试卷12小题,每小题3分,共36分•在每小题给出的四个选项中,只有一项是符合题目要求的) 1 . (3分)(2019?天津)计算(3) 9的结果等于()A.272. ( 3 分)(2019?天津)A . 、..;3革开放40周年大型展览” 3月20日圆满闭幕,自开幕以来,现场观众累计约为 4230000人 次.将4230000用科学记数法表示应为 ()4. (3分)(2019?天津)在一些美术字中,有的汉字是轴对称图形. 看作是轴对称图形的是 ( )5. ( 3分)(2019?天津)如图是一个由 6个相同的正方体组成的立体图形,它的主视图3. (3分)(2019?天津)据2019年3月21日《天津日报》报道,“伟大的变革 庆祝改A . 0.423 107B . 4.23 10* 6 75C. 42.3 10D .423 10427D . 61 D . .2、选择题(本大题共4个汉字中,可以A.美B .C.校D 园 D .D . 5和6之间B . 6C. 2sin60的值等于( )B . 2C.点C , D 在坐标轴上,则菱形 ABCD 的周长等于()A . 5B . 43C. 4 5D . 209. ( 3 分)(2019?天津)方程组3x 6x 2y2y 7的解是()11x 2x1x 1x 3A .B .C. D .1 y 5y 2y 1y - 210. (3分)(2019?天津)若点 A ( 3,y ) , B ( 2,y 2) , C (1,y s )都在反比例函数 y 的图 x 象上,则y i , y , y 3的大小关系是( )11. (3分)(2019?天津)如图,将 ABC 绕点C 顺时针旋转得到 DEC ,使点A 的对应点D恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是 ( )212. (3分)(2019?天津)二次函数 y ax x210 1 2y ax 2 bx ctm2 2nA . y 2y i y 3B . *y iy 2C. y iy 2y 3D . y 3y 2yEBC. BC DED . A EBCbx c (a , b , c 是常数,a 0)的自变量x 与EAB1且当x 2时,与其对应的函数值y 0 •有下列结论:① abc 0 :②2和3是关于x 的方程ax 2 bx c t 的两个根;③0 m n 一 .3其中,正确结论的个数是 ()A . 0B . 1C. 2D . 3二、填空题(本大题共 6小题,每小题3分,共18分)13. _________________________________________ (3分)(2019?天津)计算x 5gx 的结果等于 ______________________________________________ . 14. ___________________________________________________ (3分)(2019 ?天津)计算(3 1)(.3 1)的结果等于 ___________________________________ . 15.( 3分)(2019?天津)不透明袋子中装有 7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出 1个球,则它是绿球的概率是 _.16. _________________________________________________________ (3分)(2019?天津)对于直线 y 2x 1与x 轴的交点坐标是 _____________________________ .17. ( 3分)(2019?天津)如图,正方形纸片 ABCD 的边长为12, E 是边CD 上一点,连接AE 、 折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点 B ,得到折痕BF ,点F 在AD 上, 若DE 5,贝U GE 的长为EBC18. (3分)(2019?天津)如图,在每个小正方形的边长为在边AC 上.(I )线段AB 的长等于 _____;(n )请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足 PBC PCB ,并简要说明点 P 的位置是如何找到的(不要求证明)1的网格中, ABC 的顶点A 在格点上,B 是小正方形边的中点,ABC 50 , BAC 30,经过点A , B 的圆的圆心 PAC计该校每天在校体育活动时间大于 1h 的学生人数.三、解答题(本大题共 7小题,共66分,解答写出文字说明、演算步骤或推理过程)请结合题意填空,完成本题的解答. (I )解不等式①,得 _____ ; (n )解不等式②,得 _____ ;(川)把不等式①和②的解集在数轴上表示出来; (W )原不等式组的解集为 _____ .I I 丄 【 20. (8分)(2019?天津)某校为了解初中学生每天在校体育活动的时间(单位: 调查了该校的部分初中学生. 根据调查结果,绘制出如下的统计图①和图②.(n )求统计的这组每天在校体育活动时间数据的平均数、众数和中位数; (川)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估19.( 8分)(2019?天津)解不等式组x 1…1 2x 1, 1h ),随机 请根据相关信(I )本次接受调查的初中学生人数为,图①中m 的值为 息,解答下列问题:圏121. (10分)(2019?天津)已知PA , PB 分别与e O 相切于点 A , B , APB 80 , C 为 e O 上一点.(I )如图①,求ACB 的大小;(H )如图②, AE 为e O 的直径,AE 与BC 相交于点D .若AB AD ,求 EAC 的大小.22. (10分)(2019?天津)如图,海面上一艘船由西向东航行,在 灯塔的最高点C 的仰角为31,再向东继续航行30m 到达B 处,测得该灯塔的最高点 C 的仰角为45,根据测得的数据,计算这座灯塔的高度 CD (结果取整数)参考数据:sin31 0.52 , cos31 0.86 , tan31 0.60 .23. (10分)(2019?天津)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买 数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过 50kg 时,价格为7元/kg ; 一次购买数量超过 50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元 /kg .设小王在同一个批发店一次购买苹果的数量为 xkg (x 0).(I )根据题意填表:一次购买数量3050150/kg甲批发店花费/元300乙批发店花费/兀35022A 处测得正东方向上一座A S D(川)根据题意填空:① 若小王在甲批发店和在乙批发店一次购买苹果的数量相同, 发店一次购买苹果的数量为 _____ kg ; ② 若小王在同一个批发店一次购买苹果的数量为 120kg ,则他在甲、乙两个批发店中的批发店购买花费少;③ 若小王在同一个批发店一次购买苹果花费了 360元,则他在甲、乙两个批发店中的 _批发店购买数量多.24. (10分)(2019?天津)在平面直角坐标系中,O 为原点,点A(6,0),点B 在y 轴的正半 轴上, ABO 30 .矩形CODE 的顶点D , E , C 分别在0A , AB , OB 上,OD 2 . (I)如图①,求点 E 的坐标;(H)将矩形CODE 沿x 轴向右平移,得到矩形 CODE ,点C , O , D , E 的对应点分 别为C , O ,D ,E •设OO t ,矩形CODE 与 ABO 重叠部分的面积为 S .①如图②,当矩形 CODE 与 ABO 重叠部分为五边形时, C E , E D 分别与AB 相交于点M , F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当,3剟临5 3时,求t 的取值范围(直接写出结果即可)图① 圍②225. (10分)(2019?天津)已知抛物线 y x bx c(b , c 为常数,b 0)经过点A( 1,0), 点M (m,0)是x 轴正半轴上的动点.(I)当b 2时,求抛物线的顶点坐标;(H)点D(b,y D )在抛物线上,当 AM AD , m 5时,求b 的值;(川)点Q(b - , y Q )在抛物线上,当,2AM 2QM 的最小值为 型时,求b 的值.且花费相同,则他在同一个批2 42019年天津市中考数学试卷参考答案与试题解析12小题,每小题3分,共36分•在每小题给出的四个选项中,只有一项【分析】由正数与负数的乘法法则得 (3) 927 ;【解答】解:(3) 9 27 ;故选:A .2. (3分)2sin60 的值等于( )A .3B . 2C. 1【考点】特殊角的三角函数值【分析】根据特殊角三角函数值,可得答案. 【解答】解:2sin 60 2- 3 ,2故选:A .3. ( 3分)据2019年3月21日《天津日报》报道,“伟大的变革庆祝改革开放40周年大型展览” 3月20日圆满闭幕,自开幕以来,现场观众累计约为 4230000人次.将4230000 用科学记数法表示应为 ( )7654A . 0.423 10B . 4.23 10 C. 42.3 10 D . 423 10【考点】科学记数法 表示较大的数是易错点,由于 4230000有7位,所以可以确定 n 7 1 6 . 【解答】解: 64230000 4.23 10 .故选:B .、选择题(本大题共 1 . (3分)计算(3) 9 的结果等于( )A . 27B . 6C. 27【考点】有理数的乘法D . 6【分析】科学记数法的表示形式为 a 10n 的形式,其中1, |a| 10 , n 为整数.确定 n 的值是符合题目要求的)4. (3分)在一些美术字中,有的汉字是轴对称图形.下面 4个汉字中,可以看作是轴对称图形的是( )AB .丽C 校【考点】轴对称图形【分析】根据轴对称图形的概念求解.【解答】解:A 、是轴对称图形,故本选项正确;B 、 不是轴对称图形,故本选项错误;C 、 不是轴对称图形,故本选项错误;D 、 不是轴对称图形,故本选项错误.故选:A .【考点】简单组合体的三视图【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有 3列,每列的小正方形的个数从左到右依次为 1、1、2 .故选:B .6. (3分)估计.33的值在( )A . 2和3之间B . 3和4之间C. 4和5之间D . 5和6之间【考点】估算无理数的大小 【分析】由于25 33 36,于是 25 ..3336,从而有5336 .【解答】解:Q25 33 36 ,253336 ,D .5. (3分)如图是一个由 6个相同的正方体组成的立体图形,它的主视图是A.C.故选:D . 7. ( 3分)计算 2a 2 —的结果是( a 1 A . 2 B . 2a 2 C. 1D .4a【考点】分式的加减法【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:原式2a 2 a 12(a 1) a 1 故选:A . & ( 3分)如图,四边形 ABCD 为菱形,A , B 两点的坐标分别是 (2,0)(0,1),点 C , DB KJD A. -J 5B . 4爲 【考点】坐标与图形性质;菱形的性质 【分析】根据菱形的性质和勾股定理解答即可 【解答】解: Q A , B 两点的坐标分别是 AB 12 長,在坐标轴上,则菱形 ABCD 的周长等于( (2,0) , (0,1),C. 4 5D .20 Q 四边形ABCD 是菱形, 菱形的周长为4 5, 故选:C . 3x 2y 7 ”” 口9°( 3分)方程组6x 2y 11的解是()xA .x 1B .y 2 x 3 C. y 1D .y【考点】 解二元一次方程组 【分析】 运用加减消元分解答即可. 【解答】 解: 3x 6x 2y 7①2y 11 ②,①②得,x 2 , 把x 2代入①得, 2y 7 ,解得y 故原方程组的解为: 故选:D . 10. (3分)若点 A( 3,y i ) , B ( 2,y 2), C (1,y 3)都在反比例函数 12的图象上,则y , y 2 ,y 3的大小关系是 A . y 2 y 1 y 3 B . y 3 y 1 y 2C. y 1 y 2 D . y 3y 2 y【考点】反比例函数图象上点的坐标特征 【分析】 分别计算出自变量为 2和1对应的函数值,从而得到% , y 2, y 3的大小关系. 【解答】 解:当 x 3 , y 1 12 4; 3X 2,y 212 2当 x 1 , y 3 12 ,所以出y 1 y 2. 故选:B . 11.( 3分)如图,将 ABC 绕点C 顺时针旋转得到 DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是 ()ACD BCE ,根据角形的内角和得到ADC 180 ACD ,2EBC ,故D 正确; ABC 不一定等于90 ,故选:D .212. (3 分)二次函数 y ax bx c (a , b , x210 1 2y ax 2 bx ctm2 2n且当x时,与其对应的函数值 y 0 .有下列结论:sE旋转的性质【考点】AB EBC. BC DE D . A EBC【分析】 根据旋转的性质得到 AC CD , BC CE , AB DE , 故A 错误,C 错误;CBE 180 BCE 2,求得 A EBC ,故D 正确;由于 ABC 不一定等于90 ,于是得到 ABC CBE 不一定等于90,故B 错误. 【解答】解:Q 将 ABC 绕点C 顺时针旋转得到 DEC , AC CD , BCCE , AB DE ,故 A 错误, C 错误; ACD BCE , ADC 180 ACD , CBE 型2BCE 2 ,ABCCBE 不一定等于90,故B 错误c 是常数,a0)的自变量x 与函数值y 的部① abc 0 :② 2和3是关于x 的方程ax 2 bx c t 的两个根;③0 m n 203其中,正确结论的个数是 ()【分析】①当x 0时,c 2,当x 1时,a b 0, abc 0 ,①正确;1② x 是对称轴,x 2时y t ,则x 3时,y t ,②正确;2 1 820 ③ m n 4a 4 ;当 x -时,y 0 , 0 a - , m n —,③错误;2 3 3【解答】解:当x 0时,c 2 , 当 x 1 时,a b 2 2,a b 0 ,2y ax ax 2 , abc 0 , ①正确; 1x是对称轴,x 2 时 y t ,则 x 3 时,y t ,22和3是关于x 的方程ax bx c t 的两个根;②正确;m a a 2 , n 4a 2a 2 , m n 2a 2 , m n 4a 4 , Q 当 x1时,y 0,2-a3,20m n3③错误;故选:C .A . 0B . 1C. 2D . 3【考点】二次函数图象与系数的关系;抛物线与x 轴的交点;二次函数图象上点的坐标特征、填空题(本大题共6小题,每小题3分,共18分)13. (3分)计算x5gx的结果等于_ x6 _.【考点】同底数幕的乘法【分析】根据同底数幕相乘,底数不变,指数相加,即可解答.【解答】解:x5gx x6.故答案为:x614. (3分)计算(3 1)(・.3 1)的结果等于2.【考点】二次根式的混合运算【分析】利用平方差公式计算.【解答】解:原式 3 12 .故答案为2 .15. (3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别•从袋子中随机取出1个球,则它是绿球的概率是3.7 —【考点】概率公式【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率故答案为3.71直线y 2x 1与x轴的交点坐标是(-,0);2故答案是:(-,0).217. (3分)如图,正方形纸片ABCD的边长为12 , E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF ,点F在AD上,若49DE 5,则GE的长为—一—.一13 —A F DB C【考点】正方形的性质;PB :翻折变换(折叠问题)【分析】由折叠及轴对称的性质可知,ABF GBF , BF垂直平分AG ,先证ABF DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解答】解:Q四边形ABCD为正方形,AB AD 12 , BAD D 90 ,由折叠及轴对称的性质可知,ABF GBF , BF垂直平分AG ,BF AE, AH GH ,FAH AFH 90 ,又Q FAH BAH 90 ,AFH BAH ,ABF DAE (AAS),AF DE 5 ,在Rt ADF中,BF AB2AF21225213S ABF1ABgAF1BFgAH ,12 5 13AH ,2【考点】一次函数图象上点的坐标特征【分析】当直线y 2x 1与x轴相交时,y 0 ;将y 0代入函数解析式求x值.【解答】解:根据题意,知,当直线y 2x 1与x轴相交时,y 0 ,2x 1 0 ,解得,x 1 2;22AH6013,120AG 2AH13 'Q AE BF 13 ,120 49GE AE AG 1313 1318. (3分)如图,在每个小正方形的边长为 1的网格中, ABC 的顶点A 在格点上,B 是小正方形边的中点, ABC 50, BAC 30,经过点 A ,B 的圆的圆心在边 AC 上. (I )线段AB的长等于_ "7—;一 2 —(n )请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足 PAC PBCPCB ,并简要说明点 P 的位置是如何找到的(不要求证明) _________ .【考点】作图 复杂作图;圆周角定理;勾股定理 【分析】(I )根据勾股定理即可得到结论;(n )如图,取圆与网格的交点 E , F ,连接EF 与AC 交于一点,则这一点是圆心 0 , AB 与网格线相交于 D ,连接DO 并延长交e 0于点Q ,连接QC 并延长,与B , 0的连线相交 于点P ,连接AP ,于是得到结论.【解答】解:(I ) AB 故答案为:(H)如图,取圆与网格的交点 E , F ,连接EF 与AC 交于一点,则这一点是圆心 0 , AB 与网格线相交于 D ,连接DO 并延长交e 0于点Q ,连接QC 并延长,与B , 0的连线相交 于点P ,连接AP ,则点P 满足 PAC PBC PCB ,故答案为:取圆与网格的交点 E ,F ,连接EF 与AC 交于一点,则这一点是圆心 0, AB 与 网格线相交于D ,连接D0并延长交e0于点Q ,连接QC 并延长,与B ,0的连线相交于 三、解答题(本大题共 7小题,共66分,解答度写出文字说明、演算步骤或推理过程)请结合题意填空,完成本题的解答. (I)解不等式①,得 _x …2 —; (n)解不等式②,得 _______ ;(川)把不等式①和②的解集在数轴上表示出来; (W)原不等式组的解集为 ______ .|-5-3 -2 -1 0 12 3 41【考点】在数轴上表示不等式的解集;解一元一次不等式组【分析】分别求出每一个不等式的解集, 根据口诀:同大取大、同小取小、大小小大中间找、 大大小小无解了确定不等式组的解集. 【解答】解:(I)解不等式①,得 x …2 ; (n)解不等式②,得人(川)把不等式①和②的解集在数轴上表示出来;点P ,连接AP ,则点P 满足 PAC PBCPCB •19. (8分)解不等式组x 1…1 2x 1, 1—11 J■ 1 L 1 1 %■5 ・4 *3 -2 -1 0(W )原不等式组的解集为故答案为:x …2, x, 1 , L 2 3 4"2剟x 1 . 2剟X 1 .20. (8分)某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列(I )本次接受调查的初中学生人数为 40 ,图①中m 的值为 _______ ;(H )求统计的这组每天在校体育活动时间数据的平均数、众数和中位数; (川)根据统计的这组每天在校体育活动时间的样本数据, 若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数.【考点】众数;扇形统计图;算术平均数;用样本估计总体;条形统计图;中位数 【分析】(I )根据统计图中的数据可以求得本次调查的学生人数,进而求得 m 的值;(H )根据统计图中的数据可以求得这组数据的平均数和众数、中位数; (川)根据统计图中的数据可以求得该校每天在校体育活动时间大于 1h 的学生人数.【解答】解:(I )本次接受调查的初中学生人数为: 4 10% 40 ,m% 10 100%25% ,40故答案为:40, 25 ;0.9 4 1.2 8 1.5 15 1.8 10 2.1 3(n )平均数是: 一 众数是,中位数是;h3.1.5 ,40 I- 5-40 4(川)800 720 (人),40答:该校每天在校体育活动时间大于1h的学生有720人.21. (10分)已知PA , PB分别与e O相切于点A , B , (I)如图①,求ACB的大小;(n)如图②,AE为e O的直径,AE与BC相交于点D .图①團②【考点】切线的性质;圆周角定理【分析】(I)连接OA、OB,根据切线的性质得到OAP 和等于360计算;(n)连接CE,根据圆周角定理得到ACE 90,根据等角性质计算即可.【解答】解:(I)连接OA、OB ,QPA , PB是eO的切线,OAP OBP 90 ,AOB 360 90 90 80 100 ,1由圆周角定理得,ACB - AOB 50 ;2(n)连接CE ,Q AE为e O的直径,APB 80 , C 为e O 上一点.若AB AD,求EAC的大小.OBP 90,根据四边形内角腰三角形的性质、三角形的外CACE90 ,Q ACB50 ,BCE90 50 40 BAE BCE 40Q AB AD ,ABD ADB 70 ,22. (10分)如图,海面上一艘船由西向东航行,在 A 处测得正东方向上一座灯塔的最高点C 的仰角为31,再向东继续航行30m 到达B 处,测得该灯塔的最高点 C 的仰角为45,根 据测得的数据,计算这座灯塔的高度CD (结果取整数).参考数据:sin31 0.52 , cos31 0.86 , tan31 0.60 .A B D【考点】解直角三角形的应用仰角俯角问题【分析】根据正切的定义用 CD 表示出AD ,根据题意列出方程,解方程得到答案.CD【解答】解:在 Rt CAD 中,tan CAD CD ,AD则 AD CD 5CD ,tan 31 3在 Rt CBD 中, CBD 45 , BD CD ,Q AD AB BD ,5CD CD 30,C3解得,CD 45,答:这座灯塔的高度CD约为45m •23. (10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg时,价格为7元/kg ;—次购买数量超过50kg时,其中有50kg的价格仍为7元/ kg,超过50kg部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为xkg(x 0).(I)根据题意填表:22(川)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为_____ kg ;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的—批发店购买数量多.【考点】一次函数的应用【分析】(I)根据题意,甲批发店花费%(元)6购买数量x (千克);6 30 180 ,6 150 900 ;而乙批发店花费y2 (元),当一次购买数量不超过50kg时,y7 30 210元;一次购买数量超过50kg时,y27 50 5(150 50)850元.(n)根据题意,甲批发店花费%(元)6购买数量x (千克);而乙批发店花费y2 (元)在一次购买数量不超过 50kg 时,y 2 (元)7购买数量x (千克);一次购买数量超过50kg 时,y 2 (元)7 50 5(x 50);即:花费y 2 (元)是购买数量x (千克)的分段函数. (川)①花费相同,即 y i y ;可利用方程解得相应的x 的值;② 求出在x 120时,所对应的y i 、y 的值,比较得出结论•实际上是已知自变量的值求函 数值. ③ 求出当 y 360时,两店所对应的 x 的值,比较得出结论.实际是已知函数值求相应的自 变量的值. 【解答】解:(I )甲批发店:6 30 180元,故他在同一个批发店一次购买苹果的数量为 100 千克. ②当 x 120时, y 16 120720元, y 25 120 100 700元,Q 720 700乙批发店花费少. 故乙批发店花费少. ③当 y 360时,即: 6x 360和 5x 100 360 ;解得 x 60 和 x 52,Q6052甲批发店购买数量多.6 150 900 元;乙批发店: 730 210 元,7 50 5(150 50) 850 元.故依次填写:180 900210850.(n)y 1 6x (x 0)当0 x, 50 时, y 2 7x (0 x, 50)当x 50 时,y 2 7 505(x 50) 5x 100因此 y 1 , y 2 与 x 的函数解析式为:y 1 6x(x 50)(川)①当y i y 2时,有:6x 7x ,解得x当 y 1 y 2 时,也有: 6x 5x 100, (x 50)(x 0) ; y 2 7x (0 x, 50)y 2 5x 1000 ,不和题意舍去;解得 x 100,故甲批发店购买的数量多.24 . ( 10分)在平面直角坐标系中, ABO 30 .矩形 CODE 的顶点 D , E , C 分别在 OA , AB , OB 上,OD 2 . (I)如图①,求点 E 的坐标;(H)将矩形CODE 沿x 轴向右平移,得到矩形 CODE ,点C , O , D , E 的对应点分 别为C , O ,D ,E •设OO t ,矩形CODE 与 ABO 重叠部分的面积为 S .①如图②,当矩形 CODE 与 ABO 重叠部分为五边形时, C E , E D 分别与AB 相交于点M , F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当,3剟临5 3时,求t 的取值范围(直接写出结果即可)图①圉②【考点】四边形综合题得出方程,解方程即可;O 为原点,点 A(6,0),点B 在y 轴的正半轴上,【分析】(I)由已知得出 AD OA OD 4,由矩形的性质得出 AED ABO 30 ,在Rt AED 中,AE 2AD 8,由勾股定理得出 ED 4 3,即可得出答案; (n)①由平移的性质得:E FM ABO 30FE -MF 2 ME 2. (2t)2 t 22 , E D 4 .3 , ME OO t ,D E //OC在Rt MFE中,MF 2ME 3t ,1求出 S MFE -ME gFE1t ■. 3tS矩形 CODEODED 2②当S 3时,OA OAOOt ,由直角三角形的性质得出O F3O A3(6 t),当 S 5 3 时,OA 6 t ,t 2 4 t ,由直角三角形的性质得出 O G ■ 3(6 t),D F 3(4 t),由梯形面积公式得出S 3(6 t) 3(4t)] 25 3,解方程即可.//OB ,得 O D 8 3,即可得出答案;2t , .3t 2O F 3O A S 1(6 t)2解得:t 6 2,或t 6 2 (舍去),t 62 ;当S 5^3时,如图④所示:【解答】解:(I ) Q 点A (6,0), OA 6, QOD 2 , AD OA OD 6 2 4,Q 四边形CODE 是矩形, DE / /OC , AED ABO 30 , 在 Rt AED 中,AE 2AD ED-------- 2AD4 43,QOD 2 ,点E 的坐标为(2,4.3) (n )①由平移的性质得: 43 ,MEOO t , D E / /O C / /OB ,E FM ABO 30 在 Rt MFE 中,MF2ME 2t , FEMF 2 ME 2 ,(2t)2 t 2 . 3t ,S MFE 1ME g^E-22Q S 矩形 CODE O D E DS 矩形C ODE S MFE —t 2 &.3,其中t 的取值范围是: 2②当 S 3时,如图③所示:OA OO Q AO F 90, AFO ABO 30 ,0A6t , DA6t2 4t , OG , 3(6 t) , D F 3(4 t), 1 S -[ 3(6t) 3(4t)] 25 3,2 解得:t 5 ,2轴正半轴上的动点.(I)当b 2时,求抛物线的顶点坐标;(D)点D(b,y D )在抛物线上,当 AM AD , m 5时,求b 的值;(川)点Q(b - , y o )在抛物线上,当 2AM 2QM 的最小值为时,求b 的值.2 4【考点】二次函数综合题【分析】(I)将点A( 1,0)代入y x 2 bx c ,求出c 关于b 的代数式,再将b 代入即可求 出c 的值,可进一步写出抛物线解析式及顶点坐标;(H)将点D(b,y D )代入抛物线y x 2 bx b 1,求出点D 纵坐标为 b 1,由b 0判断 出点D(b, b 1)在第四象限,且在抛物线对称轴 x -的右侧,过点 D 作DE x 轴,可证225. (10分)已知抛物线y x 2 bx c(b , c 为常数,b0)经过点 A( 1,0),点 M (m,0)是 xt的取值范围为5瓠62-ADE 为等腰直角三角形,利用锐角三角函数可求出 b 的值;2Q 点D(b,y D )在抛物线y x bx b 1上, 2y D b bg) b 1 b 1 , 由 b 0,得 b - 0 , b 1 0 ,2点D(b, b 1)在第四象限,且在抛物线对称轴x -的右侧,2如图1,过点D 作DE x 轴,垂足为 E ,则点E(b,0), AE b 1 , DE b 1,得 AE DE ,AD 2AE , 由已知AM AD , m 5 ,1 b 3(川)将点Q(b , y o )代入抛物线y x 2 bx b 1,求出Q 纵坐标为 ,可知点2 2 41 b 3 Q(b -, )在第四象限,且在直线 x b 的右侧,点N(0,1),过点Q 作直线AN 的垂2 2 4线,垂足为G ,QG 与x 轴相交于点M ,过点Q 作QH 1x 轴于点H ,则点H(b -,0),2 在Rt MQH 中,可知 QMH MQH 45,设点M (m,0),则可用含b 的代数式表示 m ,因为 2 AM 2QM 33、~2 4d彳h 44) ( 1)] 2 2[(b 2) (2 卫 【解答】解: 、 2(I) Q 抛物线y x bx c 经过点A( 1,0),1 b c 0 , 即 c b 1 , 当b 2时,2 2y x 2x 3 (x 1)4,抛物线的顶点坐标为(1, 4);(□)由(I)知,抛物线的解析式为bx b 1,在 Rt ADE 中, ADE DAE 45 , 即可.5 (1) . 2(b 1), b 3.21 ;3-)在第四象限,且在直线 x b 的右侧, 4可取点N(0,1),由 GAM 45,得— AM GM ,2 则此时点M 满足题意,在 Rt MQH 中,可知 QMH MQH 45, QH MH ,QM . 2MH , Q 点 M (m,0), 0 ( b-) 1 (b -) m ,2 42解得,mb 12 4 Q .2 AM 2Q “ 33 2M ■4■2[(b2 1 -) 4 - 1 b 1 (1)] 2 2[(b -)( )]2 2 433 2 4 b 4 .(川)Q 点Q(b12,yQ)在抛物线y 2x bx b 1 上,(b 1 2)b(bbQ 2 AM 2QMQM ),如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,过点Q 作QHx 轴于点H ,则点H(b12, 0),A 出。
2019年天津市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.计算(﹣3)×9 的结果等于()A.﹣27 B.﹣6 C.27 D.62.2sin60°的值等于()A.1 B.C.D.23.据2019年3月21日《天津日报》报道,“伟大的变革﹣﹣庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×1044.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算+的结果是()A.2 B.2a+2 C.1 D.8.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.B.4C.4D.209.方程组的解是()A.B.C.D.10.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y111.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC12.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x =﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n <.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(共6小题)13.计算x5•x 的结果等于.14.计算(+1)(﹣1)的结果等于.15.不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.直线y=2x﹣1与x轴的交点坐标为.17.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠P AC=∠PBC=∠PCB,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(共7小题)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得≥﹣;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣.20.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.已知P A,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.22.如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.23.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x >0).(Ⅰ)根据题意填表:一次购买数量/kg3050150…甲批发店花费/元300…乙批发店花费/元350…(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的批发店购买数量多.24.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.2019年天津市中考数学试卷(解析版)参考答案一、单选题(共12小题)1.【分析】由正数与负数的乘法法则得(﹣3)×9=﹣27;【解答】解:(﹣3)×9=﹣27;故选:A.【知识点】有理数的乘法2.【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin60°=2×=,故选:C.【知识点】特殊角的三角函数值3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4230000有7位,所以可以确定n=7﹣1=6.【解答】解:4230000=4.23×106.故选:B.【知识点】科学记数法—表示较大的数4.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【知识点】轴对称图形5.【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.【知识点】简单组合体的三视图6.【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【知识点】估算无理数的大小7.【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:原式===2.故选:A.【知识点】分式的加减法8.【分析】根据菱形的性质和勾股定理解答即可.【解答】解:∵A,B两点的坐标分别是(2,0),(0,1),∴AB=,∵四边形ABCD是菱形,∴菱形的周长为4,故选:C.【知识点】坐标与图形性质、菱形的性质9.【分析】运用加减消元分解答即可.【解答】解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.【知识点】解二元一次方程组10.【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,从而得到y1,y2,y3的大小关系.【解答】解:当x=﹣3,y1=﹣=4;当x=﹣2,y2=﹣=6;当x=1,y3=﹣=﹣12,所以y3<y1<y2.故选:B.【知识点】反比例函数图象上点的坐标特征11.【分析】根据旋转的性质得到AC=CD,BC=CE,AB=DE,故A错误,C错误;得到∠ACD=∠BCE,根据三角形的内角和得到∠A=∠ADC=,∠CBE=,求得∠A=∠EBC,故D正确;由于∠A+∠ABC不一定等于90°,于是得到∠ABC+∠CBE不一定等于90°,故B错误.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.【知识点】旋转的性质12.【分析】①当x=0时,c=﹣2,当x=1时,a+b=0,abc>0,①正确;②x=是对称轴,x=﹣2时y=t,则x=3时,y=t,②正确;③m+n=4a﹣4;当x=﹣时,y>0,0<a<,m+n<,③错误;【解答】解:当x=0时,c=﹣2,当x=1时,a+b﹣2=﹣2,∴a+b=0,∴y=ax2﹣ax﹣2,∴abc>0,①正确;x=是对称轴,x=﹣2时y=t,则x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a﹣2,n=4a﹣2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x=﹣时,y>0,∴0<a<,∴m+n<,③错误;故选:C.【知识点】二次函数图象上点的坐标特征、抛物线与x轴的交点、二次函数图象与系数的关系二、填空题(共6小题)13.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x5•x=x6.故答案为:x6【知识点】同底数幂的乘法14.【分析】利用平方差公式计算.【解答】解:原式=3﹣1=2.故答案为2.【知识点】二次根式的混合运算15.【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率=.故答案为.【知识点】概率公式16.【分析】当直线y=2x﹣1与x轴相交时,y=0;将y=0代入函数解析式求x值.【解答】解:根据题意,知,当直线y=2x﹣1与x轴相交时,y=0,∴2x﹣1=0,解得,x=;∴直线y=2x+1与x轴的交点坐标是(,0);故答案是:(,0).【知识点】一次函数图象上点的坐标特征17.【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解答】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠F AH+∠AFH=90°,又∵∠F AH+∠BAH=90°,∴∠AFH=∠BAH,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ADF中,BF===13,S△ABF=AB•AF=BF•AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE﹣AG=13﹣=,故答案为:.【知识点】正方形的性质、翻折变换(折叠问题)18.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,于是得到结论.【解答】解:(Ⅰ)AB==,故答案为:;(Ⅱ)如图,取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB,故答案为:取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠P AC=∠PBC=∠PCB.【知识点】作图—复杂作图、勾股定理、圆周角定理三、解答题(共7小题)19.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥﹣2;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x≤1.故答案为:x≥﹣2,x≤1,﹣2≤x≤1.【知识点】在数轴上表示不等式的解集、解一元一次不等式组20.【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;(Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:4÷10%=40,m%==25%,故答案为:40,25;(Ⅱ)平均数是:=1.5,众数是1.5,中位数是1.5;(Ⅲ)800×=720(人),答:该校每天在校体育活动时间大于1h的学生有720人.【知识点】条形统计图、众数、算术平均数、扇形统计图、用样本估计总体、中位数21.【分析】(Ⅰ)连接OA、OB,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°计算;(Ⅱ)连接CE,根据圆周角定理得到∠ACE=90°,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】解:(Ⅰ)连接OA、OB,∵P A,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB=∠AOB=50°;(Ⅱ)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【知识点】切线的性质、圆周角定理22.【分析】根据正切的定义用CD表示出AD,根据题意列出方程,解方程得到答案.【解答】解:在Rt△CAD中,tan∠CAD=,则AD=≈CD,在Rt△CBD中,∠CBD=45°,∴BD=CD,∵AD=AB+BD,∴CD=CD+30,解得,CD=45,答:这座灯塔的高度CD约为45m.【知识点】解直角三角形的应用-仰角俯角问题23.【分析】(Ⅰ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);6×30=180,6×150=900;而乙批发店花费y2(元),当一次购买数量不超过50kg时,y2=7××30=210元;一次购买数量超过50kg时,y2=7×50+5(150﹣50)=850元.(Ⅱ)根据题意,甲批发店花费y1(元)=6×购买数量x(千克);而乙批发店花费y2(元)在一次购买数量不超过50kg时,y2(元)=7×购买数量x(千克);一次购买数量超过50kg时,y2(元)=7×50+5(x﹣50);即:花费y2(元)是购买数量x(千克)的分段函数.(Ⅲ)①花费相同,即y1=y2;可利用方程解得相应的x的值;②求出在x=120时,所对应的y1、y2的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当y=360时,两店所对应的x的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】解:(Ⅰ)甲批发店:6×30=180元,6×150=900元;乙批发店:7××30=210元,7×50+5(150﹣50)=850元.故依次填写:180 900 210 850.(Ⅱ)y1=6x(x>0)当0<x≤50时,y2=7x(0<x≤50)当x>50时,y2=7×50+5(x﹣50)=5x+100 (x>50)因此y1,y2与x的函数解析式为:y1=6x(x>0);y2=7x(0<x≤50)y2=5x+100 (x>50)(Ⅲ)①当y1=y2时,有:6x=7x,解得x=0,不和题意舍去;当y1=y2时,也有:6x=5x+100,解得x=100,故他在同一个批发店一次购买苹果的数量为100千克.②当x=120时,y1=6×120=720元,y2=5×120+100=700元,∵720>700∴乙批发店花费少.故乙批发店花费少.③当y=360时,即:6x=360和5x+100=360;解得x=60和x=52,∵60>52∴甲批发店购买数量多.故甲批发店购买的数量多.【知识点】一次函数的应用24.【分析】(Ⅰ)由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,即可得出答案;(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,得出∠E′FM=∠ABO=30°,在Rt△MFE′中,MF=2ME′=2t,FE′===t,求出S△MFE′=ME′•FE′=×t×t=,S矩形C′O′D′E′=O′D′•E′D′=2×4=8,即可得出答案;②当S=时,O'A=OA﹣OO'=6﹣t,由直角三角形的性质得出O'F=O'A=(6﹣t),得出方程,解方程即可;当S=5时,O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,由直角三角形的性质得出O'G=(6﹣t),D'F=(4﹣t),由梯形面积公式得出S=[(6﹣t)+(4﹣t)]×2=5,解方程即可.【解答】解:(Ⅰ)∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,∴∠E′FM=∠ABO=30°,∴在Rt△MFE′中,MF=2ME′=2t,FE′===t,∴S△MFE′=ME′•FE′=×t×t=,∵S矩形C′O′D′E′=O′D′•E′D′=2×4=8,∴S=S矩形C′O′D′E′﹣S△MFE′=8﹣,∴S=﹣t2+8,其中t的取值范围是:0<t<2;②当S=时,如图③所示:O'A=OA﹣OO'=6﹣t,∵∠AO'F=90°,∠AFO'=∠ABO=30°,∴O'F=O'A=(6﹣t)∴S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),∴t=6﹣;当S=5时,如图④所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,∴O'G=(6﹣t),D'F=(4﹣t),∴S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,∴当≤S≤5时,t的取值范围为≤t≤6﹣.【知识点】四边形综合题25.【分析】(Ⅰ)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,所以[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,解方程即可.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,∴b=4.【知识点】二次函数综合题。
精选文档 1232019 年天津市初中毕业生学生考试一试卷数学试卷满分 120 分,考试时间100 分钟。
第 I 卷一、选择题(本大题12 小题,每题 3 分,共 36 分)1.计算( -3 )×9 的结果等于A. -27B. -6C. 27D. 6【答案】 A【分析】有理数的乘法运算:=-3 ×9=-27 ,应选 A.2.2 sin 60 的值等于A. 1B.2C.3D. 2【答案】 B【分析】锐角三角函数计算,2sin 6033 ,应选A. =2×=23.据2019年 3 月 21 日《天津日报》报导:“伟大的改革--- 庆贺改革开放四十周年大型展览”3月 20 日圆满谢幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423 ×10 7×106×105 D.423×104【答案】 B【分析】科学记数法表示为 4.23 ×10 6,应选 B.4.在一些美术字中,有的汉字是轴对称图形,下边 4 个汉字中,能够看做是轴对称图形的是【答案】 A【分析】美、丽、校、园四个汉子中,“美”能够看做轴对称图形。
应选A5.右图是一个由 6 个同样的正方体构成的立体图形,它的主视图是【答案】 B【分析】图中的立体图形主视图为,应选 B.6.预计33 的值在A.2 和3 之间B.3和4之间C.4 和5 之间D.5 和6 之间【答案】 D【分析】因为,因此,应选 D.2a27.计算的结果是a 1 a1A. 2B.2a24a C.1D.a 1【答案】 A2a22a2【分析】1 a 1a2 ,应选A.a18.如图,四边形 ABCD 为菱形, A 、 B两点的坐标分别是( 2 ,0),( 0, 1),点 C、 D 在座标轴上,则菱形ABCD 的周长等于A.5B.43C. 4 5D.20【答案】 C【分析】由勾股定理可得,由菱形性质可得,因此周长等于应选 C.9.方程组3x 2 y 7 6x2y ,的解是11x1 x 1x 3 x 2B.1A.5yC.y D.y2-1y2【答案】 D3x 2 y 7① 【分析】用加减消元法,6x 2 y 11②①+ ② = 3x2 y 6x 2 y 7 119x 18 x 21 代入 x2 到①中, 6 2 y 7 则 y ,应选 D.210. 若点 A (-3 , y 1 ), B ( -2 , y 2 ), C ( 1 , y 3 )都在反比函数 y12 y 1 , y 2 , y 3 的关的图象上,则 x系A. y 2 y 1 y 3B. y 3 y 1y 2C. y 1 y 2 y 3D. y 3 y 2y 1【答案】 B【分析】将 A (-3 , y 1 12 ), B ( -2 , y 2 ), C ( 1 , y 3 )代入反比函数 y中,得:x12 4, y 212 12 y 1y 2 ,应选 B.y 16, y 3-12 ,因此 y 3 32111. 如图,将△ ABC 绕点 C 顺时针旋转获得△ DEC ,使点 A 的对应点 D 恰巧落在边 AB 上,点 B 的对应点为 E ,连结 BE ,以下结论必定正确的选项是A.AC=ADB.AB⊥EBC. BC=DED.∠A=∠EBC【答案】 D【分析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错由旋转性质可知,BC=EC , BC≠DE,∴C错由旋转性质可知,∠ACB= ∠DCE ,∵∠ACB= ∠ACD+ ∠DCB ,∠DCE= ∠ECB+ ∠DCB ∴∠ACD= ∠ECB,1(180 °-∠ECB ),∠EBC= ∠CEB=1∵AC=CD , BC=CE ,∴∠A= ∠CDA=(180 °-∠ECB),22∴D 正确,因为由题意没法获得∠ ABE=90°,∴B选项错误 . 应选 D。
2019年天津市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(★)计算(-3)×9 的结果等于()
A.-27B.-6C.27D.6
2.(★)2sin60°的值等于()
A.1B.C.D.2
3.(★)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()
A.0.423×107B.4.23×106C.42.3×105D.423×104
4.(★)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()
A.B.C.D.
5.(★)如图是一个由6个相同的正方体组成的立体图形,它的主视图是
()
A.B.C.D.
6.(★)估计的值在()
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
7.(★)计算+ 的结果是()
A.2B.2a+2C.1D.
8.(★★★)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()
A.B.4C.4D.20
9.(★)方程组的解是()
A.B.C.D.
10.(★)若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数y=- 的图象上,则
y 1,y 2,y 3的大小关系是()
A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1
11.(★★★)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A
的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC
12.(★★)二次函数y=ax 2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y 的部分对
应值如下表:且当x=- 时,与其对应的函数值y>0.有下列结论:
①abc>0;②-2和3是关于x的方程ax 2+bx+c=t的两个根;③0<m+n<.
其中,正确结论的个数是()
x…-2-1012…
y=ax2+bx+c…t m-2-2n…
A.0B.1C.2D.3
二、填空题(本大题共6小题,每小题3分,共18)
13.(★)计算x 5•x的结果等于 x 6.
14.(★★★)计算(+1)(-1)的结果等于 2 .
15.(★)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.
16.(★★)直线y=2x-1与x轴的交点坐标为(,0).
17.(★★★)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接
AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.
18.(★★★★★)如图,在每个小正方形的边长为1的网格中,
△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上.
(Ⅰ)线段AB的长等于;
(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠PAC=∠PBC=∠PCB,并简要说明点P的位置是如何找到的(不要求证明)取圆与网格的交点E,F,连接EF与
AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC
并延长,与B,O的连线相交于点P,连接AP,则点P满足∠PAC=∠PBC=∠PCB .
三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)
19.(★★★)解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 x≥-2 ;
(Ⅱ)解不等式②,得 x≤1 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为 -2≤x≤1 .
20.(★★)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部
分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为 40 ,图①中m的值为 25 ;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计
该校每天在校体育活动时间大于1h的学生人数.
21.(★★)已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.
(Ⅰ)如图①,求∠ACB的大小;
(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.
22.(★★)如图,海面上一艘船由西向东航行,在A处测得正东方向上
一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的
仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).
参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.
23.(★★)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价
格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).
(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y 1元,在乙批发店花费y 2元,分别求y 1,
y 2关于x的函数解析式;
(Ⅲ)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发
店一次购买苹果的数量为 100 kg;
②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的乙
批发店购买花费少;
③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的甲
批发店购买数量多.
一次购买数量/kg3050150…
甲批发店花费/元 180 300 900 …
乙批发店花费/元 210 350 850 …
24.(★★★★)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,
∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.
(Ⅰ)如图①,求点E的坐标;
(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.
①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,
试用含有t的式子表示S,并直接写出t的取值范围;
②当≤S≤5 时,求t的取值范围(直接写出结果即可).
25.(★★★★★)已知抛物线y=x 2-bx+c(b,c为常数,b>0)经过点A(-1,0),点M(m,
0)是x轴正半轴上的动点.
(Ⅰ)当b=2时,求抛物线的顶点坐标;
(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;
(Ⅲ)点Q(b+ ,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.。