变轨和双星问题PPT课件
- 格式:ppt
- 大小:427.00 KB
- 文档页数:31
第八讲:卫星变轨问题和双星问题一、卫星相遇问题两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a 卫星的角速度为ωa ,b 卫星的角速度为ωb .若某时刻两卫星正好同时通过地面同一点正上方,相距最近,如图甲所示.当它们转过的角度之差Δθ=π,即满足ωa Δt -ωb Δt =π时,两卫星第一次相距最远,如图乙所示.当它们转过的角度之差Δθ=2π,即满足ωa Δt -ωb Δt =2π时,两卫星再次相距最近.二、卫星变轨问题1.变轨分析(1)卫星在圆轨道上稳定运行时, G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . (2)当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加.(3)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,例题、如图所示,北斗导航系统中的两颗工作卫星均绕地心做匀速周运动,且轨道半径为r ,某时刻工作卫星1、2分别位于轨道上的A 、B 两个位置,若两卫星均沿顺时针方向运行,地球表面的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力。
下列判断正确的是( )例题、如图所示,三个质点a 、b 、c 质量分别为m 1、m 2、M ,(M >>m 1,M >>m 2).a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a :T b =1:k .(k >1,为正整数)从图示位置开始,在b 运动一周的过程中,则( )A .a 、b 距离最近的次数为k 次B .a 、b 距离最近的次数为k+1次C .a 、b 、c 共线的次数为2k 次轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. 三、多星模型1.定义绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.A .这两颗卫星的加速度大小相等,均为22gR rB .卫星1出A 位置运动到B 位置所需的时间是3rr R gC .这两颗卫星的机械能一定相等D .卫星1向后喷气就一定能够追上卫星22.特点(1)各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L2=m 1ω21r 1, Gm 1m 2L 2=m 2ω22r 2. (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2. (3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L .3.两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.针对训练题型1:相遇问题1.如图所示,A 和B 两行星绕同一恒星C 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,某一时刻两行星相距最近,则( )A .经过T 1+T 2两行星再次相距最近B .经过两行星再次相距最近C .经过两行星相距最远D .经过两行星相距最远2.已知地球自转周期为T0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星至少相隔多长时间才在同一城市的正上方出现一次.()A.B.C.D.题型2:变轨问题3.如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。
万有引力与宇宙航行卫星变轨问题、双星模型素养目标:1.会处理人造卫星的变轨和对接问题。
2.掌握双星、多星系统,会解决相关问题。
3.会应用万有引力定律解决星球“瓦解”和黑洞问题。
1.神舟十六号载人飞船入轨后顺利完成人轨状态设置,采用自主快速交会对接模式成功对接于天和核心舱径向端口。
对接过程的示意图如图所示,神舟十六号飞船处于半径为1r 的圆轨道Ⅰ,运行周期为T 1,线速度为1v ,通过变轨操作后,沿椭圆轨道Ⅰ运动到B 处与天和核心舱对接,轨道Ⅰ上A 点的线速度为2v ,运行周期为T 2;天和核心舱处于半径为3r 的圆轨道Ⅰ,运行周期为T 3,线速度为3v ;则神舟十六号飞船( )A .213v v v >>B .T 1>T 2>T 3C .在轨道Ⅰ上B 点处的加速度大于轨道Ⅰ上B 点处的加速度D .该卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能大 【答案】A【解析】A .飞船从轨道Ⅰ变轨到轨道Ⅰ需要加速,所以经过A 点时21v v >圆轨道时,根据22GMm v m r r= 所以13v v >综合得213v v v >>故A 正确;B .根据开普勒第三定律,轨道半长轴越大,周期越大,故B 错误;C .根据2GMmma r= 则同一点处的加速度应该相等,故C 错误;D .根据变轨原理可知,从低轨道到高轨道应点火加速,外力做正功,则卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能小,故D 错误。
故选A 。
考点一 卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在椭圆轨道B 点(远地点),G Mm r 22>m v B 2r 2,将做近心运动,再次点火加速,使G Mmr 22=m v B ′2r 2,进入圆轨道Ⅲ。