初中数学各章节知识点辅导及练习题专题汇编(共78页含答案)
- 格式:pdf
- 大小:1.99 MB
- 文档页数:78
初中数学代数专题复习(答案)
1. 代数基础知识
- 数的分类:自然数、整数、有理数、无理数、实数、复数
- 数及运算:加、减、乘、除、乘方、开方、分数、比例、百分数、整式、分式
- 代数式的概念及基本性质:代数式、同类项、合并同类项、系数、常数项、单项式、多项式
2. 一元一次方程式
- 方程式及解的概念:方程式、解、未知量
- 一元一次方程式的解法:加减消元法、倍数消元法、公式法
3. 一元一次不等式
- 不等式及解的概念:不等式、解、解集
- 一元一次不等式的解法:加减法、倍数法、分式法、倒数法
4. 一元二次方程式
- 一元二次方程式的概念及一般式
- 一元二次方程式的解法:配方法、公式法、完全平方公式
5. 一元二次不等式
- 一元二次不等式的概念及解法
6. 笛卡尔坐标系
- 直角坐标系的概念、性质、坐标表示
- 解直线方程:解析法、斜率公式、截距公式
- 解圆方程:标准式、一般式
7. 实数集合及数轴
- 实数的分类及性质
- 数轴的绘制及应用
8. 几何初步
- 等腰三角形、等边三角形、直角三角形、全等三角形、相似三角形的定义及判定
- 余弦定理、正弦定理、勾股定理
9. 附加题及答案
以上是初中数学代数专题的复习材料及答案,希望能帮助大家顺利完成复习,获得优异成绩。
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
全等三角形知识点总结和常考题知识点1.根本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.根本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定方法:⑴边边边〔SSS〕:三边对应相等的两个三角形全等.⑵边角边〔SAS〕:两边和它们的夹角对应相等的两个三角形全等.⑶角边角〔ASA〕:两角和它们的夹边对应相等的两个三角形全等.⑷角角边〔AAS〕:两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边〔HL〕:斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的部到角的两边距离相等的点在角的平分线上.5.证明的根本方法:⑴明确命题中的和求证.〔包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系〕⑵根据题意,画出图形,并用数字符号表示和求证.⑶经过分析,找出由推出求证的途径,写出证明过程.常考题提高练习一.选择题1.使两个直角三角形全等的条件是〔〕A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等2.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是〔〕A.SAS B.ASA C.AAS D.SSS3.如图,△ACB≌△A′CB′,∠BCB′=30°,那么∠ACA′的度数为〔〕A.20°B.30°C.35°D.40°4.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,那么AC长是〔〕A.3 B.4 C.6 D.55.如图,直线l1、l2、l3表示三条相互穿插的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么供选择的地址有〔〕A.1处B.2处C.3处 D.4处二.填空题1.〔西区期末〕如图,AB∥CF,E为DF的中点,假设AB=9cm,CF=5cm,那么BD=cm.2.〔期末〕如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.3.〔模拟〕如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,那么△ABD的面积是.4.〔区二模〕如下图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是带去玻璃店.三.解答题。
各章节知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则(6分)9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则(6分)14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法(3分)17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则(6分)第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)(6分)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图(3分)5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线(3分)15.余角的概念16.补角的概念17.余角(补角)的性质(3分)七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定(3分)11.平行线的性质(3分)12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质(3分)第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征(3分)第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理(3分)9.等腰三角形的性质10.等边三角形的性质11.直角三角形的性质(6分)12.多边形及其相关概念(多边形、对角线、正多边形)13.多边形的内角和定理14.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)(6分)4.二元一次方程的应用(6分)5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质(3分)6.一元一次不等式的解法(3分)7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法(6分)第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)(6分)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)(6分)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定(SSS,SAS,ASA,AAS)(6分)5.直角三角形的判定(HL)6.角平分线的性质7.角平分线的判定(6分)第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质(6分)5.线段垂直平分线的判定(6分)6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定(6分)11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质(6分)第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质(3分)4.立方根的概念5.立方根的性质(3分)6.实数的概念7.实数的分类8.实数的相反数、绝对值(3分)9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质(7分)6.一次函数的解析式7.一次函数的图象及其性质(7分)8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式(3分)2.幂的乘方公式(3分)3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则(3分)6.平方差公式7.完全平方公式(3分)8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)(6分)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质(3分)3.约分与通分4.最简分式5.分母有理化(3分)6.分式乘除的法则7.分式加减的法则8.整数指数幂的运算性质(3分)9.分式方程的概念10.分式方程的解法(6分)11.分式方程的应用(7分)第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质(7分)3.反比例函数的应用第十八章《勾股定理》1.勾股定理(6分)2.勾股定理的逆定理(3分)第十九章《四边形》1.平行四边形的概念2.平行四边形的性质(7分)3.平行四边形的判定(7分)4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质(7分)8.菱形的概念9.菱形的性质(7分)10.菱形的判定11.正方形的概念12.正方形的性质与判定(7分)13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定(7分)第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数(3分)4.方差第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式(3分)3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则(6分)6.最简二次根式7.二次根式的加减法法则(3分)九年级上册第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)(6分)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)(6分)第二十三章《二次函数》1. 一元二次方程的概念2. 二次函数的基本形式3. 二次函数图象的平移4. 二次函数图像的画法5. 二次函数图像的性质(7分)6. 二次函数图像的表示方法7. 二次函数图像的图像与各项系数之间的关系(7分)8. 二次函数图象的对称9. 二次函数与一元二次方程(7分)10. 函数的应用第二十四章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质(6分)3.中心对称的相关概念(中心对称、对称中心、对称点)(6分)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征(3分)第二十五章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论(6分)3.弧、弦、圆心角、弦心距之间的关系定理(6分)4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质(3分)8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念(7分)12.切线的性质及判定定理(7分)13.切线长定理(7分)14.圆与圆的位置关系及其相关概念(7分)15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式(7分)17.圆锥及圆柱的侧面积及表面积(7分)第二十六章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式(3分)5.用列表法、树形图计算概率(7分)6.频率与概率的关系第二十七章《相似》1. 有关相似形的概念2. 比例的性质3. 平行线分线段成比例定理(3分)4. 相似三角形(判定,性质,应用)(7分)5. 位似第二十八章《解直角三角形》1. 直角三角形的性质(3分)2. 直角三角形的判定(6分)3. 锐角三角函数的概念4. 解直角三角形(7分)第二十九章《投影与视图》1. 平行投影2. 中心投影3. 正投影。
暑假补习针对性练习(七八年级知识点+重点章节练习题)第一部分:七八年级知识点人教版数学七、八年级知识点汇总人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容人教版七年级数学下册主要包含了相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理与描述六章内容人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。
九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。
人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。
七年级上册人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容第一章 有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.【注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数】(3)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 重点② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;【注意:绝对值的意义是数轴上表示某数的点离开原点的距离】(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;【注意:0没有倒数;若 a ≠0,那么a 的倒数是a1】 若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数; 【注意:零不能做除数,无意义即0a 】13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 如23叫2的3次幂,其中2是底数,3是指数。
第一章有理数【课标要求】??【知识梳理】?1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
?2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
?3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;?几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. ?5.科学记数法:,其中。
?6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
?7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
?【能力训练】?一、选择题。
?1.? 下列说法正确的个数是???????????????? (???? )?①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的?????? A 1?? B 2?? C 3?? D 4??2.? a,b是有理数,它们在数轴上的对应点的位置如下图所示:?????????????????????????????????把a,-a,b,-b按照从小到大的顺序排列??????????????? (???? ) ?A? -b<-a<a<b??? B? -a<-b<a<b??? C? -b<a<-a<b??? D? -b<b<-a<a??3.? 下列说法正确的是??????????????????????? (???? )①0是绝对值最小的有理数②相反数大于本身的数是负数?③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A? ①②?? B? ①③??? C? ①②③??? D??? ①②③④?4.下列运算正确的是????? ????????????????????(???? )?A?? B?? -7-2×5=-9×5=-45?C?? 3÷D?? -(-3)2=-9?5.若a+b<0,ab<0,则????????????????????????? (???? )?A? a>0,b>0?? B? a<0,b<0?C? a,b两数一正一负,且正数的绝对值大于负数的绝对值?D? a,b两数一正一负,且负数的绝对值大于正数的绝对值?6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差?? (???? )?A? 0.8kg?? B?? 0.6kg?? C? 0.5kg?? D? 0.4kg???7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是?????????????????????????? (?? ??)?A ()5m??? B? [1-()5]m?? C ()5m?? D? [1-()5]m?8.若ab≠0,则的取值不可能是????( )?二、填空题。
八年级数学下册知识点总结第十六章 分式1. 分式旳定义:假如A 、B 表达两个整式,并且B 中具有字母,那么式子BA 叫做分式。
分式故意义旳条件是分母不为零,分式值为零旳条件分子为零且分母不为零2.分式旳基本性质:分式旳分子与分母同乘或除以一种不等于0旳整式,分式旳值不变。
(0≠C )3.分式旳通分和约分:关键先是分解因式4.分式旳运算:分式乘法法则:分式乘分式,用分子旳积作为积旳分子,分母旳积作为分母。
分式除法法则:分式除以分式,把除式旳分子、分母颠倒位置后,与被除式相乘。
分式乘措施则: 分式乘方要把分子、分母分别乘方。
,a b a b a c ad bc ad bcc c c bd bd bd bd±±±=±=±= 分式旳加减法则:同分母旳分式相加减,分母不变,把分子相加减。
异分母旳分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算次序和此前同样。
能用运算率简算旳可用运算率简算。
5. 任何一种不等于零旳数旳零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n naa 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数旳幂旳乘法:nm n m a a a +=⋅;(2)幂旳乘方:mnnm aa =)(;(3)积旳乘方:nnn b a ab =)(; (4)同底数旳幂旳除法:nm nmaa a -=÷( a ≠0);(5)商旳乘方:n nn ba b a =)(();(b ≠0)7. 分式方程:含分式,并且分母中含未知数旳方程——分式方程。
解分式方程旳过程,实质上是将方程两边同乘以一种整式(最简公分母),把分式方程转化为整式方程。
bcad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n n n ba b a =)(C B C A B A ⋅⋅=CB C A B A ÷÷=解分式方程时,方程两边同乘以最简公分母时,最简公分母有也许为0,这样就产生了增根,因此分式方程一定要验根。
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是 ( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
九年级数学知识梳理及习题含精确答案精华总结一. 知识梳理:1. 二次函数的概念及图象特征二次函数:如果,那么y叫做x的二次函数.通过配方可写成,它的图象是以直线为对称轴,以为顶点的一条抛物线.2. 二次函数的性质>时,>3. 、、及的符号与图象的关系⑴a→决定抛物线的开口方向;a>0. 开口向上;a<0,开口向下.⑵a、b→决定抛物线的对称轴的位置:a、b同号,对称轴(<0=在y轴的左侧;a 、b 异号,对称轴(>0)在y 轴的右侧.⑶c →决定抛物线与y 轴的交点(此时点的横坐标x =0)的位置:c >0,与y 轴的交点在y 轴的正半轴上; c =0,抛物线经过原点; c <0,与y 轴的交点在y 轴的负半轴上. ⑷b2-4ac →决定抛物线与x 轴交点的个数: ①当b2-4ac >0时,抛物线与x 轴有两个交点; ②当b2-4ac =0时,抛物线与x 轴有一个交点; ③当b2-4ac <0时,抛物线与x 轴没有交点. 4. 二次函数解析式的确定用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:⑴设一般形式:(a≠0);⑵设顶点形式:(a≠0);⑶设交点式:(a≠0).例1. 已知二次函数y=mx2+(m -1)x+m -1有最小值为0,求m 的值.例2.设x1、x2为方程4x2-4mx+m+2=0的两个实根,试问:当m 取何值时,x12+x22有最值?求出此时的最值。
例3.已知抛物线c bx ax y ++=2与抛物线732+--=x x y 的形状相同,顶点在直线1=x 上,且顶点到x 轴的距离为5,则此抛物线的解析式为 。
例4.如图是抛物线型的拱桥,已知水位在AB 位置时,水面宽64米,水位上升3米就达到警戒水位线CD ,这时水面宽34米,若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶?例2图问题图例5.问题图,开口向上的抛物线c bx ax y ++=2与x 轴交于A (1x ,0)和B (2x ,0)两点,1x 和2x 是方程0322=-+x x 的两个根(21x x <),而且抛物线交y 轴于点C ,∠ACB 不小于900。
人教版七年级数学上册各章知识点总结及对应章节经典练习(全面详细)七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数。
判断:有理数可分为正有理数和负有理数()②零既不是正数,也不是负数。
判断:0是最小的正整数(),正整数负整数统称整数(),正分数负分数统称分数()③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数()④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数()二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a 与b 互为相反数特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b=②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =- 四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
即()()()000a a a a a a >??==??-??=?-≤?? 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。
第一讲相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为____________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为--- _______ 对顶角的性质: ____3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_____ .垂线的性质:⑴过一点一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,______________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做______________ .6. 在同一平面内,不相交的两条直线互相.同一平面内的两条直线的位置关系只有______与 ________ 两种 .7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_____ .推论:如果两条直线都与第三条直线平行,那么____________________ .8. 平行线的判定:⑴.⑵ _________________________ ⑶____________________________________ .9. 平行线的性质:⑴.( 2)____________________________ . ⑶_________________________________ . 10. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_____ .平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 .⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段________________ .11. 判断一件事情的语句,叫做____ _____________ . 命题由___ 和两部分组成。
第一讲订交线与平行线1.两直订交所成的四个角中,有一条公共,它的另一互反向延,拥有种关系的两个角,互_____________.2.两直订交所成的四个角中,有一个公共点,而且一个角的两分是另一个角两的反向延,拥有种关系的两个角,互------________ 角的性:______ ______3.两直订交所成的四个角中,假如有一个角是直角,那么就称两条直相互_______.垂的性:⑴ 一点 ______________一条直与已知直垂直 .⑵ 接直外一点与直上各点的所在段中,_______________.4.直外一点到条直的垂段的度,叫做________________________.5.两条直被第三条直所截,构成八个角,在那些没有公共点的角中,⑴假如两个角分在两条直的同一方,而且都在第三条直的同,拥有种关系的一角叫做___________ ;⑵假如两个角都在两直之,而且分在第三条直的两,拥有种关系的一角叫做 ____________ ;⑶假如两个角都在两直之,但它在第三条直的同一旁,拥有种关系的一角叫做_______________.6.在同一平面内,不订交的两条直相互 ___________.同一平面内的两条直的地点关系只有________与_________两种 .7. 平行公义:直外一点,有且只有一条直与条直______.推:假如两条直都与第三条直平行,那么_____________________.8.平行的判断:⑴ _____________________________________.⑵___________________________⑶ __________________________________.9. 平行的性:⑴_________________.(2) _______________________________. ⑶__________________________________ . 10.把一个形整体沿某一方向移,会获取一个新形,形的种移,叫做_______.平移的性:⑴把一个形整体平移获取的新形与原形的形状与大小圆满______.⑵新形中的每一点,都是由原形中的某一点移后获取的,两个点是点.接各点的段_________________.11.判断一件事情的句,叫做_______.命由 ________和 _________两部分成。
七年级各章知识点七年级上册第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。
判断:有理数可分为正有理数和负有理数( )②零既不是正数,也不是负数。
判断:0是最小的正整数( ),正整数负整数统称整数( ),正分数负分数统称分数( )③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数( )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数( )二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b=②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =- 四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ()()00a a a a a ≥⎧⎪=⎨-<⎪⎩ ()()00a a a a a >⎧⎪=⎨-≤⎪⎩ 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。
第一讲相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为____________ 。
2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为 _____ 对顶角的性质:------3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_____。
垂线的性质:⑴过一点一条直线与直线垂直。
⑵连接直线外一点与直线上各点的所在线段中,______________ 。
4. 直线外一点到这条直线的垂线段的长度,叫做______________________ 。
5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_____________ 。
6. 在同一平面内,不相交的两条直线互相。
同一平面内的两条直线的位置关系只有______与 ________ 两种。
7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_____ 。
推论:如果两条直线都与第三条直线平行,那么____________________ 。
8. 平行线的判定:⑴。
⑵ _________________________ ⑶____________________________________ 。
9. 平行线的性质:⑴。
( 2)____________________________ 。
⑶_______________________________ 。
10. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_____。