角平分线判定定理
- 格式:ppt
- 大小:609.00 KB
- 文档页数:21
角的平分线定理定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合矩形的定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边平行四边形定理平行四边形性质定理1:平行四边形的对角相等平行四边形性质定理2:平行四边形的对边相等推论:夹在两条平行线间的平行线段相等平行四边形性质定理3:平行四边形的对角线互相平分平行四边形判定定理1:两组对角分别相等的四边形是平行四边形平行四边形判定定理2:两组对边分别相等的四边形是平行四边形平行四边形判定定理3:对角线互相平分的四边形是平行四边形平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中数学几何平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补对称定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称中心对称定理。
角平分线的性质和判定一、基础知识回顾。
角平分线的性质: 角平分线的判定:一、分线的判定定理角平分线的判定:到角两边距离相等的点在 。
如图:∵P D ⊥OA,PF ⊥OB ,PD=PE ,∴P 在∠AOB 的平分线上,或(∠AOP=∠BOP )1、如图,90C ∠=︒,AD 平分CAB ∠,BD=2CD ,BC=9,求点D 到AB 的距离。
D C BA2、如图,求作到三条直线距离相等的所有点。
3、如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠。
MDCBA4. 如图所示,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD . 求证:AD 平分∠BAC .5、如图,DE AB ⊥,DF AC ⊥,DE=DF ,求证:GE=GF 。
FGDCBAE6、如图,CD AB ⊥,BE AC ⊥,OB OC =,求证12∠=∠。
O21A B CDE7、如图,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,BD=DF ,求证:CF=EB 。
FD C BAE8 如图,BE=CF ,BE ⊥AC 于F ,CE ⊥AB 于E,BF 和CE 交于点D ,求证:AD 平分∠BAC.9.如图在△ABC 中,∠B=∠C ,D 是BC 的中点,D E ⊥AB 于E ,DF ⊥AC 于F ,求证:AD 平分∠BACCFABC10.如图BE⊥AC于E,CF⊥AB于F,BE,CF相交于点D,且CE=BF,求证:点D在∠BAC的平分线上11,在Rt△ABC中,∠C=90。
,AC=BC,AD为∠BAC的平分线,AE=BC,DE⊥AB,垂足为E,求证△DBE的周长等于AB.12,在△ABC中,外角∠CBE和∠BCG的平分线相交于点F,求证:点F在∠BAC的平分线上13,已知∠B=∠C=90。
,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。
证明角平分线判定方法从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,三角形三条角平分线的交点叫做三角形的内心。
下面小编给大家带来证明角平分线判定方法,希望能帮助到大家!证明角平分线判定方法角的内部到角的两边距离相等的点,都在这个角的平分线上。
因此根据直线公理。
证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC 平分∠AOB证明:在Rt△OPD和Rt△OPE中:OP=OP,PD=PE∴Rt△OPD≌Rt△OPE(HL)∴∠1=∠2∴ OC平分∠AOB方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB 两边于点M,N。
2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3.作射线OP。
射线OP即为所求。
证明:连接PM,PN在△POM和△PON中∵OM=ON,PM=PN,PO=PO∴△POM≌△PON(SSS)∴∠POM=∠PON,即射线OP为角AOB的角平分线当然,角平分线的作法有很多种。
方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD;2.连接CN与DM,相交于P;3.作射线OP。
射线OP即为所求。
证明角平分线判定定理1.在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个相等的角,那么这条射线就是这个角的平分线。
2.在角的内部,到一个角两边距离相等的点在这个角的平分线上。
3.两个角有一条公共边,且相等。
定理1:角平分线上的点到这个角两边的距离相等。
逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。
证明角平分线判定性质在三角形中的性质。
1.三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心可以在三角形内部画一个内切圆)。
流河路公北M 区CB A 角平分线(线段垂直平分线,等腰三角形) 角平分线的性质定理:角平分线上的点到角的两边的距离相等 用数学符号可表示:∵点P 在∠AOB 的平分线上(或OP 平分∠AOB ) ∴ 角平分线的判定定理:角的内部到角的两边距离相等的点在这个角的平分线上 用数学符号可表示:∵∴点P 在∠AOB 的平分线上(或OP 平分∠AOB )基础闯关1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。
3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD5.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点6.到一个角的两边距离相等的点在 .7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .8.三角形中,到三边距离相等的点是(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 ODPEBA 第3题图D ABC21D APOE B第4题图FEDCBAF E DCBA(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .二.解答题:1.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。
角的平分线〔基础〕【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:假设CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:假设PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图〔1〕以O为圆心,适当长为半径画弧,交OA于D,交OB于E.〔2〕分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.〔3〕画射线OC.射线OC即为所求.要点四、轨迹把符合某些条件的所有点的集合叫做点的轨迹.和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.在一个角的内部〔包括顶点〕且到角两边距离相等的点的轨迹是这个角的平分线. 到定点的距离等于定长的点的轨迹是以这个定点为圆心,定长为半径的圆.【典型例题】类型一、角的平分线的性质【高清课堂:角平分线的性质,例2】1.如图,∠ACB =90°,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,ED 的延长线交BC 的延长线于F. 求证:AE =CF【答案与解析】证明:∵BD 平分∠ABC ,DE ⊥AB,DC ⊥BF∴DE =DC 〔角的平分线上的点到角两边的距离相等〕在△ADE 和△FDC 中DEA DCF DE DC ADE FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△FDC(ASA)∴AE =CF【总结升华】利用角平分线的性质可得DE =DC ,为证明三角形全等提供了条件.2、如图, △ABC 中, ∠C = 90︒, AC = BC, AD 平分∠CAB, 交BC 于D, DE ⊥AB 于E, 且AB =6cm , 则△DEB 的周长为( )A. 4cmB. 6cm cm D. 以上都不对【答案】B ;【解析】由角平分线的性质,DC =DE ,△DEB 的周长=BD +DE +BE =BD +DC +BE =AC +BE=AE +BE =AB =6.【总结升华】将△DEB 的周长用相等的线段代换是关键.举一反三:【变式】已知:如图,AD 是△ABC 的角平分线,且:3:2AB AC =,则△ABD 与△ACD 的面积之比为〔 〕A .3:2B .3:2C .2:3 D.2:3【答案】B ;提示:∵AD 是△ABC 的角平分线,∴点D 到AB 的距离等于点D 到AC 的距离,又∵:3:2AB AC =,则△ABD 与△ACD 的面积之比为3:2.3、如图,OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E ,F 是OC 上除点P 、O 外一点,连接DF 、EF ,则DF 与EF 的关系如何?证明你的结论.【答案与解析】:解:DF=EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD=PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD=∠OPE ,∴∠DPF=∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF=EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定【高清课堂:角平分线的性质,例3】4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC 〔已知〕∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC 〔已知〕∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上) 即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”“垂直”条件在证明结论的必要性.举一反三:【变式】如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE=CF .求证:AD 是△ABC 的角平分线.【答案】证明:∵DE ⊥AB ,DF ⊥AC ,∴Rt △BDE 和Rt △CDF 是直角三角形.BD DC BE CF =⎧⎨=⎩, ∴Rt △BDE ≌Rt △CDF 〔HL 〕,∴DE=DF ,∵DE ⊥AB ,DF ⊥AC ,∴AD是角平分线.类型三、点的轨迹5、过已知点A且半径为3厘米的圆的圆心的轨迹是________.【答案】以A为圆心,半径为3cm的圆.【解析】求圆心的轨迹实际上是求距A点三厘米能画一个什么图形.【总结升华】此题所求圆心的轨迹,就是到顶点的距离等于定长的点的集合,因此应该是一个圆.。
第7讲角平分线的判定与性质【知识点与方式梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。
角平分线的判定定理:到一个角的两边的距离相等的点,在那个角的平分线上。
角平分线的作法(尺规作图)①以点0为圆心,任意长为半径画弧,交OA、0B于C、D两点;②别离以C、D为圆心,大于CD长为半径画弧,两弧交于点P:③过点P作射线0P,射线0P即为所求.角平分线的性质及判定1.角平分线的性质:角的平分线上的点到角的两边的距离相等.推导已知:0C平分ZMON, P是0C上任意一点,PA丄OH, PB10N,垂足别离为点A、点B. 求证:PA=PB.证明:TPA丄OM, PB丄ON ・・・ZPA0=ZPB0=90° TOC 平分ZMON・・・Z1 = Z2在APAO 和Z\PBO 中,AAPAO^APBO・・・PA=PB几何表达:(角的平分线上的点到角的两边的距离相等)TOP 平分ZMON (Z1 = Z2) , PA丄OM, PB丄ON, •••PA=PB・ 2角平分线的判定:到角的两边的距离相等的点在角的平分线上・推导:已知:点P是ZM0N内一点,PA丄0M于A, PB丄ON于B,且PA=PB. 求证:点P在ZH0N的平分线上.证明:连结0P>A=PB<在R tAPAO 和R tAPBO 中, °卩=°»ARtAPAO^RtAPBO (HL)・・・Z1 = Z2・・・0P平分ZMON即点P在ZHON的平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)TFA丄OH, PB丄ON, PA=PB AZ1 = Z2 (OP 平分ZMON)【经典例题】例1・已知:如图,ZXABC中,ZC=90° , AD是AABC的角平分线,DE丄AB于E, F在AC上BD二DF,求证:CF二EBC D B例2•已知:如图,AD、BE是AABC的两条角平分线,AD、BE相交于0点求证:0在ZC的平分线上例3•如图AB/7CD, ZB=90° , E是BC的中点。
第2讲 角平分线的性质与判定考点·方法·破译1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上. 3.有角平分线时常常通过下列几种情况构造全等三角形.经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PN【解法指导】由于PM ⊥BD ,PN ⊥AD .欲证PM =PN 只需∠3=∠4,证∠3=∠4,只需∠3和∠4所在的△OBD 与△OAD 全等即可.证明:∵OD 平分∠AOB ∴∠1=∠2在△OBD 与△OAD 中,12OB OA OD OD =⎧⎪∠=∠⎨⎪=⎩∴△OBD ≌△OAD∴∠3=∠4 ∵PM ⊥BD ,PN ⊥AD 所以PM =PN 【变式题组】01.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.02.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果∠D =120°,求∠B 的度数 【解法指导】由已知∠1=∠2,CE ⊥AB ,联想到可作CF ⊥AD 于F ,得CE =CF ,AF =AE ,又由AE =12(AB +AD )得DF =EB ,于是可证△CFD ≌△CEB ,则∠B =∠CDF =60°.或者在AE 上截取AM =AD 从而构造全等三角形.解:过点C 作CF ⊥AD 于点F .∵AC 平分∠BAD ,CE ⊥AB ,点C 是AC 上一点,∴CE =CF在Rt △CFA 和Rt △CEA 中,CF CEAC AC=⎧⎨=⎩ ∴Rt △ACF ≌Rt △ACE ∴AF =AE又∵AE =12(AE +BE +AF -DF ),2AE =AE +AF +BE -DF ,∴BE =DF ∵CF ⊥AD ,CE ⊥AB ,∴∠F =∠CEB =90°在△CEB 和△CFD 中,CE CF F CEB DF BE =⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△CFD∴∠B =∠CDF 又∵∠ADC =120°,∴∠CDF =60°,即∠B =60°. 【变式题组】01.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACDCBDS S ∆∆ 02.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BD 【解法指导】由于BE 平分∠ABC ,因而可以考虑过点D 作BC 的垂线或延长CE 从而构造全等三角形.证明:延长CE 交BA 的延长线于F ,∵∠1=∠2,BE =BE ,∠BEF =∠BEC∴△BEF ≌△BEC (ASA ) ∴CE =EF ,∴CE =12CF ∵∠1+∠F =∠3+∠F =90°, ∴∠1=∠3在△ABD 和△ACF 中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△ACF∴BD =CF ∴CE =12BD第1题图第2题图第3题图第4题图第5题图【变式题组】01.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .02.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .演练巩固·反馈提高01.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( )A .13mn B .12mn C . mn D .2 mn02.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC =∠PCB .其中正确的结论个数有( )个 A . 1 B .2 C .3 D .403.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( ) A . ①③ B .②③ C .①② D .①②③04.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( ) A .②③ B .②④ C .②③④ D .①②③④ 05.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( ) A .50° B .45° C .40° D .35°06.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )第6题图第7题图第8题图第9题图第10题图A .①②③④B .①②③C .①②④D .②③④ 07.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P08.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个09.如图,△ABC 中,∠C =90°AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( ) A .3个 B .2个 C .1个 D .4个10.如图,已知BQ 是∠ABC 的内角平分线,CQ 是∠ACB 的外角平分线,由Q 出发,作点Q到BC 、AC 和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD⊥EF .培优升级·奥赛检测01.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )l2第1题图第3题图第4题图第5题图A.一处B.二处C.三处D.四处02.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB边的距离为()A.18B.16C.14D.1203.如图,△ABC中,∠C=90°,AD是△ABC的平分线,有一个动点P从A向B运动.已知:DC=3cm,DB=4cm,AD=8cm.DP的长为x(cm),那么x的范围是__________04.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别为E、F、G,且PF=PG=PE,则∠BPD=__________05.如图,已知AB∥CD,O为∠CAB、∠ACD的平分线的交点,OE⊥AC,且OE=2,则两平行线AB、CD间的距离等于__________06.如图,AD平分∠BAC,EF⊥AD,垂足为P,EF的延长线于BC的延长线相交于点G.求证:∠G=12(∠ACB-∠B)07.如图,在△ABC中,AB>AC,AD是∠BAC的平分线,P为AC上任意一点.求证:AB-AC>DB-DC08.如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、AC上,并且AP、BQ分别为∠BAC、∠ABC的角平分线上.求证:BQ+AQ=AB+BP。
初中数学定理:角的平分线定理
定理1:在角的平分线上的点到这个角的两边的距离相等
定理2:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
初中数学定理:等腰三角形性质定理
等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3:等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1:三个角都相等的三角形是等边三角形
推论2有一个角等于60°的等腰三角形是等边三角形。
角的平分线定理定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合矩形的定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边平行四边形定理平行四边形性质定理1:平行四边形的对角相等平行四边形性质定理2:平行四边形的对边相等推论:夹在两条平行线间的平行线段相等平行四边形性质定理3:平行四边形的对角线互相平分平行四边形判定定理1:两组对角分别相等的四边形是平行四边形平行四边形判定定理2:两组对边分别相等的四边形是平行四边形平行四边形判定定理3:对角线互相平分的四边形是平行四边形平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中数学几何平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补对称定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L ×h初中数学圆的定理12不共线的三点确定一个圆经过一点可以作无数个圆经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上定理:过不共线的三个点,可以作且只可以作一个圆推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心三角形的三条高线的交点叫三角形的垂心1.3垂径定理圆是中心对称图形;圆心是它的对称中心圆是周对称图形,任一条通过圆心的直线都是它的对称轴定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧1.4弧、弦和弦心距定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等二圆与直线的位置关系2.1圆与直线的位置关系如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线定理:圆的切线垂直经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点直线和圆的位置关系只能由相离、相切和相交三种2.2三角形的内切圆如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆定理:三角形的三个内角平分线交于一点,这点是三角形的内心三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。
角平分线的性质定理和判定第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,AB=15cm,(1)求证:BD+DE=AC.(2)求△DBE的周长.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,P 为BN 上的一点,PF⊥BC 于F ,PA=PC ,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△ABC 中,P 是角平分线AD ,BE 的交点. 求证:点P 在∠C 的平分线上.21NPF CBA例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.第四部分:思维误区一、忽视“垂直”条件例1.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。
三角形内角角平分线定理
三角形内角角平分线定理指的是在三角形中,角平分线上的点到这个角的两边的距离相等。
换句话说,到角的两边的距离相等的点在这个角的平分线上。
这个定理也可以表述为:三角形任意两边之比等于它们夹角的角平分线分对边之比。
在证明这个定理时,通常使用相似三角形的性质或者三角形的面积公式。
例如,可以通过过角平分线上的点作角的两边的垂线,然后证明这两个三角形是相似的,从而得出结论。
这个定理在几何学中有广泛的应用,如在解决几何问题、计算面积和周长等。
三角形内角角平分线定理的证明方法有多种,以下给出一种常见的证明方法:
首先,在三角形ABC中,角A的平分线AD交BC于D,
过点D分别作AB、AC的垂线,分别交AB、AC于E和F。
由于角平分线的性质,我们知道角BAD等于角CAD。
又
因为DE和DF分别是AB和AC上的垂线,所以角DEA和角D FA都是直角。
根据三角形的全等判定定理,我们知道如果两个三角形的两边和夹角相等,则这两个三角形全等。
在这里,我们有DE=DF(因为DE和DF都是垂线),AD=AD(公共边),以及角BAD等于角CAD。
因此,三角形ADE与三角形AFD全等。
由于两个三角形全等,所以它们的对应边AE和AF也相等。
由此得出,到角的两边的距离相等的点在这个角的平分线上。
综上所述,我们证明了三角形内角角平分线定理。
第一局部:知识点回忆1、角平分线:把一个角平均分为两个一样的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二局部:自我评测知识点掌握情况备注非常好一般有待提高角平分线的定义 角平分线的性质定理 角平分线的判定定理 角平分线的作图第三局部:例题剖析例1. :在等腰Rt △ABC 中,AC=BC ∠C=90°,AD 平分∠BAC ,DE ⊥AB 于点E ,AB=15cm ,〔1〕求证:BD+DE=AC . 〔2〕求△DBE 的周长.分析:〔1〕因为AC=BC=BD+CD ,只要证明CD=DE 即可,又因为AD 平分∠BAC ,那么CD=DE ;〔2〕由〔1〕可知AC=BD+DE ,由CD=DE ,AD=AD ,∠C=∠AED=90°,可证△ACD ≌△AED ,那么AC=AE ,所以BD+DE+BE=AC+BE=AE+BE=AB .解答:解:〔1〕∵AD 平分∠BAC ,DE ⊥AB ,∠C=90°, ∴CD=DE ,课题 11-4角平分线的性质定理和判定 学生XX年级八年级日期2021.9.22冯晓娟∴BC=BD+CD=BD+DE,AC=BC,∴AC=BD+DE;〔2〕∵CD=DE,AD=AD,∠C=∠AED=90°,∴△ACD≌△AED,∴AC=AE,∵AC=BD+DE,∴BD+DE=AE,∴△BDE周长=BD+DE+BE=AE+BE=AB=15cm.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.分析:首先要作辅助线,ME⊥AD那么利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.解答:证明:作ME⊥AD,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM 平分∠DAB .例3.如图,△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,△ABC 的面积是 多少?.分析:根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等,从而可得到△ABC 的面积等于周长的一半乘以OD ,然后列式进展计算即可求解.解答:解:如图,连接OA ,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴点O 到AB 、AC 、BC 的距离都相等,∵△ABC 的周长是22,OD ⊥BC 于D ,且OD=3, ∴S △ABC =21×22×3=33. 故答案为:33. 第四局部:典型例题例1、:如下图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∠ADC =∠AEB∠1=∠2OA =OA,∴△AOD ≌△AOE 〔AAS 〕.∴OD=OE .在△BOD 和△COE 中,∠BDC =∠CEBOD =OE ∠BOD =∠COE,∴△BOD ≌△COE 〔ASA 〕.∴OB=OC .【变式练习】如图,∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC , 求证:∠PCB+∠BAP=180º过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.解答:证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中PA =PCPE =PF∴Rt △PEA ≌Rt △PFC 〔HL 〕,∴∠PAE=∠PCB ,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°. 点评:此题考察了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.例2、:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . 〔1〕假设连接AM ,那么AM 是否平分∠BAD ?请你证明你的结论; 〔2〕线段DM 与AM 有怎样的位置关系?请说明理由.3〕CD 、AB 、AD 间?直接写出结果首先要作辅助线,ME ⊥AD 那么利用角的平分线上的点到角的两边的距离相等可知ME=MC ,再利用中点的条件可知ME=MB ,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM 平分∠DAB .〔2〕根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.〔3〕证Rt △DCM ≌Rt △DEM ,推出CD=DE ,同理得出AE=AB ,即可得出答案.解答:〔1〕证明:作ME ⊥AD 于E ,∵MC ⊥DC ,ME ⊥DA ,MD 平分∠ADC ,∴ME=MC ,∵M 为BC 中点,∴MB=MC ,又∵ME=MC ,∴ME=MB ,又∵ME ⊥AD ,MB ⊥AB ,∴AM 平分∠DAB .〔2〕解:DM ⊥AM ,理由是:∵DM 平分∠CDA ,AM 平分∠DAB ,∴∠1=∠2,∠3=∠4,∵DC ∥AB ,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°-〔∠1+∠3〕=90°,21NPF CBA即DM⊥AM.〔3〕解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt △DCM和Rt△DEM中DM=DMEM=CM∴Rt△DCM≌Rt△DEM〔HL〕,∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.点评:此题考察了角平分线性质,全等三角形的性质和判定,三角形内角和定理的应用,此题是一道比拟典型的题目,难度适中,注意:角平分线上的点到角的两边的距离相等.【变式练习】1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.首先过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,然后证明PQ=PN即可.解答:证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.点评:此题主要考察角平分线上的点到角两边的距离相等的性质.用此性质证明它的逆定理成立.角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上.正确作出辅助线是解答此题的关键例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC 的面积.过点D作DF⊥BC于点F.根据角平分线的性质,得DE=DF=2,再根据三角形的面积公式分别求得△ABD和△BCD的面积即可.解答:解:过点D作DF⊥BC于点F.∵BD是∠ABC的平分线,DE⊥AB,∴DF=DE=2.∴△ABC的面积为12(9×2+6×2)=15cm2【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.首先过D作DN⊥AC,DM⊥AB,分别表示出再△DCE和△DBF的面积,再根据条件“△DCE和△DBF的面积相等〞可得到12BF•DM=12DN•CE,由于CE=BF,可得结论DM=DN,根据角平分线性质的逆定理进而得到AD平分∠BAC.解答:证明:过D作DN⊥AC,DM⊥AB,△DBF的面积为:12BF•DM,△DCE的面积为:12DN•CE,∵△DCE和△DBF的面积相等,∴12BF•DM=12DN•CE,∵CE=BF,∴DM=DN,∴AD平分∠BAC〔到角两边距离相等的点在角的平分线上〕例4.如图,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到公路距离为5cm.〔1〕在图上标出仓库G的位置.〔比例尺为1:10000,用尺规作图〕.〔2〕求出仓库G到铁路的实际距离。