碳酸盐岩——灰岩
- 格式:ppt
- 大小:15.26 MB
- 文档页数:33
碳酸盐岩引言:在第二次世界大战以后,由于在西亚地区的石灰岩和白云岩中发现了大量的石油,因而促进了现代碳酸盐沉积物的研究工作。
由于这些发现,石油工业部门感到对浅水碳酸盐的沉积作用、成岩作用和石化作用的基本知识的缺乏,于是展开对现代碳酸盐沉积环境的研究工作。
碳酸盐岩是重要的烃源岩和储集岩,在当前国内外的大油田中,碳酸盐岩占很大比例,据统计,在世界上储量在0.14亿吨以上的546个油田中,就数目而论,以碳酸盐岩为储集层者虽然只占总数的37.9%,但就储量而言,则占57.9%。
碳酸盐岩油气田的平均储量为2亿吨,而砂岩油气田的平均储量仅为0.9亿吨。
碳酸盐岩储集层不仅具有如上所述的高储量,而且往往具有极高的产能。
据统计,目前世界上共有9口日产量达万吨以上的高产井,其中8口属于碳酸盐储集层。
显然,碳酸岩储集层中的石油具有很大的经济价值,激励我们去了解碳酸盐岩作为储油岩所应具有的性质。
我国的碳酸盐岩油气田的勘探与开发有着悠久历史,如四川在碳酸盐岩地层中采气已经有两千多年历史,至今仍为我国重要的碳酸盐岩气田分布区。
此外,近年来在华北盆地老第三系和震旦亚阶至奥陶系中也证实了高产能碳酸盐岩储集层的存在,更进一步开拓了碳酸盐储集层在我国的广阔前景。
随着国内外对碳酸盐岩研究的日益深入,当前已从根本上改变了认为碳酸盐岩是单纯化学沉积的观点,绝大部分的现代海洋碳酸盐都是生物成因的。
与此同时,对碳酸盐岩含油性的研究和认识也获得了新飞跃。
碳酸盐岩孔隙空间特征在碳酸盐岩储集层中常见的和对油气储集作用影响较大的空隙类型,目前已知有以下几种。
①粒间孔隙:是指碎屑碳酸盐岩颗粒之间的孔隙,如内碎屑之间、生物碎屑之间、鲕粒直间的孔隙等。
其特征与碎屑岩的的粒间空隙相似。
碳酸盐岩的粒间孔隙一般是原生的,但也可以是次生的,如大颗粒之间的微晶基质的选择性溶解造成的粒间孔隙。
②粒内孔隙:组成碳酸盐岩的各种颗粒内部的孔隙,如骨屑、团块、内碎屑、鲕粒等颗粒内部的空隙。
第六章碳酸盐岩(Carbonate Rocks)学时:6学时基本内容:1、相关概念:碳酸盐岩、颗粒、内颗粒(异化颗粒)、外颗粒、内碎屑、鲕粒、藻灰结核、球粒、晶粒、生物格架、泥、胶结物、亮晶、叠层石、鸟眼构造、示底构造、缝合线。
沉积后作用、溶解作用、矿物的转化与重结晶作用、胶结作用、世代胶结、交代作用、压实作用、渗流粉砂、触点-新月型胶结、重力-悬挂胶结、贴面结合。
2、基本原理:碳酸盐岩的结构组分的类型及其含义、内碎屑的成因、鲕粒的成因、胶结物的特征、灰泥与亮晶方解石的区别、叠层石形态与水动力和关系、碳酸盐岩的研究方法。
3、基本内容:生物骨骼的主要矿物成分、生物骨骼的主要结构类型、常见生物门类骨骼的鉴定特征。
石灰岩的成分分类、石灰岩的结构分类、石灰岩的主要类型。
白云岩岩类学,几种主要白云石化的作用机理,白云岩的成因分类。
碳酸盐沉积物沉积后作用的主要类型及其特征,碳酸盐沉积物沉积后作用环境的成岩作用特征;碳酸盐岩成岩阶段及成岩环境的划分及其主要标志。
教学重点与难点:重点:碳酸盐岩的主要结构组分的特征、内碎屑的成因、鲕粒的成因、胶结物的特征、灰泥与亮晶方解石的区别。
石灰岩的结构分类及综合命名。
难点:内碎屑的成因、鲕粒的成因、灰泥与亮晶方解石的区别。
石灰岩的命名。
白云岩的生成机理。
碳酸盐沉积物沉积后作用的主要类型及特征、不同碳酸盐沉积物沉积后作用环境的成岩作用特征教学思路:从碳酸盐岩成分出发,先后介绍碳酸盐岩的结构组分(重点)和构造特征,重点讲解石灰岩的结构分类和白云岩的成因机理,继而介绍碳酸盐岩的主要类型,最后详细解释其沉积后作用的类型和作用方式(重点)。
主要参考书:1、冯增昭主编《沉积岩石学》上册第十一、十二、十三、十四、十五章,石油工业出版社,1993.2、曾允孚、夏文杰主编《沉积岩石学》第三、九章,地质出版社,1986.3、冯增昭等主编《中国沉积学》第二、五、六、七、八、九、章,石油工业出版社,1994.4、冯增昭编著《碳酸盐岩石学及岩相古地理学》,石油工业出版社,1989.复习思考题:1、简述碳酸盐岩的化学成分和矿物成分?2、碳酸盐岩的主要结构组分有哪些?它们各自有什么含义?3、内碎屑有几种成因?不同粒级内碎屑的环境意义是什么?4、鲕粒有几种类型?它们形成需要什么样的水动力条件?5、说明碳酸盐岩中灰泥和亮晶方解石胶结物是怎样形成的?对比二者的异同。
常见碳酸盐岩的描述实例01鲕粒石灰岩(1)手标本描述岩石呈暗紫红色,滴少量稀盐酸强烈起泡,矿物成分为方解石,质纯。
有少量铁质侵染使鲕粒呈红色。
颗粒含量为70%左右,几乎全为鲕粒,鲕粒大多为球形,直径1~2mm,有的鲕粒可见白色的生物碎屑作为核部,同心层厚,且以正常鲕为主,鲕粒分布较均匀。
填隙物约占岩石的30%,成分为亮晶方解石和泥晶两种,以亮晶胶结物为主。
孔隙-接触式胶结。
鲕粒支撑结构。
岩石致密坚硬,块状构造。
有时可见长形颗粒半定向排列。
定名:暗紫红色鲕粒石灰岩。
(2)薄片描述矿物成分为方解石,占岩石的90%以上,含少量铁质,浸染后使鲕粒颜色变红。
还有少量其他矿物。
结构组分为颗粒、亮晶胶结物和泥晶,分别占岩石的70%、20%、10%。
以鲕粒为主,约占颗粒的90%以上。
含有少量生物碎屑和砂屑。
鲕粒主要为正常鲕,少量为偏心鲕、表鲕和变形鲕,还有少量藻鲕。
正常鲕多而大,直径1~2mm,同心层数多面分布密集,成分为泥晶方解石,可见少量方解石晶体切割同心层。
核部成分多样,主要为棘皮类、三叶虫生物碎屑,也有砂屑作为核部,同心层的厚度大于鲕核直径。
偏心鲕同心层分布疏密不均,鲕核偏向一侧。
表鲕同心层厚度小于鲕核直径,有的表鲕的核部为棘皮类生物骨骼,仅有少数同心层环绕。
变形鲕发生破裂或片状剥离,有的变形鲕内部结构保存较好,仍清楚可见。
生物碎屑含量低,主要为长条形的三叶虫碎屑,它们独立存在于岩石中。
砂屑含量较低,由泥晶方解石组成,具有一定的磨圆度。
填隙物包括亮晶和泥晶两种,以亮晶为主,约占岩石的20%,泥晶约占岩石的10%。
亮晶方解石干净,透明度好,以细晶为主,具有栉壳状结构,可见两个世代的亮晶方解石,第一世代的晶体自形程度较高,围绕颗粒边缘呈犬牙状生长;第二世代的方解石多为他形或半自形,分布在孔隙中央,晶粒接触界线较平直。
泥晶方解石表面污浊,透明度差。
这些泥晶多经重结晶作用形成粉-细晶,晶粒之间接触界面不规则,有三重接触现象。
四川盆地川东北地区二叠系至中三叠统为碳酸盐岩台地相沉积,沉积了以石灰岩、白云岩、膏盐岩为主的岩类。
始终以来,该区是四川盆地油气开发的主要层系,并以中下三叠统、二叠系、石炭系海相碳酸盐岩为主要目的层。
在碳酸盐岩岩类中,对于石灰岩、白云岩及二者的过渡型岩石,现场肉眼不易区分,常使用化学鉴定法,如稀盐酸法、三氯化铁染色法、硝酸银和铬酸钾染色法来加以鉴定。
同时还可结合录井参数如钻时相对变化量、扭矩相对变化量等来关心判定岩性。
酸盐岩储集层,由于猛烈的次生变化,特别是胶结作用和溶解作用使储集空间具有类型多样、构造简单和分布不均的特点,因此在碳酸盐岩地质录井中必需把握以下要点:1、在岩性观看和描述时,要特别留意白云岩和白云石化,尤其要留意由潮间和浅滩环境形成的粉晶白云岩或粒屑白云岩;大气淡水与海水混合作用形成的中-细晶白云岩、礁块白云岩;潮间-潮上带形成的粉晶白云岩、角砾白云岩。
2、留意对粗构造岩石的观看和描述。
主要为发育滩相带及斜坡相带,在纵向上发育于沉积旋回中部的水退阶段的岩石,如粗粒和粗晶鲕状灰岩、介屑灰岩、碎屑灰岩、生物碎屑灰岩和礁灰岩等。
3、留意对岩石缝、洞、孔的观看统计一是留意观看统计岩屑中的次生矿物,留意争论统计次生矿物的总量和自形晶含量,求出它所占次生矿物的百分比,绘制出自形晶次生矿物百分比曲线,再结合钻时曲线,推断缝洞发育层段。
二是留意对储层岩心孔、洞、缝的观看统计,留意统计张开缝、未充填缝-半充填缝、洞的数量,留意观看裂缝与裂缝、孔洞与孔洞、裂缝与孔、洞的相互关系;留意统计分析缝洞层的孔、渗性。
三是留意对钻进中钻井参数特别状况的把握与分析,当发生钻具放空、钻时降低、泥浆漏失或跳钻、蹩钻等现象时,为钻遇洞缝层的标志,常有井漏、井喷或流体产出。
四是留意对岩石薄片显微孔、缝的统计分析。
鉴于碳酸盐岩组构的简单性,在现场录井工作中仅凭肉眼及放大镜观看,已不有满足需要,承受薄片鉴定技术已成为必不行少的重要手段。
(二)碳酸盐岩的结构分类和命名1、结构分类主要以粒屑、胶结物、基质三种组分进行结构分类,按每种组分的相对百分含量,划出岩石类型,再此基础上,再据粒屑类型作进一步细分,并予以综合分类命名。
2、结构命名原则(1)采用<10%、10-25%、25-50%、>50%的几个界线。
(2)若粒屑<10%就不参加定名;粒屑10-25%为含粒屑xx岩;粒屑25-50%,则叫粒屑xx岩;粒屑>50%者叫xx粒屑岩。
(3)命名原则是含量多者在后,少者在前。
以灰岩具体说明(1)粒屑总量>50%时,以粒屑的名称作为主要结构名称,以胶结物(或基质)为次要结构名称。
将“次要”+“主要”结构,二者构成岩石总结构名称。
a、某种粒屑在粒屑总量中占有优势时,可直接以此粒屑名称作为主要结构名称,其它少量粒屑不参加命名。
示例:砂屑51%、生物9%、亮晶8%、泥晶32%,定名—泥晶砂屑灰岩。
b、有两种含量近似的粒屑联合在粒屑总量中,占优势时,则以该两种粒屑联合作为主要结构名称。
采用少者在前,多者在后命名之。
示例:鲕粒30%、生物36% 、砂屑9%、亮晶25%,定名—亮晶鲕粒生物灰岩。
c、粒屑中没有那一种含量占优势时,则主要结构名称统称为“粒屑”。
示例:生物22%、鲕粒25%、砂屑20%、泥晶25%、亮晶8%,定名—泥晶粒屑灰岩。
(2)粒屑总含量为25-50%,粒屑作为次要结构名称,基质作为主要结构名称以主要在后,次要在前进行命名。
a、粒屑:其中一种含量在25-50%时,便以此为次要结构名称。
示例:砂屑40%、鲕粒5%、粉晶55%,定名—砂屑粉晶灰岩。
b、粒屑中没有那一种含量在25-50%者,而其总含量达到时,采取少者在前,多者在后命名。
示例:鲕粒22%、砂屑20%、泥晶8%、粉晶50%,定名—砂屑鲕粒粉晶灰岩。
(3)粒屑含量为10-25%时作为次要结构名称,以基质作为主要结构名称,二者组合起来,采用少者在前,多者在后,构成岩石的总结构名称,并在次要结构名称之前冠以“含”字表示。
第六章 碳酸盐岩碳酸盐岩是指主要由沉积的碳酸盐矿物(方解石、白云石等)组成的沉积岩,主要的岩石类型为石灰岩(方解石含量大于50%)和白云岩(白云石含量大于50%)。
它们经常还和陆源碎屑及粘土组成各种过渡类型的岩石。
据统计研究,碳酸盐岩约占沉积岩总量的20%,它在地壳中的分布仅次于泥质岩和砂岩。
在我国,沉积岩占全国总面积的75%,而碳酸盐岩占沉积岩覆盖面积的55%。
南方的震旦系、古生界及三叠系,北方的元古界及古生界,都是以碳酸盐岩为主,分布比较广泛。
碳酸盐岩中的矿产非常丰富,其中层状矿床有铁、铝、锰、磷、硫、石膏及硬石膏、岩盐、钾盐等;而且碳酸盐岩本身包括石灰岩、白云岩、菱镁岩等也是很有价值的资源,广泛用于冶金、建筑、化工、农业等各方面。
碳酸盐岩中蕴藏的石油及天然气资源也很丰富,世界上与碳酸盐岩有关的油气藏储量约占世界总储量的50%,产量占世界总产量的60%。
总之,碳酸盐的研究与许多矿产,特别是与能源的开发和利用有着密切的关系。
绝大部分的碳酸盐岩都是在海洋中沉积的,而且主要的是浅海环境的产物。
在深海环境中,虽然局部有珊瑚环礁提供碳酸钙的堆积,但其规模远不足以和浅水台地及陆棚相比拟。
古生代和前寒武纪的深海沉积物中普遍缺乏碳酸钙,很可能是那时分泌石灰质的浮游生物和自游生物很少,甚至不存在所致。
白垩纪以后,海水地球化学条件改变,远洋的灰质浮游生物和自游生物大量繁殖,深海碳酸盐堆积有大面积分布。
现代深海沉积物中,碳酸钙沉积物约占32.2%(平均含量),主要是抱球虫和翼足类软泥,也有珊瑚泥和砂。
碳酸盐岩的形成作用随着地质历史演变也有不同。
在前寒武纪的海水中,Mg/Ca比值可能较高,pH值可能较低,这就阻止了钙质骨骼生物的形成。
因此,前寒武纪的碳酸盐岩显然不是生物分泌的介壳形成的,而是由藻类的生物化学作用形成的,或者是由海水的直接化学沉淀形成的。
到了寒武纪以后,海水由酸性变为碱性,介壳生物逐渐繁盛,生物成因的碳酸盐岩逐渐超过了化学或生物化学成因的碳酸盐岩,受机械作用或重力作用形成的碳酸盐岩也占有相当大的比例。
[灰岩岩性描述]灰岩野外描述(最新版)-Word文档,下载后可任意编辑和处理-范文一:粉质粘土、灰岩描述①粉质粘土:黄褐;硬塑;以粘粒及粉粒为主,含少量高岭土,稍有光泽,层理特征不明显,无摇震反应,干强度高,韧性中等。
该层分布整个场区,层厚 5.0~6.5m,层底标高:80.35~86.44m。
标准贯入试验锤击数实测值为16~24击,岩土工程分级为Ⅱ级。
②粘土:黄褐;硬塑~可塑;以粘粒为主,含少量粉粒及高岭土,稍有光泽,层理特征不明显,无摇震反应,干强度高,韧性中等~高;其中北岸粘土层中含约10~40%的角砾,呈棱角状,粒径约3~12mm,角砾母岩成分为硅质灰岩;其中局部含约10%碎石,呈棱角状,粒径约3~5cm,母岩成分为硅质灰岩。
该层分布整个场区。
层厚13.20~18.10m,层底标高64.55~73.24m。
标准贯入试验锤击数实测值为4~26击,岩土工程分级为Ⅱ级。
③1硅质灰岩(C3):灰黑色,很湿~饱和,强风化,细晶-微晶结构,中厚层状构造,以碳酸盐矿物及硅质盐矿物为主,见大量燧石团块,燧石团块为黑色、呈扁球状、球状。
含较多方解石脉及石英脉,宽约10-20mm,局部见溶隙、溶孔,主要发育2组裂隙,与钻机轴向夹角分别为0°~10°、30°~40°,裂面较平直~微弯,陈旧,见溶蚀痕迹,局部以方解石、石英晶体及黑色炭质充填,岩芯破碎~较破碎,呈碎块状~短柱状,节长一般为5-20cm,最长约30cm, RQD值一般为35-80%,顶部与覆盖层接触面附近岩芯破碎,溶蚀现象严重, RQD 值小于35%。
该层在整个场区均有分布,层厚2.50~9.90m,层底标高57.17~66.74m。
属硬岩~极硬岩,岩土工程分级为Ⅷ级。
③2硅质灰岩(C3):中等风化,灰黑色,饱和,细晶~微晶结构,中厚层状构造,以碳酸盐矿物及硅质矿物为主,含较多方解石脉及石英脉,大部宽约0.5~10mm,与钻机轴向夹角0-10°及30-40°为主,岩芯较破碎~较完整,呈短柱状~短长柱状,节长一般为10~20cm,最长达40cm,岩芯锤击声较脆, RQD值一般以50~95%为主,局部受溶蚀影响,岩芯破碎,呈碎块状,RQD值小于50%。
常见沉积岩的定名及描述第一类型碳酸盐类岩石碳酸盐类岩石主要分为三大类,分别是颗粒碳酸盐岩、结晶碳酸盐岩和生物碳酸盐岩。
一、颗粒碳酸盐岩该类岩石由颗粒和填隙物两大部分组成。
颗粒主要包括内碎屑(砾屑、砂屑和粉屑)、鲕粒、生物碎屑、球粒、团块等。
填隙物由泥晶基质和亮晶胶结物组成,有三种情况,一是只有泥晶基质,二是只有亮晶胶结物,三是既有泥晶基质也有亮晶胶结物。
定名颜色+岩石单层厚度+结构+矿物成分。
如:深灰色厚层状鲕粒灰岩。
颜色——深灰色。
岩石单层厚度——厚层状。
结构——鲕粒(鲕状)结构。
矿物成分——方解石,鲕粒和填隙物都是方解石。
描述1、颜色由颜色的色调和深浅组成,符合少前多后的原则,多用色谱表中的单色和双色混合色描述,尽量避免用三色混合色描述,可用生活自然色。
如浅黄绿色,浅—颜色的深浅,黄绿—颜色的色调,绿多黄少。
又如橄榄色(生活自然色)。
先描述岩石新鲜面颜色,再描述风化面颜色。
2、单层厚度的规定块状层> 100cm厚层100—50cm中厚层50—10cm薄层10—1cm微薄层<1cm注意测量岩层单层厚度的范围及主要的单层厚度。
3、结构当颗粒的含量大于岩石总量的90% 时,填隙物可不参加定名,主要有如下结构:(1)、单颗粒结构砾屑结构、砂屑结构、粉屑结构、鲕粒(或鲕状)结构、生物碎屑结构、球粒结构、团块结构等。
(2)复合颗粒结构A 、以两种颗粒为主的结构少前多后复合定名,如砂屑鲕粒结构,砂屑少鲕粒多,并且二者的含量都大于5%。
B、三种(含三种)以上颗粒的结构,同A,如生物碎屑砂屑鲕粒结构;但是如果三种颗粒的含量相当,就可称为颗粒结构。
当颗粒的含量占岩石总量的50—90%时,填隙物要参加定名。
以泥晶为主时,为泥晶某某颗粒结构,如泥晶砾屑结构;以亮晶为主时,亮晶某某颗粒结构,如亮晶鲕粒结构等。
当颗粒的含量为岩石总量的25—50% 时,颗粒在前泥晶在后,为颗粒泥晶结构。
某某颗粒泥晶结构,如鲕粒泥晶结构。
钻井地质——岩屑识别与描述——碳酸盐岩AT40井油迹砂屑泥晶灰岩:浅黄灰色;矿物成分为方解石100%;具砂屑泥晶结构,泥晶75%,砂屑25%;砂屑成分为灰白色方解石颗粒,粒径0.50-2.00mm,次圆-圆状;岩屑呈碎条状,性硬、脆,断口呈贝壳状,滴加浓度5%的稀盐酸反应强烈,完全反应残留液较清澈,残留物见少量黑色有机质,滴加镁试剂无蓝色沉淀生成。
岩屑中见少量灰白色半透明方解石晶体,呈半自形-它形晶,晶粒0.5-2.5mm;见少量微裂缝被黑色有机质或次生方解石半充填-全充填。
少量岩屑面上可见微量黄铁矿晶体,呈星点状分布。
油迹泥晶砂屑灰岩:浅黄灰色;矿物成分方解石100%,具泥晶砂屑结构,泥晶30-40%,砂屑60-70%;其中砂屑成分为方解石,粒径0.5-2.0mm,次圆-圆状;岩屑呈片状,性硬、脆,断口呈贝壳状,滴5%稀盐酸反应强烈,完全反应残留液较清澈,残留物见少量黑色有机质,滴加镁试剂无蓝色沉淀生成。
岩屑中见少量灰白色半透明方解石晶体,呈半自形-它形晶,晶粒0.5-1.0mm;少量微裂缝被黑色有机质或次生方解石半充填-全充填。
少量岩屑面上可见微量黄铁矿晶体,呈星点状分布。
泥质泥晶灰岩:浅灰色,色匀,矿物成分中方解石占70-75%,泥质占25-30%,泥质分布均匀;泥晶结构;岩屑呈片状,性硬、脆,致密,断口呈平坦状;滴5%稀盐酸反应强烈,完全反应溶解液较浑浊,残留物为黄色泥质,滴镁试剂无蓝色沉淀生成。
泥质泥晶灰岩:黄灰色,矿物成分中方解石占65-75%,泥质占25-35%,泥质分布均匀,泥晶结构,性硬、脆,致密,岩屑呈片状,断口呈贝壳状;滴5%稀盐酸反应强烈,完全反应溶解液浑浊,残留物为黄色泥质,滴镁试剂无蓝色沉淀生成。
泥质泥晶灰岩:黄灰色,矿物成分中方解石占60-70%,泥质占30-40%,泥质分布较均匀,泥晶结构,性硬、脆,致密,岩屑呈片状,断口呈贝壳状;滴5%稀盐酸反应强烈,完全反应溶解液浑浊,残留物为黄色泥质,滴镁试剂无蓝色沉淀生成。
碳酸盐岩地层气层电性特征近几年发现的川东北普光天然气田,是到目前为止我国发现的最大的整装碳酸盐岩地层天然气田。
碳酸盐岩与碎屑岩气层电性特明显不同。
碳酸盐岩地层气层典性特征如下:1、井径:由于碳酸盐岩地层不易跨塌,气层井径一般比较规则。
2、自然伽马、自然电位:由于碳酸盐岩铀、钍、钾的含量比较低,气层的自然伽马一般比较低,但有的气层自然伽马比围岩略高。
自然电位曲线无明显异常。
3、电阻率:碳酸盐岩电阻率非常高,当其储层发育时,由于其中含有地层水,致使碳酸盐岩储层电阻率比围岩低。
当天然气发生运移进入碳酸盐岩储层发育段时,虽将大部分地层水排出,但仍有部分地层水滞留其中,从而导致碳酸盐岩储层发育段含气时,电阻率仍比围岩低。
碎屑岩气层一般电阻率比围岩高。
这是碳酸盐岩与碎屑岩气层的最大区别. 碳酸盐岩气层的深、浅侧向电阻率出现正的幅度差,即深侧向电阻率大于浅侧向电阻率。
这是由于浅侧向探测得是泥浆侵入带电阻率,电阻率相对较低;而深侧向探测得是原状地层电阻率,电阻率相对较高造成的。
4、岩性密度:碳酸盐岩储层的岩性密度比围岩低,如果其中含气会使岩性密度进一步降低。
碳酸盐岩储集层岩性密度的高低,取决于储集层的发育程度及所含流体的性质。
碳酸盐岩储层含气比含水时的岩性密度低。
这是因为相同体积的地层水和气比较,气层的岩性密度低于地层水。
比如普光2井气层围岩的岩性密度为2.65~2.70g/cm3,而气层的岩性密度为2.2~2.6g/cm3。
5、补偿中子:碳酸盐岩储集层不发育时,地层流体含量低,因此补偿中子值比较低,而当储层发育时流体含量比较高,补偿中子值也就比较高。
所以,当碳酸盐岩储层发育时,由于流体含量比较高,补偿中子值比围岩高。
标准气层比水层的补偿中子值低。
这是因为相同体积的地层水与气层相比,地层水中氢的含量比气层中氢的含量低。
这是区别碳酸盐岩储层水层与气层的一个重要依据。
6、声波:当碳酸盐岩储层不发育时声波时差比较小,而储层发育时声波时差大,气层比水层的声波时差大。