高一数学第七讲 立体几何初步二讲义
- 格式:pdf
- 大小:918.80 KB
- 文档页数:3
高一数学基础知识讲义(2021)——立体几何二第七讲立体几何二——立体几何之空间几何体与空间坐标系知识要点一:棱柱、棱锥、棱台的结构特征⑴多面体的结构特征:多面体是由若干个平面多变形所围成的几何体,各个多边形叫做多面体的面,相邻面的公共边叫做多面体的棱,棱和棱的公共点叫做多面体的顶点,连接不在同一面上的两个顶点的线段叫做多面体的对角线。
⑵棱柱:(棱柱有两个互相平行的面,夹在这两个平行平面间的每相邻两个面的交线都相互平行)①棱柱的两个相互平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两侧面的公共边叫做棱柱的侧棱;棱柱的两底面之间的距离叫做棱柱的高。
②棱柱的分类:棱柱的分类有两种一是:底面是三角形、四边形、五边形……分别叫做三棱柱、四棱柱、五棱柱……二是:分为斜棱柱和直棱柱。
进一步说:侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱。
特别地,有一些特别的四棱柱我们这里也和大家强调一下:底面是平行四边形的棱柱叫做平行六面体,侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体是长方体,棱长相等的长方体是正方体。
③面积与体积:()S ch c h =直棱柱侧面积底面多边形周长,直棱柱的高全面积或表面积的等于侧面积与底面积的和。
()V Sh S h =柱底面积,高⑶棱锥:①定义:有一个面是多边形,而其余各面都是有一个公共点的三角形。
②棱锥中有公共顶点的各三角形,叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻两侧面的公共边叫做棱锥的侧棱;多边形做棱锥的底面;顶点到底面的距离叫做棱锥的高。
③棱锥的分类:底面是三角形、四边形、五边形……分别叫做三棱锥、四棱锥、五棱锥……正棱锥:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥。
正棱锥各个侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高。
第一章 立体几何初步1.柱、锥、台、球的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体(3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分(4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体(6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体2. 空间几何体的表面积和体积:(1)侧面积公式:① 直棱柱S ch =(c 为底面周长,h 为高)② 正棱锥'12S ch =(c 为底面周长,'h 为斜高)③ 正棱台'121()2S c c h =+(12c c 、分别为上下底面的周长,'h 为斜高)④ 圆柱2S rh π=(r 为底面半径,h 为高)⑤ 圆锥S rl π=(r 为底面半径,l 为母线长)⑥ 圆台12()S r r l π=+(12r r 、分别为上下底面半径,l 为母线长)(2)体积公式:① 棱柱V Sh =(S 为底面积,h 为高)② 棱锥13V Sh =(S 为底面积,h 为高)③ 棱台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)④ 圆柱2V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑤ 圆锥21133V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑥ 圆台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)(3)球:①球的表面积公式:24S R π=②球的体积公式:343V R π= (R 表示球的半径)③球的任意截面的圆心与球心的连线垂直截面,若设球的半径为R ,截面圆的半径是r ,截面圆的圆心与球心的连线长为d ,则:222d R r =-。
I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。
高一数学必修2知识点梳理一、立体几何初步(一)空间几何体1. 棱柱- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 性质:侧棱都平行且相等;侧面都是平行四边形。
2. 棱锥- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
3. 棱台- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 分类:三棱台、四棱台等。
- 性质:棱台的各侧棱延长后交于一点。
4. 圆柱- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 性质:圆柱的轴截面是矩形;圆柱的侧面展开图是矩形。
5. 圆锥- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 性质:圆锥的轴截面是等腰三角形;圆锥的侧面展开图是扇形。
6. 圆台- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:圆台的轴截面是等腰梯形;圆台的侧面展开图是扇环。
7. 球- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
- 性质:球的截面是圆;球心和截面圆心的连线垂直于截面。
(二)点、线、面之间的位置关系1. 平面的基本性质- 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
- 公理2:过不在一条直线上的三点,有且只有一个平面。
- 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
- 推论1:经过一条直线和这条直线外一点,有且只有一个平面。
- 推论2:经过两条相交直线,有且只有一个平面。
- 推论3:经过两条平行直线,有且只有一个平面。
高一数学必修二知识点:立体几何立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
高中数学第一二章立体几何复习讲义人教版必修二.doc编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一二章立体几何复习讲义人教版必修二.doc)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一二章立体几何复习讲义人教版必修二.doc的全部内容。
一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴.(2)柱,锥,台,球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为平行四边形侧棱垂直于底面底面为矩形底面为正方形1。
3棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形.1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++的三条棱②(了解)长方体的一条对角线1AC 与过顶点A所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1。
新高中讲义01.平面性质及两直线的位置关系1.平面性质(1.1)平面概念,平面的表示法将水平的平面画成一个平行四边形,用平行四边形表示平面,如图(1),平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮住,为了增强它的立体感,常把被遮挡部分用虚线画出来,如图(2).注.立体几何中的虚线总表示被遮住的线条而不是辅助线.若添加的辅助线是未被遮住的,则要画成实线.把希腊字母,,αβγ等写在代表平面的平行四边形的一个角上,如平面α,平面β;也可以用代表平四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称,图(1)的平面α,也可以记为:平面ABCD ,平面AC 或者平面BD .面内有无数个点,平面可以看成点的集合.如图(3),点A 在平面α内,记作A α∈;点B 在平面α外,记作B α∉.(1.2)平面公理及推论公理1.若一条直线上的两点在一个平面内,则这条直线在此平面内.点P 在直线l 上,记作P l ∈;点P 在直线l 外,记作P l ∉.若直线l 上的所有点都在平面α内,就说直线l 在平面α内,或者说平面α经过直线l ,记作l α⊂;否则就说直线l 在平面α外,记作l α⊄.公理1也可以用符号表示:,A l ∈B l ∈且,A α∈B α∈l α⇒⊂.公理2.若两个平面有一个公共点,则它们有且只有一条过该点的公共直线.公理2表明,如果两个平面有一个公共点,则它们有无限多个公共点,所有公共点构成一条直线,称为两个平面相交,这条由公共点组成的直线称为这两个平面的交线.若已知两个平面有两个公共点,A B ,则它们的 其他公共点都在直线AB 上.这一结论可用于证明三点共线.平面,αβ的交线是l ,记为l αβ⋂=.注.本讲义中的“两点”,“两条直线”,“两个平面”等,如无特别申明,均指不同两点,不同两直线及不同两平面.例1.用α表示平面,l 表示直线,,A B 表示点,以下关系式中正确的是A.A αβ⋂=B.l α∈C.AB α⊂D.A α⊂公理3. 过不在同一直线上的三点,有且只有一个平面.公理3简述:不在同一直线上的三点确定一个平面.不在同一直线上的三点,,A B C 所确定的平面,可以记成“平面ABC ”.推论1.过一条直线及直线外一点的平面有且只有一个.推论2.过两条相交直线的平面有且只有一个.推论3.过两条平行直线的平面有且只有一个.例2.(1)证明两两相交而不共点的4条直线在同一平面内.(2)空间4条线段首尾相连,这4条线段在同一平面内吗?例3.正方体1111ABCD A B C D -中,1,O O 分别是上下底面的中心,判断下列命题是否正确,说明理由.(1)直线1AC ⊂平面11CC B B .(2)直线1OO 是平面11AAC C 与平面11BB D D 的交线.(3)由,,A O C 可确定一个平面.(4)由11,,A C B 确定的平面是11ADC B .(5)直线l ⊂平面AC ,直线m ⊂平面1D C 且,l m 交于P ,则P ∈直线CD .(6)由11,,A C B 确定的平面与由1,,A C D 确定的平面是同一平面.例4.三个平面两两相交,若其中两条交线有公共点,证明第三条交线也过此点.例5.如图,正方体1111ABCD A B C D -中,O 为面ABCD 的中心,直线1AC 与面1C BD 交于M ,求证:(1)1,,C M O 共线.(2)M 为1C BD ∆的重心.2.空间两直线的位置关系(2.1)空间两直线的位置关系分类既不相交也不平行的两条直线称为异面直线.(2.2)空间两直线平行公理4.平行于同一直线的两直线互相平行.定理.若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.空间图形F 作一次平移是指F 的所有点都沿同一方向平移相同距离.顺次连接不共面4点得到的四边形称为空间四边形.例6.空间四边形ABCD 中,,,,E F G H 分别在边,,,AB BC CD DA 上,AE AH EB HD =且CF CG FB GD=,证明:(1)//EH FG .(2)三直线,,AC EF GH 平行或共点.注.顺次连接空间四边形四边中点的四边形是平行四边形.(2.3)异面直线定义.设,a b 是两直线,若不存在平面π满足,a b ππ⊂⊂,则称,a b 为一对异面直线. 直观描述:永远不在同一平面内的两直线称为一对异面直线.定理.过平面内一点和平面外一点的直线,与平面内不过该点的直线是异面直线.异面直线的另一种画图法.例7.正方体的12条棱所在的直线中有多少异面直线对?例8.设,,,m a b a m A αβαβ⋂=⊂⊂⋂=.(1)若//b m ,证明,a b 异面.(2)若b m ⋂ B =,则,a b 能否异面?两条异面直线所成的角.设直线,a b 异面,任取空间一点O ,过O 作两直线//,//a a b b '',称,a b ''所夹的(不超过直角的)角为异面直线,a b 所成的角.异面直线,a b 所成角θ的范围是(0,]2π.若2πθ=,则称,a b 互相垂直,记为a b ⊥.空间两直线垂直有两种可能:共面垂直(有垂足)和异面垂直(无公共点).求异面直线所成角,一般可平移直线构造三角形,再用余弦定理解出.注意该三角形的内角可能恰为两异面直线所成角,也可能是其补角.例9.空间四边形ABCD 中,AB BC CD DA AC BD =====,,M N 分别是BC 和DA 的中点,直线,AM CN 所成的角是θ,求cos θ的值.例10.正方体1111ABCD A B C D -中,,M N 分别是11A B 和1BB 的中点,求直线AM 与1C N 所成角的余弦值.例11.正方体1111ABCD A B C D -中,E 为BC 的中点,求异面直线1,AC DE 所成角的正切值.例12.设异面直线,a b 成080,过点P 且与,a b 都成050角的直线有条?将050改成060呢?两条异面直线的距离.设,a b 是一对异面直线,与,a b 都垂直的直线有无限多条,但与,a b 都垂直且都相交的直线有且仅有一条,两垂足间的线段称为,a b 的公垂线段,公垂线段的长称为两异面直线,a b 的距离.例13.设正方体1111ABCD A B C D -的棱长为1,则异面直线11,AC A B 的距离为1,异面直线1,AB CC 的距离为1,异面直线1,AC BD 的距离是多少?练习题1.有如下命题:①三个平面两两相交,则这三条交线共面.②一条直线与两平行线都相交,则这三直线共面;③四边形内角和为0360;④空间四点中有三点共线,则这四点共面;⑤若,a b ππ⊂⊄,则,a b 异面.其中正确命题的序号是__________.2.直线,a b 交于平面π内一点P 用符号表示,不正确的是A.,,a b P a b ππ⋂=⊂⊂B.a b P ππ⋂=⋂=C.,a b P P π⋂=∈D.,a P P B π⋂=∈3.下列各图都是正方体或正四面体,,,,P Q R S 分别是所在棱的中点,则,,,P Q R S 不共面的是4.若直线,a b 与直线c 所成的角相等,则,a b 的位置关系是A.平行B.相交C.异面D.不能确定5.已知,,c a b αβαβ=⋂⊂⊂且,a b 异面,则直线c A.与直线,a b 都相交 B.可与直线,a b 都不相交C.至少与,a b 之一相交D.至多与,a b 之一相交6.三个平面可将空间划分成m 个互和重叠的部分,则m 的值的集合为___________.7.正方体1111ABCD A B C D -中,与1AB 成060角的面对角线的条数是_______.8.空间四边形ABCD 中,,M N 分别是,BD AC 的中点,2,AB CD MN ===求,AB CD 所成角的大小.9.空间四边形ABCD 中,32,22AB BD AD BC CD AC ======,延长BC 到E ,使得CE BC =,F 是BD 的中点,求,AF DE 所成角的大小.新高中讲义02.线面平行与面面平行1.直线与平面平行(1.1)直线和平面的位置关系分类直线在平面内(无限多个公共点);直线与平面相交(唯一公共点);直线与平面平行(无公共点).(1.2)直线与平面平行定理1.若平面外的一条直线平行于平面内的一条直线,则这条直线与该平面平行.符号表示(注意是三个条件,缺一不可): ,,////j l j l j ααα⊄⊂⇒.定理2.若直线l 与平面α平行,过l 的平面β与平面α相交,则l 与两平面的交线平行.例 1.(1)证明:过平面内一点且平行于平面的一条平行线的直线在该平面内.(2)若直线a 平行于平面π的一条平行线,判断a 与π的位置关系.例2.如图,两个全等的正方形ABCD 与ABEF 不在同一平面内,,M AC N FB ∈∈且AM FN =,求证://MN 平面BCE .a kj例3.已知,AB CD 都是平面α的平行线且分居α两侧,,AC E BD F αα⋂=⋂=.(1)求证AE BF EC FD=.*(2)若,AB CD AB CD EF ⊥===,求(1)中的比值.例4.证明:过两异面直线中的一条,有且仅有一个平面平行于另一条.例5.证明:若两相交平面平行于同一直线,则它们的交线平行于该直线.2.平行平面(2.1)两平面的位置关系:平行(无公共点);相交(有公共点).(2.2)两平面平行的性质和判定定理1.若两平面平行,则其中一平面内的任何直线平行于另一平面.定理2.若两个平行平面都与第三个平面相交,则两条交线平行.例6.求证:夹在两平行平面间的平行线段的长相等.定理3.若一平面内有两条相交直线平行于另一平面,则这两个平面平行.推论1.若一平面内有两条相交直线分别平行于另一平面内的两条直线,则这两平面平行.推论2.平行于同一平面的两平面互相平行.例7.如图,,AB CD 是异面直线,//,AB CD αα⊂,,M N 分别是,AC BD 的中点,求证://MN α.例8.正方体1111ABCD A B C D -的棱长为a ,1,M A B N AC ∈∈且1A M AN =,求证: //MN 平面11BB C C .例9.正方体1111ABCD A B C D -中,,E F 分别是11,AA CC 的中点,(1)求证:平面//BDF 平面11B D E .(2)求证:1DFB E 是平行四边形.例10.设,AB CD 是夹在两个平行平面,αβ间的线段,,M N 分别是,AB CD 的中点,求证://MN α.(2.3)斜二测画法平面图形的斜二测画法:在原图F 上建立平面直角坐标系xOy ,任取点O ',作仿射坐标系x O y ''',使得045x O y '''∠=;作F 上点(,)A x y 在新图形F '上的对应点1(,)2A x y ';连接相应线段并擦去坐标系x O y ''',就得到F 的按斜二测画法作出的直观图F '. 例11.用斜二测画法画出正6边形的直观图. 注.由画法直接得到:若F '是平面图形F 由斜二测画法画出的直观图,则F '的面积与F 的面积的比为4. 空间图形的斜二测画法:在原图F 上取水平平面及互相垂直的轴,Ox Oy ,再取轴Oz 使之与,Ox Oy 都互相垂直;作平面仿射坐标系x O y '''如前,作出F 的水平平面上图形的直观图;再取O z ''使之垂直于面x O y ''',将F 中与Oz 平行的线段画成与O z ''平行的线段并保持长度不变例12.用斜二测画法画出正方体的直观图.练习题1.设,a b 为直线,π为平面,下列说法正确的是A.若a 平行于π内的无数条直线,则//a πB.若a π⊄,则//a πC.若//,a b b π⊂,则a 平行于π内的无数条直线D.若//,a b b π⊂,则//a π2.过两异面直线外一点且与这两直线都平行的平面A.可能不存在B.有且仅有一个C.有无限个D.至少一个3.设,a b 为异面直线,a π⊂,则过b 且与平面π平行的平面A.不存在B.至多一个C.恰有一个D.有无数个4.正方体1111ABCD A B C D -中,,,E F G 分别是,,AD DC1CC 的中点,则平面EFG 截正方体表面所得图形为A.等腰三角形B.等腰梯形C.正五边形D.正六边形5.平面//αβ,直线,,//,//a b a b αββα⊂⊂,则直线,a b 的位置关系是____________.6.设,m n 是平面α外的两条直线,给出:①//m n ;②//m α;③//n α,以其中两个为条件另一个为结论的正确命题是______________.7.设平面//αβ,,,,A C B D αβ∈∈,AB CD S ⋂=,若5,8,21AS BS CD ===,且060ASB ∠=,则CS 的长为_________.8.如图,正方体1111ABCD A B C D -的棱长为a ,1111,,M AB N AC A N AM ∈∈=.(1)求证//MN 平面11BB C C .(2)求MN 长的最小值.9.设平面l αβ⋂=,直线,,//a b a b αβ⊂⊂,求证//a l .新高中讲义03.线面垂直与线面角1.线面垂直与线面角(1.1)直线与平面垂直定义:若一条直线垂直于一个平面内的所有直线,则称这条直线与这个平面垂直. 直线l 与平面α垂直,记为l α⊥.例 1.(1)证明过一点且垂直于已知平面的直线有且只有一条.(2)证明过一点且垂直于已知直线的平面有且只有一个.定理1.若一条直线垂直于一个平面内的两条相交直线,则这条直线垂直于这个平面.推论1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于该平面.若一直线垂直于两个平行平面中的一个,则必垂直于另一个.推论2.垂直于同一平面的两条直线互相平行.垂直于同一直线的两个平面互相平行. 例2.四面体ABCD 中,,AB CD AC BD ⊥⊥,求证:AD BC ⊥.例 3.(1)设直线l ⊥平面α,垂足A ,证明过A 且垂直于l 的直线必在平面α内.(2)若已知,l l m α⊥⊥,则,l α有何关系?例4.如图,PA ⊥平面ABC ,090ABC ∠=,AE PB ⊥于,E AF PC ⊥于F .(1)证明PB BC ⊥.(2)三棱锥P ABC -的4个面中有几个直角三角形?(3)证明PC ⊥面AEF .(1.2)正射影与三垂线定理自点P 向平面α作垂线,垂足P '叫做点P 在平面α内的正射影(简称射影).线段PP '的长叫做点P 到平面α的距离,是集合{}PQ Q α∈中长度最小者.若图形F 的点在平面α内的正射影构成图形F ',则称F '为F 在平面α内的射影. 与平面相交但不垂直的直线称为平面的斜线,交点叫斜足.任何直线在平面上的射影是一个点或一条直线.设点P 在平面α内的射影P ',又,A B α∈,则PA PB P A P B ''>⇔>.例5.设,,,P A B C αα∉∈.(1)PA PB PC ==⇔P 在α内的射影是ABC ∆的外心.(2),PA BC PB AC ⊥⊥⇔P 在α内的射影是ABC ∆的垂心.(3)P 到直线,,BC CA AB 的距离(垂线段的长)相等P ⇔在α内的射影是ABC ∆的内心或旁心.三垂线定理.设平面α的斜线l 在α内的射影是l ',m α⊂,则l m l m '⊥⇔⊥.例6.如图,梯形ABCD 中,090,,2DAB ABC AB BC a AD a ∠=∠====,PA ⊥平面,ABCD PA a =.(1)求证:PC CD ⊥.(2)求点B 到直线PC 的距离.例7.正方体1111ABCD A B C D -中,,,M N P 分别是1,,AB BC DD 的中点,证明PB ⊥ 平面1B MN .2.直线与平面所成的角定义.平面的斜线与它在平面内的射影所夹的角,称为斜线与平面所成的角.规定平面的垂线与平面所成角为直角;规定平面内的直线或平面的平行线与平面所成的角为零.直线与平面所成角的范围是[0,]2π;斜线与平面所成角的范围是(0,)2π. 直线与平面所成的角是直线与平面内所有直线所成角中的最小者.例8.(三余弦公式)直线l 在平面α内的射影是l ',直线m α⊂.若,l l '所成角为0θ,,l m 所成角为2θ,,l m '所成角为1θ,则201cos cos cos θθθ=.例9.COB ∠在平面α内,OA 是α的一条斜线,060AOB AOC ∠=∠=,OA OB =OC a ==,BC =,求OA 与α所成的角.例10.如图,平面α内线段AB 的长为3,CA α⊥,BD 与α所成角为030,,BD AB ⊥,C D 在α同侧,4CA BD ==.(1)求CD 长.(2)求直线CD 与α所成角的正切值.例11.四面体PABC 中,,,PA PB PC 两两互相垂直.(1)证明ABC ∆是锐角三角形.(2)设H 是P 在平面ABC 内的射影,证明22221111PH PA PB PC =++.(3)证明ABC ∆的面积的平方等于,,PBC PCA PAB ∆∆∆的面积的平方和.(4)证明,,PA PB PC 与平面ABC 所成的角的正弦的平方和为定值.例12.如图,已知AB ⊥平面BCD ,AB BC =且090BCD ∠=,又AD 与平面BCD 所成角为030.(1)求AD 与平面ABC 所成角的大小.(2)求AC 与平面ABD 所成角的正弦.练习题1.设直线l 交平面α于点P ,则平面α内A.存在平行于l 的直线B.存在两条相交直线都垂直于lC.有无数条直线垂直于lD.存在与l 成030角的直线2.若不共线三点到平面α的距离相等且大于0,则这三点确定的平面与α的关系是A.平行B.相交C.平行或相交D.前面答案都不对3.正方体1111ABCD A B C D -中,1O 是11AC 的中点,则与直线1CO 垂直的是A.ACB.BDC.1A DD.1A A4.,a b 是两条相交直线,直线,c d 与,a b都垂直,则直线,c d 的关系是________.5.设P 是正方体1111ABCD A B C D -的中心,则APC ∆在其表面的射影的可能图形的序号是___________.6.P 是边长为3的正ABC ∆所在平面α外一点,2PA PB PC ===,则PC 与平面α 所成角的度数是_________.7.Rt ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为0030,45,则AB 边上的高与α所成角的度数是__________.8.如图,已知ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交,SB ,SC SD 于,,E F G ,求证:,AE SB AG SD ⊥⊥.9.ABC ∆中,090,3,4,A AB AC PA ∠===是平面ABC 的斜线,PAB PAC ∠=∠ 060=.(1)求PA 与平面ABC 所成角的大小.(2)若P 在平面ABC 上的射影恰在BC 上,求PA 的长.新高中讲义04.二面角及两平面互相垂直1.二面角平面内一条直线将平面分成两部分,每部分都叫做一个半平面,这条直线称为半平面的端线.定义.有公共端线的两个半平面构成的空间图形叫做二面角,这两个半平面叫做二面角的面,公共端线叫做二面角的棱.棱为l ,两个半平面分别为,αβ的二面角记为l αβ--.注.二面角也可看成是一个半平面(始面)绕其端线旋转到一定位置(终面)所形成的空间图形.二面角的度量.垂直于二面角l αβ--的棱的平面γ分别与面,αβ交于射线OA 和OB ,则AOB ∠称为二面角l αβ--的平面角,显然平面角的大小只与二面角l αβ--有关而与平面γ的选择(即点O l ∈的选择)无关.规定二面角的度数等于其平面角的度数.二面角的范围是00[0,180]:当终面与始面重合时,认为该二面角为00;当终面与始面互为反向延伸面(合成一平面)时,认为该二面角为0180.例1.如图,三棱锥S ABC -中,SA ⊥面ABC ,AB BC ⊥,,SA AB SB BC ==,又E 为SC 中点,D AC ∈且DE SC ⊥,求二面角C BD E --的大小.例2.如图,已知ABCD 是正方形,PA ⊥平面ABCD ,且S BC D --和S CD B --都是045的二面角,求二面角B SC D --的大小.求二面角大小的一般方法第一步:先从其一个面内任一点P (一般选择现成的特殊点)向另一面所在平面作垂线,由垂足Q 的位置可判断该二面角是锐角还是钝角:若Q 在另一面上,则该二面角是锐二面角;若Q 在另一面的反向延伸面上,则该二面角为钝二面角.第二步:作QH l ⊥于H ,连PH ,由三垂线定理知PH l ⊥,故PHQ ∠为所论二面角的平面角(解题时这步要书写到位).第三步:在Rt PHQ ∆中由已知条件算出PHQ ∠的某三角函数值进而求出PHQ ∠. 例3.正方体1111ABCD A B C D -中,P 为AB 中点,求二面角1P AC B --的大小.例4.自二面角l αβ--的棱l 上一点A ,在平面β引射线AC ,与棱l 成045角,与面α成030角,求二面角l αβ--的大小.例5.空间一点P 到二面角l αβ--的两个面的距离分别为1到棱的距离为2,求此二面角的大小.例 6.如图,锐二面角l αβ--的大小为θ,,(,)AC BD A B l αβ∈∈∈都垂直于l .(1)求证,AC BD 所成的角等于θ.(2)若060θ=,4,6,8AB AC BD ===,求CD 的长.面积射影定理.设二面角l αβ--的大小为θ,平面α内一图形的面积为0S ,它在β内的射影的面积为1S ,则10cos S S θ=.立得:正四面体的所有二面角的余弦都是13. 2.平面与平面垂直定义.平面角是直角的二面角叫做直二面角,若两平面相交成直二面角,则称这两平面互相垂直.平面,αβ互相垂直,记为αβ⊥.注.研究直线与平面的位置关系时,是先定义直线与平面垂直,再利用射影定义直线与平面所成的角;研究平面与平面的位置关系时,是先定义二面角,再用直二面角定义两平面垂直.能先定义两平面垂直再定义二面角吗?定理.若一平面过另一平面的一条垂线,则这两平面互相垂直.推论.若一平面平行于另一平面的一条垂线,则这两平面互相垂直.定理2.若两平面互相垂直,则一平面内垂直于交线的直线垂直于另一平面.推论.若l αβ--是直二面角,直线m β⊥,则m α⊂,或//m α.例7.求证:若一平面垂直于两相交平面,则此平面垂直于那两平面的交线.例8.如图,将菱形ABCD 平移得一个平行六面体1111ABCD A B C D -,已知1A AB ∠=1A AD ∠,求证平面11ACC A ⊥平面ABCD .例9.如图,A 是0120的二面角EF αβ--内一点,,AB AC αβ⊥⊥,垂足,B C .(1)求证:,αβ都垂直于平面ABC .(2)若4,6AB AC ==,求BC 长及A 到EF 的距离.例10.如图,ABC ∆是正三角形,,EC DB 都垂直于平面ABC ,2EC AB DB ==,M 为AE 中点.求证: (1)DE DA =.(2)平面BDM ⊥平面EAC .(3)平面DEA ⊥平面EAC .例11.平行四边形ABCD 中,02,60AB AD BAD =∠=,O 为对角线交点,沿BD 将其折成直二面角.(1)求证:CB ⊥平面BAD .(2)求证:平面ACD ⊥平面CBD .(3)求二面角C AO B --的大小.练习题1.设,a b 是直线,,αβ是平面,,a b αβ⊂⊂,则A.a b αβ⊥⇒⊥B.////a b αβ⇒C.a βαβ⊥⇒⊥D.a b αβ⊥⇒⊥2.设,a b 是异面直线,所成角为060,若,a b βα⊥⊥,则二面角l αβ--的大小为A.030B.060C.0120D.060或01203.设l αβ--是直二面角,直线,a b αβ⊂⊂,且,a b 都不垂直于l ,则A.,a b 可能垂直,但不可能平行B.,a b 既可能垂直,也可能平行C.,a b 不可能垂直,但可能平行D.,a b 既不可能垂直,也不可能平行4.设,m l 为直线,,,αβγ是平面,,//,,l l m m βγααγ=⋂⊂⊥,则A.αγ⊥且l m ⊥B.//αγ且//m βC.//m β且l m ⊥D.//αβ且αγ⊥5.设,m l 为直线,,αβ是平面,命题:①若l 垂直于α内的两条相交直线,则l α⊥;②若//l α,则l 平行于α内所有直线;③,m l αβ⊂⊂且m l ⊥,则m β⊥;④,m l αβ⊂⊂且m l ⊥,则l α⊥.其中正确命题的序号是________.6.设P 是二面角AB αβ--的棱AB 上一点,分别在,αβ上作射线,PM PN ,使得0045,60BPM BPN MPN ∠=∠=∠=,则二面角AB αβ--的大小是_______.7.四面体ABCD 中,C AB D --是直二面角,090,ACB AC BC ∠==,又ABD ∆是正三角形,则二面角C BD A --的正切值为_______.8.如图,已知ABCD 是矩形,SA ⊥平面ABCD ,1,SA AB AD ===求二面角 A SC B --的正弦值.9.正方体1111ABCD A B C D -中,,,,K L M N 分别是111111,,,A B BC C D B C 的中点.(1)求证平面MNL ⊥平面KNL .(2)求二面角K ML N --的正切值.新高中讲义05.简单多面体和球1.多面体由若干个平面多边形围成的空间图形叫多面体,围成多面体的各个多边形叫多面体的面,两个面的公共边叫多面体的棱,两条棱的公共点叫做多面体的顶点,连接不在同一面上两顶点的线段叫多面体的对角线.将一个多面体的任一面延展成平面,若多面体其余面都在这个平面的同一侧,这样的多面体叫凸多面体.一个多面体有几个面就称为几面体,如四面体,五面体,六面体等.多面体的Euler 公式:2v e f -+=,其中,,v e f 分别是多面体的顶点数,棱数和面数. 正多面体:每个面都是有相同边数的正多边形,且每个顶点为端点都有相同的棱数的凸多面体叫正多面体.由多面体的Euler 公式可推得正多面体只有5种:正四面体,正六面体,正八面体,正十二面体及正二十面体.2.棱柱有两个面互相平行,其余每相邻两面的交线互相平行的多面体叫棱柱,两个互相平行的面叫棱柱的底面,简称底,其余各面叫棱柱的侧面,两侧面的公共边叫棱柱的侧棱,两个底面所在平面的公垂线段叫棱柱的高.侧棱垂直于底面的棱柱叫直棱柱,底面是正多边形的直棱柱叫正棱柱.侧棱不垂直于底面的棱柱叫斜棱柱.棱柱的底面是几边形就被称为几棱柱,如三棱柱,四棱柱,五棱柱等.棱柱用代表底面各顶点的字母来表示,如三棱柱111ABC A B C -等.棱柱的体积等于底面积乘以高.棱柱性质:(1)棱柱的各侧面都是平行四边形,所有侧棱都相等;直棱柱的各侧面都是矩形,正棱柱的各侧面是全等的矩形.(2)棱柱的两底面与平行于底面的截面是对应边互相平行的全等的多边形.(3)过棱柱不相邻的两侧棱的截面是平行四边形.例1.下列各几何体中,哪些是棱柱?若是棱柱,指出其底面.例2.如图,正三棱柱111ABC A B C -中,11AB BC ⊥,求证11BC CA ⊥.例3.如图,正三棱柱111ABC A B C -中,D 是AC 中点.(1)求证:1//AB 平面1DBC .(2)若还有11AB BC ⊥,求二面角1D BC C --的大小.平行六面体与长方体:底面是平行四边形的四棱柱叫平行六面体,侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.换个说法:底面是矩形的直四棱柱叫长方体.定理1.平行六面体的四条对角线共点且互相平分.定理2.(1)长方体的对角线长的平方等于同一顶点处三棱长的平方和.(2)长方体的对角线与同一顶点处三棱所成角的余弦的平方和等于1,与同一顶点处三面所成角的余弦的平方和等于2.例 4.长方体1111ABCD A B C D -中,15,4,3AB AC AA ===,沿长方体表面从A 到1C 的最小路径长是多少?例5.如图是三个几何体的侧面展开图,它们的原图各是什么几何体?3.棱锥和棱台一个面是多边形,其余各面是有公共顶点的三角形的多面体叫棱锥,这些有公共顶点的三角形叫棱锥的侧面,两个相邻侧面的公共边叫棱锥的侧棱,各侧面的公共顶点叫棱锥的顶点,顶点对面的多边形叫棱锥的底面,顶点到底面所在平面的垂线段叫棱锥的高.底面是正多边形且顶点在底面的射影是底面中心的棱锥叫正棱锥.(也可说成:底面是正多边形,各侧面是全等的等腰三角形的棱锥叫正棱锥.)棱锥性质:棱锥被平行于底面的平面所截的截面与底面相似.正棱锥性质:正棱锥的高,斜高(锥顶到底面边的距离),斜高在底面的射影(底面正多边形边心距)构成一个直角三角形;正棱锥的高,侧棱,侧棱在底面的射影(底面正多边形半径)也构成一个直角三角形.棱锥的体积等于等底等高的棱柱体积的三分之一.例6.如图所示的长方体中,以,,,,O A B C D 为顶点的几何体是A.三棱锥B.四棱锥C.五棱锥D.六棱锥例7.正三棱锥S ABC -中,O 是底面中心,SO =且SA ,BC 的公垂线段的长是3,求ASB ∠的大小.例7.如图,正四棱锥P ABCD -,过AC 且平行于PB 的截面交PD 于点E ,求截面EAC 与底面所成较小二面角的大小.用平行于棱锥底面的平面去截棱锥,截面与底面之间的部分叫棱台.棱台有两个平行的面,称为棱台的底面,是两个相似而不全等的多边形,其余各面都是梯形,称为棱台的侧面,梯形的腰称为棱台的侧棱.棱台的所有侧棱延长相交于同一点.设棱台的两底面积分别为12,S S ,高为h ,则棱台的体积为12()3h V S S =.两底是对应边分别平行的相似多边形,且两底中心连线垂直于底面的棱台叫正棱台.正棱台的各侧棱长相等,各侧面是全等的等腰梯形.例8.下列命题中错误的是________.①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两面互相平行,其余四面都是等腰梯形的六面体是棱台;④仅有两个面互相平行的五面体是棱台.例9.对右图有描述:①是六面体;②是四棱台;③是四棱柱;④可由三棱柱截去一个小三棱柱而得;⑤可由四棱柱截去一个小三棱柱而得.其中描述正确的是___________.4.圆柱,圆锥,圆台以矩形一边所在直线为旋转轴,其余三边旋转所生成的面围成的旋转体叫圆柱,旋转轴叫圆柱的轴,垂直于轴的边旋转生成的面叫圆柱的底面,平行于轴的边旋转生成的面叫圆柱的侧面,平行于轴的边的任何位置都叫圆柱的母线.以直角三角形一条直角边所在直线为旋转轴,其余两边旋转生成的面所包围的旋转体叫圆锥,相仿地可定义圆锥的轴,侧面及母线.相仿地可定义圆台及相关概念.计算圆柱,圆锥和圆台的侧面积可用曲面展开法:圆柱的侧面可展开为一个矩形,其一边等于圆柱的母线长,另一边等于圆柱的底面周长;圆锥的侧面可展开为一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长;圆台的侧面展开图是一个扇环(如上最后一图).5.球到定点的距离等于定长的点的集合叫球面,到定点的距离不大于定长的点的集合叫球体(简称球),其中定点叫球心,定长叫半径.一个球或球面用表示其球心的字母表示,如球O等.另一表述:半圆绕其直径旋转一周所形成的曲面叫球面,球面所包围的几何体叫球体.用一个平面去截一个球面,截面是一个圆.若此平面过球心,则得到的截面称为大圆;若此平面不过球心,则截面称为小圆.。