ansys Thermal
- 格式:ppt
- 大小:497.50 KB
- 文档页数:36
ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。
在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。
下面将详细介绍ANSYS热分析的原理与流程。
首先,在进行ANSYS热分析前,需要进行前期准备工作。
包括建立几何模型,定义边界条件和导入材料参数等。
在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。
然后,需要定义材料参数,如热导率、比热等。
最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。
接下来,进行热传导分析。
热传导分析是热分析的基础,用于计算物体内部的温度分布。
在ANSYS中,可以选择稳态或者瞬态分析。
对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。
对于瞬态分析,需要设置时间步长和总的仿真时间。
在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。
在得到物体内部的温度分布后,可以进行热应力分析。
热应力分析是在热传导分析的基础上引入力学应力计算的过程。
在ANSYS中,可以通过多物理场耦合分析的功能来实现。
首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。
然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。
除了热应力分析,还可以进行热辐射分析。
热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。
在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。
常用的辐射模型包括黑体辐射模型和灰体辐射模型等。
通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。
最后,进行结果分析和后处理。
在ANSYS中,可以对热分析的结果进行可视化和数据分析。
可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。
此外,还可以导出计算结果,并进行后续的工程设计和优化。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
【转】热-结构耦合分析知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析,然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析.21.1 热-结构耦合分析简介热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法.21.1.1 热分析基本知识ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题.热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程.如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变化.瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率,热边界条件以及系统内能随时间都有明显变化.ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度,对流,辐射,绝热,生热.热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示.表21.1 热分析单元列表单元类型名称说明线性LINK32LINK33LINK34LINK31两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55PLANE77PLANE35PLANE75PLANE78四节点四边形单元八节点四边形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87SOLID70SOLID90六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57 四节点四边形壳单元点MASS71 节点质量单元21.1.2 耦合分析在ANSYS中能够进行的热耦合分析有:热-结构耦合,热-流体耦合,热-电耦合,热-磁耦合,热-电-磁-结构耦合等,因为本书主要讲解结构实例分析,所以着重讲解热-结构耦合分析.在ANSYS中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法,另一种是直接耦合方法.顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型的例子就是热-应力顺利耦合分析,热分析中得到节点温度作为"体载荷"施加到随后的结构分析中去.直接耦合方法,只包含一个分析,它使用包含多场自由度的耦合单元.通过计算包含所需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的例子是使用了SOLID45,PLANE13或SOLID98单元的压电分析.进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法,使用不同的数据库和结果文件,每个数据库包含合适的实体模型,单元,载荷等.可以把一个结果文件读入到另一个数据库中,但单元和节点数量编号在数据库和结果文件中必须是相同的.物理环境方法整个模型使用一个数据库.数据库中必须包含所有的物理分析所需的节点和单元.对于每个单元或实体模型图元,必须定义一套属性编号, 包括单元类型号,材料编号,实常数编号及单元坐标编号.所有这些编号在所有物理分析中是不变的.但在每个物理环境中,每个编号对应的实际的属性是不同的.对于本书要讲解的热-结构耦合分析,通常采用间接法顺序耦合分析,其数据流程如图21.1所示.图21.1 间接法顺序耦合分析数据流程图21.2 稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度,热流率,热流密度等参数.ANSYS稳态热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果21.2.1建模稳态热分析的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项,单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能参数,下面为大概操作步骤.1.确定jobname,title,unit;2.进入PREP7前处理,定义单元类型,设定单元选项;3.定义单元实常数;4.定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;5.创建几何模型并划分网格,请参阅结构分析的建模步骤.21.2.2施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条.通常可施加的温度载荷有恒定的温度,热流率,对流,热流密度和生热率五种.另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置.1.定义分析类型(1) 如果进行新的热分析,则使用下面命令或菜单路径:COMMAND:ANTYPE, STATIC, NEWGUI: Main menu | Solution | -Analysis Type- | New Analysis | Steady-state (2) 如果继续上一次分析,比如增加边界条件等,则需要进行重启动功能: COMMAND: ANTYPE, STATIC, RESTGUI: Main menu | Solution | Analysis Type- | Restart2.施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) .(1) 恒定的温度: 通常作为自由度约束施加于温度已知的边界上.COMMAND: DGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Temperature(2)热流率: 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量.如果温度与热流率同时施加在一节点上,则ANSYS读取温度值进行计算.注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意.此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些.COMMAND: FGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flow(3) 对流:对流边界条件作为面载施加于实体的外表面,计算与流体的热交换.它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流.COMMAND: SFGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Convection(4) 热流密度:热流密度也是一种面载荷.当通过单位面积的热流率已知或通过FLOTRAN CFD计算得到时,可以在模型相应的外表面施加热流密度.如果输入的值为正,代表热流流入单元.热流密度也仅适用于实体和壳单元.热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算. COMMAND: FGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flux(5) 生热率:生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热.它的单位是单位体积的热流率.COMMAND: BFGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Generat3.确定载荷步选项对于一个热分析,可以确定普通选项,非线性选项以及输出控制.热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了.4.确定分析选项在这一步需要选择求解器,并确定绝对零度.在进行热辐射分析时,要将目前的温度值换算为绝对温度.如果使用的温度单位是摄氏度,此值应设定为273;如果使用的是华氏度,则为460.Command: TOFFSTGUI: Main Menu | Solution | Analysis Options5.求解在完成了相应的热分析选项设定之后,便可以对问题进行求解了.Command: SOLVEGUI: Main Menu | Solution | Current LS21.2.3后处理ANSYS将热分析的结果写入*.rth文件中,它包含如下数据信息:(1) 基本数据:节点温度(2) 导出数据:节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用POST1进行后处理.关于后处理的完整描述,可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关键操作的命令和菜单路径.1.进入POST1后,读入载荷步和子步:COMMAND: SETGUI: Main Menu | General Postproc | -Read Results-By Load Step2.在热分析中可以通过如下三种方式查看结果:彩色云图显示COMMAND: PLNSOL, PLESOL, PLETAB等GUI: Main Menu | General Postproc | Plot Results | Nodal Solu, Element Solu, Elem Table矢量图显示COMMAND: PLVECTGUI: Main Menu | General Postproc | Plot Results | Pre-defined or Userdefined列表显示COMMNAD: PRNSOL, PRESOL, PRRSOL等GUI: Main Menu | General Postproc | List Results | Nodal Solu, Element Solu, ReactionSolu21.3瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热参数.在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析.瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步.载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示.图21.2 瞬态热分析载荷-时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值,同时必须指定载荷步的施加方式为渐变或阶越.21.3.1建模一般瞬态热分析中,定义材料性能时要定义导热系数,密度及比热,其余建模过程与稳态热分析类似,这里就不再赘述.21.3.2加载求解和其它ANSYS中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型,定义初始条件,施加载荷,指定载荷步选项,指定结果输出选项以及最后进行求解.1. 定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析.2.获得瞬态热分析的初始条件(1) 定义均匀温度场如果已知模型的起始温度是均匀的,可设定所有节点初始温度Command: TUNIFGUI: Main Menu | Solution | -Loads- | Settings | Uniform Temp如果不在对话框中输入数据,则默认为参考温度.参考温度的值默认为零,但可通过如下方法设定参考温度:Command: TREFGUI: Main Menu | Solution | -Loads- | Settings | Reference Temp注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)其作用不同.Command: DGUI: Main Menu | Solution | -Loads- | Apply | -Thermal- | Temperature | On Nodes初始均匀温度仅对分析的第一个子步有效;而设定节点温度将保持贯穿整个瞬态分析过程,除非通过下列方法删除此约束:Command: DDELEGUI: Main Menu | Solution | -Loads- | Delete | -Thermal-Temperature | On Nodes (2) 设定非均匀的初始温度在瞬态热分析中,用下面的命令或菜单路径可以将节点温度设定为不同的值. Command: ICGUI: Main Menu | Solution | Loads | Apply | -Initial Condit'n | Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件.设定载荷(如已知的温度,热对流等)将时间积分设置为OFF:Command: TIMINT, OFFGUI: Main Menu | Preprocessor | Loads | -Load Step Opts-Time/Frequenc | Time Integration设定一个只有一个子步的,时间很小的载荷步(例如0.001):Command: TIMEGUI: Main Menu | Preprocessor | Loads | -Load Step Opts-Time/Frequenc | Time and Substps写入载荷步文件:Command: LSWRITEGUI: Main Menu | Preprocessor | Loads | Write LS File或先求解:Command: SOLVEGUI: Main Menu | Solution | Solve | Current LS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同.3.设定载荷步选项进行瞬态热分析需要指定的载荷步选项和进行瞬态结构分析相同,主要有普通选项,非线性选项和输出控制选项.(1) 普通选项时间:本选项设定每一载荷步结束时的时间.Command: TIMEGUI: Main Menu | Solution | -Load Step Opts-Time/Frequenc | Time and Substps 每个载荷步的载荷子步数,或时间增量.对于非线性分析,每个载荷步需要多个载荷子步.时间步长的大小关系到计算的精度.步长越小,计算精度越高,同时计算的时间越长.根据线性传导热传递,可以按如下公式估计初始时间步长:ITS=δα24其中δ为沿热流方向热梯度最大处的单元的长度,α为导温系数,它等于导热系数除以密度与比热的乘积(αρ=kc).Command: NSUBST or DELTIMGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps 如果载荷值在这个载荷步是恒定的,需要设为阶越选项;如果载荷值随时间线性变化,则要设定为渐变选项.可以下面命令或菜单路径来实现.Command: KBCGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps (2) 非线性选项迭代次数:每个子步默认的次数为25,这对大多数非线性热分析已经足够.如果分析的问题不容易收敛,可以通过下面的命令来指定迭代次数.Command: NEQITGUI: Main Menu | Solution | -Load step opts | Nonlinear | Equilibrium Iter自动时间步长:本选项为ON时,在求解过程中将自动调整时间步长.Command: AUTOTSGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps 时间积分效果:如果将此选项设定为OFF,将进行稳态热分析.Command: TIM(1) INTGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time Integration GUI: Main Menu | Solution | -Load Step Opts- | Output Ctrls | DB/Results File4.在定义完所有求解分析选项后,进行结果求解.21.3.3 结果后处理对于瞬态热分析,ANSYS提供两种后处理方式.通用后处理器POST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;Command: POST1GUI: Main Menu | General Postproc.时间-历程后处理器POST26,可以对模型中特定点在所有载荷步(整个瞬态过程)的结果进行后处理.Command: POST26GUI: Main Menu | TimeHist Postproc1.用POST1进行后处理进入POST1后,可以读出某一时间点的结果.Command: SETGUI: Main Menu | General Postproc | Read Results | By Time/Freq如果设定的时间点不在任何一个子步的时间点上,ANSYS会进行线性插值.此外,还可以读出某一载荷步的结果.GUI: Main Menu | General Postproc | Read Results | By Load Step然后,就可以采用与稳态热分析类似的方法,对结果进行彩色云图显示,矢量图显示,打印列表等后处理.2,用POST26进行后处理首先,要定义变量.Command: NSOL or ESOL or RFORCEGUI: Main Menu | TimeHist Postproc | Define Variables然后,就可以绘制这些变量随时间变化的曲线.Command: PLVARGUI: Main Menu | TimeHist Postproc | Graph Variables或列表输出Command: PRVARGUI: Main Menu | TimeHist Postproc | List Variables21.4 热-结构耦合分析前面讲了热-结构耦合分析是一种间接法顺序耦合分析的典型例子.其主要分三步完成:1.进行热分析,求得结构的的温度场;2.将模型中的单元转变为对应的结构分析单元,并将第一步求得的热分析结构当作体载荷施加到节点上;3.定义其余结构分析需要的选项, 并进行结构分析.前面已经介绍了如何单独进行热分析和结构分析,下面介绍如何转换模型并将第一步求解的结果施加到节点上.1.完成必要的热分析,并进行相应的后处理,对结果进行查看分析.2.重新进入前处理器,并指定新的分析范畴为结构分析.选择菜单路径Main Menu | Preference ,在弹出的对话框中选择"Strutural"选项,使所有菜单变为结构分析的选项.3.进行单元转换.选择菜单路径Main Menu | Preprocessor | Element Type | Switch ElemType,将弹出Swithch Elem Type (转换单元类型)对话框,如图21.3所示.图21.3 转换单元类型对话框4.在对话框中的Change element type (改变单元类型)下拉框中选择"Thermal to Struc", 然后单击关闭对话框,ANSYS程序将会自动将模型中的热单元转换为对应的结构单元类型.5.定义材料的性能参数.跟通常的结构分析不同的是,除了定义进行结构静力分析需要的材料弹性模量,密度,或强化准则的定义之外.在热-结构耦合分析的第二个分析中,还需要定义材料的热膨胀系数,而且材料性能应该随温度变化的.6.将第一次分析得到的温度结果施加到结构分析模型上.选取菜单路径Main Menu | Solution | Define Loads | Apply | Structural | Temperature | From Therm Analy,将弹出ApplyTEMP from Themal Analysis (从已进行的热分析结果中施加温度载荷)对话框,如图21.4所示.单击对话框中的按钮,选择前面热分析的结果文件*.rth,作为结构分析的热载荷加到节点上.图21.4从已进行的热分析结果中施加温度载荷对话框7.定义其它结构分析的载荷步选项和求解分析选项,并进行结构分析求解.8.进行结果后处理,观察分析所求得的结果.盛年不重来,一日难再晨。
ANSYS热分析详解解析ANSYS是一种强大的有限元分析软件,可以用于各种工程领域的仿真和优化。
其中热分析是ANSYS的一个重要应用之一,可以帮助工程师预测和优化物体在热载荷下的性能。
下面将详细解析ANSYS热分析的相关内容。
首先,热分析是通过求解热传导方程来模拟物体的温度场分布。
热传导方程描述了物体内部的热传导行为,可以用来计算物体不同部位的温度。
在ANSYS中,可以通过设置边界条件、材料属性和加热源等参数来进行热分析。
对于热分析,首先需要定义模型的几何形状。
在ANSYS中,可以使用几何建模工具创建物体的三维模型,或者导入其他CAD软件的模型文件。
然后,在几何模型上定义网格,将物体划分为小的单元,以便求解热传导方程。
ANSYS提供了自动网格划分工具,可以根据用户设置的参数自动生成网格。
接下来,需要为每个单元指定材料属性。
不同材料的热导率、热容和密度等参数不同,会对热传导方程的求解结果产生影响。
在ANSYS中,可以预定义一些常用材料的属性,例如金属、塑料、陶瓷等,并可以根据需要创建自定义材料的属性。
在热分析中,还需要定义物体表面的边界条件。
边界条件可以是固定温度、固定热流量或者固定热通量等。
通过设置合适的边界条件,可以模拟各种实际情况下的热载荷。
例如,在电子设备的热分析中,可以将电子元件的表面设置为固定温度,以模拟电子元件的热散热行为。
除了边界条件,还可以在模型中添加加热源。
加热源可以是点热源、面热源或体热源等。
通过设置加热源的功率和位置,可以模拟物体在外界热源的作用下的温度分布。
例如,在汽车发动机的热分析中,可以将汽缸的燃烧室设置为体热源,以模拟燃烧产生的热量对发动机的影响。
在设置完模型参数后,可以使用ANSYS的求解器来求解热传导方程。
求解器会将边界条件、材料属性和加热源等参数代入到热传导方程中,并计算出物体的温度场分布。
在求解过程中,可以通过设置收敛准则来控制求解的精度和稳定性。
求解完热传导方程后,可以使用ANSYS提供的后处理工具来分析结果。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析∙在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
∙ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
∙ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类∙稳态传热:系统的温度场不随时间变化∙瞬态传热:系统的温度场随时间明显变化四、耦合分析∙热-结构耦合∙热-流体耦合∙热-电耦合∙热-磁耦合∙热-电-磁-结构耦合等第二章 基础知识一、符号与单位二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdTkq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
ANSYS中的24种材料属性1. 弹性模量(Young's modulus):反映了材料的刚度,描述了材料在受力时的变形程度。
单位为帕斯卡(Pa)。
2. 剪切模量(Shear modulus):反映了材料的抗剪切能力,描述了材料在受剪应力作用下的变形程度。
单位为帕斯卡(Pa)。
3. 泊松比(Poisson's ratio):描述了材料在拉伸或压缩时,横向收缩或膨胀的程度。
其值介于-1和0.5之间,无单位。
4. 密度(Density):描述了材料的质量分布情况,单位为千克每立方米(kg/m³)。
5. 导热系数(Thermal conductivity):描述了材料传导热量的能力,单位为瓦特每米开尔文(W/(m·K))。
6. 比热容(Specific heat capacity):描述了材料单位质量的温度变化的能力,单位为焦耳每千克开尔文(J/(kg·K))。
7. 线膨胀系数(Coefficient of linear expansion):描述了材料在温度变化时长度变化的程度,单位为每开尔文(K)。
8. 杨-拉格朗日系数(Lagrange-Yunge coefficient):描述了材料在剪切和旋转应力下的变形行为。
单位为帕斯卡(Pa)。
9. 杨-拉格朗日剪切系数(Lagrange-Yunge shear coefficient):描述了材料在剪切和旋转应力下的剪切变形行为。
单位为帕斯卡(Pa)。
10. 杨-拉格朗日扭曲系数(Lagrange-Yunge torsion coefficient):描述了材料在剪切和旋转应力下的扭曲变形行为。
单位为帕斯卡(Pa)。
11. 杨-拉格朗日横向伸长系数(Lagrange-Yunge lateral stretch coefficient):描述了材料在剪切和旋转应力下的横向伸长变形行为。
单位为帕斯卡(Pa)。
12. 杨-拉格朗日体积伸长系数(Lagrange-Yunge volume stretch coefficient):描述了材料在剪切和旋转应力下的体积伸长变形行为。
ANSYS中的24种材料属性ANSYS是一种常用的工程模拟软件,用于解决复杂工程问题,如结构分析、流体动力学、电磁场分析等。
在ANSYS软件中,各种材料的性质和行为是通过材料模型来描述的。
以下是ANSYS中常用的24种材料属性:1. 弹性模量(Young's modulus):表示材料的刚度,即材料在应力作用下的变形程度。
2. 剪切模量(Shear modulus):表示材料抵抗剪切应力的能力。
3. 泊松比(Poisson's ratio):描述材料在拉伸时横向收缩的程度。
4. 密度(Density):表示材料的质量与体积之比。
5. 线膨胀系数(Linear expansion coefficient):指材料在温度变化下的线性膨胀程度。
6. 灵敏度系数(Pound-Stress Sensitivity Coefficient):衡量材料的应力-变形灵敏度。
7. 杨氏系数(Yield strength):指材料在达到屈服点时所能承受的最大应力。
8. 屈服强度(Ultimate tensile strength):指材料在达到破断点前所能承受的最大应力。
9. 断裂韧性(Fracture toughness):描述材料在破裂时所需要的能量。
10. 硬度(Hardness):衡量材料对局部塑性变形的抵抗能力。
11. 弹性极限(Elastic limit):材料在弹性范围内所能承受的最大应力。
12. 节流应力(Buckling stress):指材料受压时失去稳定性的引发应力。
13. 热导率(Thermal conductance):指材料传导热量的能力。
14. 热膨胀系数(Thermal expansion coefficient):指材料在温度变化下的体积膨胀程度。
15. 电导率(Electrical conductance):指材料导电的能力。
16. 磁导率(Permeability):指材料对磁场的导磁能力。
ansys热分析ANSYS热分析引言热分析是一种在工程领域广泛应用的分析方法,它可以用来研究物体在不同温度条件下的热传导、热扩散和热辐射等问题。
ANSYS是一款被广泛应用于工程仿真的软件,其中包括了强大的热分析功能。
本文将介绍ANSYS热分析的基本原理、流程以及在不同工程领域中的应用。
一、ANSYS热分析的基本原理ANSYS热分析基于热传导和热辐射的基本原理,通过数学和物理模型来描述和分析物体在不同温度条件下的热行为。
热传导是指热能通过物质内部的分子运动传递的过程,而热辐射则是指物体通过电磁波的辐射传递热能的过程。
热分析可以帮助工程师预测和优化物体在真实工作环境下的热性能,从而提高产品的质量和可靠性。
二、ANSYS热分析的流程ANSYS热分析的流程通常包括几个基本步骤,下面将逐一介绍:1. 几何建模:在进行热分析之前,需要通过ANSYS软件进行几何建模,将待分析的物体建模成三维几何模型。
这一步骤可以使用ANSYS的几何建模工具来完成,如DesignModeler等。
2. 网格划分:在几何建模完成后,需要将几何模型分割成小的单元,如三角形或四边形等,以便进行数值计算。
这一步骤被称为网格划分或网格生成,通常使用ANSYS的网格划分工具进行。
3. 材料属性设置:在进行热分析之前,需要对物体的材料属性进行设置,如热导率、比热容等。
这些参数将影响热传导的速度和过程。
4. 边界条件设置:在热分析中,需要设置物体的边界条件,如温度边界条件、热通量边界条件等。
这些边界条件描述了物体在不同部位的热输入和输出。
5. 求解和结果分析:在完成前面的步骤后,可以使用ANSYS的求解器来求解热传导方程和辐射传热方程。
求解完成后,可以对结果进行分析,如温度分布、热流量等。
三、ANSYS热分析在不同工程领域中的应用1. 汽车工程:ANSYS热分析在汽车工程领域中有着广泛的应用。
例如,可以通过热分析来研究发动机的热耗散问题,优化散热系统的设计,提高发动机的工作效率和寿命。
ansys单元介绍ANSYS是一款功能强大的工程仿真软件,广泛应用于各种工程领域。
它提供了丰富的单元类型,以满足各种复杂的分析需求。
下面将介绍一些常用的ANSYS 单元类型及其特点。
1. 杆单元(Link):用于模拟杆状结构,如梁、柱等。
该单元具有三个自由度:轴向拉伸/压缩、弯曲和扭转。
可以通过设置截面属性来定义杆的截面特性。
2. 梁单元(Beam):用于模拟梁结构,具有六个自由度:轴向拉伸/压缩、弯曲、扭转和三个平动位移。
梁单元可以承受弯矩、剪力和轴力等载荷。
3. 壳单元(Shell):用于模拟薄壁壳体结构,如圆筒、管道等。
壳单元具有平面内和平面外的刚度,适用于分析壳体的弯曲、屈曲和振动等问题。
4. 实体单元(Solid):用于模拟三维实体结构,如块体、球体等。
实体单元具有任意方向的刚度,可以承受各种复杂载荷,如压力、温度和位移等。
5. 表面单元(Surface):用于模拟二维表面结构,如板、薄膜等。
表面单元可以承受平面内和平面外的载荷,适用于分析表面效应和接触问题。
6. 流体单元(Fluid):用于模拟流体结构和流体行为,如管道流动、流体振动等。
流体单元可以模拟流体的压力、速度和温度等参数。
7. 热单元(Thermal):用于模拟热传导、对流和辐射等热力学问题。
热单元可以模拟温度场、热流密度和热梯度等参数。
8. 电单元(Electrical):用于模拟电场、电流和电压等电磁学问题。
电单元可以模拟电场强度、电流密度和电势等参数。
除了以上介绍的单元类型外,ANSYS还提供了其他多种特殊单元类型,如弹簧单元、质量单元、阻尼器单元等,以满足特定领域的分析需求。
在使用ANSYS 进行仿真分析时,选择合适的单元类型是至关重要的,以确保分析的准确性和可靠性。
ANSYS电热耦合分析一、 Electric-Thermal AnalysisANSYS中电热耦合分析主要焦耳热效应(Joule heating)、塞贝克效应(Seebeck effect)、珀尔帖效应(Peltier effect)、珀尔帖效应(Thomson effect)。
我们这里的分析主要是Joule heating分析,即通电产生热量,用于加热双层薄片。
1. ANSYS电-热耦合知识点1.1、Element DOFs选项:UX, UY, UZ, and TEMP:可用于Thermal-Electric Analysis 的单元类型如上表所示,其中LINK68, PLANE67, SOLID69, and SHELL157 是专用的thermal-electric elements,专用于Joule heating effects,SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227 则需要选择DOFs选项为TEMP and VOLT。
For SOLID5 or SOLID98, set KEYOPT(1) to 1;For PLANE223, SOLID226, or SOLID227, set KEYOPT(1) to 110。
1.2、Material Properties设置:对于Joule heating effects,需要设置材料参数:电学参数:electric permittivity电阻率RSVX、RSVY、RSVZ 热学参数:thermal conductivity导热系数KXX, KYY, KZZ 若考虑瞬态热效应,需设置密度DENS、比热C或焓ENTH1.3、Load载荷设置:设置Applied Voltage or Current 设置对流、辐射、传热等边界条件1.4、Solve求解进行ANSYS三维电热分析,选择SOLID69单元,为专用于焦耳热分析的单元,只需设置电阻率RSVX、导热系数KXX,加载电压VOLT、对流系数CONV即可进行求解,不考虑加热元件本身的热变形;选择SOLID98,除以上参数外,还可以设置弹性模量EX、泊松比PRXY、热膨胀系数ALPX,即可分析加热元件本身的变形。
/CONFIG,NRES,10000/FILNAME,Thermal3,1/TITLE,Laser weldding/UNITS,SI/prep7LENGTH=0.050 !焊缝长度WIDTH=0.050 !焊接宽度的一半Rlaser=0.0003 !激光最小半径Vlaser=0.3/60 !激光焊接速度LSIZE=0.00025 !划分最小单元尺寸TT=LENGTH/Vlaser !总的焊接时间F=30 !激光脉冲频率TINC=1/F !激光作用周期L_ZONE=0.001 !网格细化分宽度QMAX=35.38e8 !激光最大输出能量et,1,shell57 !采用shell57单元R,1,0.0005 !厚度!定义材料属性!导热系数MPTEMP,,,,,,,,MPTEMP,1,293MPTEMP,2,373MPTEMP,3,473MPTEMP,4,573MPTEMP,5,673MPTEMP,6,773MPTEMP,7,873MPTEMP,8,973MPTEMP,9,1073MPTEMP,10,1173MPTEMP,11,1273MPTEMP,12,1373MPTEMP,13,1500MPTEMP,14,1600MPTEMP,15,1700MPTEMP,16,1800MPTEMP,17,1900MPTEMP,18,2000MPTEMP,19,2200MPTEMP,20,2400MPTEMP,22,2600 MPTEMP,23,2700 MPTEMP,24,2800 MPTEMP,25,2900 MPTEMP,26,3000 MPDATA,KXX,1,,10.8 MPDATA,KXX,1,,11.9 MPDATA,KXX,1,,12.9 MPDATA,KXX,1,,14.2 MPDATA,KXX,1,,15.8 MPDATA,KXX,1,,17.6 MPDATA,KXX,1,,19.5 MPDATA,KXX,1,,21.3 MPDATA,KXX,1,,23.2 MPDATA,KXX,1,,24.8 MPDATA,KXX,1,,26.3 MPDATA,KXX,1,,27.4 MPDATA,KXX,1,,28.2 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1 MPDATA,KXX,1,,41.1!定义密度MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,8890!定义比热容MPTEMP,,,,,,,, MPTEMP,1,293 MPTEMP,2,373 MPTEMP,3,473MPTEMP,5,673 MPTEMP,6,773 MPTEMP,7,873 MPTEMP,8,973 MPTEMP,9,1073 MPTEMP,10,1173 MPTEMP,11,1273 MPTEMP,12,1373 MPTEMP,13,1500 MPTEMP,14,1600 MPTEMP,15,1700 MPTEMP,16,1800 MPTEMP,17,1900 MPTEMP,18,2000 MPTEMP,19,2200 MPTEMP,20,2400 MPTEMP,21,2500 MPTEMP,22,2600 MPTEMP,23,2700 MPTEMP,24,2800 MPTEMP,25,2900 MPTEMP,26,3000MPDATA,C,1,,423 MPDATA,C,1,,454 MPDATA,C,1,,472 MPDATA,C,1,,489 MPDATA,C,1,,505 MPDATA,C,1,,522 MPDATA,C,1,,538 MPDATA,C,1,,553 MPDATA,C,1,,569 MPDATA,C,1,,584 MPDATA,C,1,,598 MPDATA,C,1,,613 MPDATA,C,1,,830 MPDATA,C,1,,1650 MPDATA,C,1,,660 MPDATA,C,1,,670 MPDATA,C,1,,680 MPDATA,C,1,,688 MPDATA,C,1,,695 MPDATA,C,1,,699MPDATA,C,1,,705MPDATA,C,1,,705MPDATA,C,1,,705MPDATA,C,1,,705MPDATA,C,1,,705!建立模型S_DIS=0.0005RECTNG,S_DIS,0.050+S_DIS,0,0.0008 RECTNG,S_DIS,0.050+S_DIS,0.0008,0.0018 RECTNG,S_DIS,0.050+S_DIS,0.0018,0.005 RECTNG,S_DIS,0.050+S_DIS,0.005,0.050 aglue,allnumcmp,all!划分网格!------------------------ 面4LESIZE,12,,,20LESIZE,13,,,20LESIZE,7,,,20MSHKEY,1MSHAPE,0,2DAMESH,4!------------------------- 面3LESIZE,10,,,2LESIZE,11,,,2MSHKEY,1MSHAPE,0,2DAMESH,3LREFINE,5,,,1,1,OFF!------------------------- 面2LESIZE,8,,,2LESIZE,9,,,2MSHKEY,1MSHAPE,0,2DAMESH,2LREFINE,3,,,1,1,OFF!------------------------ 面1LESIZE,2,,,4,LESIZE,4,,,4,MSHKEY,1MSHAPE,0,2DAMESH,1ALLSEL,ALLNUMCMP,ALLALLSEL,ALL/REPLOTFINISH/SOLUANTYPE,TRANSTRNOPT,FULLTUNIF,293nlgeom,offnropt,fullKK=3N_ONCE=TT/TINCMAX_TIME=N_ONCE+1MAX_X=(LENGTH+2*S_DIS)/LSIZE+1MAX_Y=2*L_ZONE/LSIZE+1H_MAX_Y=L_ZONE/LSIZE+1!------------------------定义载荷并求解-------------------------------SFA,2,,CONV,400,293SFA,3,,CONV,250,293SFA,4,,CONV,50,293*DIM,FLUX2,TABLE,MAX_X,MAX_Y,MAX_TIME,X,Y,TIME*DO,K,1,MAX_TIME,1*DO,I,1,MAX_X,1FLUX2(I,0,K)=(I-1)*LSIZE*ENDDO*DO,J,1,MAX_Y,1FLUX2(0,J,K)=-(H_MAX_Y-J)*LSIZE*ENDDO*DO,I,1,MAX_X,1*DO,J,1,MAX_Y,1XCENTER=(K-1)*Vlaser/FYCENTER=0XCOORD=(I-1)*LSIZEYCOORD=-(H_MAX_Y-J)*LSIZEDISTANCE=SQRT((XCOORD-XCENTER)**2+(YCOORD-YCENTER)**2)*IF,DISTANCE,LE,Rlaser,THENFLUX2(I,J,K)=QMAX/EXP(KK*(DISTANCE**2)/(Rlaser**2))*ELSEFLUX2(I,J,K)=0*ENDIF*ENDDO*ENDDOFLUX2(0,0,K)=(K-1)*TINCOUTRES,BASIC,ALLKBC,1TSRES,ERASETIMINT,ONLNSRCH,ONTM1=0.005+(K-1)*TINCTIME,TM1SFA,1,,HFLUX,%FLUX2%AUTOTS,-1NSUBST,4/GST,ON/REP,FAST/PSF,HFLUX,,1 !表面上热流加载用带颜色填充曲面表示/REPLOTSOLVESFADELE,1,,HFLUXTM2=K*TINCTIME,TM2SFA,1,,CONV,400,293AUTOTS,-1NSUBST,4/GST,ONSOLVESFADELE,1,,CONVSAVE*ENDDOSAVE!***********************************!冷却阶段!************************************DO,k,1,30,1TIME,TT+5*k !载荷步结束时间NSUBST,25KBC,1SOLVESAVE*ENDDOoutres,all,allfinish/CONFIG,NRES,10000/FILNAME,stress3,1/TITLE,Laser weldding/UNITS,SI/PREP7et,1,solid45 !把热单元转化成结构单元R,1,0.0005!------------------------设置结构分析的材料属性----------------------- MPTEMP,,,,,,,,MPTEMP,1,293MPTEMP,2,373MPTEMP,3,473MPTEMP,4,513MPTEMP,5,573MPTEMP,6,673MPTEMP,7,773MPTEMP,8,873MPTEMP,9,973MPTEMP,10,1073MPTEMP,11,1173MPTEMP,12,1273MPTEMP,13,1373MPTEMP,14,1423MPTEMP,15,1473MPTEMP,16,1596MPTEMP,17,1673MPTEMP,18,1873MPTEMP,19,2073MPTEMP,20,2273MPTEMP,21,2473MPTEMP,22,2673MPTEMP,23,2873MPTEMP,24,3073MPTEMP,25,3273MPDATA,ALPX,1,,0.184E-5MPDATA,ALPX,1,,1.17E-5MPDATA,ALPX,1,,1.21E-5MPDATA,ALPX,1,,1.28E-5MPDATA,ALPX,1,,1.31E-5MPDATA,ALPX,1,,1.35E-5MPDATA,ALPX,1,,1.40E-5MPDATA,ALPX,1,,1.47E-5MPDATA,ALPX,1,,1.55E-5 MPDATA,ALPX,1,,1.60E-5 MPDATA,ALPX,1,,1.65E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPDATA,ALPX,1,,1.8E-5 MPTEMP,,,,,,,, MPTEMP,1,293 MPTEMP,2,373 MPTEMP,3,473 MPTEMP,4,573 MPTEMP,5,673 MPTEMP,6,773 MPTEMP,7,873 MPTEMP,8,973 MPTEMP,9,1073 MPTEMP,10,1173 MPTEMP,11,1273 MPTEMP,12,1373 MPTEMP,13,1473 MPTEMP,14,1596 MPTEMP,15,1673 MPTEMP,16,1873 MPTEMP,17,2073 MPTEMP,18,2273 MPTEMP,19,2473 MPTEMP,20,2673 MPTEMP,21,2873 MPTEMP,22,3073 MPTEMP,23,3273 MPDATA,EX,1,,2.05E11 MPDATA,EX,1,,2.03E11 MPDATA,EX,1,,1.98E11MPDATA,EX,1,,1.92E11 MPDATA,EX,1,,1.86E11 MPDATA,EX,1,,1.80E11 MPDATA,EX,1,,1.78E11 MPDATA,EX,1,,1.67E11 MPDATA,EX,1,,1.59E11 MPDATA,EX,1,,1.50E11 MPDATA,EX,1,,1.41E11 MPDATA,EX,1,,1.2E11 MPDATA,EX,1,,0.8E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,EX,1,,0.08E11 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPDATA,PRXY,1,,0.33 MPTEMP,,,,,,,,TB,BISO,1,6,2,TBTEMP,298TBDATA,,354e6,5.89e9,,,,TBTEMP,873TBDATA,,212e6,1.7e9,,,,TBTEMP,1073TBDATA,,199e6,1.4e9,,,,TBTEMP,1473TBDATA,,100e6,1e8,,,,TBTEMP,1596TBDATA,,50e6,1e7,,,,TBTEMP,2173TBDATA,,5e6,1e7,,,,savefinish/SOLUantype,transtrnopt,full !指定为完全瞬态分析nropt,full,,on !完全牛顿拉夫逊法自适应下降nlgeom,1 !大变形autots,on !激活时间步自动阶跃timint,on,struct !打开结构瞬态分析tintp,0.005,,,1,0.5,0.2kbc,0CNVTOL,F,,0.005,2,1.0e-6CNVTOL,U,,0.005,2,1.0e-6OUTRES,ERASEOUTRES,NSOL,LASTnsel,s,loc,y,0.015,0.05d,all,all,0allsel,allnsel,s,loc,y,0dsym,symm,y,,allsel,all*SET,ii,1*DO,T,1E-6,1,TINC/2TM1=TINC*(ii-1)/2+1E-6TIME,TM1ldread,temp,,,TM1,,Thermal3,rth nsubst,20solve*SET,ii,ii+1*enddo*SET,aa,1*DO,T,1,30.5,TINC/2TM2=TINC*(aa-1)/2+1TIME,TM2ldread,temp,,,TM2,,Thermal3,rth nsubst,6solve*SET,aa,aa+1*enddo*SET,k,1*DO,T,30.51,55.51,0.1TM3=(k-1)*0.1+30.51TIME,TM3ldread,temp,,,TM3,,Thermal3,rth nsubst,6solve*SET,k,k+1*enddonsel,s,loc,y,0.03d,all,ux,0d,all,uz,0allsel,allnsel,s,loc,y,0dsym,symm,y,,allsel,all*SET,bb,1*DO,T,55.52,57.52,0.02TM4=(bb-1)*0.02+55.52 TIME,TM4ldread,temp,,,TM4,,Thermal3,rth nsubst,30solve*SET,bb,bb+1*enddo*SET,jj,1*DO,T,57.53,180,2TM5=(jj-1)*2+57.53TIME,TM5ldread,temp,,,TM5,,Thermal3,rth nsubst,6solve*SET,jj,jj+1*enddosavefinish。
短圆柱体的热传导过程问题:一短圆柱体,直径和高度均为1m,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换)。
圆柱体材料的热传导系数为30W/(m·℃)。
求解:第一步:建立工作文件名和工作标题在ANSYS软件中建立相应的文件夹,并选择Thermal复选框。
第二部:定义单元类型在单元类型(element type)中选择thermal solid和quad 4node 55,在单元类型选择数字(element type reference number)输入框中输入1,在单元类型选择框里选择Axisymmetric,其余默认即可。
第三步:定义材料性能参数在材料性能参数对话框中输入圆柱体的导热系数30.第四步:创建几何模型、划分网格创建数据点,输入点坐标。
在第一个输入框中输入关键点编号1,并输入第一个关键点坐标0、0、0,重复输入第二个、第三个、第四个关键点,相应的坐标分别为2(0.5,0,0);3(0.5,1,0);4(0,1,0)。
结果如下图1所示:在模型中创建直线,选择编号为1、2的关键点生成一条直线,在选取2、3生成一条直线,同样选择编号为3、4和编号为4、1的关键点生成另外两条直线。
结果如下图2所示:之后在plot numbering controls对话框,分别打开KP Keypoint numbers、LINE line numbers、AREA Area numbers,建立直线L1、L2、L3、L4线段。
生成几何模型,如下图所示:在L1、L3线段上划分20个单元,并将L2、L4划分成40个单元格,并在模型上选取编号为A1的平面,如下图所示:将结果进行保存。
第五步:加载求解选择分析类型Steady-State,在Select Entities对话框,第一个下拉列表框中选择Lines,在第二个下拉列表中选择By Num,第三个单选框中选择From Full。