2020高考二轮复习 专题5、动力学三大观点综合应用
- 格式:docx
- 大小:1.75 MB
- 文档页数:5
应用“三大观点”解决力学综合问题(可自主编辑word)五、应用“三大观点”解决力学综合问题知识点1 应用动量与动力学观点解决力学综合问题基础回扣力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为多个物体组成的系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换。
这种问题由于作用时间都极短,因此用动量守恒定律去解决。
易错辨析我们在应用动量与动力学知识观点解答问题时要注意将运动过程与受力情况分析清楚,恰当地选择研究对象、研究过程解题,避免出错。
知识点2 应用动量与能量观点解决力学综合问题基础回扣1.知识分析动量的观点:动量定理和动量守恒定律。
能量的观点:动能定理和能量守恒定律。
2.方法技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。
(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。
(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。
特别对于变力做功问题,就更显示出它们的优越性。
易错辨析1.通常能应用牛顿运动定律与运动学知识解决的力学问题,涉及到位移问题,我们可以应用动能定理解决问题。
2.通常能应用牛顿运动定律与运动学知识解决的力学问题,涉及到时间问题,我们可以应用动量定理解决问题。
高考物理复习:力学三大观点的综合应用考点一 动力学和能量观点的应用[知能必备]1.过程分析:将复杂的物理过程分解为几个简单的物理过程,挖掘出题中的隐含条件,找出联系不同阶段的“桥梁”.2.受力及功能分析:分析物体所经历的各个运动过程的受力情况以及做功情况的变化,选择适合的规律求解.3.规律应用:选用相应规律解决不同阶段的问题,列出规律性方程.[典例剖析](2020·全国卷Ⅱ)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球.圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直.已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力.(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件. 解析:(1)管第一次落地弹起的瞬间,小球仍然向下运动.设此时管的加速度大小为a 1,方向向下;球的加速度大小为a 2,方向向上;球与管之间的摩擦力大小为f ,由牛顿运动定律有Ma 1=Mg +f ① ma 2=f -mg ②联立①②式并代入题给数据,得a 1=2g ,a 2=3g ③(2)管第一次碰地前与球的速度大小相同.由运动学公式,碰地前瞬间它们的速度大小均为v 0=2gH ④方向均向下.管弹起的瞬间,管的速度反向,球的速度方向依然向下.设自弹起时经过时间t 1,管与小球的速度刚好相同.取向上为正方向,由运动学公式v 0-a 1t 1=-v 0+a 2t 1⑤ 联立③④⑤式得t 1=252H g⑥ 设此时管下端的高度为h 1,速度为v .由运动学公式可得 h 1=v 0t 1-12a 1t 21⑦v =v 0-a 1t 1⑧由③④⑥⑧式可判断此时v >0.此后,管与小球将以加速度g 减速上升h 2,到达最高点.由运动学公式有h 2=v 22g⑨设管第一次落地弹起后上升的最大高度为H 1, 则H 1=h 1+h 2⑩联立③④⑥⑦⑧⑨⑩式可得H 1=1325H ⑪(3)设第一次弹起过程中球相对管的位移为x 1.在管开始下落到上升H 1这一过程中,由动能定理有Mg (H -H 1)+mg (H -H 1+x 1)-4mgx 1=0⑫ 联立⑪⑫式并代入题给数据得x 1=45H ⑬同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x 2为x 2=45H 1⑭设圆管长度为L .管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x 1+x 2≤L ⑮联立⑪⑬⑭⑮式,L 应满足的条件为L ≥152125H ⑯答案:(1)2g 3g (2)1325H (3)L ≥152125H[题组精练]1.(多选)如图所示,长直杆固定放置与水平面夹角θ=30°,杆上O 点以上部分粗糙,O 点以下部分(含O 点)光滑.轻弹簧穿过长杆,下端与挡板相连,弹簧原长时上端恰好在O 点,质量为m 的带孔小球穿过长杆,与弹簧上端连接.小球与杆粗糙部分的动摩擦因数μ=33,最大静摩擦力等于滑动摩擦力,现将小球拉到图示a 位置由静止释放,一段时间后观察到小球振动时弹簧上端的最低位置始终在b 点,O 点与a 、b 间距均为l .则下列说法正确的是( )A .小球在a 点弹簧弹性势能最大B .小球在a 点加速度大小是在b 点加速度大小的2倍C .整个运动过程小球克服摩擦力做功mglD .若增加小球质量,仍从a 位置静止释放,则小球最终运动的最低点仍在b 点 解析:BC 由于O 点与a 、b 间距均为l ,所以小球在a 、b 两点的弹性势能相等,则A 错误;小球从a 运动到b 过程,由动能定理可得mg sin θ2l -W f =0,解得W f =mgl ,所以C 正确;小球在a 点有mg sin 30°+kl -μmg cos 30°=ma 1,小球在b 点有kl -mg sin 30°=ma 2,由于小球最后是在O 与b 两点间做简谐振动,则在b 点与O 点的加速度大小相等,小球在O 点有mg sin 30°=ma 3,a 2=a 3,联立解得a 2=a 3=g 2,a 1=g ,所以小球在a 点加速度大小是在b 点加速度大小的2倍,则B 正确;若增加小球质量,仍从a 位置静止释放,设小球最终运动的最低点为c ,由于小球最后是在O 与最低点c 两点间做简谐振动,则在c 点与O 点的加速度大小相等,小球在c 点有kl ′-mg sin 30°=ma 2,解得l ′=mgk,所以增大小球的质量,弹簧在最低点的形变量也会增大,则最低点位置发生了改变,所以D 错误.2.如图所示,在光滑水平地面上放置质量M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板一起以速度v =1 m /s 做匀速运动,取g =10 m /s 2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功; (3)滑块相对木板滑行的距离. 解析:(1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N .(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3 m /s滑块沿弧面下滑的过程,由动能定理得 mgh -W f =12m v 20W f =mgh -12m v 20=1.5 J .(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m . 答案:(1)2 N (2)1.5 J (3)1.5 m3.(2020·江苏卷)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h . 解析:(1)线速度v =ωr 得v =2ωR .(2)向心力F 向=2m ω2R设F 与水平方向的夹角为α,则 F cos α=F 向;F sin α=mg解得F = (2m ω2R )2+(mg )2. (3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.答案:(1)2ωR (2) (2m ω2R )2+(mg )2 (3)M +16m2Mg(ωR )2考点二 动量和能量观点的应用[知能必备]1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.[典例剖析](2020·天津卷)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小; (2)碰撞前瞬间B 的动能E k 至少多大?解析:(1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v 2A =12m 1v 2+2m 1gl ② 由动量定理,有I =m 1v A ③ 联立①②③式,得I =m 15gl ④(2)设两球粘在一起时的速度大小为v ′,A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′⑥ 又E k =12m 2v 2B⑦ 联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧答案:(1)m 15gl (2)5gl (2m 1+m 2)22m 2动量和能量观点应用的四点注意(1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.[题组精练]1.(2021·上海浦东区二模)质量M =0.6 kg 的平板小车静止在光滑水平面上,如图所示,当t =0时,两个质量都为m =0.2 kg 的小物体A 和B ,分别从小车的左端和右端以水平速度v 1=5.0 m /s 和v 2=2.0 m /s 同时冲上小车,当它们相对于小车停止滑动时,没有相碰.已知A 、B 两物体与车面的动摩擦因数都是0.20,g 取10 m /s 2,求:(1)A 、B 两物体在车上都停止滑动时的速度. (2)车的长度至少是多少?解析:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律: m (v 1-v 2)=(M +2m )v v =0.6 m /s 方向向右(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系 μmg (L 1+L 2)=12m v 21+12m v 22-12(M +2m )v 2解得:L 1+L 2=6.8 m L ≥L 1+L 2=6.8 m 可知L 至少为6.8 m答案:(1)0.6 m /s 方向向右 (2)6.8 m2.(2021·铜陵一模)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.取g =10 m /s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0从B 到C ,根据动能定理有 mgR (1+sin θ)=12m v 2C -12m v 2B解得v C =6 m /s .(2)根据动量守恒定律得:(m +M )v =m v C 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J . 答案:(1)6 m /s (2)9 J考点三 动力学、动量和能量观点的应用[知能必备]1.力学解题的三大观点分类规律 数学表达式 动力学 观点力的瞬 时作用牛顿第二定律 F 合=ma牛顿第 三定律F =-F ′ 能量 观点力的空间 积累作用动能定理 W 合=E k2-E k1 机械能守 恒定律 E k1+E p1=E k2+E p2 动量 观点力的时间积累作用动量定理 F 合t =m v ′-m v 动量守 恒定律m 1 v 1+m 2 v 2=m 1 v 1′+m 2 v 2′2.选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.3.系统化思维方法(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).[典例剖析](2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ.质量为m的小物块A与水平轨道间的动摩擦因数为μ.以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上.重力加速度为g.(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围.解析:(1)若A从倾斜轨道上距x轴高度为2μL处由静止开始下滑,对A从静止释放到运动到O点的过程,由动能定理得mg×2μL-μmgL=12m v2,解得v0=2μgL.(2)在PQ曲线上任意取一点,设坐标为(x、y),设A从O点抛出的初速度为v,由平抛运动规律有x=v t,y =12gt 2, 联立解得y =12g x 2v2,设A 落在P 点时从O 点抛出的初速度为v P , 将P 点坐标代入上式,有μL =12g (2μL )2v 2P , 解得v P =2μgL ,小物块A 从倾斜轨道上不同位置由静止释放,落在曲线PQ 上的动能均相同,有12m v 2P+mg ·μL =12m v 2+mgy ,解得x 2+4y 2-8μLy =0(0≤x ≤2μL ).(3)设A 与B 碰前瞬间的速度为v 0′,A 、B 碰后瞬间的速度分别为v 1、v 2,对A 、B 组成的系统,根据动量守恒定律与机械能守恒定律有m v 0′=m v 1+λm v 2, 12m v 0′2=12m v 21+12λm v 22, 解得v 1=1-λ1+λv 0′,v 2=21+λv 0′,又因为mgh -μmgL =12m v 0′2,要使A 、B 均能落在PQ 上且A 落在B 落点的右侧,则有12m v 2P ≥12m v 21-2μmgL >12m v 22,联立解得3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL . 答案:(1)2μgL (2)x 2+4y 2-8μLy =0(0≤x ≤2μL ) (3)3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL [题组精练]1.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2 kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1 m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在黏性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为0≤E p ≤4 J ,距离抛出点正下方O ′点右方0.4 m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节),弹簧的弹性势能范围为0≤E p ≤4 J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大?解析:(1)根据机械能守恒定律得 E p =12m v 21+mg ·2R 0A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有 m v 1=2m v 2 2R 0=12gt 20x =v 2t 0 解得E p =2 J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得F N +mg =m v 21R解得F N =30 N 由牛顿第三定律知 F 压=F N =30 N(3)根据E p =12m v 21+mg ·2Rm v 1=2m v 2 2R =12gt 2x =v 2t 联立解得 x =⎝⎛⎭⎫E p mg -2R ·2R 其中E p 最大为4 J ,得R =0.5 m 时落点离O ′点最远,为 x m =1 m答案:(1)2 J (2)30 N (3)0.5 m 1 m2.(2021·潍坊二模)如图所示,一质量M =4 kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,BC 所对圆心角θ=37°,CD 长L =3 m .质量m =1 kg 的小物块从某一高度处的A 点以v 0=4 m /s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2 m /s .取g =10 m /s 2,sin 37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ;(2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离.解析:(1)由平抛运动的规律得tan θ=gt v 0x =v 0t解得x =1.2 m .(2)物块在小车上CD 段滑动过程中,由动量守恒定律得m v 1=(M +m )v由功能关系得fL =12m v 21-12(M +m )v 2 对物块,由动量定理得-ft 0=m v -m v 1得t 0=1 s .(3)有销钉时mgH +12m v 20=12m v 21 由几何关系得H -12gt 2=R (1-cos θ) B 、C 间水平距离x BC =R sin θμmgL =12m v 21-12(M +m )v 2(或f =μmg ) 若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m /s由能量守恒定律得mgH =μmg (Δx -x BC )解得Δx =3.73 m .答案:(1)1.2 m (2)1 s (3)3.73 m3.(2020·全国卷Ⅲ)如图,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m /s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m /s 2.(1)若v =4.0 m /s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v =6.0 m /s ,载物箱滑上传送带Δt =1312s 后,传送带速度突然变为零.求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量.解析:(1)传送带的速度为v =4.0 m /s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2-v 20=-2as 1②联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小至v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 21-12m v 20⑦ μmgL =12m v 22-12m v 20⑧ 由⑦⑧式并代入题给条件得v 1=2 m /s ,v 2=43 m /s ⑨(3)传送带的速度为v =6.0 m /s 时,由于v 0<v <v 2,载物箱先做匀加速运动,加速度大小仍为a .设载物箱做匀加速运动通过的距离为s 2,所用时间为t 2,由运动学公式有v =v 0+at 2⑩v 2-v 20=2as 2⑪联立①⑩⑪式并代入题给数据得t 2=1.0 s ⑫s 2=5.5 m ⑬因此载物箱加速运动1.0 s 、向右运动5.5 m 时,达到与传送带相同的速度.此后载物箱与传送带共同匀速运动(Δt -t 2)的时间后,传送带突然停止.设载物箱匀速运动通过的距离为s 3,有s 3=(Δt -t 2)v ⑭由①⑫⑬⑭式可知,12m v 2>μmg (L -s 2-s 3),即载物箱运动到右侧平台时速度大于零,设为v 3.由运动学公式有v 23-v 2=-2a (L -s 2-s 3)⑮v 3=v -at 3⑯设载物箱通过传送带的过程中,传送带对它摩擦力的冲量为I 1,由动量定理有I 1=m (v 3-v 0)⑰联立①⑫⑬⑭⑮⑰式并代入题给数据得I 1=0⑱传送带对它支持力(大小等于重力)的冲量为I 2=mg (Δt +t 3)⑲联立⑮⑯⑲式并代入题给数据得I 2=6253N ·s ⑳ 由于I 1=0,所以传送带对它的冲量为I =I 2=6253N ·s ,方向竖直向上. 答案:(1)2.75 s (2)43 m /s 2 m /s (3)6253N ·s ,方向竖直向上 限时规范训练(九) 力学三大观点的综合应用建议用时60分钟,实际用时________一、单项选择题1.如图所示,小球a 、b (均可视为质点)用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为θ=60°.忽略空气阻力.则两球a 、b 的质量之比m a m b为( )A .22B .2-1C .1-22 D .2+1 解析:B b 球下摆过程中,由动能定理得m b gL =12m b v 20-0,碰撞过程动量守恒,设向左为正方向,由动量守恒定律可得m b v 0=(m a +m b )v ,两球向左摆动过程中,由机械能守恒定律得12(m a +m b )v 2=(m a +m b )gL (1-cos θ),解得m a m b=2-1,故ACD 错误,B 正确. 2.如图所示,质量为3m 的物块A 与质量为m 的物块B 用轻弹簧和不可伸长的细线连接,静止在光滑的水平面上,此时细线刚好伸直且无弹力.现使物块A 瞬间获得向右的速度v 0,在以后的运动过程中,细线没有绷断,以下判断正确的是( )A .细线再次伸直前,物块A 的速度先减小后增大B .细线再次伸直前,物块B 的加速度先减小后增大C .弹簧的最大弹性势能等于38m v 20D .物块A 、B 与弹簧组成的系统,损失的机械能最多为32m v 20解析:C 细线再次伸直时,也就是弹簧再次恢复原长时,细线恢复原长的过程中,A 始终受到向左的弹力,即一直做减速运动,B 始终受到向右的弹力,即一直做加速运动,弹簧的弹力先变大后变小,故B 的加速度先增大后减小,故A 、B 错误;弹簧弹性势能最大时,弹簧压缩到最短,此时A 、B 速度相等,根据动量守恒定律可得3m v 0=(3m +m )v ,解得v =34v 0,根据能量守恒定律可得,弹性势能E pmax =12×3m v 20-12·(3m +m )v 2=38m v 20,故C 正确;整个过程中,物块A 、B 与弹簧组成的系统只有弹簧的弹力做功,系统的机械能守恒,故D 错误.3.如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球,t =0时,甲静止,乙以6 m /s 的初速度向甲运动.它们仅在静电力的作用下沿同一直线运动(整个运动过程中两球没有接触),它们运动的v t 图像分别如图(b)中甲、乙两曲线所示.则由图线可知( )A .两带电小球的电性一定相反B .甲、乙两球的质量之比为2∶1C .t 2时刻,乙球的电势能最大D .在0~t 3时间内,甲的动能一直增大,乙的动能一直减小解析:B 由题图(b)可知,乙球减速的同时,甲球正向加速,说明两球相互排斥,带有同种电荷,故A 错误;两球作用过程动量守恒m 乙Δv 乙=m 甲Δv 甲,解得m 甲m 乙=21,故B 正确;t 1时刻,两球共速,距离最近,则乙球的电势能最大,故C 错误;在0~t 3时间内,甲的动能一直增大,乙的动能先减小,t 2时刻后逐渐增大,故D 错误.4.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,重力加速度为g ,一切摩擦均不计.则( )A .A 、B 物体组成的系统动量守恒B .A 不能到达圆槽的左侧最高点C .A 运动到圆槽的最低点时A 的速率为23gR D .A 运动到圆槽的最低点时B 的速率为 gR 3解析:D A 、B 物体组成的系统只有水平方向动量守恒,故A 错误;运动过程不计一切摩擦,系统机械能守恒,故A 可以到达圆槽的左侧最高点,且A 在圆槽的左侧最高点时,A 、B 的速度都为零,故B 错误;对A 运动到圆槽的最低点的运动过程由水平方向动量守恒得m v A =2m v B ,对A 、B 整体由机械能守恒可得mgR =12m v 2A +12×2m v 2B ,所以A 运动到圆槽的最低点时B 的速率为v B = gR 3,v A = 4gR 3,故C 错误,D 正确. 5.(2021·山东济南市高三模拟)碰碰车是大人和小孩都喜欢的娱乐活动.游乐场上,大人和小孩各驾着一辆碰碰车迎面相撞,碰撞前后两人的位移-时间图像(x t 图像)如图所示.已知小孩的质量为20 kg ,大人的质量为60 kg ,碰碰车质量相同,碰撞时间极短.下列说法正确的是( )A .碰撞前后小孩的运动方向没有改变B .碰碰车的质量为50 kgC .碰撞过程中小孩和其驾驶的碰碰车受到的总冲量大小为80 N ·sD .碰撞过程中损失的机械能为600 J解析:D 规定小孩初始运动方向为正方向,由图可知,碰后两车一起向反方向运动,故碰撞前后小孩的运动方向发生了改变,故A 错误;由图可知,碰前瞬间小孩的速度为2 m /s ,大人的速度为-3 m /s ,碰后两人的共同速度为-1 m /s ,设碰碰车的质量为M ,由动量守恒定律有(20+M )×2 kg ·m /s -(60+M )×3 kg ·m /s =(2M +20+60)×(-1) kg ·m /s ,解得M =60 kg ,故B 错误;碰前小孩与其驾驶的碰碰车的总动量为p 1=160 kg ·m /s ,碰后总动量为p 1′=-80 kg ·m /s ,由动量定理可知碰撞过程中小孩和其驾驶的碰碰车受到的总冲量为I =Δp =-240 N ·s ,故其大小为240 N ·s ,故C 错误;由能量守恒定律可得碰撞过程中损失的机械能为ΔE =12×80×22 J +12×120×(-3)2 J -12×200×(-1)2 J =600 J ,故D 正确.6.如图甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A .1v 0(s +L ) B .1v 0(s +2L ) C .12v 0(s +L ) D .1v 0(L +2s ) 解析:D 设子弹穿过木块的速度为v 1,木块最终速度为v 2,子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理-F f (s +L )=12m v 21-12m v 20,由动量定理-F f t =m v 1-m v 0,对木块由动能定理F f s =12m v 22,由动量定理F f t =m v 2,联立解得t =1v 0(L +2s ),故选D .7.质量为1 kg 的物体从足够高处由静止开始下落,其加速度a 随时间t 变化的关系图像如图所示,重力加速度g 取10 m /s 2,下列说法正确的是( )A .2 s 末物体所受阻力的大小为20 NB .在0~2 s 内,物体所受阻力随时间均匀减小C .在0~2 s 内,物体的动能增大了100 JD .在0~1 s 内,物体所受阻力的冲量大小为2.5 N ·s解析:D 2 s 末物体的加速度为零,则此时阻力等于重力,即所受阻力的大小为10 N ,选项A 错误;根据牛顿第二定律有mg -f =ma ,可得f =mg -ma ,在0~2 s 内,物体加速度随时间均匀减小,则所受阻力随时间均匀增大,选项B 错误;根据物体加速度a 随时间t 变化的关系图像与坐标轴所围图形的面积表示速度变化量可知,在0~2 s 内,物体的速度增加了Δv =12×2×10 m /s =10 m /s ,即t =2 s 时速度为v =10 m /s ,则在0~2 s 内,物体的动能增大了12m v 2=12×1×102 J =50 J ,选项C 错误;在0~1 s 内,物体速度的增量Δv 1=12×(5+10)×1 m /s =7.5 m /s ,根据动量定理有mgt -I f =m Δv 1,解得I f =2.5 N ·s ,选项D 正确.8.如图甲所示,光滑水平面上有一上表面粗糙的长木板,t =0时刻,质量m =1 kg 的滑块以速度v 0=7 m /s 滑上长木板左端,此后滑块与长木板运动的v t 图像如图乙所示.下列分析正确的是( )A .长木板的质量为0.5 kgB .长木板的长度为0.5 mC .0~2 s 内滑块与长木板间因摩擦产生的热量为16 JD .0~2 s 内长木板对滑块的冲量大小为4 kg ·m /s解析:C 滑块滑上长木板后,滑块受摩擦力作用做匀减速运动,长木板做匀加速运动,由图乙可知滑块的加速度大小为a 1=Δv Δt =2 m /s 2,长木板的加速度大小为a 2=Δv Δt=1 m /s 2,。
解动力学问题的三大观点及选用原则模型概述1.解动力学问题的三个基本观点1)动力学观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.用动量定理可简化问题的求解过程.2.力的三个作用效果及五个规律1)力的三个作用效果作用效果对应规律表达式列式角度力的瞬时作用效果牛顿第二定律F合=ma动力学力在空间上的积累效果动能定理W合=ΔE k即W合=12mv22-12mv21功能关系力在时间上的积累效果动量定理I合=Δp即FΔt=mv′-mv冲量与动量的关系2)两个守恒定律名称表达式列式角度能量守恒定律(包括机械能守恒定律)E2=E1能量转化(转移)动量守恒定律p2=p1动量关系3.力学规律的选用原则1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转化为系统内能的量.5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转化,作用时间都极短,因此用动量守恒定律去解决.6)对多个物理过程进行整体思考,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动。
7)对多个研究对象进行整体思考,即把两个或两个以上的物体作为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统)。
8)若单独利用动量观点(或能量观点)无法解决问题,可尝试两种观点结合联立方程求解。
第3课时力学三大观点的综合应用1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp =0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法. (1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动. (2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).考向1 动量和能量的观点在力学中的应用例1 (2014·安徽·24)在光滑水平地面上有一凹槽A ,中央放一小物块B .物块与左右两边槽壁的距离如图1所示,L 为1.0 m ,凹槽与物块的质量均为m ,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m /s 的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s 2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小. 解析 (1)设两者间相对静止时速度为v ,由动量守恒定律得m v 0=2m v v =2.5 m/s ,方向向右.(2)设物块与凹槽间的滑动摩擦力F f =μF N =μmg 设两者相对静止前相对运动的路程为s 1,由动能定理得-F f ·s 1=12(m +m )v 2-12m v 20解得s 1=12.5 m已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v 1、v 2,碰后的速度分别为v 1′、v 2′.有m v 1+m v 2=m v 1′+m v 2′12m v 21+12m v 22=12m v 1′2+12m v 2′2 得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v —t 图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则 v =v 0+ata =-μg 解得t =5 s凹槽的v —t 图象所包围的阴影部分面积即为凹槽的位移大小s 2.(等腰三角形面积共分13份,第一份面积为0.5L ,其余每份面积均为L )s 2=12(v 02)t +6.5L解得s 2=12.75 m答案 (1)2.5 m/s ,方向向右 (2)6次 (3)5 s 12.75 m如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v 2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题例2 如图3所示,在光滑的水平面上有一质量为m =1 kg 的足够长的木板C ,在C 上放置有A 、B 两物体,A 的质量m A =1 kg ,B 的质量为m B =2 kg.A 、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 的初速度,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A 、B 分离.已知A 和C 之间的动摩擦因数为μ1=0.2,B 、C 之间的动摩擦因数为μ2=0.1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大?(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少? 答案 见解析解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 、弹簧组成的系统由动量守恒定律和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B 联立解得:v A =0,v B =3 m/s. (2)对物体B 有:a B =μ2g =1 m/s 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 的共同加速度为a =1 m/s 2.对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律和能量守恒定律可得: m B v B =(m A +m B +m )vQ =12m B v 2B-12(m A +m B +m )v 2 解得:Q =4.5 J ,v =1.5 m/s(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E . 答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE k =12m v 21-12×2m v 22② 解得ΔE k =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E k A max =17 J.(限时:45分钟)1.如图1所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2.)图1(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2;(3)求出碰后木板在水平地面上滑动的距离s .答案 (1)向左运动 (2)v 1=4.2 m /s ,v 2=0.8 m/s (3)0.2 m 解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:F f =ma 0=2.5 N 木板受车向左的反作用力:F f ′=F f =2.5 N木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0.5 N 由于F f ′>F f0,所以木板不可能静止,将向左运动.(2)设车与挡板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿第二定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m2.如图2所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图2(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.3.如图3所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图3(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因. 答案 (1)4 3 m/s (2)12 m (3)见解析解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为: s =v 2乙2a =12 m<20 m 即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2 甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左4.如图4所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,求:图4(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若A 、B 恰能通过半圆轨道的最高点N ,求μ2;(3)要使A 、B 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件? 答案 (1)12 m /s 212 m/s (2)0.5 (3)0.09≤μ2≤0.5解析 (1)对A 刚上传送带时进行受力分析,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma 解得:a =12 m/s 2设A 能达到传送带的速度,由v 2-v 20=2ax 0得运动的位移x 0=116 m<L则到达Q 点前A 已和传送带共速 由于Mg sin θ=μ1Mg cos θ,所以A 先加速后匀速,到Q 点的速度为v =12 m/s. (2)设A 、B 碰后的共同速度为v 1, 由动量守恒定律得:M v =(M +m )v 1 解得:v 1=10 m/sA 、B 在最高点时速度为v 3有:(M +m )v 23R =(M +m )g设A 、B 在M 点速度为v 2,由机械能守恒得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ×2R 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx 解得:μ2=0.5(3)①若以v 3由N 点抛出,则有:2R =12gt 2x 1=v 3t =3.2 m>x则要使AB 能沿半圆轨道运动到N 点,并能落在传送带上,则μ2≤0.5②若AB 恰能落在P 点,则有:2R -L sin θ=12gt ′2x +L cos θ=v 3′t ′ 由12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ×2R 和12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx 联立可得:μ2=0.09综上所述,μ2应满足:0.09≤μ2≤0.5。
动力学三大观点应用1.常见的功能关系(1)合力做功与动能的关系:W 合=ΔE k 。
(2)重力做功与重力势能的关系:W G =-ΔE p 。
(3)弹力做功与弹性势能的关系:W 弹=-ΔE p 。
(4)电场力做功与电势能的关系W 电=-ΔE p(5)除重力以外其他力做功与机械能的关系:W 其他=ΔE 机。
(6)滑动摩擦力做功与内能的关系:F f x 相对=ΔE 内。
(7)安培力做功与电能关系:W 克 =E 电2.机械能守恒定律(1)条件:只有重力、系统内弹力做功。
(2)表达式:(守恒)E k1+E p1=E k2+E p2。
转化、转移 3.动能定理(1)内容:合外力做的功等于动能的变化。
(2)表达式:W =12mv 22-12mv 214.动量定理及动量守恒定律 (1)动量定理:Ft =mv 2-mv 1(2)动量守恒定律:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 二、应用思路: 1:确定研究对象2:受力分析,运动分析,做功分析,条件分析。
3:方法:三大观点1、(多选)(2017·全国卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。
F 随时间t 变化的图线如图5所示,则( )A.t =1 s 时物块的速率为1 m/sB.t =2 s 时物块的动量大小为4 kg·m/sC.t =3 s 时物块的动量大小为5 kg·m/sD.t =4 s 时物块的速度为零2、【2016·天津卷】(多选)我国高铁技术处于世界领先水平,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车。
假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比。
某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组: ( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3:2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1:2 3、【2015·浙江·18】(多选)我国科学教正在研制航母舰载机使用的电磁弹射器。
专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。
灵活运用三个根本观点解决动力学问题物体的运动状态变化决定于力的作用效果,在分析复杂的动力学问题时通常采用以下三个观点来解决,即〔1〕力的观点:牛顿运动定律结合运动学公式;〔2〕动量观点:动量定理和动量守恒定律:〔3〕能量观点:动能定理和能量守恒定律。
这三个观点一般同学都比拟熟悉,但碰到具体题目时,终究该选用哪个规律解题,很多同学都感觉比拟棘手。
这除了对这几个规律的适用条件掌握不透之外,还与没认真分析比拟这三个定律两个定理的特点有关。
笔者通过总结,认为还是有规律可行的,一般方法是:〔1〕以单一物体为研究对象.特别是涉与时间问题,优先考虑动量定理;假设求某一物体相对地的位移,如此优先考虑动能定理.〔2〕以两个相互作用的物体为研究对象.应优先考虑动量守恒定律;假设出现相对位移,如此优先考虑能量守恒定律;假设系统只有重力或弹力做功,如此应用机械能守恒定律.〔3〕对涉与加速度和时间的问题,应先从牛顿运动定律入手,确定研究对象,分析运动情况和受力情况,列方程,必要时再应用运动学规律.典型题型类型1 动量定理和动量守恒的综合应用1.如图5-14所示,有两个物体A,B,紧靠着放在光滑水平桌面上,A的质量为2kg,B的质量为3kg。
有一颗质量为100g的子弹以800m/s的水平速度射入A,经过0.01s又射入物体B,最后停在B中,A对子弹的阻力为3×103N,求A,B最终的速度。
【分析解答】设A,B质量分别为m A,m B,子弹质量为m。
子弹离开A的速度为了v,物体A,B最终速度分别为v A,v B。
在子弹穿过A的过程中,以A,B为整体,以子弹初速v0为正方向,应用动量定理。
f·t=〔m A+m B〕u 〔u为A,B的共同速度〕解得:u=6m/s。
由于B离开A后A水平方向不受外力,所以A最终速度V A=u=6m/s。
对子弹,A和B组成的系统,应用动量守恒定律:mv0=m A·v A+〔m+m B〕v B解得:v B=21.94m/s。
2020高考物理专题复习动力学动量和能量观点在力学中的应用一动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律.2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.【例题1】(2019·全国卷3·25).静止在水平地面上的两小物块A、B,质量分别为m A=l.0kg,m B=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。
某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为E k=10.0J。
释放后,A沿着与墙壁垂直的方向向右运动。
A、B与地面之间的动摩擦因数均为u=0.20。
重力加速度取g=10m/s²。
A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。
(1)求弹簧释放后瞬间A、B速度的大小;(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少?【答案】(1)v A=4.0m/s,v B=1.0m/s;(2)A先停止;0.50m;(3)0.91m;【解析】【分析】首先需要理解弹簧释放后瞬间的过程内A、B组成的系统动量守恒,再结合能量关系求解出A、B各自的速度大小;很容易判定A、B都会做匀减速直线运动,并且易知是B先停下,至于A是否已经到达墙处,则需要根据计算确定,结合几何关系可算出第二问结果;再判断A向左运动停下来之前是否与B发生碰撞,也需要通过计算确定,结合空间关系,列式求解即可。
科学思维篇2 活用“三大观点”解析电磁学综合问题电磁学综合问题一直是高考中的必考内容且几乎每年都作为压轴题出现,同时在选择题中也有所体现.主要考查方向有两大类:(1)带电粒子在复合场中的运动;(2)电磁感应现象中动力学问题、能量问题、电路问题等.在复习中该部分一定是重点复习内容,不仅对于基本内容及规律要熟练应用,对于综合问题也一定要强化训练,形成解决电磁综合问题的信心和习惯.带电粒子在复合场中的运动【高分快攻】1.带电粒子在组合场中运动的分析思路第1步:分阶段(分过程)按照时间顺序和进入不同的区域分成几个不同的阶段;第2步:受力分析和运动分析,主要涉及两种典型运动,如关系图;第3步:用规律.2.带电粒子在叠加场中运动的分析方法【典题例析】 (2019·高考全国卷Ⅰ)如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.[解析] (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12mv 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有qvB =mv 2r②由几何关系知d =2r③联立①②③式得q m =4UB 2d 2. ④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为s =πr2+r tan 30° ⑤带电粒子从射入磁场到运动至x 轴的时间为t =s v⑥ 联立②④⑤⑥式得t =Bd 24U ⎝ ⎛⎭⎪⎫π2+33.⑦[答案] (1)4UB 2d 2 (2)Bd 24U ⎝ ⎛⎭⎪⎫π2+33【题组突破】 角度1 磁场—磁场组合场中的运动分析1.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm 6qBC .11πm 6qBD .13πm 6qB解析:选B.设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力有qvB =m v 2R 、T =2πRv ,可得R 1=mv qB 、R 2=2mv qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm6qB,选项B 正确,A 、C 、D 均错误.角度2 电场—磁场组合场中的运动分析2.(2019·全真模拟卷一)如图所示,在直角坐标系xOy 平面内,虚线MN 平行于y 轴,N 点坐标为(-L ,0),MN 与y 轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的矩形有界匀强磁场(图中未画出).现有一质量为m 、电荷量为-e 的电子,从虚线MN 上的P 点,以平行于x 轴正方向的初速度v 0射入电场,并从y 轴上点A ⎝ ⎛⎭⎪⎫0,12L 射出电场,射出时速度方向与y 轴负方向成30°角,此后,电子做匀速直线运动, 进入矩形磁场区域并从磁场边界上点Q ⎝⎛⎭⎪⎫36L ,-L 射出,速度沿x 轴负方向,不计电子重力,求:(1)匀强电场的电场强度E 的大小;(2)匀强磁场的磁感应强度B 的大小和电子在磁场中运动的时间t ;(3)矩形有界匀强磁场区域的最小面积S min .解析:(1)设电子在电场中运动的加速度大小为a ,时间为t 0,离开电场时,沿y 轴方向的速度大小为v y则L =v 0t 0,a =eE m ,v y =at 0,v y =v 0tan 30°联立解得E =3mv 2eL.(2)设轨迹与x 轴的交点为D ,O 、D 间的距离为x D ,则x D =12L tan 30°=36L所以DQ 平行于y 轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ 上,电子运动轨迹如图所示设电子离开电场时速度大小为v ,在磁场中做匀速圆周运动的轨道半径为r ,周期为T则evB =m v 2r ,v =v 0sin 30°由几何关系有r +rsin 30°=L即r =L3联立以上各式解得B =6mv 0eL电子在磁场中偏转的角度为120°,则有t =T3T =2πm eB ⎝⎛⎭⎪⎫或T =2πr v =πL 3v 0 解得t =πL9v 0.(3)以切点F 、Q 的连线为矩形的一条边,与电子的运动轨迹相切的另一边作为FQ 的对边,此时有界匀强磁场区域面积最小S min =3r ×r2解得S min =3L218.答案:见解析角度3 电场与磁场并存的叠加场问题3.(2017·高考全国卷Ⅰ)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a解析:选B.该空间区域为匀强电场、匀强磁场和重力场的叠加场,a 在纸面内做匀速圆周运动,可知其重力与所受到的电场力平衡,洛伦兹力提供其做匀速圆周运动的向心力,有m a g =qE ,解得m a =qEg.b 在纸面内向右做匀速直线运动,由左手定则可判断出其所受洛伦兹力方向竖直向上,可知m b g =qE +qv b B ,解得m b =qE g +qv b Bg.c 在纸面内向左做匀速直线运动,由左手定则可判断出其所受洛伦兹力方向竖直向下,可知m c g +qv c B =qE ,解得m c =qE g -qv c Bg.综上所述,可知m b >m a >m c ,选项B 正确.角度4 电场、磁场和重力场并存的叠加场问题4.(2019·黄冈中学模拟)如图所示,坐标系xOy 在竖直平面内,x 轴沿水平方向.x >0的区域有垂直于坐标平面向外的匀强磁场,磁感应强度大小为B 1;第三象限同时存在着垂直于坐标平面向外的匀强磁场和竖直向上的匀强电场,磁感应强度大小为B 2,电场强度大小为E .x >0的区域固定一与x 轴成θ=30°角的绝缘细杆.一穿在细杆上的带电小球a 沿细杆匀速滑下,从N 点恰能沿圆周轨道运动到x 轴上的Q 点,且速度方向垂直于x 轴.已知Q 点到坐标原点O 的距离为32l ,重力加速度为g ,B 1=7E110πgl,B 2=E 5π6gl.空气阻力忽略不计.(1)求带电小球a 的电性及其比荷q m;(2)求带电小球a 与绝缘细杆的动摩擦因数μ;(3)当带电小球a 刚离开N 点时,从y 轴正半轴距原点O 为h =20πl3的P 点(图中未画出)以某一初速度平抛一个不带电的绝缘小球b ,b 球刚好运动到x 轴时与向上运动的a 球相碰,则b 球的初速度为多大?解析:(1)由带电小球a 在第三象限内做匀速圆周运动可得,带电小球a 带正电,且mg =qE ,解得q m =g E.(2)带电小球a 从N 点运动到Q 点的过程中,设运动半径为R ,有qvB 2=m v 2R由几何关系有R +R sin θ=32l联立解v =5πgl6带电小球a 在杆上做匀速运动时,由平衡条件有 mg sin θ=μ(qvB 1-mg cos θ) 解得μ=34. (3)带电小球a 在第三象限内做匀速圆周运动的周期T =2πRv=24πl5g带电小球a 第一次在第二象限竖直上下运动的总时间为t 0=2vg=10πl3g绝缘小球b 平抛运动至x 轴上的时间为t =2h g=210πl3g两球相碰有t =T3+n ⎝ ⎛⎭⎪⎫t 0+T 2(n =0,1,2,…)联立解得n =1设绝缘小球b 平抛的初速度为v 0,则72l =v 0t解得v 0=147gl160π. 答案:(1)正电 g E (2)34 (3)147gl160π带电粒子在复合场中的运动与现代科技的综合【高分快攻】教材中重要的五大科技应用类模型【典题例析】(2019·高考天津卷)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作;当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为v.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的( )A.前表面的电势比后表面的低B.前、后表面间的电压U与v无关C.前、后表面间的电压U与c成正比D .自由电子受到的洛伦兹力大小为eU a[解析] 由题意可判定,电子定向移动的方向水平向左,则由左手定则可知,电子所受的洛伦兹力指向后表面,因此后表面积累的电子逐渐增多,前表面的电势比后表面的电势高,A 错误;当电子所受的电场力与洛伦兹力平衡时,电子不再发生偏转,此时前、后表面间的电压达到稳定,对稳定状态下的电子有eE =eBv ,又E =U a,解得U =Bav ,显然前、后表面间的电压U 与电子的定向移动速度v 成正比,与元件的宽度a 成正比,与长度c 无关,B 、C 错误;自由电子稳定时受到的洛伦兹力等于电场力,即F =eE =eU a,D 正确.[答案] D如图所示为“双聚焦分析器”质谱仪的结构示意图,其中,加速电场的电压为U ,静电分析器中与圆心O 1等距离的各点场强大小相等、方向沿径向,磁分析器中以O 2为圆心、圆心角为90°的扇形区域内,分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右端面平行.由离子源发出的一质量为m 、电荷量为q 的正离子(初速度为零,重力不计)经加速电场加速后,从M 点垂直于电场方向进入静电分析器,沿半径为R 的四分之一圆弧轨道做匀速圆周运动,从N 点射出,接着由P 点垂直磁分析器的左边界射入,最后垂直于下边界从Q 点射出并进入收集器.已知 Q 点与圆心O 2的距离为d .(1)求磁分析器中磁场的磁感应强度B 的大小和方向; (2)求静电分析器中离子运动轨迹处电场强度E 的大小;(3)现将离子换成质量为m 1=0.9m 、电荷量仍为q 的另一种正离子,其他条件不变.试指出该离子进入磁分析器时的位置,并判断它射出磁场的位置在Q 点的左侧还是右侧.解析:(1)离子在加速电场中加速,设进入静电分析器的速度大小为v ,根据动能定理得qU =12mv 2离子射出静电分析器时的速度大小仍为v ,在磁分析器中,离子在洛伦兹力作用下做匀速圆周运动,设轨道半径为r ,根据牛顿第二定律得Bqv =m v 2r依题意知r =d 联立解得B =1d2mU q由左手定则得,磁场方向垂直纸面向外.(2)在静电分析器中,离子在电场力作用下做匀速圆周运动,根据牛顿第二定律得qE =m v 2R联立解得E =2UR.(3)设质量为m 1的离子经加速电场加速后,速度大小为v 1,根据动能定理有qU =12m 1v 21离子在静电分析器中做匀速圆周运动,根据牛顿第二定律有qE =m 1v 21R 1联立解得质量为m 1的离子在静电分析器中做匀速圆周运动的轨道半径R 1=R ,即该离子从N 点射出静电分析器,由P 点射入磁分析器.该离子在磁分析器中做匀速圆周运动的半径r 1=m 1v 1qB =2m 1qU qB∝ m 1,所以r 1<r ,即该离子射出磁场的位置在Q 点的左侧.答案:见解析三大观点解决电磁感应问题【高分快攻】1.电磁感应综合问题的两大研究对象及其关系电磁感应中导体棒既可视为电学对象(因为它相当于电源),又可视为力学对象(因为感应电流的存在而受到安培力),而感应电流I 和导体棒的速度v 则是联系这两大对象的纽带.2.解决电磁感应与力学的综合问题的基本步骤【典题例析】(2018·高考天津卷)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置.图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l 的两条平行光滑金属导轨,电阻忽略不计.ab 和cd 是两根与导轨垂直、长度均为l 、电阻均为R 的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l ,列车的总质量为m .列车启动前,ab 、cd 处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示.为使列车启动,需在M 、N 间连接电动势为E 的直流电源,电源内阻及导线电阻忽略不计.列车启动后电源自动关闭.(1)要使列车向右运行,启动时图1中M 、N 哪个接电源正极,并简要说明理由;(2)求刚接通电源时列车加速度a 的大小;(3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B 的匀强磁场区域,磁场宽度和相邻磁场间距均大于l .若某时刻列车的速度为v 0,此时ab 、cd 均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?[解析] (1)M 接电源正极.列车要向右运动,安培力方向应向右.根据左手定则,接通电源后,金属棒中电流方向由a 到b 、由c 到d ,故M 接电源正极.(2)由题意,启动时ab 、cd 并联,设回路总电阻为R 总,由电阻的串并联知识得R 总=R2①设回路总电流为I ,根据闭合电路欧姆定律有I =E R 总②设两根金属棒所受安培力之和为F ,有 F =IlB③ 根据牛顿第二定律有 F =ma④联立①②③④式得a =2BElmR.⑤(3)设列车减速时,cd 进入磁场后经Δt 时间ab 恰好进入磁场,此过程中穿过两金属棒与导轨所围回路的磁通量的变化为ΔΦ,平均感应电动势为E 1,由法拉第电磁感应定律有E 1=ΔΦΔt⑥ 其中ΔΦ=Bl2⑦设回路中平均电流为I ′,由闭合电路欧姆定律有I ′=E 12R⑧设cd 受到的平均安培力为F ′,有 F ′=I ′lB ⑨ 以向右为正方向,设Δt 时间内cd 受安培力冲量为I 冲,有 I 冲=-F ′Δt ⑩同理可知,回路出磁场时ab 受安培力冲量仍为上述值,设回路进出一块有界磁场区域安培力冲量为I 0,有I 0=2I 冲 ⑪ 设列车停下来受到的总冲量为I 总,由动量定理有 I 总=0-mv 0 ⑫联立⑥⑦⑧⑨⑩⑪⑫式得I 总I 0=mv 0R B 2l 3. 讨论:若I 总I 0恰为整数,设其为n ,则需设置n 块有界磁场;若I 总I 0不是整数,设I 总I 0的整数部分为N ,则需设置N +1块有界磁场.[答案] 见解析【题组突破】角度1 单杆+电阻+导轨模型1.如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻.整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度.重力加速度为g ,导轨电阻不计,杆与导轨接触良好.求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量.解析:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv ,回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L2,方向沿导轨平面向下. (2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv 2m又Q 杆=12Q 总所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4.答案:见解析角度2 双杆+导轨模型2.(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直.在t =0时刻,两杆都处于静止状态.现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况.(2)如图2所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab和cd,构成矩形回路.在整个导轨平面内都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度.若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况.解析:(1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a2,受到的安培力大小均为F1,则感应电动势为E=Bl(v1-v2) ①感应电流为I=E2R②对甲和乙分别由牛顿第二定律得F-F1=ma1,F1=ma2 ③当v1-v2=定值(非零),即系统以恒定的加速度运动时,a1=a2④解得a1=a2=F2m⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大.(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流.ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速.两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动.答案:见解析角度3 线圈模型3.(2019·滨州模拟)如图所示,足够长的粗糙斜面与水平面成θ=37°放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量m=10 g,总电阻为R =1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.解析:(1)金属线圈向下匀速进入磁场时有mg sin θ=μmg cos θ+F安其中F 安=BId ,I =ER,E =Bdv解得v =(mg sin θ-μmg cos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动有v 2=2ax ,mg sin θ-μmg cos θ=ma线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmg cos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmg cos θg sin θ-μg cos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中,有mg sin θ·2d -μmg cos θ·2d +W 安=0,Q =-W 安 解得Q =2mgd (sin θ-μcos θ)=0.004 J. 答案:见解析①分析线圈运动情况,看运动过程中是否有磁通量不变的阶段.②线圈穿过磁场,有感应电流产生时,整个线圈形成闭合电路,分析电路,由闭合电路欧姆定律列方程.③对某一状态,分析线圈的受力情况,由牛顿第二定律列式:F 外+F 安=ma .④线圈穿过磁场时,安培力做功,其他形式的能和电能互相转换,电流通过电阻时,电流做功使电能转化为内能,再由功能定理W 外+W 安=E k2-E k1或能量守恒定律列式.1.如图所示,在水平线ab 的下方有一匀强电场,电场强度为E ,方向竖直向下,ab 的上方存在匀强磁场,磁感应强度为B ,方向垂直纸面向里.磁场中有一内、外半径分别为R 、3R 的半圆环形区域,外圆与ab 的交点分别为M 、N .一质量为m 、电荷量为q 的带负电粒子在电场中P 点静止释放,由M 进入磁场,从N 射出.不计粒子重力.(1)求粒子从P 到M 所用的时间t ;(2)若粒子从与P 同一水平线上的Q 点水平射出,同样能由M 进入磁场,从N 射出.粒子从M 到N 的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q 时速度v 0的大小.解析:(1)设粒子在磁场中运动的速度大小为v ,所受洛伦兹力提供向心力,有qvB =mv 23R①设粒子在电场中运动所受电场力为F ,有 F =qE ② 设粒子在电场中运动的加速度为a ,根据牛顿第二定律有 F =ma ③ 粒子在电场中做初速度为零的匀加速直线运动,有 v =at ④ 联立①②③④式得t =3RB E.⑤(2) 粒子进入匀强磁场后做匀速圆周运动,其周期与速度、半径无关,运动时间只由粒子所通过的圆弧所对的圆心角的大小决定.故当轨迹与内圆相切时,所用的时间最短.设粒子在磁场中的轨迹半径为r ′,由几何关系可得(r ′-R )2+(3R )2=r ′2⑥设粒子进入磁场时速度方向与ab 的夹角为θ,即圆弧所对圆心角的一半,由几何关系知 tan θ=3Rr ′-R⑦ 粒子从Q 射出后在电场中做类平抛运动,在电场方向上的分运动和从P 释放后的运动情况相同,所以粒子进入磁场时沿竖直方向的速度同样为v .在垂直于电场方向上的分速度始终等于v 0,由运动的合成和分解可得tan θ=v v 0⑧联立①⑥⑦⑧式得v 0=qBR m.答案:见解析2.(2018·高考全国卷Ⅱ) 一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行.一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M 点运动到N 点的时间.解析:(1)粒子运动的轨迹如图(a)所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)图(a) 图(b)(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M 点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度的大小为a ;粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ[见图(b)],速度沿电场方向的分量为v 1.根据牛顿第二定律有qE =ma ①式中q 和m 分别为粒子的电荷量和质量.由运动学公式有v 1=at ② l ′=v 0t ③ v 1=v cos θ ④粒子在磁场中做匀速圆周运动,设其运动轨道半径为R ,由洛伦兹力公式和牛顿第二定律得qvB =mv 2R⑤ 由几何关系得l =2R cos θ ⑥联立①②③④⑤⑥式得v 0=2El ′Bl.⑦(3)由运动学公式和题给数据得v 1=v 0cot π6⑧联立①②③⑦⑧式得q m =43El ′B 2l 2⑨设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2(π2-π6)2πT⑩式中T 是粒子在磁场中做匀速圆周运动的周期 T =2πmqB⑪由③⑦⑨⑩⑪式得t ′=Bl E (1+3πl18l ′).答案:见解析3.同一水平面上的两根正对平行金属直轨道MN 、M ′N ′,如图所示放置,两轨道之间的距离l =0.5 m .轨道的MM ′端之间接一阻值R =0.4 Ω的定值电阻,轨道的电阻可忽略不计,NN ′端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ′P ′平滑连接,两半圆轨道的半径均为R 0=0.5 m ,水平直轨道MK 、M ′K ′段粗糙,KN 、K ′N ′段光滑,且KNN ′K ′区域恰好处于竖直向下的匀强磁场中,磁感应强度B =0.64 T ,磁场区域的宽度d =1 m ,且其右边界与NN ′重合,现有一质量m =0.2 kg 、电阻r =0.1 Ω的导体杆ab 静止在距磁场左边界s =2 m 处,在与杆垂直的水平恒力F =2 N 作用下开始运动,导体杆ab 与粗糙导轨间的动摩擦因数μ=0.1,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能通过半圆形轨道的最高处PP ′.已知导体杆在运动过程中与轨道始终垂直且接触良好,取g =10 m/s 2.求:(1)导体杆刚进入磁场时,通过导体杆的电流大小和方向; (2)导体杆穿过磁场的过程中通过电阻R 的电荷量; (3)导体杆穿过磁场的过程中整个电路中产生的焦耳热.解析:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为v 1,由动能定理有 (F -μmg )s =12mv 21-0,代入数据解得v 1=6 m/s ,导体杆刚进入磁场时产生的感应电动势 E =Blv 1=1.92 V , 此时通过导体杆的电流I =ER +r=3.84 A ,根据右手定则可知,电流方向由b 向a .(2)设导体杆在磁场中运动的时间为t ,产生的感应电动势的平均值为E ,则由法拉第电磁感应定律有E =ΔΦΔt =BldΔt, 通过电阻R 的感应电流的平均值I =ER +r,通过电阻R 的电荷量q =I Δt =BldR +r=0.64 C. (3)设导体杆离开磁场时的速度大小为v 2,运动到半圆形轨道最高处的速度为v 3,因导体杆恰好能通过半圆形轨道的最高处,则在轨道最高处时,由牛顿第二定律有mg =m v 23R 0,代入数据解得v 3= 5 m/s ,杆从NN ′运动至PP ′的过程,根据机械能守恒定律有 12mv 22=12mv 23+mg ·2R 0, 代入数据解得v 2=5 m/s ,导体杆穿过磁场的过程中损失的机械能 ΔE =12mv 21-12mv 22=1.1 J ,此过程中电路中产生的焦耳热Q 热=ΔE =1.1 J. 答案:(1)3.84 A 由b 向a (2)0.64 C (3)1.1 J4.(2019·烟台模拟)如图甲所示,相距L =1 m 的两根足够长的光滑平行金属导轨倾斜放置,与水平面夹角θ=37°,导轨电阻不计,质量m =1 kg 、电阻为r =0.5 Ω的导体棒ab 垂直于导轨放置,导轨的PM 两端接在外电路上,定值电阻阻值R =1.5 Ω,电容器的电容C =0.5 F ,电容器的耐压值足够大,导轨所在平面内有垂直于导轨平面斜向上的匀强磁场.在开关S 1闭合、S 2断开的状态下将导体棒ab 由静止释放,导体棒的v -t 图象如图乙所示,重力加速度g =10 m/s 2.(1)求磁场的磁感应强度大小B ;(2)在开关S 1闭合、S 2断开的状态下,当导体棒下滑的距离x =5 m 时,定值电阻产生的焦耳热为21 J ,此时导体棒的速度与加速度分别是多大?(3)现在开关S 1断开、S 2闭合,由静止释放导体棒,求经过t =2 s 时导体棒的速度. 解析:(1)由题图可知,导体棒的最大速度v m =3 m/s 对应的感应电动势E =BLv m感应电流I =ER +r当导体棒的速度达到最大时,导体棒受力平衡,则 BIL =mg sin θ解得B =mg (R +r )sin θL 2v m=2 T.(2)导体棒和电阻串联,由公式Q =I 2Rt 可知,。
1 / 5动力学三大观点综合应用 专题一、牛顿第二定律与动能定理的综合应用1、如图甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0m.选择斜面底端为参考平面,上升过程中,物体的机械能E 随高度h 的变化关系如图乙所示,g 取 10 m/s 2,sin 37°=0.6,cos 37°=0.8.则( )A.物体的质量m=0.67 kgB.物体与斜面之间的动摩擦因数μ=0.5C.物体上升过程中的加速度大小a=1m/sD.物体回到斜面底端时的动能E=10J2、倾角为θ的斜面体固定在水平面上,在斜面体的底端附近固定一挡板,一质量不计的轻弹簧下端固定在挡板上,其自然伸长时弹簧的上端位于斜面体上的0点.质量分别为4m 、m 的物块甲和乙用一质量不计的细绳连接,且跨过固定在斜面体顶端的光滑定滑轮,连接甲的细绳与斜面平行,如图所示.开始时物块甲位于斜面体上的M 处,且MO=L ,物块乙距离水平面足够高,现将物块甲和乙由静止释放,物块甲沿斜面下滑,当甲将弹簧压缩到N 点时,甲的速度减为零,ON=L/2,已知物块甲与斜面间的动摩擦因数为μ=83,θ=30°,重力加速度g 取10m/s 2,忽略空气阻力,整个过程细绳始终没有松弛且乙未碰到滑轮,则下列说法正确的是( )A.物块甲由静止释放到滑至斜面体上N 点的过程,物块甲先匀加速运动紧接着做匀减速运动到速度减为零B.物块甲在与弹簧接触前的加速度大小为0.5m/s 2C.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为15mgL/8D.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为3mgL/83、如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙的模型。
倾角为45°的直轨道AB ,半径R=10m 的光滑竖直圆轨道和倾角为37°的直轨道EF ,分别通过水平光滑衔接轨道 BC 、C'E 平滑连接,另有水平减速直轨道FG 与EF 平滑连接,EG 间的水平距离L=40m 。
高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.mv A +mv B -mv C =0① mgR =12mv 2A +12mv 2B +12mv 2C② 在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:mv B -2mv =0⑤ mgR =mgh +12mv 2B +12·2mv2⑥联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m/s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12Mv 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律:Mv =Mv A +mv B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则 对于A 物块 -μMgs A =0-12Mv 2A解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则 -μmgs B =0-12mv 2B解得s B=8 m(即从E点返回2 m)由于s A+s B=10 m<2×6 m=12 m,故它们停止运动时仍相距2 m,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2如图3所示,一倾斜的传送带倾角θ=37°,始终以v=12 m/s的恒定速度顺时针转动,传送带两端点P、Q间的距离L=2 m,紧靠Q点右侧有一水平面长为x=2 m,水平面右端与一光滑的半径R=1.6 m的竖直半圆轨道相切于M点,MN为竖直的直径.现有一质量M =2.5 kg的物块A以v0=10 m/s的速度自P点沿传送带下滑,A与传送带间的动摩擦因数μ1=0.75,到Q点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg的B物块相碰,碰后A、B粘在一起,A、B与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2.求:图3(1)A滑上传送带时的加速度a和到达Q点时的速度;(2)若AB恰能通过半圆轨道的最高点N,求μ2;(3)要使AB能沿半圆轨道运动到N点,且从N点抛出后能落到传送带上,则μ2应满足什么条件?审题突破(1)由牛顿第二定律求出加速度,由运动学公式求出A的速度.(2)A、B碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析(1)A刚滑上传送带时,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma,代入数据得:a=12 m/s2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得:Mv =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动, 在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上: 2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m/s 212 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:mv 1=2mv 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12mv 21-12×2mv 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L=v 2t +12at 2④由①③④式得v 1=6L -at2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m/s ≤v 1≤14 m/s 设向左经过A 点的速度为v A ,由动能定理知12×2mv 2A -12×2mv 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律. 知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点? 答案 (1)123gx 0 (2)14mgx 0 (3)+43gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2 由机械能守恒定律得mg 3x 0sin 30°=12mv 21由动量守恒定律得mv 1=2mv 2 解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30°解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12mv 2+mg 3x 0sin 30°=12mv 23 mv 3=2mv 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30°此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12mv 25=12mv 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =mv26R联立以上各式解得v =+43gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 2解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 2解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大 v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s滑块m 1与传送带同速度,没有摩擦,落地点射程为x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有 -μm 2gL =12m 2v 2′2-12m 2v 22解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m. 题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s .答案 (1)向左运动 (2)4.2 m/s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2L t 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式:对小车:F =ma 1v 1=a 1t对木板:F -μ(m +M )g =Ma 2v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m/s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有mv 1-Mv 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m/s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。
2020年高考物理备考:动力学、动量和能量观点在力学中的应用1.本专题是力学三大观点在力学中的综合应用,高考对本专题将作为计算题压轴题的形式命题.2.学好本专题,可以帮助同学们熟练应用力学三大观点分析和解决综合问题.3.用到的知识、规律和方法有:动力学方法(牛顿运动定律、运动学规律);动量观点(动量定理和动量守恒定律);能量观点(动能定理、机械能守恒定律和能量守恒定律).【力的三个作用效果与五个规律】分类对应规律公式表达力的瞬时作用效果牛顿第二定律F合=ma力对空间积累效果动能定理W合=ΔE kW合=12mv22-12mv12机械能守恒定律E1=E2mgh1+12mv12=mgh2+12mv22力对时间积累效果动量定理F合t=p′-pI合=Δp动量守恒定律m1v1+m2v2=m1v1′+m2v2′【常见的力学模型及其结论】模型名称模型描述模型特征模型结论“速度交换”模型相同质量的两球发生弹性正碰m1=m2,动量、动能均守恒v1′=0,v2′=v0(v2=0,v1=v0)“完全非弹性碰撞”模型两球正碰后粘在一起运动动量守恒、能量损失最大v=m1m1+m2v0(v2=0,v1=v0)“子弹打木块”模型子弹水平射入静止在光滑的水平面上的木块中并最终一起共同运动恒力作用、已知相对位移、动量守恒F f x相对=12m1v02-12(m1+m2)v2“人船”模型人在不计阻力的船上行走已知相对位移、动量守恒、开始时系统静止x船=mM+mL,x人=MM+mL一动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,因此用动量守恒定律去解决.【例题1】(2018·全国卷Ⅱ·24)汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图1所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m.已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.【答案】(1)3.0 m/s(2)4.25 m/s【解析】(1)设B车的质量为m B,碰后加速度大小为a B.根据牛顿第二定律有μm B g=m B a B①式中μ是汽车与路面间的动摩擦因数.设碰撞后瞬间B车速度的大小为v B′,碰撞后滑行的距离为s B.由运动学公式有v B′2=2a B s B②联立①②式并利用题给数据得v B ′=3.0 m/s ③(2)设A 车的质量为m A ,碰后加速度大小为a A ,根据牛顿第二定律有 μm A g =m A a A ④设碰撞后瞬间A 车速度的大小为v A ′,碰撞后滑行的距离为s A ,由运动学公式有 v A ′2=2a A s A ⑤设碰撞前的瞬间A 车速度的大小为v A .两车在碰撞过程中动量守恒,有 m A v A =m A v A ′+m B v B ′⑥联立③④⑤⑥式并利用题给数据得 v A =4.25 m/s【例题2】(2018·重庆市上学期期末抽测)如图甲所示,质量m 1=4 kg 的足够长的长木板静止在光滑水平面上,质量m 2=1 kg 的小物块静止在长木板的左端.现对小物块施加一水平向右的作用力F ,小物块和长木板运动的速度-时间图象如图乙所示.2 s 后,撤去F ,g 取10 m/s 2.求:(1)小物块与长木板之间的动摩擦因数μ; (2)水平力的大小F ;(3)撤去F 后,小物块和长木板组成的系统损失的机械能ΔE . 【答案】 (1)0.2 (2)4 N (3)3.6 J 【解析】 (1)由题图可知: 长木板的加速度a 1=12m/s 2=0.5 m/s 2由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力F f =m 1a 1=2 N 小物块与长木板之间的动摩擦因数:μ=F fm 2g =0.2(2)由题图可知,小物块的加速度a 2=42 m/s 2=2 m/s 2由牛顿第二定律可知:F -μm 2g =m 2a 2 解得F =4 N(3)撤去F 后,小物块和长木板组成的系统动量守恒,以向右为正方向,最终两者以相同速度(设为v )运动m 1v 1+m 2v 2=(m 1+m 2)v 代入数据解得v =1.6 m/s则系统损失的机械能ΔE =⎝⎛⎭⎫12m 1v 12+12m 2v 22-12()m 1+m 2v 2=3.6 J 二 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律. 能量的观点:动能定理和能量守恒定律. 2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律). (2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.【例题1】 (2019·全国卷3·25).静止在水平地面上的两小物块A 、B ,质量分别为m A =l.0kg ,m B =4.0kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0m ,如图所示。
1 / 5
动力学三大观点综合应用 专题
一、牛顿第二定律与动能定理的综合应用
1、如图甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0m.选择斜面底端为参考平面,上升过程中,物体的机械能E 随高度h 的变化关系如图乙所示,g 取 10 m/s 2,sin 37°=0.6,cos 37°=0.8.则( )
A.物体的质量m=0.67 kg
B.物体与斜面之间的动摩擦因数μ=0.5
C.物体上升过程中的加速度大小a=1m/s
D.物体回到斜面底端时的动能E=10J
2、倾角为θ的斜面体固定在水平面上,在斜面体的底端附近固定一挡板,一质量不计的轻弹簧下端固定在挡板上,其自然伸长时弹簧的上端位于斜面体上的0点.质量分别为4m 、m 的物块甲和乙用一质量不计的细绳连接,且跨过固定在斜面体顶端的光滑定滑轮,连接甲的细绳与斜面平行,如图所示.开始时物块甲位于斜面体上的M 处,且MO=L ,物块乙距离水平面足够高,现将物块甲和乙由静止释放,物块甲沿斜面下滑,当甲将弹簧压缩到N 点时,甲的速度减为零,ON=L/2,已知物块甲与斜面间的动摩擦因数为μ=
8
3
,θ=30°,重力加速度g 取10m/s 2,忽略空气阻力,整个过程细绳始终没有松弛且乙未碰到滑轮,则下列说法正确的是( )
A.物块甲由静止释放到滑至斜面体上N 点的过程,物块甲先匀加速运动紧接着
做匀减速运动到速度减为零
B.物块甲在与弹簧接触前的加速度大小为0.5m/s 2
C.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为15mgL/8
D.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为3mgL/8
3、如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙的模型。
倾角为45°的直轨道AB ,半径R=10m 的光滑竖直圆轨道和倾角为37°的直轨道EF ,分别通过水平光滑衔接轨道 BC 、C'E 平滑连接,另有水平减速直轨道FG 与EF 平滑连接,EG 间的水平距离L=40m 。
现有质量m=500kg 的过山车,从高h=40m 处的A 点静止下滑,经 BCDC'EF 最终停在G 点。
过山车与轨道 AB 、EF 的 动摩擦因数均为μ1=0.2,与减速直轨道FG 的动摩擦因数μ2=0.75,过山车可视为质点,运动中不脱离轨道,求:
(1)过山车运动至圆轨道最低点C 时的速度大小; (2)过山车运动至圆轨道最高点D 时对轨道的作用力;
(3)减速直轨道 FG 的长度 x 。
(已知sin 37°=0.6,cos 37°=0.8)
4、如图,水平传送带以v=4m/s速度顺时针方向运行,右侧等高光滑水平面上静置一个各表面均光滑的滑槽(内壁为90。
圆弧面且最低点与水平面相切),半径R=0.4m,质量M=1.6kg,传送带左侧有一表面粗糙的固定斜面,倾角θ=370,斜面通过一小段圆弧面与光滑水平面带平滑连接(此段水平面与皮带等高且长度忽略)。
现有一质量m=0.4kg的小物块(可视为质点),以v o=6m/s水平速度向左滑上传送带,当小物块离开传送带瞬间立即给滑槽一水平向右的初速度v2=1m/s,且使传送带逆时针方向转动,转动速度大小不变。
已知小物块与传送带、斜面间的动摩擦因数μ=0.5,滑动摩擦力等于最大静摩擦力,传送带两转轴间的距离L=5m,取g=10m/s2,sin 37°=0.6,cos37°=0.8。
求:
(1)小物块从滑上传送带至第一次离开传送带过程中所经历的时间。
(2)小物块脱离滑槽时对地的速度大小。
(3)从小物块由斜面低端第一次开始上滑算起,到第4次滑离斜面的过程中所经过的总路程。
5、如图所示,光滑水平平台AB上有一根轻弹簧,一端固定于点A,自然状态下
另一端恰好在点B.平台B端连接两个内壁光滑、半径均为R=0.2m的1/4细圆弧管道BC和CD,D端与水平光滑地面DE 相切。
E端通过光滑小圆弧与一粗糙斜面EF 相接,斜面与水平面的倾角θ可在0°<0<75°范围内变化(调节好后即保持不变).一质量为m=0.1 kg 的小物块(略小于细管道内径)将弹簧压缩后由静止开始释放,
被弹开后以v0=2m/s的速度进入管道.小物块与斜面间的动摩擦因数为μ=
3
3
,取g=10m/s2,不计空气阻力,求:
(1)小物块通过B点时对细管道的压力大小和方向;
(2)8取不同值时,在小物块运动的全过程中因摩擦产生的热量Q与tanθ的关系式.
2/ 5
二、能量观点和动量观点分析综合问题
1、静止在水平地面上的两小物块A、B,质量分别为m A=1.0kg,m B=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离L=1.0m,如图所示。
某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0J。
释放后,A沿着与墙壁垂直的方向向右运动。
A、B与地面之间的动摩擦因数均为μ=0.20.重力加速度取g=10m/s2。
A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。
(1)求弹簧释放后瞬间A、B速度的大小;
(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?
(3)A和B都停止后,A与B之间的距离是多少?
2、如图,水平面MN右端N处与水平传送带恰好平齐且很靠近,传送带以速率,v=1m/s逆时针匀速转动,水平部分长度L=1m.物块B静止在水平面的最右端N处,质量为m=1kg的物块A在距N点s=2.25m处以v0=5m/s的水平初速度向右运动,与B发生碰撞并粘在一起,若B的质量是A的k倍,A、B与水平面和传送带间的动摩擦因数都为μ=0.2,两物块均可视为质点,取g=10m/s2.
(1)求A到达N点与B碰撞前的速度大小;
3/ 5
4 / 5
(2)求碰撞后瞬间A 、B 的速度大小及碰撞过程中产生的内能;
(3)讨论k 在不同数值范围时,A 、B 碰撞后传送带对它们所做的功W 的表达式.
3、在光滑的水平桌面上有等大的质量分别为M=0.6kg ,m=0.2kg 的两个小球,中间夹着一个被压缩的具有E P =10.8J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R=0.425m 的竖直放置的光滑半圆形轨道,如图所示。
g 取10m/s 2。
则下列说法正确的是( )
A:球m 从轨道底端 A 运动到顶端B 的过程中所受合外力冲量大小为3.4N ·s B :M 离开轻弹簧时获得的速度为9m/s
C :若半圆形轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小
D :弹簧弹开过程,弹力对m 的冲量大小为1.8N ·s
4、如图所示,半径R=0.1m 的竖直半圆形光滑轨道BC 与水平面AB 相切,AB 距离x=1m .质量 m=0.1kg 的小滑块1放在半圆形轨道末端的B 点,另一质量也为m=0.1kg 的小滑块2,从A 点以v=102m/s 的初速度在水平面上滑行,两滑块相碰,碰撞时间极短,碰后两滑块粘在一起滑上半圆形轨道.已知滑块2与水平面之间的
动摩擦因数μ=0.2,取重力加速度g=10m/s 2.两滑块均可视为质点.求: (1)碰后瞬间两滑块共同的速度大小v ; (2)两滑块在碰撞过程中损失的机械能∆E ; (3)在C 点轨道对两滑块的作用力大小N.
5、如图所示,AB为固定在竖直平面内的圆弧轨道,轨道末端B处切线水平,质量m a=0.5 kg的小球a用细线悬挂于0点,线长L=0.5m,静止时小球a在B处,细线能承受的最大拉力T=9 N.质量m b=1 kg的小球b从轨道上距底端B高h=0.3m处由静止释放,与a球发生对心碰撞,碰后瞬间细线恰好被拉断.已知小球a、b落地点的水平距离之比为2:1,g取10m/s2.求:
(1)细线被拉断瞬间小球a的速度;
(2)小球6在圆弧轨道上克服阻力所做的功W.6、如图所示,半径为R1=1.8m的四分之一光滑圆弧轨道与半径为R2=0.3m的半圆光滑细圆管平滑连接并固定,光滑水平地面上紧靠管口处有一长度为L=2.0m、质量为M=1.5kg的木板,木板上表面正好与管口底部相切,木板的左方有一足够长的水平台阶,其上表面与木板上表面高度相同。
现让质量为m2=2 kg的物块b静止于B处,质量为m1=1kg的物块a从光滑圆弧轨道顶端的A处由静止释放,物块a下滑至B处和b发生碰撞后不再分开,a、b形成的物块c经过半圆管从C处滑上木板,当木板速度为2m/s时,木板与台阶碰撞并立即被粘住,若g=10m/s2,物块均可视为质点,圆管粗细不计。
(1)求物块a和b碰撞过程中损失的机械能;
(2)若物块c与木板、台阶表面间的动摩擦因数均为μ=0.25,求物块c在台阶表面上滑行的最大距离。
5/ 5。