基于蚁群算法的TSP问题求解
- 格式:pdf
- 大小:89.24 KB
- 文档页数:1
分层递进的改进聚类蚁群算法解决TSP问题1.引言蚁群算法是一种模拟昆虫觅食行为的群体智能优化算法,它通过模拟蚂蚁在寻找食物过程中留下的信息素轨迹,使得较优路径上的信息素浓度增加,从而实现全局最优解的搜索。
而TSP问题是指旅行商问题,即在给定的一组城市中,旅行商要找到一条最短路径,使得每个城市都被访问一次并回到起点。
TSP问题是一个经典的组合优化问题,它在实际中具有广泛的应用。
在实际应用中,TSP问题的规模往往十分庞大,传统的算法在解决大规模TSP问题时效率低下,因此需要寻找更加高效的算法来解决TSP问题。
本文将介绍一种分层递进的改进聚类蚁群算法来解决TSP问题,该算法结合了分层聚类和蚁群算法的特点,能够有效地求解大规模TSP问题。
接下来,将从蚁群算法和TSP问题入手,介绍分层递进的改进聚类蚁群算法的基本原理和关键步骤,最后对算法进行实验验证,并对结果进行分析。
2.蚁群算法蚁群算法是由意大利学者Dorigo在上世纪90年代提出的,它模拟了蚂蚁在寻找食物的过程中通过信息素的传递来寻找最短路径的行为。
在蚁群算法中,蚂蚁会在城市之间不断地移动,并根据信息素浓度选择下一个要移动的城市,当所有蚂蚁都完成了一次移动后,会更新信息素浓度,然后进行下一轮的移动。
通过这种方式,蚁群算法能够逐步找到最短路径,同时也能够实现全局搜索和局部搜索的平衡,从而得到较好的优化结果。
在传统的蚁群算法中,蚂蚁在每一次移动时都会依据信息素浓度进行选择,但这种策略可能导致蚂蚁集中在某个局部最优解附近而无法跳出去探索其他地方,因此算法收敛速度较慢。
为了解决这个问题,一种改进的策略是引入聚类的概念,将蚂蚁分为不同的类别,并在每一类中进行搜索,使得蚂蚁能够更好地利用全局信息进行搜索。
接下来将介绍如何将聚类融入到蚁群算法中来解决TSP问题。
3.分层递进的改进聚类蚁群算法3.1 基本原理分层递进的改进聚类蚁群算法是基于蚁群算法和聚类算法相结合的一种优化算法。
用蚁群算法解决TSP 问题一、引言蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。
蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。
蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。
这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。
后者留下的信息素会对原有的信息素进行加强,并循环下去。
这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。
由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。
这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。
二、关键技术(1) 解的表达形式在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解;(2) 信息素的记忆和更新在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。
客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认为初始信息素矩阵为:1/(*(1))0ij N N p -⎧=⎨⎩i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--⎧-+⎪=⎨-⎪⎩i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。
三、算法实现步骤1 设定蚁群规模m ,计算次数n ,挥发系数ρ,初始化信息素矩阵,设定变量best =+∞记录全局最优解;步骤2 若n =0,推出并输出结果;否则n=n-1,分别放出m 只蚂蚁,按照信息素概率选择路径,并找出m 条路径中的当代最优路径cubest ; 步骤3 根据当代最有路径更新信息素;步骤4 如果cubest<best ,best=cubest ,执行步骤2;否则直接执行步骤2;四、结果及分析通过五个城市节点的TSP 问题的求解,其城市间的距离矩阵为:01015621008139158020156132005291550⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭蚁群算法找到的最优路径为A C B D E →→→→,总路程为43;通过试验结果发现,对于小规模的TSP问题,蚁群算法和禁忌搜索、模拟退火算法的计算结果相似,而且耗时很短,因此该算法是合理的。
基于蚁群算法的旅行商问题模型研究随着旅游业的发展,旅游成了人们生活中不可或缺的一部分。
为了提高旅游质量,降低旅游成本和难度,我们需要解决旅行商问题。
什么是旅行商问题?旅行商问题(TSP)是指一名旅行商人要拜访n个城市,每个城市只能拜访一次,然后回到起点。
每个城市之间的距离是已知或可以计算的。
旅行商人的目标是找到一条最短路径,使他能够顺序地拜访每个城市一次,最后回到出发点。
TSP是一个非常重要的组合优化问题,它在物流、工程、制造和导航中都有应用。
TSP的解决方案对TSP问题进行求解是一个NP难问题,即非确定性多项式完全问题。
但是,如今已发展出多种算法来解决TSP问题。
经典的解决TSP问题的方法有两种:全排列法和近似算法。
全排列法是将n个城市按照顺序排列,然后枚举这n个城市的所有排列,最终从中选择一条路径最短的路线作为最优解。
但是,这种方法的计算成本非常高,在大规模问题上不实用。
近似算法是对全排列方法的改进。
它采用启发式搜索,在计算复杂度可接受的情况下找到近似最优解。
近似算法包括分支限界法、模拟退火算法和遗传算法等。
蚁群算法:一种解决TSP问题的有效算法蚁群算法(ACO)是一种模拟蚂蚁探索食物的启发式优化算法,是解决TSP问题的一种有效方法。
它的基本思想是模拟蚂蚁在食物搜索中的行为,通过搜寻信息素来选择路径。
在ACO算法中,将每只蚂蚁看作一个搜索代理,通过释放信息素来传递经验。
该算法首先随机产生一群蚂蚁,它们在不同的城市中进行随机移动,每一只蚂蚁在选择下一个城市时根据当前所在城市和可选择城市的信息素含量作出选择。
蚂蚁根据选择的路径,释放信息素,并在路径上留下新的信息素。
当所有蚂蚁都完成了路径选择时,根据释放的信息素,更新信息素的含量。
ACO算法的核心是信息素的积累和传递过程,信息素的释放和更新过程,并且不断调整选择策略。
ACO算法的优点ACO算法的优点是可以有效地解决TSP问题,尤其是在大规模问题上。
《最优化方法与设计》实验报告基于蚁群优化算法求解TSP问题研究摘要研究了现有的最有效的蚁群优化算法(ACO)解决旅行商(TSP)问题,实现了蚂蚁系统(AS),精华蚂蚁系统(EAS), 基于排列的蚂蚁系统(AS rank),最大最小蚂蚁系统(MMAS)和蚁群系统(ACS)五种ACO算法,并且在TSPLIB中对算法进行了测试比较,实验并分析在这五种ACO算法中如何有效的设置参数,并且对这五种ACO算法运行过程的行为及性能进地了分析与比较。
关键字蚁群算法旅行商问题组合优化1 意义和目标蚁群优化(Ant Colony Optimization)是由Macro Dorigo于1991年在米兰理工大学发明的,它模拟蚂蚁的觅食行为来求解问题,是一种非常有效的元启发式算法。
短短十几年时间,蚁群优化算法就因为它出色的性能很快得到了广泛的认可,它的算法得到不断的改进,并逐渐形成了一系列成熟的算法框架。
它的应用从求解TSP问题扩展到优化问题领域的各个方面。
而TSP问题是最古老的、受到最广泛研究的组合优化问题之一。
几乎所有的元启发式算法都以TSP作为测试算法性能的问题。
这些元启发式算法包括禁忌搜索(tabu search)、进化算法(evolutionary algorithm)、模拟退火(simulated annealing)和迭代局部搜索(iterated local search)。
所以学习并研究ACO在求解TSP问题的性能很有意义,并且在TSP中能获取最优性能的ACO算法版本,往往在求解其他问题时具有世界级的性能。
本实验的目标是研究ACO算法,并且用ACO求解TSP问题,用C语言实现目前有效的ACO算法,包括蚂蚁系统(Ant System),精华蚂蚁系统(elitist strategy for ant system, EAS),基于排列的蚂蚁系统(AS rank, RAS),最大最小蚂蚁系统(MAX-MIN Any System, MMAS)和蚁群系统(ant colony system, ACS)。
分层递进的改进聚类蚁群算法解决TSP问题分层递进的改进聚类蚁群算法是一种用于解决旅行商问题(TSP)的算法。
本文将详细介绍该算法的原理和步骤。
我们需要了解一下TSP问题的背景。
TSP问题是一个经典的组合优化问题,在旅行商问题中,我们需要找到一条路径,使得旅行商依次访问所有城市并最终回到起点,使得总路径的长度最小。
聚类蚁群算法是一种基于蚁群智能的启发式算法,可以用于解决TSP问题。
其基本思想是通过模拟蚂蚁找食物的行为来搜索最优解。
聚类蚁群算法通过将城市进行分组来提高搜索效率,每个分组称为一个聚类。
然后,蚂蚁在每个聚类中按照一定的策略选择下一个要访问的城市,并更新路径和信息素。
从所有蚂蚁的路径中选择出最优解。
分层递进的改进聚类蚁群算法是对传统的聚类蚁群算法的改进。
该算法分为多个层次,每个层次对应一个聚类。
在每个层次中,都会运行一遍传统的聚类蚁群算法来得到一个聚类的解。
然后,将这个聚类的解作为下一个层次的输入,并将城市分配给不同的聚类组。
重复这个过程,直到达到预定的层次数。
接下来,我们将详细介绍分层递进的改进聚类蚁群算法的步骤。
1. 初始化参数:包括蚂蚁数量、迭代次数、信息素的初始浓度等。
2. 初始化城市分组:将所有城市根据一定的策略分配到不同的聚类组中。
3. 每个蚂蚁选择下一个要访问的城市:根据一定的策略,每个蚂蚁根据当前所在的聚类组中的信息素浓度和距离来选择下一个要访问的城市。
4. 更新路径和信息素:每个蚂蚁完成一次路径后,根据路径的长度更新路径和信息素。
更新路径的方法可以是全局最优路径、局部最优路径或一些其他的策略。
5. 更新信息素浓度:根据路径的长度和信息素的更新策略,更新信息素浓度。
6. 判断终止条件:判断是否达到了指定的迭代次数,如果没有达到则返回步骤3,否则进入下一步。
7. 选择最优解:从所有蚂蚁得到的路径中选择出最优解。
通过分层递进的改进聚类蚁群算法,我们可以充分利用聚类信息来提高搜索效率,从而得到更好的TSP问题的解。
基于蚁群算法的旅行商问题解决方案一引言旅行商问题(TSP, Traveling Salesman Problem)是在1859年由威廉·汉密尔顿爵士首次提出的,它是物流领域中的典型问题,这个问题的求解具有十分重要的理论和现实意义。
所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。
这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。
TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志。
如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。
求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。
而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。
二蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。
这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-mone)。
当它们碰到一个还没有走过的路口时,就随机地挑选一条路径前行。
与此同时释放出与路径长度有关的信息素。
路径越长,释放的激素浓度越低。
当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。
这样形成了一个正反馈。
最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。
最终整个蚁群会找出最优路径。
在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。
三基于蚁群算法的旅行商问题求解方案TSP问题描述如下:设有n个城市C=(1,2,...,n),任意两个城市i,j之间的距离为d ij ,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。
(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (4)摘要: (4)关键词: (4)一、引言 (4)二、蚁群算法原理 (5)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。
本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab仿真解决一个实例问题。
关键词:蚁群算法;TSP问题;matlab。
一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。
TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。
TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。
目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。
本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。
20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。
基于蚁群算法的TSP问题求解策略研究摘要TSP问题是计算机网络、路由规划中的经典问题。
而蚁群优化算法作为高效的计算智能的方法,在离散优化领域有着十分广泛的应用,其中最为经典的是最优回路求解问题。
因此,本文在分析蚁群算法发展现状的基础上,针对TSP问题的求解策略,来深入分析蚁群基数的设置对收敛效率的影响。
最后通过MATlAB编程工具运行相关代码,并得到相应的TSP问题解。
实验结果表明:随着蚁群基数的增加,TSP问题求解的时间也会线性增加;当蚁群基数大于等于TSP问题的结点个数的时候,TSP问题的解才会保持稳定且趋近于蚁群基数与节点个数相等时的TSP问题的解。
关键字蚁群算法蚁群基数 TSPResearch on the TSP Solution based on Ant Colony Optimization [Abstract]The TSP problem is a classic problem in computer network, route planning.And the ant colony optimization algorithm as an efficient method of computational intelligence, has the extremely widespread application in the field of discrete optimization, the most classic is the optimal circuit to solve the problem. Therefore, this article on the basis of analyzing the current situation of the development of ant colony algorithm, TSP problem solving strategy, to analyze ant colony base Settings affect the convergence efficiency. Finally through MATlAB programming tools run the code, and get the corresponding TSP problem solution. The experimental results show that with the increase of base of ant colony, TSP problem solving linear time will also grow。
分层递进的改进聚类蚁群算法解决TSP问题
聚类蚁群算法是一种基于蚁群算法的求解TSP问题的方法,它将城市根据相似度聚类
成若干个簇,然后对每个簇进行遍历。
虽然聚类蚁群算法在解决大规模TSP问题时表现出
了优异的性能,但它存在簇内路径的局限性,可能导致得到次优解。
为解决这一问题,我
们提出了一种分层递进的改进聚类蚁群算法。
我们的改进算法分为两个阶段。
第一阶段是分层聚类,它将城市分为若干个层次结构,每个层次包含若干个簇。
在分层聚类中将考虑两方面的因素:城市间的相似度和簇间的差
异度。
我们采用层次聚类的方法进行分层,每次聚类将原先的簇拆分为两个并列簇,直到
满足要求的层数。
对于层次之间的连接,我们将从上层的簇中,挑选最优路径和下层的簇
中距离最近的点相连。
第二阶段是递进遍历,它利用蚁群算法进行遍历优化,保证了路径全局最优。
我们将
每个层次看做一个子问题,在每个层次中运用蚁群算法进行遍历,并通过信息素更新、局
部搜索和禁忌搜索等技术实现路径优化。
同时,我们将在层次之间通过信息素的共享与更新,实现更好的搜索。
通过实验验证,我们的分层递进的改进聚类蚁群算法能够有效地提高TSP问题的求解
效率和精度,尤其是在大规模问题上更加明显。