七年级数学上册 第一章《有理数》综合检测题3(无答案) 新人教版
- 格式:doc
- 大小:246.50 KB
- 文档页数:4
第1章 《有理数 》单元检测试题考生注意: 1.考试时间90分钟.2.一 1.一种零件的直径尺寸在图纸上是30±(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过mm .2.将数轴上表示﹣1的点A 向右移动5个单位长度,此时点A 所对应的数为 .3.某市2018年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高 ℃.4.若a 、b 互为倒数,则4ab= .5.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是 ,最小的积是 .6.在知识抢答中,如果用+10表示得10分,那么扣20分表示为__ __.7.在-42,+0.01,π,0,120这5个数中,正有理数是__ _.8.计算⎝ ⎛⎭⎪⎫14-12+23×()-12=__ __. 9.已知3x -8与2互为相反数,则x = _. 10.如果|x |=6,则x =_________.二 、选择题(本大题共10小题,每小题3分,共30分) 11.如果电梯上升5层记为+5.那么电梯下降2层应记为( )A .+2B .﹣2C .+5D .﹣512.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为( ) A .6.5×10﹣4B .6.5×104C .﹣6.5×104D .65×10413.如图,点A 所表示的数的绝对值是( )A .3B .﹣3C .D .14.如图,a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .a +b <0B .ab <0C .b ﹣a <0D .15.在下列执行异号两数相加的步骤中,错误的是( )①求两个有理数的绝对值; ②比较两个有理数绝对值的大小; ③将绝对值较大数的符号作为结果的符号; ④将两个有理数绝对值的和作为结果的绝对值 A .①B .②C .③D .④16.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g 、(500±10)g 、(500±20)g 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .10gB .20gC .30gD .40g17.7的相反数是( )A .7B .-7C .17D .-1718.下列四个数中最大的数是( )A .0B .-2C .-4D . -619.下列说法:①若|a |=a ,则a=0;②若a,b互为相反数,且ab≠0,则=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个20.下列计算结果为负数的是()A.﹣1+3B、5﹣2C、﹣1×(﹣2)D、﹣4÷2三、解答题(本大题共8小题,共60分)21.请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,﹣7,10,,21,6.2,4.7,﹣8这四个集合合并在一起(填“是”或“不是”)全体有理数集合,若不是,缺少的是.22.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)23.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A.B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.24.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+a+bm的值.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a+b|﹣|c﹣a|的值.26.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.数学试卷第3页(共10页) 数学试卷第4页(共10页)27.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)=8,求a的值.28.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?参考答案:一、填空题29.30.0330.4.31.8.32.4.33.75;﹣30.34.-2035.+0.01,12036.-537.238.±6二、选择题39.B40.B.41.A.42.B.43.D.44.D.45.B46.A47.B.48.【答案】D【考点】有理数的混合运算【解析】【解答】解:﹣1+3=2,故选项A错误;5﹣2=3,故选项B错误;﹣1×(﹣2)=2,故选项C错误;﹣4÷2=﹣2,故选项D正确;故选D.【分析】将选项中各式进行化简,即可解答本题.三、解答题49.这四个集合合并在一起不是全体有理数集合,缺少的是0.故答案为:不是;0.50.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.51.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5.故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.数学试卷第7页(共10页) 数学试卷第8页(共10页)52.解:(1)因为a、b互为相反数,c、d互为倒数,m的绝对值为2,所以a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+a+bm=2+1+0=3;当m=-2时,m+cd+a+bm=-2+1+0=-1.53.解:由数轴可得,a<0<b<c,|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0,∴|b﹣c|+|a+b|﹣|c﹣a|=c﹣b﹣a﹣b﹣c+a=﹣2b.54.解:(1)∵点M、N代表的数分别为﹣9和1,∴线段MN=1﹣(﹣9)=10;故答案为:10;(2)∵点E、F代表的数分别为﹣6和﹣3,∴线段EF=﹣3﹣(﹣6)=3;故答案为:3;(3)由题可得,|m﹣2|=5,解得m=﹣3或7,∴m值为﹣3或7.55.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣32;(2)☆3=×32+2××3+=8a+8=8,解得:a=0.56.解:与标准重量比较,5筐蔬菜总计超过3+(-6)+(-4)+2+(-1)=-6(千克),5筐蔬菜的总重量=50×5+(-6)=244(千克).故总计不足6千克,5筐蔬菜的总重量是244千克.。
人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。
第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
七年级数学上册第一章有理数单元综合测试卷(含解析)(新版)新人教版第一章 有理数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃B .﹣10℃C .+5℃D .﹣5℃2.(4分)下列四个数中,是正整数的是( ) A .﹣1B .0C .21D .1 3.(4分)如图所示,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是( )A .a >0B .b >cC .b >aD .a >c 4.(4分)﹣8的相反数是( ) A .﹣8 B .81C .8D .﹣81 5.(4分)﹣2018的绝对值是( ) A .2018 B .﹣2018 C .20181 D .﹣201816.(4分)计算:0+(﹣2)=( ) A .﹣2 B .2C .0D .﹣207.(4分)已知a=(143﹣152)﹣161,b=143﹣(152﹣161),c=143﹣152﹣161,判断下列叙述何者正确?( )A .a=c ,b=cB .a=c ,b ≠cC .a ≠c ,b=cD .a ≠c ,b ≠c8.(4分)已知两个有理数a ,b ,如果ab <0且a+b >0,那么( ) A .a >0,b >0 B .a <0,b >0 C .a 、b 同号D .a 、b 异号,且正数的绝对值较大9.(4分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为( ) A .0.827×1014B .82.7×1012C .8.27×1013D .8.27×101410.(4分)如果四个互不相同的正整数m ,n ,p ,q ,满足(5﹣m )(5﹣n )(5﹣p )(5﹣q )=4,那么m+n+p+q=( )A .24B .21C .20D .22二.填空题(共4小题,满分20分,每小题5分)11.(5分)一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点为 . 12.(5分)如果|x|=6,则x= .13.(5分)某日的最高气温为5℃,最低气温为﹣5℃,则这一天的最高气温比最低气温高 ℃. 14.(5分)若a ≠b ,且a 、b 互为相反数,则ba= .三.解答题(共9小题,满分90分) 15.(8分)计算: (1)(32﹣43+61)÷121(2)﹣12×4﹣(﹣2)2÷216.(8分)①已知x 的相反数是﹣2,且2x+3a=5,求a 的值.②已知﹣[﹣(﹣a )]=8,求a 的相反数.17.(8分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,求:x 3﹣x 2+(﹣cd )2017﹣(a+b )2018列的值18.(8分)已知a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1. (1)写出a ,b ,c 的值;(2)求代数式3a (b+c )﹣b (3a ﹣2b )的值. 19.(10分)计算:﹣23+6÷3×32圆圆同学的计算过程如下: 原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(10分)奥运会期间,志愿者小王在奥运村一条东西向的道路上负责接送残疾运动员,如果规定向东为正,向西为负,某天上午的行车记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+6、﹣3、﹣7、+5.(1)最后一名残疾运动员的目的在小王出车地点什么方位、距离是多少? (2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升? 21.(12分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a+b ,cd ,m 的值; (2)求m+cd+mba +的值. 22.(12分)探索规律:(1)计算并观察下列每组算式:⎩⎨⎧=⨯=⨯9788,⎩⎨⎧=⨯=⨯6455,⎩⎨⎧=⨯=⨯13111212;(2)已知25×25=625,那么24×26= ;(3)请用代数式把你从以上的过程中发现的规律表示出来. 23.(14分)(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:1﹣2n = (3)利用上述规律计算下式的值:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-222221001199114113112112018年秋七年级上学期 第一章 有理数 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃; 故选:D .【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负. 2.【分析】正整数是指既是正数还是整数,由此即可判定求解. 【解答】解:A 、﹣1是负整数,故选项错误; B 、0是非正整数,故选项错误; C 、21是分数,不是整数,错误; D 、1是正整数,故选项正确. 故选:D .【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单. 3.【分析】直接利用数轴上A ,B ,C 对应的位置,进而比较得出答案. 【解答】解:由数轴上A ,B ,C 对应的位置可得: a <0,故选项A 错误; b <c ,故选项B 错误; b >a ,故选项C 正确; a <c ,故选项D 错误;故选:C .【点评】此题主要考查了数轴,正确得出各项符号是解题关键. 4.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案. 【解答】解:﹣8的相反数是8, 故选:C .【点评】此题主要考查了相反数,关键是掌握相反数的定义. 5.【分析】根据绝对值的定义即可求得. 【解答】解:﹣2018的绝对值是2018. 故选:A .【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键. 6.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:0+(﹣2)=﹣2. 故选:A .【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键. 7.【分析】根据有理数的减法的运算方法,判断出a 、c ,b 、c 的关系即可. 【解答】解:∵a=(143﹣152)﹣161=143﹣152﹣161,b=143﹣(152﹣161)=143﹣152+161,c=143﹣152﹣161, ∴a=c ,b ≠c . 故选:B .【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】由题意确定出m,n,p,q的值,代入原式计算即可求出值.【解答】解:∵四个互不相同的正整数m,n,p,q,满足(5﹣m)(5﹣n)(5﹣p)(5﹣q)=4,∴满足题意可能为:5﹣m=1,5﹣n=﹣1,5﹣p=2,5﹣q=﹣2,解得:m=4,n=6,p=3,q=7,则m+n+p+q=20,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可. 【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50, 故答案是:﹣50.【点评】主要考查了数轴及图形的变化类问题,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 12.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6. 【解答】解:|x|=6,所以x=±6. 故本题的答案是±6.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数. 13.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:∵某日的最高气温为5℃,最低气温为﹣5℃, ∴这一天的最高气温比最低气温高:5﹣(﹣5)=10(℃). 故答案为:10.【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键. 14.【分析】由a 、b 互为相反数可知a=﹣b ,然后代入计算即可. 【解答】解:∵a 、b 互为相反数, ∴a=﹣b . ∴1-=-=bbb a . 故答案为:﹣1.【点评】本题主要考查的是相反数的定义、有理数的除法,根据相反数的定义得到a=﹣b 是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值. 【解答】解:(1)原式=(32﹣43+61)×12=8﹣9+2=1; (2)原式=﹣4﹣2=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.【分析】①直接利用相反数的定义得出x 的值,进而得出a 的值; ②直接去括号得出a 的值,进而得出答案. 【解答】解:①∵x 的相反数是﹣2,且2x+3a=5, ∴x=2, 故4+3a=5, 解得:a=31;②∵﹣[﹣(﹣a )]=8, ∴a=﹣8, ∴a 的相反数是8.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键. 17.【分析】根据题意得出a+b=0、cd=1、x=5或x=﹣5,再分情况列式计算可得. 【解答】解:根据题意知a+b=0、cd=1、x=5或﹣5, 当x=5时,原式=53﹣52+(﹣1)2017﹣02018=125﹣25﹣1﹣1 =98;当x=﹣5时,原式=(﹣5)3﹣(﹣5)2+(﹣1)2017﹣02018=﹣125﹣25﹣1﹣1=﹣152.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握相反数的性质、倒数的定义、绝对值的性质及有理数的混合运算顺序和运算法则. 18.【分析】(1)根据a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1,可以求得a 、b 、c 的值; (2)先对题目中的式子化简,然后将(1)a 、b 、c 的值代入即可解答本题. 【解答】解:(1)∵a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1, ∴a=﹣2,b=±3,c=﹣1; (2)3a (b+c )﹣b (3a ﹣2b ) =3ab+3ac ﹣3ab+2b 2=3ac+2b 2,∵a=﹣2,b=±3,c=﹣1, ∴b 2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.【分析】圆圆的计算过程错误,写出正确的解题过程即可. 【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+34=﹣320. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.【分析】(1)根据有理数的加法运算,可得答案; (2)根据单位耗油量乘以行车距离,可得共耗油量.. 【解答】解:(1)+8﹣9+4+7﹣2﹣10+6﹣3﹣7+5=﹣1(km ). 答:最后一名残疾运动员的目的在小王出车地点的正西1km (2)8+9+4+7+2+10+6+3+7+5=61(km ).61×0.3=18.3升. 答:这天下午汽车共耗油18.3升.【点评】本题考查了正数和负数,利用了有理数的加法运算.21.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+mb a +=2+1+0=3; 当m=﹣2时,m+cd+m b a +=﹣2+1+0=﹣1. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.22.【分析】(1)利用乘法法则计算即可求出所求;(2)原式变形后,利用平方差公式计算即可求出值;(3)根据以上等式得出规律,写出即可.【解答】解:(1)⎩⎨⎧=⨯=⨯63976488,⎩⎨⎧=⨯=⨯24642555,⎩⎨⎧=⨯=⨯143131********;(2)已知25×25=625,那么24×26=624;(3)根据题意得:n 2=(n+1)(n ﹣1)+1.故答案为:(2)624【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.23.【分析】(1)根据有理数的乘法和乘方运算分别计算结果可得;(2)根据以上表格中的计算结果可得;(3)根据以上规律,将原式裂项、约分即可得.【解答】解:(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-n n n 1111112, 故答案为:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+n n 1111;(3)原式2001011001012110010110099454334322321100111001199119911411411311311211211=⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+= 【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的乘法和乘方运算法则及数字的变化规律.。
一、选择题1.(0分)[ID :67647]下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=2.(0分)[ID :67643]在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .243.(0分)[ID :67642]有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <04.(0分)[ID :67641]下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( ) A .4个 B .3个C .2个D .1个5.(0分)[ID :67639]下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=1 6.(0分)[ID :67638]已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13B .+13C .-3或+13D .+3或-1 7.(0分)[ID :67623]计算4(8)(4)(1)+-÷---的结果是( ) A .2B .3C .7D .438.(0分)[ID :67610]下列有理数的大小比较正确的是( ) A .1123< B .1123->- C .1123->- D .1123-->-+ 9.(0分)[ID :67607]-1+2-3+4-5+6+…-2011+2012的值等于 A .1B .-1C .2012D .100610.(0分)[ID :67596]一个数的绝对值是3,则这个数可以是( ) A .3B .3-C .3或者3-D .1311.(0分)[ID :67586]一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米 B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 12.(0分)[ID :67582]下列说法中正确的是( ) A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数13.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < 14.(0分)[ID :67571]计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .2201815.(0分)[ID :67570]下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题16.(0分)[ID :67743]3-的平方的相反数的倒数是___________.17.(0分)[ID :67740]在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.18.(0分)[ID :67711]若有理数a ,b 满足()26150a b -+-=,则ab =__________. 19.(0分)[ID :67698]已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____. 20.(0分)[ID :67697](1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____. (3)-13的绝对值比2的相反数大_____. 21.(0分)[ID :67681]用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.22.(0分)[ID :67680]有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 23.(0分)[ID :67660]截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.24.(0分)[ID :67753]若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3ab,a 的形式,则4a b -的值________. 25.(0分)[ID :67747]绝对值小于100的所有整数的积是______.26.(0分)[ID :67723]如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.27.(0分)[ID:67719]比较大小:364--_____________()6.25--.三、解答题28.(0分)[ID:67942]计算(1)2125824(3)3 -+-+÷-⨯(2)71113()24 61224-+-⨯29.(0分)[ID:67927]某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为;(2)试计算这10袋大米的总质量是多少千克?30.(0分)[ID:67894]给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式.(可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.C4.B5.D6.C7.C8.B9.D10.C11.C12.D13.C14.C15.D二、填空题16.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义17.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟18.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=19.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法20.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a+2|+|b-21.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-4022.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中23.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学24.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==25.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝26.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数27.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误; ()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.2.B解析:B 【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大. 【详解】∵乘积最大时一定为正数 ∴-1,-3,4的乘积最大为12 故选B . 【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.4.B解析:B 【分析】根据有理数的减法运算法则对各小题分析判断即可得解. 【详解】①减去一个数等于加上这个数的相反数,故本小题正确; ②互为两个相反数的两数相加得零,故本小题正确; ③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个. 故选B . 【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.5.D解析:D 【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案. 【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确. 故选:D . 【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.6.C解析:C 【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案. 【详解】∵4x =,5y =, ∴x=±4,y=±5, ∵x >y , ∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13, 当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3, ∴2x-y 的值为-3或13,故选:C.【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y的值是解答此题的关键.7.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++7=,故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.8.B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.9.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.10.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.11.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误. 故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.14.C解析:C 【分析】直接利用偶次方,奇次方的性质化简各数得出答案. 【详解】 解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2) =-22018 故选:C. 【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.D解析:D 【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误. 【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确. 故选:D . 【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题16.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.17.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.18.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 19.17【分析】先根据相反数的定义求出a 和b 再根据有理数的减法法则即可求得结果【详解】由题意得a =-7b =7+3=10∴b -a =10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a 和b ,再根据有理数的减法法则即可求得结果.【详解】由题意,得a =-7,b =7+3=10.∴b -a =10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.20.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=;故答案为:1615;5;123.【点睛】本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.21.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.22.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.23.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,24.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.25.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.26.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.27.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.三、解答题28.(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.29.(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.30.()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.。
人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。
第一章综合素质评价七年级数学上(R版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A.+30元B.-50元 C.-30元D.+50元2.-12的相反数是( )A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A.液态氧B.液态氢 C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )A B C D7.下列说法中,错误的是( )A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是( )A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715 -|13|;(2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 .三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}.18.(6分)化简下列各数:(1)-(-68); (2)-(+0.75); (3)-[-(-23)].19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C( , ),B→C( , ),C→D ( , );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)<14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5;当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。
人教版初中数学七年级上册第一章《有理数》综合能力检测题一、选择题1.-2019的相反数是( )A.-2019B.2019C.-20191D. 20191 2.一个数的倒数等于它本身的数是( )A.1B.-1C.±1D.03.如果两个数的绝对值相等,则这两个数( )A.互为相反数 B .相等 C.积为0 D.互为相反数或相等4.下列说法中正确的是( )A.一个数前面加上“-”号,这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数又不是负数5.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)36.大于-2019而小于2020的所有整数的和是( )A.-2019B.-2018C.2019D.20207.当n 为正整数时,(-1)2n +1-(-1)2n 的值是( )A.0B.2C.-2D.2,或-28.定义a ∨b 表示a 、b 两数中较大的一个,a ∧b 表示a 、b 两数中较小的一个,则(50∨52)∨(49∧51)的结果是( )A.50B.52C.49D.519.某人用1000元购进一批货物,第二天售出,获利110,过几天又以900元购进一批货物,但这一次亏了10%,这样,他在这两次交易中( )A.不盈不亏B.盈10元C.亏10元D.不能确定10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32019的末位数字是( )A.3B.9C.7D.1二、填空题11.绝对值最小的有理数是_____,最小的正整数是_____.12.写出与-32异号的两个有理数:_____.13.比7大-7的数是_____.14.最小的自然数与最大的负整数的差是_____.15.不为零的两数成互为相反数,则它们的商是_____.16.绝对值小于π的所有整数有_____个,其积为_____.17.在数轴上距2.5有3.5个单位长度的点所表示的数是_____.18.19.一外地民工10天的收支情况如下(收入为正):30元,-17元,23元,-15元,-3 元,27元,45元,-10元,-8元,20元.如果他原来有钱60元,则现在他有_____元钱.20.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第4次捏合后可拉出_____根细面条;第_____次捏合后可拉出256根细面条.三、解答题21.计算:(1)-6+213.(2)(712-56+1)÷(-124). 22.某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1等等,依此类推,上午7:45•应记为多少?23.一天美美和丽丽利用温差来测量山峰的高度.美美在山脚测得的温度是4℃,丽丽此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.6℃,问这个山峰有多高?24.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:992122×(-11). 不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上: 解法一:原式=-219922×11=-2418922=-109912. 解法二:原式=(99+2122)×(-11)=99×(-11)+ 2122×(-11)=-109912. 解法三:原式=(100-122)×(-11)=100×(-11)+122×11=-109912. 对这三种解法,大家议论纷纷,你认为哪种方法最好?说说你的理由,通过对本题的求解,你有何启发?25.若定义一种新的运算为a *b =ab ÷(1-ab ),计算[(3*2)]*16. 26.写出一个三位数,它的各个数位上的数字都不相等,如637,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数.对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,你发现了什么?请写出你的探索过程.27.任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15 873,你发现了什么规律?能试着解释一下理由吗?28.某一出租车一天下午以文昌阁为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-5,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车在文昌阁的什么方向?离文昌阁多远?(2)若每公里的价格为2.4元,司机一个下午的营业额是多少?参考答案:一、1.B.点拨:负数的相反数是正数;2.C.点拨:1的倒数等于1,-1的倒数等于-1;3.D.点拨:非负数的绝对值等于它的本身,负数的绝对值等于它的相反数;4.D.点拨:A、B、C都应忽视了0;5.A.点拨:(-2)7=-27,-32=-9≠(-3)2=9,-3×23=-24≠-32×2=-18,-(-3)2=-9≠-(-2)3=-8;6.C.点拨:-2018+(-2017) +(-2016) +…+2016+2017+2018+2019=2019;7.C.点拨:因为(-1)2n+1=-1,(-1)2n=1,所以(-1)2n+1-(-1)2n=-1-1=2;8.B.点拨:由新定义,得(50∨52)∨(49∧51)=52∨49=52;9.B.点拨:1000×110-900×10%=10;10.C.点拨:末位数字依次以3、9、7、1循环,而2019÷4=502…3,即末位数字是7.二、11.0、1;12.答案不惟一,所有正数都可,如,2、9.等等;13.0.点拨:7+(-7)=0;14.1.点拨:最小的自然数是0,最大的负整数是-1,其差为0-(-1)=1;15.-1.点拨:取具体数值验证;16.7、0.点拨:绝对值小于π的所有整数有-3、-2、-1、0、1、2、3,其和为(-3)+(-2)+(-1)+0+1+2+3=0;17.-1和6.点拨:在2.5的左边,且与之相距3.5个单位长度的点是-1,在2.5的右边,且与之相距3.5个单位长度的点是6;18.日,一.点拨:星期一的温差=11℃-2℃=9℃,星期二的温差=12℃-1℃=11℃,星期三的温差=11℃-0℃=11℃,星期四的温差=9℃-(-1)℃=10℃,星期五的温差=7℃-(-4)℃=11℃,星期六的温差=5℃-(-5)℃=10℃,星期日的温差=7℃-(-5)℃=12℃,显然,星期日的温差最大,星期一的温差最小;19.152.点拨:60+30+(-17)+23+(-15)+(-3)+27+45+(-10)+(-8)+20=152;20.16、8.点拨:第在次捏合后可拉出21根细面条,第2次捏合后可拉出22根细面条,第3次捏合后可拉出23根细面条,第4次捏合后可拉出24根细面条,…,第n次捏合后可拉出2n根细面条,所以第4次捏合后可拉出24=16根细面条,若拉出256根细面条,则有2n=256,即2n=28,所以n=8.三、21.(1)原式=-183+73=-323.(2)原式=(712-56+1)×(-24)=(712-56+1)×(-24)=712×(-24)-56×(-24) +1×(-24)=-14+20-24=-18.22.以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3.23.从山脚到山顶温度降低了4-(-2)=6(℃).因为每升高100米平均降低0.6℃,由6÷0.6=10,可知从山脚到山顶共升高了10个100米,所以山高为10×100=2500(米).即综合式子是:[4-(-2)]÷0.6×100=1000(米),即山高为1000米.24.解法二与解法三;解法二与解法三巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.25.因为a*b=ab÷(1-ab),所以[(3*2)]*16=3×2÷(1-3×2)*16=(-65)*16=(-65)×16÷[1-(-65)×16]=(-15)÷65=-15×56=-16.26.若以637为例进行尝试:637→763-367=396→963-369=594→954-459=495→954-459=495,最后结果固定为495,若再用258进行尝试:258→852-258=594→954-459=495→954-459=495.经过多次尝试后发现,总能得到495这结果,并固定在这一结果上,似乎掉进了一个“黑洞”.点拨:这是数学上的“黑洞”问题,有兴趣的同学可以尝试探索四位数、五位数是否也存在同样的“黑洞”,自己发现数学中某些数字的神奇作用,感受数学的无穷魅力.27.取数字3,乘7,再将结果乘15 873,得(3×7)×15 873=21•×15 •873=333 333;取数字5,乘7,再将结果乘15 873,得(5×7)×15 873=35×15 •873=555555;取数字8,乘7,再将结果乘15 873,得(8×7)×15 873=56×15 873=888 888.由此,通过观察发现,任选1,2,3,…,9中的一个数字n ,将这个数乘7,再将结果乘15 873,均得到一个6位数,每位上的数字相同,都是n ,即(n ×7)×15 873=nnn nnn .因为7×15873=111 111,所以(n ×7)×15 873=n ×(7×15 873)=n ×111 111=nnn nnn .点拨:通过探索规律可以发现,数学真奇妙,数学中存在一些具有特殊作用的数字,如本题7与15 873的积就具有神奇的“复印”功能,你能将任意一个1,2,3,…,9中的数字连续“复印”6次,你还能发现其他具有“特异功能”的数字吗?28.(1)因为+9+(-3)+(-5)+4+(-8)+6+(-5)+(-6)+(-4)+10=-2,所以出租车在文昌阁的西边,距文昌阁2千米.(2)因为+9+3-+5-+4+8-+6+5-+6-+4-+10=60,所以60×2.4=144,即司机一个下午的营业额是144元.。
人教版七年级数学上册第一章《有理数》综合测试卷一.选择题(共12小题,满分36分,每小题3分)1.2021的相反数是( )A.﹣2021B.2021C.D.﹣2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有( )个.A.1B.2C.3D.44.近似数35.04万精确到( )A.百位B.百分位C.万位D.个位5.在下列气温的变化中,能够反映温度上升5℃的是( )A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃6.下列说法正确的是( )A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.8.绝对值大于2小于5的正整数有( )个.A.2B.3C.4D.59.用分配律计算()×,去括号后正确的是( )A.﹣B.﹣C.﹣D.﹣10.计算(﹣2)200+(﹣2)201的结果是( )A.﹣2B.﹣2200C.1D.220011.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a +b >0B .a +b <0C .ab >0D .|a |>|b |12.若a 2=25,|b |=3,则a +b 所有可能的值为( )A .8B .8或2C .8或﹣2D .±8或±2二.填空题(共8小题,满分32分,每小题4分)13.有理数中,最大的负整数是 .14.比较大小:﹣2 ﹣3.(填“<”或“>”)15.若m 与﹣2互为相反数,则m 的值为 .16.1.95≈ (精确到十分位);≈ (精确到万位).17.数轴上表示数﹣5和表示﹣14的两点之间的距离是 .18.填空:|﹣1+|+|﹣+|+|﹣+|+…+|﹣+|= .19.规定图形表示运算a ﹣b ﹣c ,图形表示运算x ﹣z ﹣y +w .则+= .20.若a 、b 为整数,且|a ﹣2|+(b +3)2020=1,则b a = .三.解答题(共7小题,满分52分)21.(8分)把下列各数填在相应的大括号内:﹣35,0.1,,0,,1,4.01001000…,22,﹣0.3,,π.正 数:{ …};整 数:{ …};负{ …};非负整数:{ …}.22.(6分)计算:(1)8+(﹣6)+5+(﹣8). (2)0.47﹣4﹣(﹣1.53)﹣1.23.(8分)计算:(1)(﹣+﹣)×36 (2)(﹣3)2×(﹣)+4+22×24.(8分)把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,25.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?26.(8分)已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.27.(8分)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.答案一.选择题(共12小题,满分36分,每小题3分)1.解:2021的相反数是:﹣2021.故选:A.2.解:4 400 000 000=4.4×109,故选:B.3.解:下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有:﹣,﹣0.7,﹣7.3,共3个,故选:C.4.解:∵35.04万末尾数字4表示4百,∴近似数35.04万精确到百位.故选:A.5.解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.6.解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.7.解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.8.解:绝对值大于2小于5的正整数有3,4,共2个,故选:A.9.解:()×=,故选:D.10.解:(﹣2)201=(﹣2)×(﹣2)200,所以(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)×(﹣2)200=﹣(﹣2)200=﹣2200.故选:B.11.解:由数轴可知,a为正数,b为负数,且|a|<|b|,∴a+b应该是负数,即a+b<0,又∵a>0,b<0,ab<0,故答案A、C、D错误.故选:B.12.解:∵a2=25,|b|=3,∴a=±5,b=±3,a=5,b=3时,a+b=5+3=8,a=5,b=﹣3时,a+b=5+(﹣3)=2,a=﹣5,b=3时,a+b=﹣5+3=﹣2,a=﹣5,b=﹣3时,a+b=﹣5+(﹣3)=﹣8,综上所述,a+b所有可能的值为±8或±2.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:有理数中,最大的负整数是﹣1,故﹣1.14.解:∵|﹣2|<|﹣3|,∴﹣2>.故>.15.解:∵﹣2的相反数是2,∴m=2.故2.16.解:1.95≈2.0(精确到十分位);≈58万(精确到万位),故2.0;58万.17.解:|﹣5﹣(﹣14)|=9.18.解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故19.解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故﹣820.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.三.解答题(共7小题,满分52分)21.解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负{,,﹣0.3,…};非负整数:{0,1,22,,…}.故0.1,1,4.01001000…,22,,π;﹣35,0,1,22,;,,﹣0.3;0,1,22,.22.解:(1)原式=8+(﹣8)+(﹣6)+5=0+(﹣1)=﹣1;(2)原式=0.47+1.53﹣(4+1)=2﹣6=﹣4.23.解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.24.解:如图所示:数轴上的点表示的数右边的总比左边的大,得<0.5<+3.5.25.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).26.解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.27.解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=41075.故(1)3025;(2)44100;(3);(4)41075。
一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个 2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .754.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|5.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克 B .-0.02克C .0克D .+0.04克6.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5B .少10C .多5D .多107.如果向右走5步记为+5,那么向左走3步记为( ) A .+3B .-3C .+13D .-138.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-129.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个10.某市11月4日至7日天气预报的最高气温与最低气温如表:最高气温(℃) 19 12 20 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日 C .11月6日 D .11月7日 11.把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.数轴上A 、B 两点所表示的有理数的和是 ________.14.若有理数a ,b 满足()26150a b -+-=,则ab =__________. 15.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.16.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1ba=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.17.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 18.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0. 19.一个数的25是165-,则这个数是______.20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.计算:|﹣2|﹣32+(﹣4)×(12-)322.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).23.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.24.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭25.计算下列各式的值:(1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--26.计算:(1)9-(-14)+(-7)-15; (2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可. 【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确; ②|-a|一定是非负数,故说法不正确; ③倒数等于它本身的数为±1,说法正确; ④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确. 说法正确的有③、⑥, 故选A . 【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.C解析:C 【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.C解析:C 【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断. 【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C 选项是正确的. 【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.4.D解析:D 【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意, 故选D.5.B解析:B 【解析】 -0.02克,选A.6.D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D .7.B解析:B 【解析】 试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3. 故选B .8.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.9.C解析:C 【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断. 【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则ab=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数, ∴a 的倒数小于b 的倒数不正确, ∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确; ⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确; ⑦负数的相反数是正数,大于负数,故本小题错误; ⑧负数的偶次方是正数,故本小题错误, 所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.14.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.15.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2 =-2.4;(2)32.5+46+(-22.5) =[32.5+(-22.5)]+46 =10+46 =56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56. 【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.16.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④ 【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可. 【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误; ②0ab 时,a ,b 互为相反数,但是对于等式1ba=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确. 综上,正确的有④. 故答案为:④. 【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.17.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0 【分析】将同分母的分数分别相加,再计算加法即可. 【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 故答案为:0. 【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.18.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < > 【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可. 【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<-> 故答案为:<,<,<,> 【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.19.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8 【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8. 故答案为−8. 【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30 【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 22.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d ,∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.23.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.24.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.25.(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 26.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。
人教版七年级数学上册《第一章有理数》单元检测卷及答案 知识点题型分布:考点1:正数与负数考点2:有理数及其大小比较一、选择题1.在-2,3与13,0, 1.7-五个数中,正数有( ) A .1个 B .2个 C .3个 D .4个2.增长2.7%记作 2.7+%,“减少3.4%”记作( )A . 3.4-%B . 2.7+%C . 3.4±%D . 3.4+%3.在有理数0.5012.5--,,,中,最小的数是( )A .0.5-B .0C .1-D .2.54.下列有理数大小关系判断正确的是( )A .33-<+B .910>-C 10.01->-D .010>-5.两个有理数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A .a >bB .a <bC .-a <-bD .|a|<|b|6.(23-24七年级上·江苏南通·期中)如下表,检测五个排球,其中质量超过标准的克数记为正数,不足的克数记为负数 2号3号 4号 5号1号−2.8 −1.7 +1.6 −0.5 +2.5某教练想从这五个排球中挑一个最接近标准的排球作为赛球,应选哪一个( )A .2号B .3号C .4号D .5号7.下列各数中,互为相反数的是( )A .-2.25与214B .13与-0.33C .-12与0.2 D .5与-(-5) 8. 如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题9.(23-24七年级上·江苏徐州·期中)有一种记分方法:以60分为准,68分记为8+分,某同学得54分,则应记为 分.10.(23-24七年级上·安徽合肥·阶段练习)若m 、n 互为相反数,x 、y 互为倒数,则2021m +2021n -2022xy = .11.(23-24七年级上·江苏南通·阶段练习)某项科学研究,以25分钟为一个时间单位,并记每天上午8时为0,8时以前记为负,8时以后记为正.例如:7:35记为1-,8:25记为1等等,以此类推,上午5:05应记为 .12.(22-23七年级上·山东青岛·期中)检查5个足球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:足球编号1 2 3 4 5 与标准质量的差/克 5+ 7+ 3- 9- 9+则最接近标准质量的是 号足球;质量最大的足球比质量最小的足球多 克.13.(23-24六年级下·黑龙江哈尔滨·期中)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,则255a b cdx +-的值为 .14.(22-23七年级上·江苏南京·期中)绝对值不小于2且小于512的负整数的和是 .15.(22-23七年级上·广东深圳·期中)若2a -与3b +互为相反数,则a b -的值为 .16.(24-25七年级上·浙江杭州·阶段练习)如图所示,A,B,C 为数轴上三点,且当A 为原点时,点B 表示的数是2,点C 表示的数是5.若以B 为原点,则点A 表示的数是 ,点C 表示的数是 ;若A ,C 表示的两个数互为相反数,则点B 表示的数是 .三、解答题17.(23-24七年级上·河南周口·阶段练习)高速公路养护小组乘车沿南北公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):17+ 9- 7+ 15- 3- 11+ 6- 8- 5+ 16+.(1)养护小组最后到达的地方在出发点哪个方向?距离出发点多远?(2)该养护小组一共行驶了多少千米?18.(23-24七年级上·湖南长沙·阶段练习)已知:a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,试回答问题:(1)请直接写出a ,b ,c 的值;(2)若a ,b ,c 所对应的点分别为A ,B ,C ,点P 为一动点,其对应的数为x ,点P 在A 到C 之间运动时,请化简式子:1123x x x +--+-.19.(23-24七年级上·河南商丘·期末)10袋小麦以每袋150千克为标准,超过的千克数记为正数,不足的千克数记为负数,记录如下: 编号1 2 3 4 5 6 7 8 9 10 与标准质量差 6- 3- 0 2+ 3+ 4+ 2- 2- 4-6+ (1)在10袋小麦中,第几袋的记数质量最接近标准质量?(2)与标准质量相比较,10袋小麦总计超过或不足多少千克?(3)每袋小麦的平均质量是多少千克?参考答案1.B【分析】根据正数大于0,负数小于0判断即可.【详解】解:在-2,313 0,-1.7五个数中,正数有3,13共2个. 故选:B .【点睛】本题考查了正数和负数,掌握正数和负数的定义是解答本题的关键.2.A【分析】根据正负数的意义即可求解.【详解】解:增长2.7%记作 2.7+%,“减少3.4%”记作 3.4%-故选:A .【点睛】本题考查了正负数的意义,理解题意是解题的关键.3.C【分析】根据有理数大小比较的法则:①正数都大于0; ①负数都小于0; ①正数大于一切负数; ①两个负数,绝对值大的其值反而小,即可得出答案.【详解】解:①10.50-<-<<2.5①有理数中0.5012.5--,,,,最小的数是1-.故选:C .【点睛】本题主要考查了有理数的比较大小,解本题的关键是熟练掌握有理数的比较大小的法则. 4.B【分析】根据有理数比较大小的法则逐项比较即可解答. 【详解】解:A 、①3333-=+=,,①33-=+,故本选项错误; B 、①90,100>-<,①910>-,故本选项正确;C 、①10.010->-<且10.01->-,则10.01-<-,故本选项错误;D 、由10100-=>故本选项错误.故选:B .【点睛】本题主要考查了有理数的大小比较,掌握好正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小是本题的关键.5.B6.C7.A8.C9.6-【分析】本题主要考查了正负数的意义,正确理解题意是解题的关键.本题根据54分比基准分低6分可得答案.【详解】解:①以60分为准,68分记为8+分①某同学得54分,则应记为6-分故答案为:6-.10.-2022【分析】根据两个数是互为相反数可得,两数之和等于0,由两个数是互为倒数可得,两数乘积是1.【详解】①若m 、n 互为相反数,x 、y 互为倒数①m +n =0,xy =1,2021m +2021n -2022xy =2021×(x +y )-2022xy =2021×0-20221=-2022. 故答案为:-2022.【点睛】本题主要考查相反数的性质和倒数的性质,解决本题的关键是要熟练掌握相反数和倒数的性质. 11.7-【分析】本题考查了正负数的实际应用,相反意义的量,解题的关键是理解题意,掌握相反意义的量.由题意得,以上午8时为0,向前每25分钟为一个“1-”,上午5:05与8时相隔175分钟,进而可求出答案.【详解】解:由题意得,以上午8时为0,向前每45分钟为一个“1-”①上午5:05与8时相隔175分钟,175?25=7①上午5:05应记为:7-故答案为:7-.12. 3 18【分析】根据超过的记为正,不足的记为负,绝对值小的接近标准,可得最接近标准的球;根据质量最大的求减去质量最小的球,可得质量最大的足球比质量最小的足球多多少克. 【详解】解:55+= 77+= |3|3-= |9|9-= 99+=①3570<<<①最接近标准质量的是3号足球; ()999918+--=+=(克)即质量最大的足球比质量最小的足球多18克.故答案为:3;18.【点睛】本题考查了正负数的意义,绝对值的意义,有理数的减法的应用,掌握正负数的意义是解题的关键.13.-9【分析】根据相反数,倒数,绝对值得出a +b =0,cd =1,x =±3,再代入求出即可.【详解】解:①a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3①a +b =0,cd =1,x =±3①将其带入可得()25()13a b +-⨯±最后计算得到值为9-.故答案为9-.【点睛】本题考查了相反数,倒数,绝对值,求代数式的值的应用,能根据已知得出a +b =0,cd =1,x =±3是解此题的关键.14.【答案】−14【知识点】绝对值的意义、有理数大小比较、有理数加法运算【分析】本题考查绝对值和有理数大小比较,关键是掌握绝对值的性质;找出绝对值不小于2且小于512的所有负整数,相加即可得到结果.【详解】解:绝对值不小于2且小于512的整数包括:±2,±3,±4,±5 其中负整数有:−2 −3 ∴绝对值不小于2且小于512和为:−2+(−3)+(−4)+(−5)=−14.故答案为:−14.15.9-【分析】先根据相反数的性质列等式,得到|2||3|0a b -++=,再根据绝对值的非负性解得a b 、的值,代入求解即可.【详解】两个数互为相反数,则相加和为0,即|2||3|0a b -++=,根据绝对值的非负性,求得2a = 3b =- 则()239a b -=--=-.故答案为:9-【点睛】本题主要考查了绝对值、相反数与乘方的综合运算,掌握各概念性质是解题的关键. 16.【答案】 −2 3 −0.5【知识点】用数轴上的点表示有理数、相反数的定义、数轴上两点之间的距离【分析】本题考查数轴的综合应用,熟练掌握点在数轴上的表示、数轴的意义及三要素、相反数的意义和性质等是解题关键.根据各点之间的位置关系、原点位置及相反数的性质解答;【详解】解:由题意可知:AB =2 AC =5 BC =3①以B 为原点时,点A 表示的数是−2,点C 表示的数是3若A ,C 表示的两个数互为相反数,则AC 的中点(如图,设为D )为原点①AD =CD =2.5 BD =AD −AB =0.5且D 在B 的右边①点B 表示的数是−0.5;故答案为:−2 3 −0.5.17.(1)养护小组在出发点的北方,距离出发点15千米(2)97千米【分析】此题主要考查有理数计算的应用.分析理解原题意是关键.(1)把这些数据相加即可得最后到达的位置及特点;(2)把这些数据的绝对值加起来可得汽车行驶的路程,再算出耗油量.【详解】(1)1797153116851615+-+--+--++=因为150>所以养护小组在出发点的北方,距离出发点15千米;(2)1797153116851697++-+++-+-+++-+-++++=所以该养护小组一共行驶了97千米.18.(1)1a =- 0b = 1c = (2)6【分析】本题考查了有理数、绝对值以及数轴(1)根据a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,即可得出a 、b ,c 的值;(2)先确定11x -≤≤,分析当11x -≤≤时113x x x +--、、的正负,去掉绝对值符号即可得出结论; 【详解】(1)①a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数①1a =- 0b = 1c =;(2)①P 在A 和C 之间①11x -≤≤①10x +> 10x -≥ 30x -< ①()()112311236x x x x x x +--+-=+--+-=19.(1)第3袋(2)不足2千克(3)149.8千克【分析】本题考查正负数表示相反意义量,绝对值,有理数加减运算,平均数,掌握正负数表示相反意义量,绝对值,有理数加减运算,平均数是解题关键.(1)先求超过或不足各数的绝对值,找出绝对值最小的即可;(2)计算超过或不足各数的和,看是正数还是负数,正数是几超过几千克,负数是不足几千克即可; (3)求出超过与不足数的平均数与150标准相加即可.【详解】(1)解:因为00=,所以第3袋的记数质量最接近标准质量.(2)解:()()()()()()()()630234224620-+-++++++++-+-+-++=-<所以10袋小麦总计不足2千克.(3)解:150102149.810⨯-=(千克) 所以每袋小麦的平均质量是149.8千克.。
一、选择题1.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道2.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍3.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13B .+13C .-3或+13D .+3或-14.下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位 D .2.708×104精确到千分位 5.若,则化简|-2|+|1-|的结果是( )A .-1B .1C .+1D .-36.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105B .15×103C .1.5×104D .1.5×1057.下列说法中,正确的是( ) A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数 8.下列运算正确的是( ) A .()22-2-21÷= B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-9.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12C .-2或12D .-2或-1210.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米11.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <12.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.14.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.15.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.16.计算1-2×(32+12)的结果是 _____. 17.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m . 18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.19.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大℃约为______.20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?22.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.23.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.24.定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.请解答下列问题:(1)若点A表示的数为-3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为_______;(2)若点A表示的数为-3,点A与点B的“平衡点”M表示的数为1,则点B表示的数为________;(3)点A表示的数为-5,点C,D表示的数分别是-3,-1,点O为数轴原点,点B为线段CD上一点.①设点M表示的数为m,若点M可以为点A与点B的“平衡点”,则m的取值范围是________;②当点A以每秒1个单位长度的速度向正半轴方向移动时,点C同时以每秒3个单位长度t )秒,求t的取值范围,使得点O可的速度向正半轴方向移动.设移动的时间为t(0以为点A 与点B 的“平衡点”. 25.计算: (1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭26.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断. 【详解】①2018(1)1-=,故本小题错误; ②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题. 故选A . 【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键.2.A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.C解析:C 【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案. 【详解】∵4x =,5y =, ∴x=±4,y=±5, ∵x >y , ∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13, 当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3, ∴2x-y 的值为-3或13, 故选:C . 【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.4.C解析:C 【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错 D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法.5.B解析:B 【解析】 【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案. 【详解】∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a )=-a+2-1+a=1,因此答案选择B. 【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.6.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】15000用科学记数法表示是1.5×104. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D 【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可. 【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意; 既没有最大的数,也没有最小的数,正确,故选项D 符合题意. 故选:D . 【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.8.D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.10.B解析:B 【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”, 故选B.11.C解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.12.D解析:D 【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误. 【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确. 故选:D . 【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键 解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解. 【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12, ∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-. 【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.14.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512 【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.15.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.16.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.17.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.18.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.19.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.23.(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 24.(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.25.(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】本题主要考查了有理数的混合运算,准确计算是解题的关键.26.12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。
2022年七年级数学上册第1章《有理数》综合测试卷一.选择题(共10小题)1.若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃2.在0,﹣3,|﹣1|,这四个数中,最大的数是()A.0B.﹣3C.|﹣1|D.3.北京时间2022年4月16日09时56分,神舟十三号载人飞船返回舱在东风着陆场成功着陆,神舟十三号载人飞行任务取得圆满成功.神舟十三号乘组共在轨飞行183,约为264000分钟,创造了中国航天员连续在轨飞行时间的最长记录.将264000用科学记数法表示应为()A.264×103B.2.64×106C.2.64×105D.0.264×1064.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.﹣2D.﹣45.早在1700多年前,数学家刘辉就提出了正数和负数的概念,他用红色、黑色算筹(小棍形状的记数工具)分别表示正数和负数.如图1表示的算式是(+1)+(﹣2),根据这种表示方法,可推算出图2所表示的算式是()A.(﹣3)+(﹣4)B.(﹣3)+(+4)C.(+3)+(﹣4)D.(+3)+(+4)6.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④b>0中一定成立的有()A.4个B.3个C.2个D.1个7.如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中值可以等于732的是()A.A1B.B1C.A2D.B38.如图,在一个由6个圆圈组成的三角形里,把﹣25到﹣30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣879.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±210.如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,动点P从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()①B对应的数是2;②点P到达点B时,t=3;③BP=2时,t=2;④在点P的运动过程中,线段MN的长度不变.A.①③④B.②③④C.②③D.②④二.填空题(共5小题)11.﹣的绝对值是.12.若x﹣1与2﹣y互为相反数,则(x﹣y)2022=.13.如图所示是某地2022年4月5日的天气预报图,则这天该地的温差是℃.14.三个相邻偶数之积是一个六位数,这个六位数的首位数字是8,末位数字是2,则这三个偶数是.15.某校七年级举办的趣味“体育节”共设计了五个比赛项目,每个项目都以班级为单位参赛,且每个班级都需要参加全部项目,规定:每项比赛中,只有排在前三名的班级记成绩(没有并列班级),第一名的班级记a分,第二名的班级记b分,第三名的班级记c分(a>b>c,a、b、c均为正整数);各班比赛的总成绩为本班每项比赛的记分之和.该年级共有四个班,若这四个班在本次“体育节”的总成绩分别为21,6,9,4,则a+b+c=,a的值为.三.解答题(共6小题)16.(1)(﹣5.3)+(﹣3.2)﹣(﹣5.3)﹣(+4.8).(2).(3)().(4)|﹣|﹣×(﹣4)2.17.已知a,b互为相反数,c,d互为倒数,|m|=2,求3(a+b﹣1)+(﹣cd)2022﹣2m的值.18.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3,回答下列问题:(1)收工时小王在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?19.观察下列运算过程:22=2×2=4,;,=;…(1)根据以上运算过程和结果,我们发现:22=;()2=;(2)仿照(1)中的规律,判断()3与()﹣3的大小关系;(3)求(﹣)﹣4×()4÷()﹣3的值.20.自行车厂要生产一批相同型号的自行车,计划每天生产220辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过220辆记为正,不足220辆记为负)星期一二三四五六日增减(辆)+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.21.25×11=275,13×11=143,48×11=528,74×11=814.观察上面的算式我们可以发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.请根据上面的速算方法,回答下列问题.(一)填空:①54×11=;②87×11=;③95×(﹣11)=;(二)已知一个两位数,十位上的数字是a,个位上的数字是b,将这个两位数乘11.(1)若a+b<10;①计算结果的百位、十位、个位上的数字分别是、、,这个三位数可表示为.②请通过化简①中所表示的三位数并计算该两位数乘11的结果验证该速算方法的正确性.(2)若a+b≥10,请直接写出计算结果的百位、十位、个位上的数字.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵气温是零上2摄氏度记作+2℃,∴气温是零下3摄氏度记作﹣3℃.故选:A.2.【解答】解:∵|﹣1|=1,∴|﹣1|,∴最大的数是|﹣1|.故选:C.3.【解答】解:264000=2.64×105,故选:C.4.【解答】解:∵数轴的单位长度为1,如果点B表示的数是4,∴点A表示的数是4﹣6=﹣2,故选:C.5.【解答】解:由题意得,图2所表示的算式是(+3)+(﹣4).故选:C.6.【解答】解:∵a<b,∴a﹣b<0,故①符合题意;若b<0,则a+b<0;若﹣1<0<b,|a|>|b|,则a+b<0;综上所述,②符合题意;若a<0,b>0,则ab<0,故③不符合题意;若原点在b的右侧,则b<0,故④不符合题意;故选:C.7.【解答】解:A=2n﹣2+2n﹣4+2n﹣6=732,1整理可得:2n=248,n不为整数;A=2n﹣8+2n﹣10+2n﹣12=732,2整理可得:2n=254,n不为整数;B=2n﹣2+2n﹣8+2n﹣14=732,1整理可得:2n=252,n不为整数;=2n﹣6+2n﹣12+2n﹣18=732,B3整理可得:2n=256,n=8;故选:D.8.【解答】解:如图,∴S=﹣29﹣27﹣28=﹣84,故选:A.9.【解答】解:∵abc≠0,且a+b+c=0,∴a、b与c中可能有1个字母小于0,也可能有2个字母小于0.当a、b与c中有1个字母小于0,如a<0,则b>0,c>0,∴+++=﹣1+1+1﹣1=0.当a、b与c中有2个字母小于0,如a<0,b<0,则c>0,∴+++=﹣1﹣1+1+1=0.综上:+++=0.故选:A.10.【解答】解:∵已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,∴B对应的数为:4﹣6=﹣2;故①是不符合题意的;∵6÷2=3,故②是符合题意的;∵当BP=2时,t=2或t=4,故③是不符合题意的;∵在点P的运动过程中,MN=3,故④是符合题意的;故选:D.二.填空题(共5小题)11.【解答】解:|﹣|=;故答案为:.12.【解答】解:∵x﹣1与2﹣y互为相反数,∴x﹣1+2﹣y=0,∴x﹣y=﹣1,∴原式=(﹣1)2022=1.故答案为:1.13.【解答】解:5﹣(﹣7)=12℃,故答案为:12.14.【解答】解:∵三个相邻偶数之积的末位为2,∴这三个数的末位只能是4×6×8.∵这三个相邻偶数之积是一个六位数,这个六位数的首位数字是8,∴这三个数的积在800000和900000之间.∵90×90×90=729000<800000,100×100×100=100000000>800000,∴这三个数大于90,小于100.∵这三个数为连续偶数,∴这三个数为94,96,98.故答案为:94,96,98.15.【解答】解:设本次“体育节”五个比赛项目的记分总和为m,则m=5(a+b+c),∵四个班在本次“体育节”的总成绩分别为21,6,9,4,∴m=21+6+9+4=40.∴5(a+b+c)=40,∴a+b+c=8.∵a>b>c,a、b、c均为正整数,∴当c=1时,b=2,则a=5;当c=1时,b=3,则a=4,此时,第一名的班级五个比赛项目都是第一,总得分为20<21分,不符合题意舍去;当c=2时,b=3,则a=3,不满足a>b,舍去;当c=3时,b=4,则a=1,不满足a>b,舍去.综上所得:a=5,b=2,c=1.故答案为:a+b+c=8,a=5.三.解答题(共6小题)16.【解答】解:(1)(﹣5.3)+(﹣3.2)﹣(﹣5.3)﹣(+4.8)=(﹣5.3)+(﹣3.2)+5.3+(﹣4.8)=(﹣5.3+5.3)+(﹣3.2﹣4.8)=0+(﹣8)=﹣8;(2)=(10﹣)×(﹣9)=﹣10×9+×9=﹣90+0.5=﹣89.5;(3)()=()×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)|﹣|﹣×(﹣4)2=÷﹣×16=﹣×16==﹣.17.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m=﹣2时,原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.18.【解答】解:(1)8+(﹣9)+7+(﹣2)+5+(﹣10)+7+(﹣3)=3(千米),∴收工时小王在A地的东边,距A地3千米;(2)0.2×(8+|﹣9|+7+|﹣2|+5+|﹣10|+7+|﹣3|)=0.2×51=10.2(升),∴从A地出发到收工时,共耗油10.2升.19.【解答】解:(1)∵22=2×2=4,,∴;∵,=,∴,故答案为:;;(2)()3=()﹣3,理由:∵==,==,∴()3=()﹣3.(3)原式=×÷23=×=16×=2.20.【解答】解:(1)由表格可得,(220+5)+(220﹣2)+(220﹣4)=225+218+216=659(辆),即前三天共生产了659辆,故答案为:659;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了16﹣(﹣10)=16+10=26(辆),故答案为:26;(3)220×7×100+[5+(﹣2)+(﹣4)+13+(﹣10)+16+(﹣9)]×120=154000+9×120=154000+1080=155080(元),答:工人这一周的工资总额是155080元.21.【解答】解:(一)①54×11=594;②87×11=957;③95×(﹣11)=﹣1045;故答案为:594,957,﹣1045;(二)(1)①a;a+b;b;100a+10(a+b)+b;②∵100a+10(a+b)+b=100a+10a+10b+b=110a+11b(10a+b)×11=110a+11b,∴100a+10(a+b)+b=(10a+b)×11,∴该速算方法是正确的;(2)百位、十位、个位上的数字分别为:a+1,a+b﹣10,b。
七年级数学(上册):第一章有理数-单元检测(无答案)一、选择题1.检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:篮球编号1234与标准质量的差(g)+4+7-3-8其中质量最好的是()A. 1号B. 2号C. 3号D. 4号2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A. 4B. −4C. −8D. 4或−83.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b-c|-|c-a|()A. b−2c+aB. b−2c−aC. b+aD. b−a4.-32的相反数是()A. 3B. 13C. −13D. 95.-|-5|的倒数是()A. 5B. 15C. −15D. −56.已知|a|=1,│b│=4,且a与b的商是正数,则a+b的值是()A. ±5B. 5C. ±3D. 5或−37.有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,绝对值最大的是()A. aB. bC. cD. 不能确定8.在-2,0,12,2四个数中,最小的是()A. −2B. 0C. 12D. 2第 1 页9. 与﹣2的和为0的数是()A. 2B. −12C. 12D. −210. 若|a |=3,b =1,则ab =( )A. 3B. −3C. 3或−3D. 无法确定二、填空题 11. 如果+5℃表示比零度高5℃,那么比零度低7℃记作________℃.12. 实数a , b 在数轴上对应的点如图所示;(1)如图:比较大小:a ________ b ,a —b ________0,a + b _______ 0; (2)如图:化简(去绝对值号)|b |= _______ ,|a +1|=__________ .13. 比较大小:-|-83|______−(32)2(填“>”、“<”或“=”).14. -0.5的倒数是______,3−π的绝对值是______.15. 在“-3,-1,0”三个数中,最大的数是 .16. 若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a +b +c +d +e =______.17. 冬季供暖后,乐乐发现室内的温度为20°,此时冰箱冷冻室的温度为-5℃,则室内的温度比冷冻室的温度高______℃ 18. 欢欢的身高约为1.63米,1.63这个近似数精确到_________ 位.19. 截止2019年底,中国高速铁路营运里程达到25000km ,居世界首位,将25000用科学记数法可表示为______.三、解答题20. 计算(1)(-8)-(-3)+(-15)第 3 页(2)(-16)×(12-34+58)(3)|-5|+33×(-13)2-(-4)2÷(-1)3(4)18-6÷(-2)×(−13)(5)-13-2×[2-(-3)2]21. 有20筐红萝卜,以每筐25千克为标准,超过记正不足记负来表示,记录如下:(1)20筐红萝卜中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量比较,20筐红萝卜总计超过或不足多少千克?(3)若该种红萝卜进价每千克为1.5元,售价每千克为3元.求这20筐红萝卜能赚多少钱?22.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;的值.(2)求m+cd+a+bm。
第一章 有理数1.下列四个数的绝对值比2大的是( )A.-3B.0C.1D.22.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利50元记作+50元,那么亏本30元记作( )A. -30元B. -50元C. +50元D. +30元3.计算-3+2的结果是( )A. 1B. -1C. 5D. -54.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数5.下列计算中正确的是( )A.)()(10-10-10-2⨯= B.2332⨯= C.212121-21-3⨯⨯=⎪⎭⎫ ⎝⎛ D.2332= 6.-21的倒数是( ) A.-2 B.2 C.21 D.-21 7.如果温泉河的水位升高 0.8 m,水位变化记作+0.8 m,那么水位下降 0.5 m,水位变化记作( )A.0 mB.0.5 mC.-0.8 mD.-0.5 m8.在 -1,0,-3.2 这四个数中,属于负分数的是( )A. B.-1 C.0 D.-3.29.与算式32+32+32的运算结果相等的是( )A.33B.23C.36D.3810.中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展,据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万,请将780000用科学记数法表示为()A.78×104B.7.8×105C.7.8×106D.0.78×10611.下列各式中,计算结果为负数的是( )A.(-3)×(-4)×6.2B.|-3|×|-4|×(-5.5)×(-3)C.(-13)×(-40)×(-99.8)D.(-15)×|-87|×012.若两个数的商为﹣1,则这两个数()A.都是1 B.都是﹣1C.一个是正数,一个是负数D.是一对非零相反数13.若x<0,则│x-(-x)│等于()A.-xB.0C.2xD.-2x14.观察下列数的排列规律:11,12,21,13,22,31,14,23,32,41,15,…,则37的排位应在()A.30位B.35位C.37位D.40位15.某年度某国家有外债10亿美元,有内债10亿美元,应用数学知识来解释说明,下列说法合理的是( )A.如果记外债为-10亿美元,则内债为+10亿美元B.这个国家的内债、外债互相抵消C.这个国家欠债共20亿美元D.这个国家没有钱16.下列说法,其中正确的有( )①减去一个负数等于加上这个数的相反数;②正数减负数,差为正数;③零减去一个数,仍得这个数;④两数相减,差一定小于被减数;⑤两个数相减,差不一定小于被减数;⑥互为相反数两数相减得零.A. 2个B. 3个C. 4个D. 5个17.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数就是分数. A.1 个 B.2 个 C.3 个 D.4 个18.有这样一列数字:1,-2,3,-4,5,-6……,则第一百个数字表示为________19.五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖总重量是 _____________千克.20.如图,数轴上的点A、B、C、D分别对应有理数a、b、c、d,用“>”“=”或“<”填空:(1)a+b 0;(2)b-a 0;(3)ac 0;(4)abcd 0; (5)(a+b)(d+c) 0;(6)(a-b)(c-d) 0.21.按四舍五入法对6.0978取近似数,若精确到0.001,则6.0978≈;若精确到百分位,则6.0978≈ .22. 如图所示.(1)数轴上的点A,B,C,D表示的数分别是、、、;(2)A,B两点间的距离是个单位长度;(3)A,D两点间的距离是个单位长度.23.将全体正整数排成如下的三角形数阵,根据排列规律,数阵中第 10 行从左到右的第 5 个数是 .12 34 5 67 8 9 10……………24.计算:(1)(-2)×(-67)×5 (2)23××(-12)(3)÷(-5) (4)×÷35791※※※※※※※※※※※※※※※※※※※※※※※※※.25.某一出租车司机一天下午以红河一中为出发地在东、西方向营运,若向东走记为正,向西走记为负,行车路程(单位:km )依先后次序记录如下: +9,-3,-5,+4,-8,+6,-3,-6,-4,+11(1)将最后一名乘客送到目的地时,出租车离红河一中有多远?在红河一中的什么方向?(2)若每千米的价格为25元,请联系实际计算该司机一个下午的营业额是多少?26.我们来观察两个算式:①63×67=6×(6+1)×100+3×7=4 200+21=4 221;②692×698=69×(69+1)×100+2×8=483 000+16=483 016.我们来观察,这两个算式中两个因数个位上数字之和是多少?其余各位上的数字有什么明显的特征?并计算734×736.27.有一位同学说,因为像2,+2.37,…的正数是有理数,像-1,-3.1,-6,…的负数也是有理数,同样0也是有理数,所以得出结论,有理数包括正数、0和负数.请问:这位同学得出的结论是否正确?若不正确,请说明理由.28.某班某次数学考试成绩在85分以上(含85分)为优秀,以85分为标准分,老师将某一小组五名同学的成绩简记为+9,-4,+11,-7,0(规定高于标准分的记为正,低于标准分的记为负).(1)这五名同学的实际成绩最高分是多少?(2)这五名同学中成绩优秀的人数是多少?(3)这五名同学中最高分与最低分相差多少分?29.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+17= ;(只填数字)(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(只填乘方形式)(3)请用上述规律.....计算:(3分)103+105+107+…+2017+2019。
七年级上册数学第一章单元检测一、单选题(每题4分,共32分)1.的相反数是( )2.已知点M 到原点的距离是5,则点M 所表示数的绝对值是( )3.下列数中,属于负整数的是( )4.若m,n 互为相反数,则下列结论正确的是( )5.如果规定测试成绩60分为标准,将80分记作+20分,则将50分记作( )分.6.在有理数中距离原点最远的是( )7.下列各组式子中,结果等于6的是( )8.下列结论正确的是( )1.0-1.0.-A 1.B 1.0.C 1.-D 5.A 5.-B 55.-或C 10.D 8.2.-A 5.-B π-.C 8.D n m A =.1mn .=B 0.≠+n m C nm D =.50.+A 50.-B 10.-C 10.+D ,431003--,,,3.-A 0.B 310.C 4.-D )6(.+-A 6.--B )(6.-+C )(6.--D 的相反数)的含义是(1.21.2.--A 这个负数越大负数的绝对值越大,则.B 0,.=-=a a a C 则若二.填空题(每题4分,共28分)9.如图所示,数轴上点A 所表示数的相反数为________.10.如果向右走10步记作+10步,那么_______记作-8步.11.绝对值大于1且小于的负整数有___________.12.若互为相反数,则m 的值为________.13.已知________.14.已知点M 在数轴上,点M 表示的数用表示,点M 到原点的距离为8,则点M 所表示的数是________.15.已知________.三.解答题(共5大题,共40分)16.(8分)把下列各数填入对应的集合内.正有理数集合:{ }整数集合:{ }负有理数集合:{ }分数集合:{ }17.(6分)将下列各数在数轴上表示出来,并按从小到大的顺序排列.0,.=+=b a b a D 则若π74与-m ===b b a b a 则>>且,,0,5,313-x =-+-+-3131b b a a b a ,则<<<1421082.1,3165.2,,,,--∙π21125,034-----),(,,,18.(8分)在数轴上,表示-3与2的点分别是A 和B (包括这两个点).(1)点A 和点B 之间的整数有哪些?(2)其中负整数有哪些?19.(8分)已知a 为任意有理数,则-a 表示a 的相反数.(1)化简.(2)当a=-a 时,求a 的值.20.(10分)已知车间工人在检测零件质量时,超过标准质量的克数记作正数,低于标准质量的克数记作负数.(1)各表示什么?(2)哪个零件的质量最符合标准?为什么?)(),(8.13+---3.06.29.05.12--+-+,,,,。
七年级上册数学第一章单元检测一、单选题(每题4分,共40分)1.-6的相反数是( )2.下列说法正确的是( )3.在中,最大的数是( )4.绝对值大于或等于2,且小于4的所有整数的个数是( )5.已知,则x ,y 的值分别是( )6.如果收入80元记作+80元,那么支出100元记作( )7.如果点M 在数轴上,表示的有理数为-3,则距离点M4个单位长度的数是( )8.一个数的绝对值等于其本身,则这个数是( )6.A 61.-B 6.-C 61.D 数有理数不是正数就是负.A 是自然数,但不是整数0.B 所有的小数都是有理数.C 是最小的正整数1.D 4110,2,,--2.-A 41.B 0.C 1.-D 1.A 3.B 4.C 5.D 053=++-y x 2.-A 41.B 0.C 1.-D 元100.-A 元100.B 元20.-C 元20.D 1.-A 1.B 7.-C 71.-或D9.已知互为相反数,则x 的取值为( )10.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )二、填空题(每题3分,共24分)11.的倒数是________.12.绝对值最小的数是________.13.如果海平面以上500米记作+500米,那么海平面以下300米记作_______.14.若m 与5互为相反数,则的值为______.15.比较大小:16.数轴上与-1这个点相距6个单位长度的点所表示的数是_______.17.已知若与6化为相反数,则的值为________.18.已知,则化简为_______.三.解答题19.(6分 )写出下列各数的绝对值.正数.A 0.B 负数.C 非负数.D 61-+与x 2.A 0.B 5.C 3.D b a A >.b a B <.b a .>C 0.>b a D +34-3+m ()2____2,0___3+---2+m 3+m b <<a 0b a a -+20.(8分)把下列各数填入对应的括号内负数:{ }正整数:{ }分数:{ }负分数:{ }21.(8分)在数轴上,点M 表示的数为-5,点N 表示的数为2.(1)画出数轴,并在数轴上标出点M 和N.(2)计算点M 和点N 的距离.22.(6分)已知在数轴上,点M 表示的数是-3,点A 与B 互为相反数,且点B 离点M5个单位长度,求点A 和B 所表示的数.51-)(722)(03)(2.34-)(120890,75.10,3354,,,,,-⋅⋅⋅--π23.(8分)某班对新进七年级男生的身高记录如下.随机抽取8名.规定高于160cm 的用正数表示,低于160cm 的用负数表示.达到160cm 或者以上,选为篮球队员.本班有几个男生达标?121,23,021-++-++-,,,,,。
青云镇中心中学2012-2013学年度上学期七年级
第一章《有理数》检测题3
班级: 姓名:
一、认真选一选(每题3分,共30分)
1、下列计算中,错误的是( )。
A 、3662-=-
B 、16
1)41
(2=± C 、64)4(3-=- D 、0)1()1(1000100=-+- 2、下列每组数中,相等的是( )。
A 、-(-3)和-3;
B 、+(-3)和-(-3);
C 、-(-3)和|-3|;
D 、-(-3)和-|-3|.
3、-3的相反数是( )。
A 、-31
B 、3
1 C 、-3 D 、3 4、为迎接即将开幕的广州亚运会,亚组委共投入了2198000000元人民币建造各项体育设施,用科学记数法表示该数据是( )。
A 、10100.2198
⨯元 B 、 6102198⨯元 C 、910198.2⨯元 D 、 10
10198.2⨯元
5、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..
的是( )。
A 、1022.01(精确到0.01) B 、1.0×103(保留2个有效数字)
C 、1020(精确到十位)
D 、1022.010(精确到千分位)
6、已知一个数的倒数的相反数为135
,则这个数为 ( )。
A 、165 B 、516 C 、165- D 、516-
7、如果一个有理数的绝对值是8,那么这个数一定是( )。
A 、-8
B 、-8或8
C 、8
D 、以上都不对
8、如果a a =-,下列成立的是( )
A 、0a >
B 、0a <
C 、0a >或0a =
D 、0a <或0a =
9、下列说法正确的是( )
A 、倒数等于它本身的数只有1
B 、平方等于它本身的数只有1
C 、立方等于它本身的数只有1
D 、正数的绝对值是它本身
10、下列各组量中,互为相反意义的量是( )
A 、收入200元与支出20元
B 、上升10米与下降7米
C 、超过0.05毫米与不足0.03毫米
D 、增大2升与减少2升
二、认真填一填(每空3分,共30分)
11、观察下面一列数,按某种规律填上适当的数:1,-2,4,-8, , 。
12、-23
的倒数是 ;绝对值是 。
13、在近似数0.6048中,精确到 位,有 个有效数字。
14、用“>”、“<”、“=”号填空:
(1)0.02- 1 ; (2)45 34。
15、若a 、b 互为相反数,c 、d 互为倒数,则34()3()a b cd +-= 。
16、数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的数为 。
17、若2(1)20a b -++=,那么a b += 。
18、在数5-,1,3-,5,2-中任取三个相乘,其中最大的积是 ,最小的积是 。
19、温度由4-℃上升7℃,达到的温度是______℃。
20、52-的底数是 ,指数是 。
三、计算题(每题5分,共30分)
21、206137+-+- 22、()()()()499159--+--+-
23、-18÷(-3)2+5× (-12
)3-(-15 ) ÷5 24、)2()1(3)2(64---⨯+-
25、(2
41-421-181)×(-98) 26、232)3
1()6()2(31-÷-+-⨯+-
四、解答题(第28、30小各7分,第27、29题8分,共30分)
27、把下列各数分别填入相应的集合里。
()88.1,5,2006,14.3,7
22,0,34,4++----- (1)正数集合:{ …};
(2)负数集合:{ …};
(3)整数集合:{ …};
(4)分数集合:{ …}
28、规定一种运算:c a d
b =b
c a
d -,例如42 53=24352-=⨯-⨯,请你按照这种运算的规定,计算21
- 5
.03-。
29、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
这批样品的质量比标准总质量质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?
30、观察下列等式:
111122=-⨯,1112323=-⨯,1113434
=-⨯, 将以上三个等式两边分别相加得:
1
1
1
1
1
1
1
1
1
3
111223342233444++=-+-+-=-=⨯⨯⨯.
(1)猜想并写出:1
(1)n n =+ . (3分)
(2)直接写出下列各式的计算结果:(4分) ①1
1
1
1
12233420062007++++=⨯⨯⨯⨯ ; ②1
1
1
1
122334(1)n n ++++=⨯⨯⨯+ .。