算术平方根2
- 格式:ppt
- 大小:384.50 KB
- 文档页数:11
算术平⽅根及平⽅根2算术平⽅根与平⽅根知识点1:平⽅根的概念及其性质1、概念:⼀般地,如果⼀个数的平⽅等于a ,那么这个数叫做a 的平⽅根或⼆次⽅根.这就是说,如果2x =a ,那么x 叫做a 的平⽅根.2、表⽰:正数 a 的平⽅根可表⽰为⼠2a ,读作“正负根号a ”,其中“ 2 '’是根指数,当根指数是 2时可省略不写,“”读作“根号” , “a ”是被开⽅数.3、性质:(1)⼀个正数a 有两个平⽅根,其中⼀个是“a ”,另⼀个为“⼀a ”,它们互为相反数;(2)0 的平⽅根是0;(3)负数没有平⽅根.注意:1.被开⽅数 a 是⾮负数(⾮负数即指正数和零),2. 平⽅与开⽅是互逆运算关系例1.填空:1、的平⽅是64,所以64的平⽅根是;2、平⽅数是它本⾝的数是;平⽅数是它的相反数的数是;3、若x 的平⽅根是±2,则x= ;4、在下列各数中0,254, 2(5)--,222x x ++,|1|a -,||1a -数是个. 5、求下列各数的平⽅根:(1)0;(2)1;(3)1.21;(4)8;(4)(-3)2;(5)49151;(6)47 6、计算:(1)22810-;(2)9141+;(3)144251;(4)-1691。
变式练习:1、若a x =2,则() A 、x>0 B 、x≥0 C、a>0 D 、a≥02、⼀个数若有两个不同的平⽅根,则这两个平⽅根的和为()A 、⼤于0B 、等于0C 、⼩于0D 、不能确定3、下列说法正确的是()A .1的平⽅根是1±;B .24±=C 、81的平⽅根是3±;D 、0没有平⽅根;4的平⽅根是,35±是的平⽅根.知识点2:算术平⽅根的概念及表⽰⽅法。
1、概念:⼀般地,如果⼀个正数 x 的平⽅等于 a ,即2x = a ,那么这个正数x 叫做 a 的算术平⽅根.a 的算术平⽅根记为a ,读作“根号 a ”, a叫做被开⽅数.2、表⽰⽅法:⾮负数a 的算术平⽅根表⽰为a ,读作“根号a ”.例如: 24=16 , 16 的算术平⽅根是 4 ,表⽰为了丽16=4 .3、性质:(1)正数 a 的算术平⽅根为a ;(2) 0 的算术平⽅根是 o ,即0=0;(3)负数没有算术平⽅根。
第六章 实数第二课时 算术平方根(二)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
教学难点与重点1. 重点:算术平方根的概念。
2. 难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学过程一、 情境导入同学们,2003年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度1v (米/秒)而小于第二宇宙速度:2v (米/秒).1v 、2v 的大小满足gR v gR v 2,2221==.怎样求1v 、2v 呢?这就要用到平方根的概念,也就是本章的主要学习内容.设计理念:“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.这节课我们先学习有关算术平方根的概念.请看下面的问题.你是怎样算出画框的边长等于5dm 的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x 的值.练习:教科书第160页的填表.这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
⼿算平⽅根的正确⽅法⼿算平⽅根的「正确」⽅法,是什么⽅法?如果你认为是⽜顿迭代法的话,你可以亲⾃试⼀下,看看效果如何:(原帖 , 鉴于百度贴吧的帖⼦是公开的,我就不打码了)其实⽜顿迭代法⾮常好,在电脑上快得飞起。
但是⼿算就不⾏了。
那么「正确」的⽅法是什么呢?是这个:(原帖同上)说得神神叨叨的,还能开⽆限⼩数,到底是什么⽅法?帖⼦⾥没说。
不过,幸运的是,我有⼀天翻的时候,碰巧翻到了这个⽅法。
本⽂将详细介绍这个⽅法。
2 的算术平⽅根是多少?是√2. 不是 1.41, 也不是 1.414213. 所以,本⽂讨论的计算,是以(⼗进制⼩数)近似值为主的。
准确地说,是不⾜近似值。
近似值,⽆论是精确到⼩数点后 1 位还是 1000 位,都是近似值。
所以,计算近似值,先得确定精度(即:你算到哪⼀位 / 数量级就满意了)。
先讨论对⼀位数开平⽅,精确到⼩数点后 1 位的情况(以计算√2 为例)。
这⼀上来就有⼀个问题:⼤家都知道√2 精确到⼀位⼩数是 1.4, 但为是么是 1.4, 不是 1.3 或 1.5?显然,1.52>2, 不是我们要的不⾜近似值。
⽽ 1.32<1.42<2 所以在不过剩的情况下,最接近的(在给定精度范围内的)数是 1.4.既然是这样的话,我们就可以把这个过程「概括」成这样⼀个问题的求解:求最⼤的⼀位数x, 使得不等式¯1.x2⩽成⽴。
求出x=4后,如果要继续提⾼精度,那么再求解这个问题:求最⼤的⼀位数y, 使得不等式\overline{1.4y}^2 \leqslant 2 成⽴。
(精度还可以继续提⾼)……这其实就是⼤家计算平⽅根最常⽤的⽅法,即「试乘」。
但是计算\overline{1.x} 的平⽅,是多位数乘多位数,不好算。
⽽且随着精度增加,越来越难算(\overline{1.414213x}^2什么的,想想就要爆炸)。
既然硬算不好算,那么就需要技巧。
什么技巧呢?我们可以把式⼦变形⼀下,来降低运算的规模:(1+\frac{x}{10})^2 \leqslant 2 (1)把完全平⽅展开,得:1+\frac{2x}{10}+\frac{x^2}{100} \leqslant 2\Leftrightarrow \frac{2x}{10}+\frac{x^2}{100} \leqslant 1\Leftrightarrow 20x+x^2 \leqslant 100\Leftrightarrow x(20+x) \leqslant 100\Leftrightarrow x\cdot \overline{2x} \leqslant 100 (2)这样,运算规模就从多位数乘多位数降低到了⼀位数乘多位数,⽴马好算了许多。
平方根与算术平方根的应用1. 什么是平方根与算术平方根在进行数学计算时,平方根和算术平方根是常常需要用到的。
平方根是指一个数的平方等于这个数的根,例如数值为4的平方根为2。
而算术平方根则是一组数的平均数,例如数值为1、2、3的算术平方根为2。
2. 平方根与算术平方根的应用场景2.1 使用平方根进行计算在数学中,平方根常用于计算各种数值。
例如,我们可以使用平方根来计算直角三角形的斜边长度。
在一个直角三角形中,如果我们知道两条直角边的长度,我们就可以使用勾股定理来计算斜边的长度。
勾股定理表达式为:a^2 + b^2 = c2,其中a、b为两条直角边的长度,c为斜边的长度。
在此公式中,我们可以使用平方根来计算c。
例如,如果a=3、b=4,则c的长度等于sqrt(32+4^2)=5。
另外,在几何形状的计算中,平方根也有着广泛的应用。
例如,在计算三角形的面积时,我们可以使用海龙公式 s(s-a)(s-b)(s-c) 的形式进行计算,其中s为三角形的半周长,a、b、c为三角形的三条边的长度。
在海龙公式中,我们可以使用平方根来计算根号部分的结果。
2.2 使用算术平方根进行估算算术平方根可以用于估算一组数的平均值。
例如,在统计一群人的平均身高时,我们可以使用算术平方根来计算这组身高数据的极差和标准差。
另外,在进行复杂计算时,算术平方根也可以用来估算结果。
例如如何计算 2的平方根+5的平方根?我们可以使用算术平方根进行估算,首先2的平方根约等于1.41,5的平方根约等于2.24,则2的平方根+5的平方根约等于3.65。
3. 小结以上就是平方根和算术平方根的几个应用场景。
虽然这些数学概念看起来比较抽象,但与现实生活中的复杂计算相比,它们还是非常基础的计算方法。
掌握它们可以让我们更好地理解和应用数学。