重庆市2018届九年级数学上学期期中试题新人教版含答案
- 格式:doc
- 大小:438.00 KB
- 文档页数:16
新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有①.【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.【解答】解:①因为a=3>0,它们的图象都是开口向上,大小是相同的,故此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),故此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x>1时,y随着x的增大而增大,故此选项错误;④它们与x轴都有一个交点,故此选项错误;综上所知,正确的有①.故答案是:①.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是x =2 .【分析】因为点(﹣2,0),(6,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣2,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==2,即x=2.故答案是:x=2.15.函数y=x2﹣2x+2的图象顶点坐标是(1,1).【分析】根据二次函数解析式,进行配方得出顶点式形式,即可得出顶点坐标.【解答】解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,∵抛物线开口向上,当x=1时,y最小=1,∴顶点坐标是(1,1).故答案为:(1,1).16.点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).三.解答题(共9小题)17.解方程:x2﹣6x+5=0(配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.【分析】直接利用交点式写出抛物线的解析式.【解答】解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?【分析】设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据共要比赛28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得:=21,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).答:共有7个队参加足球联赛.20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.【分析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【解答】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2.答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?【分析】(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式,求出其解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由题意,得1=a(0﹣4)2+2.6,解得:a=﹣0.1.故y=﹣0.1(x﹣4)2+2.6.答:抛物线的解析式为:y=﹣0.1(x﹣4)2+2.6;(2)由题意,得当y=0时,﹣0.1(x﹣4)2+2.6=0,解得:x1=+4,x2=﹣+4<0(舍去),故x=+4.答:这个同学推出的铅球有(+4)米远.22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.【分析】(1)计算判别式的中得到△=24,然后根据判别式的意义得到结论;(2)把x=2代入方程k2+4k=2,再把2k2+8k+2018表示为2(k2+4k)+2018,然后利用整体代入的方法计算.【解答】(1)证明:△=(2k)2﹣4(k2﹣6)=24>0,所以方程有两个不相等的实数根;(2)把x=2代入方程得4+4k+k2﹣6=0,所以k2+4k=2,所以2k2+8k+2018=2(k2+4k)+2018=2×2+2018=2022.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为6000 元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(40﹣x)元,平均每月可售出[(40﹣x)×200+600] 个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.【分析】(1)根据总盈利=单件获利乘以销量列出代数式;(2)根据“当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个”列出代数式(3)设每个台灯的售价为x元.根据每个台灯的利润×销售数量=总利润列出方程并解答;【解答】解:(1)依题意得:未降价之前,该店每月台灯总盈利为600×(40﹣30)=6000元.故答案是:6000.(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(x﹣30)元,平均每月可售出[(40﹣x)×200+600]个故答案为:(x﹣30),[(40﹣x)×200+600].(2)设每个台灯的售价为x元.根据题意,得(x﹣30)[(40﹣x)×200+600]=8400,解得x1=36(舍),x2=37.当x=36时,(40﹣36)×200+600=1400>1210;当x=37时,(40﹣37)×200+600=1200<1210;答:每个台灯的售价为37元.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.【分析】(1)根据运动时间求出PA,BQ,利用分割法求△DPQ的面积即可.(2)分别求出表示出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.【解答】解:(1)经过1秒时,AP=1,BQ=2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).(2)当t=秒时,AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,在Rt△QBP中,QP2=QB2+BP2=32+()2=,∴DQ2+QP2=117+=,∴DQ2+QP2=DP2,∴△DPQ为直角三角形;(3)假设运动开始后第x秒时,满足条件,则:QP=QD,∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,QD2=QC2+CD2=(12﹣2x)2+62,∴(12﹣2x)2+62=(6﹣x)2+(2x)2,整理,得:x2+36x﹣144=0,解得:x=﹣18±6,∵0<6﹣18<6,∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为(2,0),B点坐标为(5,0);(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.【分析】(1)y=,令y=0,解得:x=2或5,即可求解;(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.【解答】解:(1)y=,令y=0,解得:x=2或5,故答案为:(2,0)、(5,0);(2)连接CD、BD,由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,∵△ABC为等边三角形,∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,∵∠COD=60°,且OD=OC,则△OCD为等边三角形,∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,而∠ACB=60°=∠ACD+∠DCB,∴∠OCA=∠DCB,而CO=CD,CA=CB,∴△OAC≌△DBC(SAS),∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,∴∠OBD=60°,则y D=﹣BD sin∠OBD=﹣2×=﹣,故点D的坐标为(4,﹣),当x=4时,y==﹣,故点D在抛物线上;(3)抛物线的对称轴为:x=,设点M(,s),点N(m,n),n=m2﹣m+5,①当OD是平行四边形的边时,当点N在对称轴右侧时,点O向右平移4个单位,向下平移个单位得到D,同样点M向右平移4个单位,向下平移个单位得到N,即:+4=m,s﹣=n,而n=m2﹣m+5,解得:s=则点M(,);当点N在对称轴左侧时,同理可得:点M(,);②当OD是平行四边形的对角线时,则4=+m,﹣=n+s,而n=m2﹣m+5,解得:s=,故点M的坐标为:(,)或(,)或(,).新九年级上学期期中考试数学试题(含答案)一、选择题(每小题3分,共36分)1.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆2.已知⊙O的半径为1,且圆心O到直线l的距离是2,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=7,则PA的长是()A.5 B.6 C.7 D.85.如图,已知⊙O的半径为13,弦AB的长为24,则圆心O到AB的距离为()A.3 B.4 C.5 D.66.如图,⊙O中,OC⊥AB,∠BOC=50°,则∠ADC的度数是()A.24°B.25°C.29°D.30°7.在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.2610.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)11.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形图中阴影部分)的面积是()A.20πcm2B.(20π+8)cm2C.16πcm2D.(16π+8)cm2 12.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)13.150°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm.14.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为.15.点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1y2(填“>”、“<”、“=”).16.一个直角三角形的两边长分别为3,4,则此三角形的外接圆半径是.17.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.19.⊙O的半径为5cm,AB、CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm.那么求得AB和CD之间的距离为.20.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.三、解答题(本大题共6小题,21--22每小题6分、23--26每小题6分,共40分)21.(6分)如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)22.(6分)已知:二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(1,0)、B(5,0),抛物线的最小值为﹣4.求:(1)二次函数的解析式.(2)直接回答:当x取什么值时,y的值小于0.23.(7分)如图,已知CD是⊙O的直径,弦AB⊥CD,垂足为点M,点P是上一点,且∠BPC=60°.试判断△ABC的形状,并说明你的理由.24.(7分)如图所示,AB是⊙O的直径,C为的中点,CD⊥AB于点D,交AE于点F,连接AC,求证:AF=CF.25.(7分)如图,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于E.(1)求证:DE是⊙O的切线;(2)连接OE,若∠EDA=30°,AE=1,求OE的长.26.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.参考答案一、选择题1.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆【分析】根据弦的定义,以及经过不在同一直线上的三点可以作一个圆可判断和垂径定理分别得出即可.【解答】解:A.直径是弦,根据弦的定义是连接圆上两点的线段,∴故此选项正确,但不符合题意,B.最长的弦是直径,根据直径是圆中最长的弦,∴故此选项正确,但不符合题意,C.垂直弦的直径平分弦,利用垂径定理即可得出,故此选项正确,但不符合题意,D.经过三点可以确定一个圆,利用经过不在同一直线上的三点可以作一个圆,故此选项错误,符合题意,故选:D.【点评】此题考查了弦的定义、确定圆的条件、垂径定理等知识点的应用,关键是能根据这些定理进行说理和判断.2.已知⊙O的半径为1,且圆心O到直线l的距离是2,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定【分析】判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.【解答】解:∵⊙O的半径为1,圆心O到直线L的距离为2,∴r=1,d=2,∴d>r,∴直线与圆相离,故选:C.【点评】本题考查直线由圆位置关系,记住.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r是解题的关键.3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=7,则PA的长是()A.5 B.6 C.7 D.8【分析】根据切线长定理得到PA=PB,则判断△PAB为等边三角形,从而得到PA=AB=7.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB为等边三角形,∴PA=AB=7.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等边三角形的判定与性质.5.如图,已知⊙O 的半径为13,弦AB 的长为24,则圆心O 到AB 的距离为( )A .3B .4C .5D .6【分析】过O 作OC ⊥AB 于C ,连接OA ,根据垂径定理求出AC ,根据勾股定理求出OC 即可.【解答】解:过O 作OC ⊥AB 于C ,连接AC ,∴AC =BC =AB =12,在Rt △AOC 中,由勾股定理得:OC ===5.故选:C .【点评】本题考查了垂径定理和勾股定理的应用,作辅助线构造直角三角形是解题的关键.6.如图,⊙O 中,OC ⊥AB ,∠BOC =50°,则∠ADC 的度数是( )A .24°B .25°C .29°D .30°【分析】由OC ⊥AB ,推出=,可得∠ADC =∠COB =25°.【解答】解:∵OC ⊥AB ,∴=,∴∠ADC =∠COB =25°,故选:B .【点评】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定【分析】连结AD,根据等腰三角形的性质得到AD⊥BC,在Rt△ABD中,AB=5cm,BD=BC=4cm,根据勾股定理可计算出AD=3cm,然后根据点与圆的位置关系的判定方法可判断点A在⊙D上.【解答】解:连结AD,如图,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=4cm在Rt△ABD中,AB=5cm,BD=4cm,∴AD==3cm,∵⊙D的半径为3cm,∴点A在⊙D上.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.也考查了等腰三角形的性质和勾股定理.8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.26【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.【解答】解:函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.03与y=0.09之间,对应的x的值在3.25与3.26之间,即3.25<x<3.26.故选:D.【点评】本题考查了用函数图象法求一元二次方程的近似根,是中考的热点问题之一.掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关。
重庆市2018届九年级数学上学期期中试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.一.选择题(每题4分,12小题,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的位置.1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)3.下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定4.如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()(4题图)A.43° B.35° C.34° D.44°5.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=36.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或147.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.8.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.9.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26π B.13π C. D.10.如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()(11题图)(12题图)A.4 B.3 C.2 D.112.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.4二.填空题(每题4分,6小题,共24分)请将每小题的正确答案填在相应的位置.13.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是.14.已知抛物线y=(a﹣1)x2﹣4x+a2﹣1过原点,那么a的值为.15.一块直角边分别为6cm和8cm的直角三角形木板,绕6cm的边旋转一周,则斜边扫过的面积是cm2(结果用含π的式子表示).(15题图)(17题图)16.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.17.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为.18.如图,二次函数y=ax2+bx+c(a≠0)图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为﹣1,3,与y 轴负半轴交于点C .下面五个结论:①2a+b=0;②a+b+c >0;③4a+b+c >0;④只有当a=时,△ABD 是等腰直角三角形;⑤使△ACB 为等腰三角形的a 的值可以有三个.那么,其中正确的结论是.(18题图)三.解答题一(19题8分,20题6分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.19.解方程:①(2x ﹣5)2=9②x 2﹣2x ﹣4=0③x 2﹣3x ﹣7=0④3x (x ﹣2)=2(2﹣x )20.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.四.解答题二(每题10分,4小题,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.21.如图,已知一次函数y=kx+b 的图象与反比例函数xy 8-=的图象交于A ,B 两点,且点A 的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB 的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x 的取值范围.22.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.23.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)24.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?五.解答题三(每题12分,2小题,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.25.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?26.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.重庆市第十八中学2017-2018学年上半期考试初三数学试题答案AACBACBCBBBC20%﹣180π1(,)①④17.如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).18.①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x==1,即2a+b=0;故①正确;②由抛物线的开口方向向上可推出a>0,而>0∴b<0,∵对称轴x=1,∴当x=1时,y<0,∴a+b+c<0;故②错误;③∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=2时y<0,∴4a+2b+c<0,又∵b<0,∴4a+b+c无法确定;故③错误;④要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;D到x轴的距离就是当x=1时y的值的绝对值.当x=1时,y=a+b+c,即|a+b+c|=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0即a﹣b+c=0;x=3时y=0.∴9a+3b+c=0,解这三个方程可得:b=﹣1,a=,c=﹣;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.19.①(2x﹣5)2=9∵(2x﹣5)2=9,∴2x﹣5=3或2x﹣5=﹣3,解得x1=4,x2=1.②x2﹣2x﹣4=0x2﹣2x+1=5,(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.③x2﹣3x﹣7=0在方程x2﹣3x﹣7=0中,a=1,b=﹣3,c=﹣7x===,解得 x1=,x2=.④3x(x﹣2)=2(2﹣x)(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得 x1=﹣,x2=2.20.(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).21.(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.22.(1)500 90°;(2)380 ;(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.23.设月需售出x辆汽车,当0<x≤5时,(32﹣30)×5=10<25,不符合题意;当5<x≤30时,x{32﹣[30﹣0.1(x﹣5)]}=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.24.(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠OAD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.25.(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.26.(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:直线x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。
重庆江津中学2018-2019九年级数学上学期期中模拟试题(含答案新人教版)2018-2019学年重庆市江津中学九年级(上)期中数学模拟试一.选择题(共12小题,满分48分)1.二次函数y=x2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(0,﹣2)D.(0,2)2.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180°D.270°3.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30B.﹣20C.﹣5D.04.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.5.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.6.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣37.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A.顺时针B.逆时针C.顺时针或逆时针D.不能确定9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣5020=10890D.(x+180)(50﹣)﹣5020=1089010.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.11.抛物线y=2(x+1)2﹣2与y轴的交点的坐标是()A.(0,﹣2)B.(﹣2,0)C.(0,﹣1)D.(0,0)12.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二.填空题(共6小题,满分24分,每小题4分)13.方程x2=2x的根为.14.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是.15.已知方程x2﹣10x+24=0的两个根是一个等腰三角形的两边长,则这个等腰三角形的周长为.16.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.17.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是.18.如图,分别过点Pi(i,0)(i=1、2、、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则=.三.解答题(共2小题,满分14分,每小题7分)19.(7分)解下列方程(1)x2﹣4=0(2)x2﹣6x﹣8=0.20.(7分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.四.解答题(共4小题,满分40分,每小题10分)21.(10分)已知关于x的一元二次方程x2﹣4x+2k=0 (1)若方程有实数根,求k的取值范围.(2)如果k是满足条件的最大的整数,且方程x2﹣4x+2k=0的根是一元二次方程x2﹣2mx+3m﹣1=0的一个根,求m的值及这个方程的另一个根.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O的切线;(2)若AB=5,BC=4,OA=1,求线段DE的长.24.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.五.解答题(共2小题)25.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP&pr ime;B=150°,进而求出等边△ABC 的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.26.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.参考答案一.选择题1-12:D.D.B.A.C.D.A.B.B.B.源:学科网ZXXK]D.B.二.填空题13.x1=0,x2=2.14.32°.15.14或16.16.55°.17.a>0.18..三.解答题19.解:(1)∵x2﹣4=0∴x2=4,∴x=±2,∴x1=2,x2=﹣2;(2)∵x2﹣6x﹣8=0∴(x﹣3)2=17∴x﹣3=∴,.20.解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.四.解答题21.解:(1)由题意△≥0,∴16﹣8k≥0,∴k≤2.(2)由题意k=2,方程x2﹣4x+2k=0的根,x1=x2=2,∴方程x2﹣2mx+3m﹣1=0的一个根为2,∴4﹣4m+3m﹣1=0,∴m=3,方程为x2﹣6x+8=0,∴x=2或4,∴方程x2﹣2mx+3m﹣1=0的另一个根为4..22.解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx,求解得:∴yB与x的函数关系式:yB=﹣0.2x2+1.6x (2)根据表格中对应的关系可以确定为一次函数,故设函数关系式yA=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则yA=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8 即当投资B3万元,A12万元时所获总利润最大,为7.8万元.23.(1)证明:连接OD,如图,∵EF垂直平分BD,∴ED=EB,∴∠EDB=∠B,∵OA=OD,∴∠A=∠ODA,∵∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(2)解:作OH⊥AD于H,如图,则AH=DH,在Rt△OAB中,sinA==,在Rt△OAH中,sinA==,∴OH=,∴AH==,∴AD=2AH=,∴BD=5﹣=,∴BF=BD=,在Rt△ABC中,cosB=,在Rt△BEF中,cosB==,∴BE==,∴线段DE的长为.24.解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC ﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=(2﹣t)2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.五.解答题(共2小题)25.解:(1)如图,将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=;连接PP′,在Rt△BP′P中,∵BP=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°;(2分)在△AP′P中,AP′=1,PP′=2,AP=,∵,即AP′2+PP′2=AP2;∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.(2)过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=;(7分)∴∠BPC=135°,正方形边长为.26.解:(1)B(﹣1,0)E(0,4)C(4,0)设解析式是y=ax2+bx+c,可得,解得,∴y=﹣x2+3x+4;(2)△BDC是直角三角形,∵BD2=BO2+DO2=5,DC2=DO2+CO2=20,BC2=(BO+CO)2=25 ∴BD2+DC2=BC2,∴△BDC是直角三角形.点A坐标是(﹣2,0),点D坐标是(0,2),设直线AD的解析式是y=kx+b,则,解得:,则直线AD的解析式是y=x+2,设点P坐标是(x,x+2)当OP=OC时x2+(x+2)2=16,解得:x=﹣1±(不符合,舍去)此时点P(﹣1+,1+)当PC=OC时(x+2)2+(4﹣x)2=16,方程无解;当PO=PC时,点P在OC的中垂线上,∴点P横坐标是2,得点P坐标是(2,4);∴当△POC是等腰三角形时,点P坐标是(﹣1+,1+)或(2,4);(3)点M坐标是(,点N坐标是(),∴MN=,设点P为(x,x+2),Q(x,﹣x2+3x+4),则PQ=﹣x2+2x+2 ①若PQNM是菱形,则PQ=MN,可得x1=0.5,x2=1.5当x2=1.5时,点P与点M重合;当x1=0.5时,可求得PM=,所以菱形不存在.②能成为等腰梯形,作QH⊥MN于点H,作PJ⊥MN于点J,则NH=MJ,则﹣(﹣x2+3x+4)=x+2﹣,解得:x=2.5,此时点P的坐标是(2.5,4.5).。
重庆市2018届九年级数学上学期期中考试试题(无答案) 新人教版一、选择题(本题共8小题,下列各小题的四个选项中,只有一个符合题意。
每小题3分,共24分)1、 使式子2x +有意义的x 的取值范围是( )A .1x ≤B .12x x ≤≠-且C .2x ≠-D .12x x <≠-且 2、下列各组中的两个根式是同类二次根式的是( ) A 、52x 和3x B 、x 2y 和xy 2C 、12ab 和13ab D 、 a 和1a2 3、若关于x的一元二次方程2210kx x -+=有实数根,则k 的取值范围为( ) A. 1k < B. 1k ≤ C.10k k <≠且 D.10k k ≤≠且 4、在方程:3x2-5x =0,,5312+=+x x 7x2-6xy +y 2=0,322,052222--=+++xx x x ax =0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个D .5个5、把26个英文字母按规律分成5组,现在还有5个字母D 、M 、Q 、X 、Z ,请你按原规 律补上,其顺序依次为( )① F R P J L G ( ) ② H I O ( ) ③ N S ( ) ④ B C K E ( ) ⑤ V A T Y W U ( )A .Q X Z M DB .D M Q Z XC .Z X MD Q D .Q X Z D M6、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( ).A .1个B .2个C .3个D .4个7、在Rt △ABC 中,∠C =900,AC =3cm ,BC =4cm ,以C 为圆心,2.4cm 长为半径的圆与AB 的位置关系是( )A 相切B 相交C 相离D 不能确定 8、在半径等于5cm的圆内有长为的弦,则此弦所对的圆周角为( )A.120 B 30或 C.60 D 60或120 二、空题(本大题共8小题,每小题3分,共24分,把答案写在题中横线上) 9、已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.10、填上适当的数或代数式,使等式成立:245x xy ++_______=()2_____x +11、如果关于x 的方程022=+-m x x (m 为常数)有两个相等实数根,那么m =__ __ 12、比较大小:.13、点P (2,3)与点P /关于原点成中心对称, 则P /的坐标为 。
人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。
一、选择题(共30分)1.方程(x+2)^2=4的根是()A。
x1=4,x2=-4B。
x1=0,x2=-4C。
x1=0,x2=2D。
x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。
2,-3B。
-2,-3C。
2,-5D。
-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。
(x-3)^2=0B。
3(x-1)^2=0C。
(x-1)^2=0D。
(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。
800(1+a%)^2=578B。
800(1-a%)^2=578C。
800(1-2a%)=578D。
800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。
y=3(x+2)^2+3B。
y=3(x+2)^2-3C。
y=3(x-2)^2+3D。
y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。
某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ).A .B .(2,2)C .D .(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A.20cmB .18cmC .D .10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ).A .12-B .C .2-D . 二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 22(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.P22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?23.(本题满分8分)受益于国家支付新能源汽车发展和“一带一路”发展战略等多重因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =,由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,x =∴P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴BC ,OC ,故(B ,代入2y ax =中得:6a =,a =.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+. 17.±218.3三、解答题(共76分)19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷03)32=+--x x ( 3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,AC =BC = ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,AF ,AF AB AE AC =EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-, ∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
2018-2019学年重庆市九龙坡区杨家坪中学九年级(上)期中数学试卷一、选择题(本大题12个小题,每小题4分,共计48分)在每个小题的下面,都给出了ABCD的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑)1.(4分)的相反数是()A.B.﹣C.2D.﹣22.(4分)下面四个图形中,是中心对称图形的是()A.B.C.D.3.(4分)已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是()A.a=1,b=5B.a=5,b=1C.a=﹣5,b=1D.a=﹣5,b=﹣1 4.(4分)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0B.﹣1C.2D.﹣35.(4分)估计﹣2的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间6.(4分)二次函数y=ax2+bx+1(a≠0)的图象经过点(﹣1,0),则代数a﹣b+1的值为()A.﹣3B.﹣1C.0D.57.(4分)抛物线y=﹣x2向左平移1个单位长度得到抛物线的解析式为()A.y=﹣(x+1)2B.y=﹣(x﹣1)2C.y=﹣x2+1D.y=﹣x2﹣18.(4分)一个小球在如图所示的地板上随意滚动,当小球停下时,最终停在地板上阴影部分的概率是()A.B.C.D.9.(4分)如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠CAB=30°,CD=2,则阴影部分面积是()A.B.C.﹣D.﹣10.(4分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当﹣1<x<3时,y>0其中正确的个数为()A.1B.2C.3D.411.(4分)将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A.64B.76C.89D.9312.(4分)关于x的方程的解为正数,且关于y的不等式组有解,则符合题意的整数m有()个.A.4B.5C.6D.7二、填空题:(本大题6个小题,每小题4分,共24分)13.(4分)一元二次方程x2﹣2x=0的解是.14.(4分)计算:(﹣1)2018+﹣|﹣|﹣(π﹣3.14)0=.15.(4分)圆锥的底面直径是6,母线长为5,则圆锥的侧面积为.(结果保留π)16.(4分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.17.(4分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒米.18.(4分)某运输公司有甲、乙两种货船,其中甲种货船占总货船数量的,且每艘甲种货船的运货量不能超过48吨,每艘乙种货船的运货量不能超过32吨.现决定分两次从A港口往B港口运输一批物资,第一次安排甲种货船数量的与乙种货船数量的运输,由于天气原因,每艘甲种货船实际运输了24吨,每艘乙种货船实际运输了16吨,刚好运输完这批物资总重的一半.第二次派出剩下的货船运完剩下的物资,其中同种货船的实际运货量都相等.若运输公司用甲、乙两种货船运输可分别获得的利润为100元/吨、80元/吨,则第二次运输时,1艘甲种货船和1艘乙种货船实际可获得的最大总利润为元.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,求∠BAD的度数.20.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21.(10分)解方程(1)(x﹣1)(x﹣5)=12;化简(2)(1﹣)÷.22.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;23.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.24.(10分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.五、解答题:(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上25.(10分)一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.26.(12分)如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL 为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.2018-2019学年重庆市九龙坡区杨家坪中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共计48分)在每个小题的下面,都给出了ABCD的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑)1.(4分)的相反数是()A.B.﹣C.2D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下面四个图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念和各图特点作答.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与原图重合,即不满足中心对称图形的定义.故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与原图重合,即不满足中心对称图形的定义.故本选项不符合题意;D、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它原图重合,即不满足中心对称图形的定义.故本选项不符合题意.故选:B.【点评】本题主要考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.3.(4分)已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是()A.a=1,b=5B.a=5,b=1C.a=﹣5,b=1D.a=﹣5,b=﹣1【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得a=﹣5,b=﹣1,故选:D.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.(4分)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0B.﹣1C.2D.﹣3【分析】首先根据题意求得判别式△=m2﹣4>0,然后根据△>0⇔方程有两个不相等的实数根;求得答案.【解答】解:∵a=1,b=m,c=1,∴△=b2﹣4ac=m2﹣4×1×1=m2﹣4,∵关于x的方程x2+mx+1=0有两个不相等的实数根,∴m2﹣4>0,解得:m>2或m<﹣2,则m的值可以是:﹣3,故选:D.【点评】此题考查了一元二次方程判别式的知识.此题难度不大,解题时注意:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.(4分)估计﹣2的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间【分析】依据<<,即可得到3<<4,进而得出1<﹣2<2.【解答】解:∵<<,∴3<<4,∴1<﹣2<2,故选:B.【点评】本题主要考查了估算无理数的大小,解决问题的关键是得到3<<4.6.(4分)二次函数y=ax2+bx+1(a≠0)的图象经过点(﹣1,0),则代数a﹣b+1的值为()A.﹣3B.﹣1C.0D.5【分析】把点(﹣1,0)代入函数解析式求出a﹣b+1=0,可求解.【解答】解:∵二次函数y=ax2+bx+1(a≠0)的图象经过点(﹣1,0),∴a﹣b+1=0,故选:C.【点评】本题考查了二次函数图象上点的坐标特征,掌握图象上的点的坐标满足解析式是解题的关键.7.(4分)抛物线y=﹣x2向左平移1个单位长度得到抛物线的解析式为()A.y=﹣(x+1)2B.y=﹣(x﹣1)2C.y=﹣x2+1D.y=﹣x2﹣1【分析】直接根据“左加右减”的法则进行解答即可.【解答】解:抛物线y=﹣x2向左平移1个单位长度得到抛物线的解析式为:y=﹣(x+1)2.故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.8.(4分)一个小球在如图所示的地板上随意滚动,当小球停下时,最终停在地板上阴影部分的概率是()A .B .C .D .【分析】根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.【解答】解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.故选:A .【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.9.(4分)如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠CAB =30°,CD =2,则阴影部分面积是()A .B .C .﹣D .﹣【分析】直接利用切线的性质结合扇形面积求法得出阴影部分面积=S △OBA ﹣S 扇形OBD ,进而得出答案.【解答】解:连接BO ,∵AB 是⊙O 的切线,B 为切点,∴∠OBA =90°,∵∠CAB =30°,CD =2,∴OB =1,AO =2,∠BOA =60°,则AB =,∴阴影部分面积=S △OBA ﹣S 扇形OBD =×1×﹣=﹣.故选:C .【点评】此题主要考查了切线的性质以及直角三角形的性质,正确得出阴影部分面积=S﹣S扇形OBD是解题关键.△OBA10.(4分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当﹣1<x<3时,y>0其中正确的个数为()A.1B.2C.3D.4【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选:C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.(4分)将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A.64B.76C.89D.93【分析】图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,按此规律第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个小圆.【解答】解:图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,…第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个.故选:B.【点评】此题考查图形的变化规律,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律,利用穷举法解答此题是一种很好的方法.12.(4分)关于x的方程的解为正数,且关于y的不等式组有解,则符合题意的整数m有()个.A.4B.5C.6D.7【分析】先求出方程的解与不等式组的解集,再根据题目中的要求,求出相应的m的值即可解答本题.【解答】解:∵关于x的方程的解为正数,∴2﹣(x+m)=2(x﹣2),解得:x=,则6﹣m>0,故m<6,∵关于y的不等式组有解,∴m+2≤y≤3m+4,且m+2≤3m+4,解得:m≥﹣1,故m的取值范围是:﹣1≤m<6,∵x﹣2≠0,∴x≠2,∴≠2,m≠0,则符合题意的整数m有:﹣1,1,2,3,4,5,共6个.故选:C.【点评】本题考查分式方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.二、填空题:(本大题6个小题,每小题4分,共24分)13.(4分)一元二次方程x2﹣2x=0的解是x1=0,x2=2.【分析】本题应对方程左边进行变形,提取公因式x,可得x(x﹣2)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0.”,即可求得方程的解.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.14.(4分)计算:(﹣1)2018+﹣|﹣|﹣(π﹣3.14)0=2.【分析】原式利用乘方的意义,二次根式性质,绝对值的代数意义,以及零指数幂法则计算即可求出值.【解答】解:原式=1+3﹣﹣1=2.故答案为:2.【点评】此题考查了实数的运算,以及零指数幂,熟练掌握运算法则是解本题的关键.15.(4分)圆锥的底面直径是6,母线长为5,则圆锥的侧面积为15π.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的直径为6cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.16.(4分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.【分析】设CD=x,由B′C′∥AB,可推得∠BAD=∠B′,由旋转的性质得:∠B=∠B′,于是得到∠BAD=∠B,AC=AC′=3,AD=BD=4﹣x,在直角△ADC中,由勾股定理可求得结论.【解答】解:设CD=x,∵B′C′∥AB,∴∠BAD=∠B′,由旋转的性质得:∠B=∠B′,AC=AC′=3,∴∠BAD=∠B,∴AD=BD=4﹣x,∴(4﹣x)2=x2+32,解得:x=.故答案为:.【点评】本题主要考查了旋转的性质,平行线的性质,勾股定理,能够证得∠BAD=∠B,AD=BD,构造直角三角形是解题的关键.17.(4分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒6米.【分析】设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,故答案为:6【点评】本题是函数图象的信息题,又是行程问题,首先要明确三个量:路程、时间和速度,正确读出图形中甲、乙相遇及到达目的地的时间是本题的关键;重点理解图象中x 与y所表示的含义,也是本题的难点.18.(4分)某运输公司有甲、乙两种货船,其中甲种货船占总货船数量的,且每艘甲种货船的运货量不能超过48吨,每艘乙种货船的运货量不能超过32吨.现决定分两次从A港口往B港口运输一批物资,第一次安排甲种货船数量的与乙种货船数量的运输,由于天气原因,每艘甲种货船实际运输了24吨,每艘乙种货船实际运输了16吨,刚好运输完这批物资总重的一半.第二次派出剩下的货船运完剩下的物资,其中同种货船的实际运货量都相等.若运输公司用甲、乙两种货船运输可分别获得的利润为100元/吨、80元/吨,则第二次运输时,1艘甲种货船和1艘乙种货船实际可获得的最大总利润为6560元.【分析】设甲货船有3a艘,则乙货船有a艘,根据第一次运输的情况表示出货物总吨数.然后设第二次甲船每艘运m吨,乙船每艘运n吨,根据“第二次运完剩余物资“,列出方程并用m表示n.最后列出第二次运输一艘甲和一艘乙实际获得利润w与m的函数关系式,再根据“每艘甲种货船的运货量不能超过48吨,每艘乙种货船的运货量不能超过32吨“求出m的取值范围,利用一次函数的增加性求出w的最大值.【解答】解:设甲货船有3a艘,则乙货船有a艘,这批货物总吨数为2×(24××3a+16×a)=112a吨.设第二次甲船每艘运m吨,乙船每艘运n吨,依题意得,m××3a+n×a=×112a∴2m+n=112,即n=112﹣2m.∴第二次运输时,一艘甲和一艘乙实际获得利润w=100m+80n=100m+80×(112﹣2m)即w=﹣60m+8960依题意,解得,40≤m≤48且m为整数.∵k=﹣60<0,∴w随m的增大而减小.∴当m=40时,w取最大值为﹣60×40+8960=6560元.故答案为6560.【点评】本题考查了一次函数的应用,能大胆设出未知数并找出题目中相等、不等关系列出方程、不等式和函数解析式是解题关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,求∠BAD的度数.【分析】先根据圆周角定理得到∠ABC=90°,∠D=∠C=50°,再利用BD平分∠ABC 得到∠ABD=45°,然后根据三角形内角和计算∠BAD的度数.【解答】解:∵AC为直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠ABD=∠ABC=45°,∵∠D=∠C=50°,∴∠BAD=180°﹣45°﹣50°=85°.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.20.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.【分析】(1)利用“享受美食”的人数除以所占的百分比计算即可得解;(2)求出听音乐的人数即可补全条形统计图;由C的人数即可得到所对应的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出两名同学都是女生的情况,再利用概率公式即可求得答案.【解答】解:(1)由题意可得总人数为10÷20%=50名;(2)听音乐的人数为50﹣10﹣15﹣5﹣8=12名,“体育活动C”所对应的圆心角度数==108°,补全统计图得:(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况,∴选取的两名同学都是女生的概率==.【点评】本题考查的是用列表法或画树形图求随机事件的概率,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21.(10分)解方程(1)(x﹣1)(x﹣5)=12;化简(2)(1﹣)÷.【分析】(1)整理成一般式,然后利用因式分解法求解即可;(2根据分式的减法、除法法则进行化简即可.【解答】解:(1)(x﹣1)(x﹣5)=12,x2﹣6x﹣7=0,(x﹣7)(x+1)=0,∴x﹣7=0或x+1=0,∴x1=7,x2=﹣1;(2)(1﹣)÷=•=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法;也考查了分式的化简.22.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;【分析】(1)把A坐标代入二次函数解析式求出c的值,确定出二次函数解析式,把B 坐标代入求出n的值,把A与B坐标代入一次函数解析式求出k与b的值即可;(2)根据函数图象,确定出所求x的范围即可.【解答】解:(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分别代入y=kx+b得,解得:,∴y=﹣x+1;(2)根据图象知,抛物线在直线上方时,﹣1<x<2,∴使二次函数的值大于一次函数的值的x的取值范围是﹣1<x<2.【点评】此题考查了二次函数与不等式,待定系数法求二次函数解析式,以及待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.23.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.【分析】(1)可设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,根据等量关系:①用15200元购进了400千克红桔和600千克香橙;②香橙的每千克进价比红桔的每千克进价2倍还多4元;列出方程组求解即可;(2)根据等量关系:12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,列出方程求解即可.【解答】解:(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得.答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有8(1﹣m%)×400(1+m%)+20(1﹣m%)×600(1+2m%)=15200,解得m1=0(舍去),m2=49.6.故m的值为49.6.【点评】本题考查了二元一次方程组、一元二次方程解实际问题的运用,找到关键描述语,找到等量关系准确的列出方程(组)是解决问题的关键.24.(10分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,=AE×BH=×4×=;∴S△ABE(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,。
2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。
2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。
1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。
重庆市2018届九年级数学上学期期中试题(考生注意:本试题共26小题,满分 150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前仔细阅读答题卡上的注意事项.参照公式:抛物线yax 2bxc(a0)的极点坐标为b ,4acb2,对称轴为直线xb.2a4a2a一.选择题:(本大题 12个小题,每题 4分,共48分)在每个小题的下边,都给出了代号为A 、B 、C 、的四个答案,此中只有一个是正确的,请将正确答案的代号填在答题卡内.1.在实数 4,0,3, 2中,最小的数是(▲ )A .4B .0C.3D .22.以下图标中,是轴对称图形的是(▲)A .B .C .D .3.计算(2x 2)3正确的结果是(▲ )A .6x 5B .6x 5C .8x 6D .8x 64.以下检查中,最合适采纳全面检查(普查)方式的是(▲ )A .对嘉陵江重庆主城段水域污染状况的检查B .对某校九年级一班学生身高状况的检查C .对某工厂出厂的灯泡使用寿命状况的检查D .对某品牌上市的化妆质量量状况的检查5.要使分式1 存心义,x 应知足的条件是( ▲)x3A .x 3B .x3C .x3D .x 36.二次函数A .直线7.若二次函数y x 2 2x 1的对称轴是(▲)x1B .直线x1C .直线x2D .直线x 2y ax 2 bx1(a0)与x 轴的一个交点为 (1,0),则代数式2a2b5的值为(▲)A .3B .4C.6D.78.如图,在RtABC 中,ACB90,CDAB 于点D ,若sinB 3 ,则tan ACD 的值为( ▲)5A .3B.4C.3D.4554y311 x=2A DCB第89.已知二次函数yax2bxc(a0)的象如所示,称直x1,以下中正确的选项是2(▲)A .abc0B.abC.acbD .2ac010.以下形都是由同大小的圈按必定的律成,此中第①个形有2个圈,第②个形有5个圈,第③个形有9个圈,⋯,第⑧个形中圈的个数(▲)图①图②图③图④第10A .34B .35C .44D .5411.如,某灯塔AB 建在峻峭的山坡上,山坡的坡A 度i .小了然得灯塔的高度,他第一得BC =25m ,而后在C 水平向前走了36m 抵达一建筑物底部 E ,他在建筑物端 F 得灯塔端A 的仰角 43°,若建筑EF =25m ,灯塔AB 的高度(▲)(精准到,参照43°F数据:sin43,,tan43)B icos43=1:A .B ..7C .D .5CE第1112.从6,4,3 , 2,0,4六个数中,随机抽取一个数作m ,使得对于 x 的分式方程2y 2mymx2x有整数解,且对于y 的不等式组233 2无解,则切合条件的所有 m 之积为2 xx22(y1)1y2(▲ )A . 12B .0C .24D .8二.填空题:(本大题 6个小题,每题4分,共24分)请将正确答案填在答题卡内. 13.计算:(2)03 8 ▲ .14. 若对于x 的函数yx 22x k 与x 轴只有一个交点,则实数 k 的值为▲ .15. 已知 ABC ∽ DEF ,若AB :DE =3: 2,则S △ABC :S △DEF ▲ .某校在“爱惜地球,绿化祖国”的创立活动中,组织学生展开植树造林活动,为了认识全校学生的植树状况,学校随机抽查了100名学生的植树数目状况,将检查数据整理以下表:植树数目(棵) 4 56 8 10 人数3022 25158则这100名同学植树棵数的中位数为▲棵.欢欢和乐乐骑自行车从滨江路上相距10600米的A 、B 两地同时出发,先相向而行,行驶一段时间后欢欢的自行车坏了,她马上泊车并马上打电话通知乐乐,乐乐接到电话后马上加速至本来的4倍,遇到欢3欢后用了 5分钟修睦了欢欢的自行车,修睦车后乐乐马上骑车以加速后的速度持续向终点A 地前行,欢欢则留在原地整理工具,2分钟此后欢欢再以原速返回A 地,在整个行驶过程中,欢欢和乐乐均保持匀速行驶(乐乐泊车和打电话的时间忽视不计),两人相距的行程 s (米)与欢欢出发的时间t (分钟)之间的关系以下图,则乐乐抵达A 地时,欢欢与 A地的距离为▲米.s (米)E10600 ADK18001000BMo16 18Ct (分钟)第17题图F第18题图18.如图,在边长为5 2 的正方形ABCD 中,点E 为正方形外面一点, 连结CE 、DE ,将CDE 绕着点C 逆时针旋转90到CBF ,连结BE ,点F 恰巧落在EB 的延伸线上,再延伸BC 到M ,使得BC2CM ,3连结EM,点K为EM的中点,连结CK,若DE2,则CK长度为▲.三.解答题:(本大题2个小题,每题8分,共16分)解答时每题一定给出必需的演算过程或推理步骤.19.如图,ABC的极点B在直线EF上,AD均分CAB交BC于点D,且AD//EF, C 25,CAB 100,求CBF的度数.CA D EBF第19题图20.重庆一中某分校区后勤老师为认识学生对食堂饭菜的满意程度,从初三年级随机抽取部分同学进行调查统计,绘制了如图1和图2两幅不完好的统计图:此中A代表特别满意,B代表满意,C代表比较满意,D代表不满意,依据图中供给的信息达成以下问题.(1)扇形统计图中 B对应的圆心角的度数为度,并补全条形统计图;(2)为了给初三学生供给更满意的后勤服务,提升学生对食堂饭菜的满意程度.已知抽样检查中D类不满意学生中有三男一女,现从D类不满意的学生中随机抽取2名学生作为食堂饭菜小小监察员,向食堂反应同学们的建议和建议,请你利用画树状图或列表格的方法求出抽取的2名学生恰巧是一男一女的概率.人数1098AB6410%422DCOABCD满意度抽样检查中饭菜满意度条形统计图抽样检查中饭菜满意度扇形统计图第20题图1第20题图2四.解答题:(本大题4个小题,每题10分,共40分)解答时每题一定给出必需的演算过程或推理步骤.21.计算:4(1)(yx)2x(x2y) (2)( 5 a3)a 2 4a41a32 a22.如图,在平面直角坐标系中,一次函数y axb(a0)与反比率函数yk(k0)的图象交于第二、四象限的A 、B 两点,与y 轴交于点C ,与x 轴交于点D ,过点B 作BKxy 轴于点K ,连结OB ,KB4,KB2OK ,点A 的纵坐标为6.(1)求该反比率函数和一次函数的分析式;(2)若点H 是点D 对于y 轴的对称点,连结AH 、CH ,求ACH 的面积.y ACHOD x K B第22题图小王叔叔家是养猪专业户,他们养的藏香猪和土黑猪向来很受市民欢迎.小王今年10月份开店卖猪肉,已知藏香猪肉售价每斤30元,土黑猪肉售价每斤20元,每日固定从叔叔家进货两种猪肉共300斤并且能所有售完.(1)若每日销售总数不低于8000元,则每日起码销售藏香猪肉多少斤?(2)小王发现 10月份每日上午就能将猪肉所有售完,并且花费者对猪肉的评论很高.于是小王决定调整猪肉价钱,并增添进货量,且能将猪肉所有销售完.他将藏香猪肉的价钱上升2a%,土黑猪肉的价钱下调a%,销量与(1)中每日获取最低销售总数时的销量对比,藏香猪肉销量降落了a%,土黑猪肉销量是本来的2倍,结果每日的销售总数比(1)中每日获取的最低销售总数还多了1750元,求a 的值.( 24.在RtABC 中,BCA 90,G 为AB 的中点,过点G 作DG ⊥AB 交AC 于点D.1)如图1,连结CG ,若CG =5,BC =3,求DG 的长;( 22)如图2,过点D 作DE ⊥BD ,连结AE ,以点E 为直角极点,AE 为直角边向外作等腰直角三角形5AEF,使得点F恰巧落在BD的延伸线上,求证:BCDE DF.第24题图1第24题图2五.解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每题一定给出必需的演算过程或推理步骤.资料1:一个多位正整数,假如它既能被13整除,又能被14整除,那么我们称这样的数为“一世一世”数(数字1314的谐音).比如:正整数364,3641328,36414 26,则364是“一世一世”数.资料2:若一个正整数m,它既能被a整除,又能被b整除,且a与b互素(即a与b的条约数只有1),则m必定能被ab整除.比如:正整数364,3641328,3641426,由于13和14互素,则364 (1314) 364 182 2,即364必定能被182整除.(1)6734(填空:是或许不是)“一世一世”数.并证明:随意一个位数大于三位的“一生一世”数,将其末端三位数截去,所截的末端三位数与截去后剩下的数之差必定能被91整除;2)随意一个四位数的“一世一世”数,若知足前两位数字之和等于后两位数字之和,则称这样的数为“相伴一世一世”数,求出所有的“相伴一世一世”数.26.如图1,在平面直角坐标系中,抛物线y1x25x3与x轴交于A、B两点,与y轴交于点C,22点D为该抛物线的极点.(1)求D点的坐标及直线BC的分析式;(2)如图2,点P为直线BC下方抛物线上一动点,过P作PF//y轴交直线BC于点F,过P作PE⊥6BC交直线BC于点E,当PF PE最大时,在直线BC上有一条线段MN(点N一直在点M的左下方)且MN5,连结PM、PN,求PMN周长最小值;(3)如图3,G为直线GK:yx9与抛物线订交所得的横坐标较大的那个交点,H为线段BC上一动点,过H作HQ⊥AB,将AQH沿HQ翻折获取AQH,点A的对应点为点A,当HGA=OKG,且点A在线段OB上时,设点R是x轴上一点,点T是平面内一点,能否存在点R,使得以A、H、R、T为极点的四边形是菱形?若存在,请直接写出点R的坐标;若不存在,请说明原因.第26题图1第26题图27第26题图3第26题备用图精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有8精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有精选介绍强力介绍值得拥有9。
2017-2018学年人教版九年级(上册)期中数学试卷及答案2017-2018学年九年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x^2-2(3x-2)+(x+1)=0的一般形式是()A。
x^2-5x+5=0B。
x^2+5x-5=0C。
x^2+5x+5=0D。
x^2+5=02.目前我国建立了比较完善的经济困难学生资助体系。
某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A。
438(1+x)^2=389B。
389(1+x)^2=438C。
389(1+2x)^2=438D。
438(1+2x)^2=3893.观察下列图案,既是中心对称图形又是轴对称图形的是()A。
B。
C。
D。
4.把二次函数y=-x^2-x+3用配方法化成y=a(x-h)^2+k的形式时,应为()A。
y=-(x-2)^2+2B。
y=-(x-2)^2+4C。
y=-(x+2)^2+4D。
y=-(x+2)^2+35.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,下列结论正确的是()A。
a<0___<0C。
当-12D。
-2<c<06.对抛物线:y=-x^2+2x-3而言,下列结论正确的是()A。
与x轴有两个交点B。
开口向上C。
与y轴的交点坐标是(0,-3)D。
顶点坐标是(1,-2)7.以3和-1为两根的一元二次方程是()A。
x^2+2x-3=0B。
x^2+2x+3=0C。
x^2-2x-3=0D。
x^2-2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图像可能是()A。
B。
C。
D。
9.将抛物线y=3x^2向左平移2个单位,再向下平移1个单位,所得抛物线为()A。
y=3(x-2)^2-1B。
y=3(x-2)^2+1C。
y=3(x+2)^2-1D。
新人教版九年级(上)期中模拟数学试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦 当”图案中既是轴对称图形又是中心对称图形的是( )2.若0x=是关于x 的一元二次方程22(1)310k x x k +--+=(k 为系数)的根,则k 的值为( ) A .k =1B .k =-1C .k ≠1D .k =±13.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和 改造,2016年县政府已投资5亿元人民币,若每年投资的平均增长率相同,预计2018 年投资7.2亿元人民币,那么每年投资的平均增长率为( ) A .20%、﹣220%B .40%C .﹣220%D .20%4.下列关于圆的叙述正确的有( )①圆内接四边形的对角互补;②相等的圆周角所对的弧相等; ③正多边形内切圆的半径与正多边形的半径相等; ④圆内接平行四边形是矩形. A .1个B .2个C .3个D .4个5.二次函数2281y x x =-+的最小值是( ) A .7B .-7C .9D .-96.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A′B′C′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2)D .(2,1)7. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y0);②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是直线12x =;④在对称轴左侧,y 随 x 增大而增大.其中正确有( )A .①②B .①③C .①②③D .①③④8.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,且 这两个正方形的边长都为2.若正方形A 1B 1C 1O 绕点O 转动,则两个正方形重叠部分的 面积为( ) A .1B .4C .16D .29.若二次函数2y x bx =+的图象的对称轴是经过(1,0)且平行于y 轴的直线,则关 于x 的方程23x bx -=的解是( )A .1213x x =-=-, B .1213x x ==-, C .1213x x ==, D .1213x x =-=, 10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD =4cm ,则球的半径长是( ) A .2cmB .2.5cmC .3cmD .4cm11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交 PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8 B .6 C .12 D .10 12.如图,无论x 为何值,2y ax bx c =++恒为正的条件是( ) A .20,40a b ac >-< B .20,40a b ac <-> C .20,40a b ac >->D .20,40a b ac <-<13.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M上的任意一点,PA ⊥PB ,且PA 、PB与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O对称,则AB 的最小值为( ) A .3 B .4 C .6 D .8 14.如图,正三角形EFG 内接于⊙O ,其边长为O 的内接正方形ABCD 的边 长为( )A B .3C .4D .5二、填空题(共1大题,5小题,每小题3分,共15分)15.(1)关于x 的方程221)20kx k x k +++=-(有实数根,则k 的取值范围是 (2)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC 、OC 相交于点E 、F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ; ③BC 平分∠ABD ; ④△CEF ≌△BED .其中一定成立的是 (把你认为正确结论的序号都填上). (3)如图,《九章算术》是我国古代数学名著,书中有下列问题“今有勾八步,股十五 步,问勾中容圆径几何?”其意思是:今有直角三角形,勾(短直角边)长为8步,股 (长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是 步. (4)如图,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△AED 的位置,恰好使得 DC ∥AB ,则∠CAB 的大小为 .(5)如图,一段抛物线:(2)y x x =--(0≤x ≤2)记为C 1,它与x 轴交于两点O 、A 1; 将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;… 如此进行下去,直至得到C 7,若点P (13,m )在第7段抛物线C 7上,则m = .三、解答题(共6小题,共63分)16.(每小题5分,共10分)用合适的方法解一元二次方程: (1)2(4)5(4)x x +=+ (2)231212x x -=-17.(本小题10分)如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与 ⊙O 交于点C ,点D 是AP 的中点,连结CD . (1)求证:CD 是⊙O 的切线;(2)若AB =2,∠P =30°,求阴影部分的面积.18.(本小题10分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2 时,裁掉的正方形边长多大?19.(本小题9分)如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1) B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; (2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.20.(本小题11分)如图,∠BAC =60°,AD 平分∠BAC 交⊙O 于点D ,连接OB 、OC 、 BD 、CD .(1)求证:四边形OBDC 是菱形;(2)当∠BAC 为多少度时,四边形OBDC 是正方形?21.(本小题13分)如图,在平面直角坐标系中,二次函数24(0)y ax bx a =+-≠的 图象与x 轴交于点A (﹣2,0)与点C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴 交于点D .(1)求该二次函数的解析式;(2)若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB , PD ,BD ,AB .请问是否存在点P ,使得△BDP 的面积恰好等于△ADB 的面积?若存在 请求出此时点P 的坐标,若不存在说明理由.2018—2019学年度上学期期中学业水平质量调研试题九年级数学参考答案 2018.11一、选择题(本大题共14小题,每小题3分,共42分)新九年级上学期期中考试数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1.在下列图形中,既是轴对称图形又是中心对称图形的是( C )2.用配方法解方程x2+10x+9=0,配方后可得(A)A.(x+5)2=16 B.(x+5)2=1C.(x+10)2=91 D.(x+10)2=1093.(2018·济宁)如图,在平面直角坐标系中,点A,C在x 轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点的坐标是( A)A.(2,2) B.(1,2) C.(-1,2) D.(2,-1)4.(雅安中考)将抛物线y=(x-1)2+3向左平移1个单位长度,再向下平移3个单位长度后所得抛物线的解析式为(D) A.y=(x-2)2B.y=(x-2)2+6C.y=x2+6 D.y=x25.某商品原售价为50元,10月份下降了10%,从11月份起售价开始增长,12月份售价为64.8元,设11、12月份每个月的平均增长率为x,则下列结论正确的是(D)A.10月份的售价为50(1+10%)元B.11月份的售价为50(1+10%)元C.50(1+x)2=64.8D.50(1-10%)(1+x)2=64.86.已知a≥2,m,n为x2-2ax+2=0的两个根,则(m-1)2+(n-1)2的最小值是( A )A.6 B.3 C.-3 D.07.(呼和浩特中考)在同一平面直角坐标系中,函数y=mx +m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是(D)8.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( A )A.7 B.2 2 C.3 D.2 3第8题图第9题图第10题图9.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形,若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( A )A .①②B .②③C .①③D .①②③10.(2018·达州)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc<0; ②9a +3b +c>0;③若点M ⎝ ⎛⎭⎪⎫12,y 1、点N ⎝ ⎛⎭⎪⎫52,y 2是函数图象上的两点,则y 1<y 2;④-35<a<-25.其中正确结论有( D )A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.第11题图第15题图第18题图12.一元二次方程(x+3)2-x=2(x2+3)化成一般形式为x2-5x-3=0,方程根的情况为有两个不相等的实数根.13.等边三角形绕中心点至少旋转120度后能与自身重合,正方形绕中心点至少旋转90度后能与自身重合.14.平面直角坐标系中有一个点A(-2,6),则与点A关于原点对称的点的坐标是(2,-6),经过这两点的直线的解析式为y=-3x.15.(原创)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等于x2+bx+c>x+m的解集为x<1或x> 3.16.一位运动员投掷铅球的成绩是14 m,当铅球运行的水平距离是6 m时达到最大高度4 m,若铅球运行的路线是抛物线,则铅球出手时距地面的高度是1.75 m.17.已知方程(p-2)x2-x+p2-3p+2=0的一个根为0,则实数p的值是1.18.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B三、解答题(本大题共7小题,共66分)19.(8分)(1)解方程3x2-x-1=0;解:∵a=3,b=-1,c=-1∴b2-4ac=(-1)2-4× 3×(-1)=13>0,∴x=-(-1)±132× 3=1±136,∴x1=1+136,x2=1-136;(2)通过配方,写出抛物线y=1+6x-x2的开口方向、对称轴和顶点坐标.解:y=1+6x-x2=-(x-3)2+10,开口向下,对称轴是直线x=3,顶点坐标是(3,10).20.(8分)如图所示,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,AP=5,则PP′的长是多少?解:由旋转易知AP′=AP=5,∠BAP=∠CAP′,∵∠BAC =90°,∴∠PAP′=∠CAP+∠CAP′=∠CAP+∠BAP=90°,则在Rt△PAP′中,由勾股定理得PP′=AP2+AP′2=5 2.21(8分)(眉山中考)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;(2)平移△ABC ,若A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C ,请直接写出旋转中心的坐标.解:(1)如图;(2)如图;(3)旋转中心的坐标为(-1,0).22.(8分)如图,经过原点O 的抛物线y =ax 2+bx(a ≠0)与x 轴交于另一点A ⎝ ⎛⎭⎪⎫32,0,在第一象限内与直线y =x 交于点B(2,t).(1)求抛物线的解析式;(2)若点M在抛物线上,且∠MBO=∠ABO,求点M的坐标.新九年级(上)数学期中考试试题及答案一、填空题(每小题3分,共30分).1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y29.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②二、填空题(每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是.13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为公顷,比2014年底增加了公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一、填空题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)【分析】根据一元一次方程的定义,一元二次方程的定义对各选项分析判断即可得解.解:A、化简可得2x=﹣1,是一元一次方程,故本选项正确;B、未知数在分母上,不是整式方程,故本选项错误;C、没有对常数a、b不等于0的限制,所以不是一元一次方程,也不是一元二次方程,故本选项错误;D、整理得x2+2x+1=2x+2,是一元二次方程,故本选项错误.故选:A.【点评】本题利用了一元二次方程的概念,一元一次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).解:点(2,﹣3)关于原点中心对称的点的坐标是(﹣2,3).故选:C.【点评】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),比较简单.4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【分析】根据二次函数的性质对各开口方向、顶点坐标、对称轴以及与x轴交点的坐标进行判断即可.解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.【点评】本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与x轴交点的判定方法是解决问题的关键.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 【分析】根据函数图象的平移规律:左加右减,上加下减,可得答案.解:y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是y=(x+3)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 【分析】根据根与系数的关系得到2+(﹣3)=﹣b,2×(﹣3)=c,然后可分别计算出b、c的值.解:根据题意得2+(﹣3)=﹣b,2×(﹣3)=c,解得b=1,c=﹣6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°【分析】先求的分针旋转的速度为=6(度/分钟),继而可得答案.解:∵分针旋转的速度为=6(度/分钟),∴从5点15分到5点20分,分针旋转的度数为6×5=30(度),故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应线段相等,对应角相等,对应点与旋转中心的连线段的夹角等于旋转角.8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1>y2,根据C(3,y3)在对称轴上可判断y3<y2;于是y1>y2>y.3解:由二次函数y=x2﹣6x+c可知对称轴为x=﹣=﹣=3,∴C(3,y3)在对称轴上,∵A(﹣1,y1),B(2,y2)在对称轴的左侧,y随x的增大而减小,∴y1>y2>y3.故选:A.【点评】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.9.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx 来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②【分析】①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④根据﹣3<﹣2<,结合抛物线的性质即可判断y1和y2的大小.解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵抛物线开口向下,对称轴为x=,∴在对称轴的左边y随x的增大而增大,∵﹣3<﹣2<,∴y1>y2.故④错误;综上所述,正确的结论是①②.故选:D.【点评】本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.二、填空题(本大题共6小题,每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是3x2﹣5x﹣2=0 .【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),据此即可求解.解:一元二次方程3x2=5x+2的一般形式是3x2﹣5x﹣2=0.故答案为:3x2﹣5x﹣2=0.【点评】在移项的过程中容易出现的错误是忘记变号.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是a≠﹣2 .【分析】根据一元二次方程的定义得出a+2≠0,求出即可.解:∵(a+2)x2﹣2x+3=0是关于x的一元二次方程,∴a+2≠0,∴a≠﹣2.故答案为:a≠﹣2.【点评】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是ax2+bx+c=0(abc都是常数,且a≠0).13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为 4 .【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.【点评】主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是﹣1 .【分析】直接利用非负数的性质以及二次根式的性质求出x,y的值进而得出答案.解:∵x2﹣6x++9=0,∴(x﹣3)2+=0,解得:x=3,y=﹣4,故(x+y)2017=(3﹣4)2017=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x的值是解题关键.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为(9﹣2x)•(5﹣2x)=12 .【分析】由于剪去的正方形边长为xcm,那么长方体纸盒的底面的长为(9﹣2x),宽为(5﹣2x),然后根据底面积是12cm2即可列出方程.解:设剪去的正方形边长为xcm,依题意得(9﹣2x)•(5﹣2x)=12,故填空答案:(9﹣2x)•(5﹣2x)=12.【点评】此题首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S =++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).【分析】移项,利用因式分解法求得方程的解即可.解:3(x﹣2)2=2(2﹣x)3(x﹣2)2﹣2(2﹣x)=0(x﹣2)[3(x﹣2)+2]=0x﹣2=0,3x﹣4=0解得:x1=2,x2=.【点评】此题考查用因式分解法解一元二次方程,掌握提取公因式法是解决问题的关键.18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1点的坐标,然后描点即可;(2)由(1)可得)△A1B1C1中各个顶点的坐标.解:(1)如图,(2)A1(1,﹣3),B1(6,﹣1),C1(3,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了等腰三角形的性质.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?【分析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,∴有,解得.∴二次函数的解析式为y=x2+2x﹣2.(2)∵a=1>0,∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.故当x≤﹣1时,y随x的增大而减小.【点评】本题考查了二次函数的性质,解题的关键是:(1)由点的坐标以及对称轴的解析式得出二元一次方程组;(2)由a=1>0及对称轴为x=﹣1,结合二次函数的性质即可得知当x≤﹣1时,函数递减.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为60 公顷,比2014年底增加了 4 公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是2014 年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.【分析】(1)根据统计图能看出2003年的绿化面积和2002年的绿化面积.(2)设04,05两年绿地面积的年平均增长率为x,根据计划到2005年底使城区绿地面积达到72.6公顷,可列方程求解.解:(1)2015年的绿化面积为60公顷,2014年绿化的面积为56公顷.60﹣56=4,比2014年底增加了4公顷,这三年中增长最多的是2014年.故答案是:60;4;2014;(2)设2016,2017两年绿地面积的年平均增长率为x,60(1+x)2=72.6.x=10%或x=﹣210%(舍去).答:2016,2017两年绿地面积的年平均增长率10%.【点评】本题考查折线统计图及一元二次方程的应用的知识,从上面可看出每年对应的公顷数,以及2015年和2017年的公顷数,求出增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.【分析】(1)利用待定系数法把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c中,可以解得b,c的值,从而求得函数关系式即可;(2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.解:(1)把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得:,解得:,所以此抛物线的解析式为y=﹣2x2﹣4x+4;(2)∵y=﹣2x2﹣4x+4=﹣2(x2+2x)+4=﹣2[(x+1)2﹣1]+4=﹣2(x+1)2+6,∴此抛物线的对称轴为直线x=﹣1,顶点坐标为(﹣1,6);(3)由(2)知:顶点C(﹣1,6),∵点A(0,4),∴OA=4,∴S△CAO=OA•|x c|=×4×1=2,即△CAO的面积为2.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0。
2018-2019学年重庆市渝中区求精中学九年级(上)期中数学试卷一、选择题(每小题4分,共48分)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有两个球是黑球B.摸出的三个球中至少有两个球是白球C.摸出的三个球中至少有一个球是黑球D.摸出的三个球中至少有一个球是白球2.方程x2=﹣3x的根为()A.x=﹣3B.x=0C.x=0或x=3D.x=﹣3或x=0 3.下列图形:①平行四边形;②菱形;③圆;④线段;⑤等边三角形;⑥直角三角形,是中心对称图形的有()A.1种B.2种C.3种D.4种4.下面是某同学在一次数学测验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.x2+x﹣k=0的一个根是1,则k=2C.若3x2=6x,则x=2D.若分式的值为零,则x=2或x=05.某厂今年一月份的产量为20吨,第一季度的总产量共85吨,设平均每月增长率是x,根据题意所列的方程为()A.20x2=85B.20(1+x)=85C.20(1+x)2=85D.20+20(1+x)+20(1+x)2=856.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.557.已知二次函数y=(2﹣a),在其图象对称轴的左侧,y随x的增大而减小,则a 的值为()A.B.±C.﹣D.08.如图,BD为⊙O的直径,∠A=30°,则∠CBD的度数为()A.30°B.45°C.60°D.80°9.下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心10.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为4D.抛物线与x轴的交点为(﹣1,0),(3,0)11.按图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()A.B.C.D.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个二、填空题(每小题4分,共24分)13.若x2﹣3与2互为相反数,则x的值为.14.小芳掷一枚硬币7次,正面向上的概率为.15.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,则∠BDE=.16.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为cm.17.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是.18.不论自变量x取什么实数,二次函数y=2x2﹣3x﹣m的值总是正值,你认为m的取值范围是.三、解答题(每小题8分共16分)19.(8分)解方程:(1)x2﹣4x+1=0(2)(x﹣3)2+2x(x﹣3)=020.(8分)已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,OH=.(1)求⊙O的半径;(2)求出劣弧AC的长(结果保留π).四、解答题(每小题10分共40分)21.(10分)已知一抛物线与x轴的交点是A(﹣2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)作出该抛物线的简图(自建坐标系);(3)在抛物线对称轴上求一点E,使EC+EB最小.22.(10分)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少;(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?23.(10分)如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD.(1)求证明:AD是⊙D的切线;(2)若∠A=60°,⊙O的半径为4,求ED的长.24.(10分)有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图并写出(m,n)的所有取值;(2)求关于x的一元二次方程有实数根的概率.五、解答题(25小题10分,26小题12分,共22分)25.(10分)把一副三角板按如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O、与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把△DCE绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.26.(12分)如图,在平面直角坐标系中,一抛物线的对称轴为直线x=1,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),C点坐标为(0,﹣3).(1)求此抛物线的解析式;(2)若点G(2,﹣3)是该抛物线上一点,点E是直线AG下方的抛物线上一动点,当点E运动到什么位置时,△AEG的面积最大?求出此时E点的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有两个球是黑球B.摸出的三个球中至少有两个球是白球C.摸出的三个球中至少有一个球是黑球D.摸出的三个球中至少有一个球是白球【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、摸出的三个球中至少有两个球是黑球是随机事件,故A错误;B、摸出的三个球中至少有两个球是白球是随机事件,故B错误;C、摸出的三个球中至少有一个球是黑球是必然事件,故C正确;D、摸出的三个球中至少有一个球是白球是随机事件,故D错误;故选:C.2.方程x2=﹣3x的根为()A.x=﹣3B.x=0C.x=0或x=3D.x=﹣3或x=0【分析】利用提取公因式法分解因式进而得出方程的根即可.【解答】解:x2=﹣3xx2+3x=0x(x+3)=0解得:x1=﹣3,x2=0.故选:D.3.下列图形:①平行四边形;②菱形;③圆;④线段;⑤等边三角形;⑥直角三角形,是中心对称图形的有()A.1种B.2种C.3种D.4种【分析】根据中心对称图形的概念求解.【解答】解:中心对称图形有:平行四边形、菱形、圆、线段,共4个.故选:D.4.下面是某同学在一次数学测验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.x2+x﹣k=0的一个根是1,则k=2C.若3x2=6x,则x=2D.若分式的值为零,则x=2或x=0【分析】根据一元二次方程﹣﹣因式分解法、直接开平方法,一元二次方程的解的定义以及分式有意义的条件分别对每一项进行分析,即可得出答案.【解答】解:A、若x2=4,则x=±2,故本选项错误;B、x2+x﹣k=0的一个根是1,则k=2,故本选项正确;C、若3x2=6x,则x=0或x=2,故本选项错误;D、分式的值为零,则x=2,故本选项错误;故选:B.5.某厂今年一月份的产量为20吨,第一季度的总产量共85吨,设平均每月增长率是x,根据题意所列的方程为()A.20x2=85B.20(1+x)=85C.20(1+x)2=85D.20+20(1+x)+20(1+x)2=85【分析】根据等量关系一月份产量+一月份的产量×(1+增长率)+一月份的产量×(1+增长率)2=85,把相关数值代入计算即可.【解答】解:根据题意列方程得,20+20(1+x)+20(1+x)2=85,故选:D.6.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.55【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【解答】解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.7.已知二次函数y=(2﹣a),在其图象对称轴的左侧,y随x的增大而减小,则a 的值为()A.B.±C.﹣D.0【分析】根据二次函数的定义条件列出方程求解则可.其图象对称轴的左侧,y随x的增大而减小就说明图象开口向上,2﹣a>0.【解答】解:由二次函数定义可知a2﹣3=2且2﹣a>0,解得a=﹣.故选:C.8.如图,BD为⊙O的直径,∠A=30°,则∠CBD的度数为()A.30°B.45°C.60°D.80°【分析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【解答】解:∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°﹣∠D=60°.故选:C.9.下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心【分析】分别根据圆的有关性质判断即可.要注意:在同一平面上但不在同一条直线上的三点确定一个圆.【解答】解:A、在同一平面上但不在同一条直线上的三点确定一个圆,故选项错误;B、三角形的外心是三边垂直平分线的交点,它到三角形各顶点的距离相等,故选项正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故选项正确;D、经过切点且垂直于切线的直线必经过圆心,故选项正确.故选:A.10.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为4D.抛物线与x轴的交点为(﹣1,0),(3,0)【分析】把(0,﹣3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.【解答】解:把(0,﹣3)代入y=x2﹣2x+c中得c=﹣3,抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为﹣4,与x轴的交点为(﹣1,0),(3,0);C错误.故选:C.11.按图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()A.B.C.D.【分析】根据旋转的性质,结合图形,第一行变为第三行,将第二行图形按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据第一、三行的规律,将第二行将图形顺时针旋转90°,即正立状态转为顺时针的横向状态,从而可确定为B 图.故选:B .12.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若M =a +b ﹣c ,N =4a ﹣2b +c ,P =2a ﹣b .则M ,N ,P 中,值小于0的数有()A.3个B.2个C.1个D.0个【分析】根据图象得到x =﹣2时对应的函数值小于0,得到N =4a ﹣2b +c 的值小于0,根据对称轴在直线x =﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a 小于0,变形即可对于P 作出判断,根据a ,b ,c 的符号判断得出a +b ﹣c 的符号.【解答】解:∵图象开口向下,∴a <0,∵对称轴在y 轴左侧,∴a ,b 同号,∴a <0,b <0,∵图象经过y 轴正半轴,∴c >0,∴M =a +b ﹣c <0当x =﹣2时,y =4a ﹣2b +c <0,∴N =4a ﹣2b +c <0,∵﹣>﹣1,∴<1,∵a<0,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.二.填空题(共6小题)13.若x2﹣3与2互为相反数,则x的值为±.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵x2﹣3与2互为相反数,∴x2﹣3+2=0,解得:x=±.故答案为:±.14.小芳掷一枚硬币7次,正面向上的概率为.【分析】随机抛一枚均匀的硬币,落地后向上的一面只有正面或反面两种情况,因此掷一枚硬币,正面向上的概率为,与抛的次数无关.【解答】解:随机抛一枚均匀的硬币,落地后向上的一面只有正面或反面两种情况,并且这两种情况出现的可能性相同,因此掷一枚硬币,正面向上的概率为,与抛的次数无关,只是抛的次数足够多时,频率越接近于概率.故答案为:.15.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,则∠BDE=80°.【分析】利用旋转的性质得出∠B=∠ADE=40°,即可得出∠BDE=∠BDA+∠ADE求出即可.【解答】解:∵将△ABC绕点A逆时针旋转至△ADE处,∠B=40°,∴∠B=∠ADE=40°,∵AB=AD,则∠BDE=∠BDA+∠ADE=40°+40°=80°.故答案为:80°.16.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为6cm.【分析】根据垂线段最短,可以得到当OP⊥AB时,点P到圆心O的距离最短.根据垂径定理和勾股定理即可求解.【解答】解:根据垂线段最短知,当点P运动到OP⊥AB时,点P到到点O的距离最短,由垂径定理知,此时点P为AB中点,AP=8cm,由勾股定理得,此时OP==6cm.17.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是﹣≤k<且k≠0.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,∴k≠0,△=(﹣)2﹣4k>0,∴k<且k≠0,∵2k+1≥0,∴k≥﹣,∴k的取值范围是﹣≤k<且k≠0,故答案为:﹣≤k<且k≠0.18.不论自变量x取什么实数,二次函数y=2x2﹣3x﹣m的值总是正值,你认为m的取值范围是m<﹣.【分析】根据二次函数的函数值总是正值,且开口向上,可判断出二次函数与x轴没有交点,根据b2﹣4ac<0,即可求出m的取值范围.【解答】解:∵二次函数y=2x2﹣3x﹣m的值总是正值,且二次函数的开口向上,∴二次函数与x轴没有交点,∴b2﹣4ac<0,即:9+8m<0,解得:m<﹣,故答案为.m<﹣.一.解答题(共8小题)19.解方程:(1)x2﹣4x+1=0(2)(x﹣3)2+2x(x﹣3)=0【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案.【解答】解:(1)∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=3,∴(x﹣2)2=3,∴x=2±;(2)∵(x﹣3)2+2x(x﹣3)=0,∴(x﹣3)(x﹣3+2x)=0,∴x=3或x=1;20.已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B =30°,OH=.(1)求⊙O的半径;(2)求出劣弧AC的长(结果保留π).【分析】(1)求出∠AOC=2∠B=60°,由等腰三角形的性质:底边上的高与顶角的平分线重合知,∠AOH=30°,故可由余弦的概念求出AO的值即可;(2)根据弧长公式求得劣弧AC的长.【解答】解:(1)∵∠AOC=2∠B,∠B=30°,∴∠AOC=60°,∵OH⊥AC,OA=OC,∴OH是等腰三角形AOC的底边AC上的高,∴∠AOH=∠AOC=30°,∴AO==5×=10,即⊙O的半径为10;(2)∵⊙O的半径为10,∠AOC=60°,∴劣弧AC的长为.21.已知一抛物线与x轴的交点是A(﹣2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)作出该抛物线的简图(自建坐标系);(3)在抛物线对称轴上求一点E,使EC+EB最小.【分析】(1)函数的表达式为:y=a(x+2)(x﹣1),将点C的坐标代入上式,即可求解;(2)抛物线图象如下图;(3)点A是点B关于函数对称轴的对称点,连接AC交函数对称轴与点E为所求点,即可求解.【解答】解:(1)函数的表达式为:y=a(x+2)(x﹣1),将点C的坐标代入上式得:8=a(2+2)(2﹣1),解得:a=2,故抛物线的表达式为:y=2(x+2)(x﹣1)=2x2+2x﹣4;(2)抛物线图象如下图:(3)点A是点B关于函数对称轴的对称点,连接AC交函数对称轴与点E为所求点,将点A、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故抛物线的表达式为:y=﹣2x﹣4,当x=﹣时,y=﹣3,则点E(﹣,﹣3),EC+EB最小为AC==2.22.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少;(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?【分析】(1)把数量6分别代入甲乙两公司的计算方法即可求出到哪家公司购买花费较少;可以利用等式总花费=单价×数量;(2)把总价7500代入甲乙两公司的计算方法,看哪个适合题意.【解答】解:(1)在甲公司购买6台图形计算器需要用6×(800﹣20×6)=4080(元),在乙公司购买需要用75%×800×6=3600(元)<4080(元),∴应去乙公司购买;(2)设该单位买x台,若在甲公司购买则需要花费x(800﹣20x)元;若在乙公司购买则需要花费75%×800x=600x元;①若该单位是在甲公司花费7500元购买的图形计算器,则有x(800﹣20x)=7500,解之得x1=15,x2=25.当x1=15时,每台单价为800﹣20×15=500>440,符合题意;当x2=25时,每台单价为800﹣20×25=300<440,不符合题意,舍去.②若该单位是在乙公司花费7500元购买的图形计算器,则有600x=7500,解之得x=12.5,不符合题意,舍去.答:该单位是在甲公司购买的图形计算器,买了15台.23.如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC 于F,DE交AC于G,∠ADG=∠AGD.(1)求证明:AD是⊙D的切线;(2)若∠A=60°,⊙O的半径为4,求ED的长.【分析】(1)要证AD是⊙O的切线,只要连接OD,再证∠ADO=90°即可;(2)作OH⊥ED于H,根据垂径定理得到DE=2DH,根据等边三角形的性质和直角三角形的性质即可得到结论.【解答】(1)证明:连接OD.∵E为BC的中点,∴OE⊥BC于F.∴∠AGD+∠ODE=∠EGF+∠OED=90°,则OD=OE,∴∠ODE=∠OED,∵∠AGD=∠ADG,∴∠ADG+∠ODE=90°.即OD⊥AD,∴AD是⊙O的切线;(2)作OH⊥ED于H,∴DE=2DH,∵∠ADG=∠AGD,∴AG=AD,∵∠A=60°,∴∠ADG=60°,∴∠ODE=30°,∵OD=4,∴DH=OD=2,∴DE=2DH=4.24.有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图并写出(m,n)的所有取值;(2)求关于x的一元二次方程有实数根的概率.【分析】(1)首先根据题意画出树状图,然后由树状图即求得所有等可能的结果;(2)根据树状图,即可求得关于x的一元二次方程有实数根的情况,再利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则(m,n)的所有取值为:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2);(2)∵关于x的一元二次方程有实数根,∴△=m2﹣2n≥0,∴关于x的一元二次方程有实数根的有:(0,0),(1,0),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2);∴关于x的一元二次方程有实数根的概率为:=.25.把一副三角板按如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O、与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把△DCE绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.【分析】(1)根据旋转角求出∠OCB=45°,从而求出∠COB=90°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;,然后利用勾股定理列(2)根据等腰直角三角形的性质求出AO=CO=AB,再求出OD1式计算即可得解;(3)设直线CB与D2E2相交于P,然后判断出△CPE2是等腰直角三角形,再求出CP,然后与CB相比较即可得解.【解答】解:(1)∵旋转角为15°,∴∠OCB=60°﹣15°=45°,∴∠COB=180°﹣45°﹣45°=90°,∴CD1⊥AB,在Rt△D1OF中,∠OFE1=∠CD1E1+∠D1OF=30°+90°=120°;(2)∵CD1⊥AB,∴AO=CO=AB=×6=3,∴OD1=DC﹣CO=7﹣3=4,在Rt△AD1O中,由勾股定理得,AD1===5;(3)点B在△D2CE2的内部.理由如下:设直线CB与D2E2相交于P,∵△DCE绕着点C顺时针再旋转30°,∴∠PCE2=15°+30°=45°,∴△CPE2是等腰直角三角形,∴CP=CE=,2∵AB=6,∴CB=AB=3<,即CB<CP,∴点B在△D2CE2的内部.26.如图,在平面直角坐标系中,一抛物线的对称轴为直线x=1,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),C点坐标为(0,﹣3).(1)求此抛物线的解析式;(2)若点G(2,﹣3)是该抛物线上一点,点E是直线AG下方的抛物线上一动点,当点E运动到什么位置时,△AEG的面积最大?求出此时E点的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据抛物线的对称轴方程及B点坐标,可求得A点坐标,再用待定系数法求出抛物线的解析式;(2)可分别过E、G作x轴的垂线,设垂足为F、H;那么△AGE的面积=△AEF的面积+四边形FHGE的面积﹣△AGH的面积,设出E点的坐标,即可表示出F点坐标及EF的长,根据上面所得出的面积计算方法,可得出关于△AGE的面积与E点横坐标的函数关系式,根据所得函数的性质,即可求出△AGE的最大面积及对应的E点坐标;(3)分两种情况讨论:①以MN为斜边,则Q点在MN的垂直平分线上,即Q点为抛物线对称轴与x轴交点,由此可得出Q点坐标;②以MN为直角边;设出M、N的坐标,可表示出MN的长,由于△MNQ是等腰Rt△,则MN 的长与M、N的纵坐标的绝对值相同,由此可求出M、N的坐标,也就求出了Q点的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,且B(3,0),∴A(﹣1,0);可设抛物线的解析式为:y=a(x﹣3)(x+1),则有:(﹣3)×1×a=﹣3,a=1;∴y=x2﹣2x﹣3(4分)(2)当E运动到时有最大面积,最大面积是,理由如下:过E作EF⊥x轴于F,过G作GH⊥x轴于H;设E(x0,y0),则F(x0,0),EF=﹣(x02﹣2x0﹣3)因为G(2,﹣3)所以GH=3,S△AGH===(6所以S△AGE分)当时,有最大值为;(7分将代入y=x2﹣2x﹣3,得;所以E;(8分)(3)存在,Q(1,0)或()或()理由如下(9分)因为MN平行与x轴,所以M、N关于x=1对称①若NQ=QM,则Q必在MN的中垂线即对称轴x=1上,所以Q(1,0)(10分)②若QN=MN,则∠QMN=90°,设M(m1,n1)则有:N(2﹣m1,n1),MN=m1﹣(2﹣m1)=2m1﹣2QN=|n|,1所以|n1|=2m1﹣2,其中n1=m12﹣2m1﹣3同理若QM=MN,QM=|n1|,n1=m12﹣2m1﹣3,综上可得|n1|=2m1﹣2解得;(12分)∴Q1(,0),Q2(﹣,0),Q3(2+,0),Q4(2﹣,0).综上所述,存在符合条件的Q点,且坐标为:Q1(,0),Q2(﹣,0),Q3(2+,0),Q4(2﹣,0),Q5(1,0).。
2017年秋季初2015级数学中期考试题卷考试时间120分钟 总分 150分一、选择题(4x12分)1、一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D2、有下列判断:(1)直径是圆的对称轴。
(2)圆的对称轴是一条直径。
(3)直径平分弦与弦所对的两条弧。
(4)圆的对称轴有无数条。
(5)平分弦的直径垂直于弦。
其中正确的( )A .0个 B.1个 C.2个 D.3个3、用配方法解一元二次方程.0782=++x x 则方程可变形为( )9)4.(2=-x A 9)4.(2=+x B 16)8.(2=-x C 57)8.(2=+x D4、一元二次方程0422=++x x 的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根5、已知:关于x 的方程019)13(22=-+--m x m mx 有两个实数根,则m 的范围为( )51.≤m A 1.05B m m ≤=/且 1.05C m m ≥≠且51.<m D 6、将下列图形绕其对角线的交点逆时针旋转90度,所得图形一定与原图形重合的是 ( )A.平行四边形B.矩形C. 菱形D.正方形7、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x = 8. 二次函数y=ax 2+bx+c 的图象如图所示,则点 在第___象限( )A. 一B. 二C. 三D. 四9、把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A. B.C. D.10、二次函数2(1)2y x =--的图象上最低点的坐标是 A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)11、二次函数c bx ax y ++=2的图象如图所示,若点A (1,y1)、B (2,y2)是它图象上的两点,则y1与y2的大小关系是() A .21y y < B .21y y = C .21y y > D .不能确定12、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题(4x6分)13.若关于x 的一元二次方程(m-1)x 2+x+m 2=1有一根为0,则m 的值是_____.14. 已知,关于x 的方程12)5(2=-+ax x a 是一元二次方程,则a 取值范围为____15. 当x =_____________时,二次函数222y x x =+-有最小值. 16.在半径为13的圆O 中,弦AB 平行于弦CD ,弦AB 和弦CD 之间的距离为6,若AB=24,则CD 长为____________ 。
重庆市2018届九年级数学上学期期中试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.一.选择题(每题4分,12小题,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的位置.1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C. D.2.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)3.下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定4.如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()(4题图)A.43° B.35° C.34° D.44°5.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=36.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或147.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.8.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b 与反比例函数y=的图象可能是()A.B.C.D.9.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26π B.13π C.D.10.如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()(11题图)(12题图)A.4 B.3 C.2 D.112.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.4二.填空题(每题4分,6小题,共24分)请将每小题的正确答案填在相应的位置.13.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是.14.已知抛物线y=(a﹣1)x2﹣4x+a2﹣1过原点,那么a的值为.15.一块直角边分别为6cm和8cm的直角三角形木板,绕6cm的边旋转一周,则斜边扫过的面积是cm2(结果用含π的式子表示).(15题图)(17题图)16.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.17.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为 .18.如图,二次函数y=ax 2+bx+c (a ≠0)图象的顶点为D ,其图象与x 轴的交点A ,B 的横坐标分别为﹣1,3,与y 轴负半轴交于点C .下面五个结论:①2a+b=0;②a+b+c >0;③4a+b+c >0;④只有当a=时,△ABD 是等腰直角三角形;⑤使△ACB 为等腰三角形的a 的值可以有三个.那么,其中正确的结论是 .(18题图)三.解答题一(19题8分,20题6分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.19.解方程:①(2x ﹣5)2=9 ②x 2﹣2x ﹣4=0③x 2﹣3x ﹣7=0 ④3x (x ﹣2)=2(2﹣x )20.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.四.解答题二(每题10分,4小题,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.21.如图,已知一次函数y=kx+b 的图象与反比例函数xy 8-=的图象交于A ,B 两点,且点A 的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB 的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.22.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.23.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)24.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?五.解答题三(每题12分,2小题,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.25.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?26.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.重庆市第十八中学2017-2018学年上半期考试初三数学试题答案AACB ACBC BBBC20% ﹣1 80π 1 (,)①④17.如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).18.①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x==1,即2a+b=0;故①正确;②由抛物线的开口方向向上可推出a>0,而>0∴b<0,∵对称轴x=1,∴当x=1时,y<0,∴a+b+c<0;故②错误;③∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=2时y<0,∴4a+2b+c<0,又∵b<0,∴4a+b+c无法确定;故③错误;④要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;D到x轴的距离就是当x=1时y的值的绝对值.当x=1时,y=a+b+c,即|a+b+c|=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0即a﹣b+c=0;x=3时y=0.∴9a+3b+c=0,解这三个方程可得:b=﹣1,a=,c=﹣;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.19.①(2x﹣5)2=9∵(2x﹣5)2=9,∴2x﹣5=3或2x﹣5=﹣3,解得x1=4,x2=1.②x2﹣2x﹣4=0x2﹣2x+1=5,(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.③x2﹣3x﹣7=0在方程x2﹣3x﹣7=0中,a=1,b=﹣3,c=﹣7x===,解得 x1=,x2=.④3x(x﹣2)=2(2﹣x)(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得 x1=﹣,x2=2.20.(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).21.(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.22.(1)500 90°;(2)380 ;(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.23.设月需售出x辆汽车,当0<x≤5时,(32﹣30)×5=10<25,不符合题意;当5<x≤30时,x{32﹣[30﹣0.1(x﹣5)]}=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.24.(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠OAD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.25.(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.26.(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:直线x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。