数字锁相环位同步器及其FPGA设计
- 格式:pdf
- 大小:255.33 KB
- 文档页数:4
一种基于FPGA的锁相环位同步提取电路设计概述同步是通信系统中一个重要的问题。
在数字通信中,除了获取相干载波的载波同步外,位同步的提取是更为重要的一个环节。
因为只有确定了每一个码元的起始时刻,才能对数字信息作出正确的判决。
利用全数字锁相环可直接从接收到的单极性不归零码中提取位同步信号。
一般的位同步电路大多采用标准逻辑器件按传统数字系统设计方法构成,具有功耗大,可靠性低的缺点。
用FPGA设计电路具有很高的灵活性和可靠性,可以提高集成度和设计速度,增强系统的整体性能。
本文给出了一种基于fpga 的数字锁相环位同步提取电路。
数字锁相环位同步提取电路的原理数字锁相环位同步提取电路框本地时钟产生两路相位相差p的脉冲,其频率为fo=mrb,rb为输入单极性不归零码的速率。
输入信码的正、负跳变经过过零检测电路后变成了窄脉冲序列,它含有信码中的位同步信息,该位同步窄脉冲序列与分频器输出脉冲进行鉴相,分频比为m。
若分频后的脉冲相位超前于窄脉冲序列,则在1端有输出,并通过控制器将加到分频器的脉冲序列扣除一个脉冲,使分频后的脉冲相位退后;若分频后的脉冲相位滞后窄脉冲序列,则在2端有输出,并通过控制器将加到分频器的脉冲序列附加一个脉冲,使分频后的脉冲相位提前。
直到鉴相器的1、2端无输出,环路锁定。
基于fpga的锁相环位同步提取电路该电路如该电路由d触发器组成的二分频器和两个与门组成,它将fpga 的高频时钟信号clk_xm变换成两路相位相反的时钟信号,由e、f输出,然后送给控制电路的常开门g3和常闭门g4。
其中f路信号还作为控制器中的d1和。
基于FPGA的全数字锁相环设计与实现一、前言全数字锁相环(Digital Phase-Locked Loop,简称DPLL)是一种数字电路设计技术,可实现同步数字信号的调制和解调。
基于FPGA的全数字锁相环设计与实现,是一个极为重要的课题。
它可以有效地提高数字电路的性能,使得数字系统具有更优越的特性,并可广泛应用于数字电路的设计、数字信号的处理等领域。
二、DPLL 的体系结构DPLL是由相频检测器、滤波器、数字控制振荡器和时钟输出等多个部分组成的。
其中,相频检测器、滤波器和数字控制振荡器通常被集成到FPGA的内部,而时钟输出则需要通过FPGA的普通I/O口与市场上常见的外部输出设备相结合。
三、数字锁相环的工作原理数字锁相环的工作原理基于一个反馈循环系统,其中参考振荡器的频率与输入信号会被比较,然后通过差错检测网络来确定缺陷。
如果这些信号频率不匹配,则通过调整数字控制振荡器的频率来达到匹配。
然后,系统会根据输出信号和参考信号的相位差异来调整数字控制振荡器的频率,并通过PLL的反馈路径传输至输入端,进而得到和参考信号相同频率的输出信号。
四、数字锁相环的应用数字锁相环在通信领域有着广泛的应用,如数据码隆、数字调制、同步检测等;在数字领域,数字锁相环主要应用于数字信号处理、频谱分析、信噪比提高等方面;在电子仪器领域,数字锁相环可以被应用于测量领域、噪声分析、频率合成等方面。
五、基于FPGA的数字锁相环的设计数字锁相环的设计是一项非常复杂的工作,其中需要解决的问题主要有相频检测、低通滤波、数字控制振荡器的设计和时钟输出等方面。
在基于FPGA的数字锁相环设计过程中,可以采用很多不同的方法和技术来解决这些问题。
在数字锁相环的设计中,相频检测器是极其关键的部分,其主要功能是检测输入信号与数字控制振荡器的频率是否匹配。
其中,相频检测器常用的方式有两种:一是通过比较输入信号和数字控制振荡器的频率来实现;二是通过测量输入信号和数字控制振荡器的相位差来实现。
基于FPGA的锁相环位同步提取电路设计锁相环(Phase-Locked Loop,PLL)是一种广泛应用于通信、控制及信号处理等领域的电路,能够实现频率同步和相位同步。
在本文中,我们将讨论基于FPGA的锁相环位同步提取电路设计。
首先,我们将介绍锁相环的基本原理。
锁相环由相位比较器、低通滤波器、VCO(Voltage-Controlled Oscillator)和分频器组成。
相位比较器用于比较参考信号和反馈信号的相位差,将相位差转换为电压差。
低通滤波器将电压差平滑处理,得到控制电压,用于控制VCO的频率。
VCO产生与输入信号频率相同的输出信号,通过分频器将输出信号分频后与参考信号进行比较,实现频率同步。
在基于FPGA的锁相环位同步提取电路设计中,我们的目标是实现一个能够提取输入信号的位同步信息的电路,其中输入信号可能包含多个周期不同的位同步序列。
首先,我们需要设计一个相位比较器,用于比较参考信号和输入信号的相位差。
可以使用FPGA中的数字时钟管理模块来实现相位比较器,将输入信号与参考信号都映射到固定的时钟边沿上,并通过计数器测量输入信号和参考信号之间的相位差。
然后,我们需要设计一个低通滤波器,用于平滑处理相位差。
可以使用FPGA中的滑动平均滤波器来实现低通滤波器,通过对相位差进行滑动平均运算,得到平滑的控制电压。
接下来,我们需要设计一个VCO,用于产生与输入信号频率相同的输出信号。
可以使用FPGA中的数字控制模块来实现VCO,通过调节VCO的控制电压来控制输出频率。
最后,我们需要设计一个分频器,将VCO的输出信号分频后与参考信号进行比较。
可以使用FPGA中的计数器来实现分频器,通过设置分频器的计数值来实现对VCO输出信号的分频。
在整个电路设计过程中,我们需要注意以下几点:1.选择合适的时钟频率和分辨率。
时钟频率要足够高,以满足输入信号的高速采样需求。
分辨率要足够高,以保证位同步信息的精确提取。
2.选择合适的滤波器参数。
目录第一章绪论...................................... 错误!未定义书签。
1.1锁相环技术的发展及研究现状................................................... 错误!未定义书签。
1.2课题研究意义 .............................................................................. 错误!未定义书签。
1.3本课题的设计内容....................................................................... 错误!未定义书签。
第二章 FPGA的设计基础............................. 错误!未定义书签。
2.1硬件设计语言-Verilog HDL..................................................... 错误!未定义书签。
2.2 FPGA的设计流程 ......................................................................... 错误!未定义书签。
第三章锁相环的原理. (2)3.1全数字锁相环基本结构 (3)3.2全数字锁相环的工作原理 (4)第四章数字锁相环的设计 (5)4.1基于FPGA的数字锁相环总体设计方案 (5)4.2数字鉴相器的设计 (6)4.3 K变模可逆计数器的设计 (7)4.4脉冲加减器的设计 (10)4.5 N分频器的设计 (12)第五章实验仿真与调试 (14)5.1数字锁相环的仿真 (14)5.2数字锁相环的系统实验 (15)结束语 (19)参考文献 (20)附录 (21)第一章锁相环的原理许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
基于FPGA的数字锁相环设计与仿真分析简要介绍了在FPGA中实现全数字锁相环(DPLL)的原理和方法,基于具体应用,提出了一种基于FPGA的锁相环模块化设计,通过分析和仿真验证,可以有效的改善锁定时间和抑制相位抖动。
标签:鉴相;滤波器;VHDL1 引言数字锁相环(DPLL)技术在数字通信、无线电电子学等众多领域得到了极为广泛的应用,和传统的模拟电路实现的PLL相比,DPLL具有精度高、环路带宽编程可调、易于构建高阶锁相环等显著优点,并且在数字系统中不需要A-D相互转换。
随着集成电路技术和片上系统的深入研究,数字锁相环必然应用更为广泛。
本文介绍了一种基于FPGA的数字锁相环设计,并对相关参数进行了仿真与分析。
2 数字锁相环的特点和原理2.1 触发型数字锁相环基本原理本文采用触发型数字锁相环如图1所示:由数字鉴相器、数字滤波器和数控振荡器组成。
其中数控滤波器的输入时钟频率为(由晶振电路产生),其值为14336kHz。
数控振荡器的输入频率为2。
通常M和N为2的整数幂。
时钟2 经除计数器得到。
图1 触发型全数字锁相环框图DPLL是一种相位反馈控制系统,它根据输入信号f1与本地恢复时钟f2之间的相位误差,信号送入数字环路滤波器DLF中对相位误差信号进行平滑滤波,并生成控制DCO动作的控制信号,DCO根据控制信号给出的指令,调节内部高速振荡器的振荡频率,通过连续不断的反馈调节,使其输出时钟f2的相位跟踪输入f1的相位。
如果把数字滤波器看成一个分频器,则分频比为Mf cK,输出频率为f′=K′ΔΦMf cK,数控振荡器的输出频率f2=f1+k′ΔΦMf cKN。
只要合理选择K值,就能使输出信号V2的相位较好地跟踪输入V1的相位,以达到锁定的目的。
如果K值选的太大,环路捕捉带就会变小,导致捕捉时间增大;如果K值太小,可能会出现频繁进位、借位脉冲,从而使相位出现抖动。
该全数字锁相环的f2输出信号的频率分别为64kHz,经过计算可确定锁相环的参数M、N。
8期侯卫民等:基于FPGA的数字锁相环的研究与实现或者滞后输入码元相位大于相位调整步长时,锁定检测器的输出信号lock为低电平,环路进入调整状态。
图4锁定检测器模块3.4数控振荡器的设计数控振荡器的功能是产生同步时钟信号,它的控制信号来自数字滤波器的输出信号inc和dec以及锁定检测信号lock,本文中的数控振荡器是由添扣门和m分频器(本文中m取值为16)构成,与门1、与门2、与门3构成添门,与f-I4构成扣门。
在系统没有到达锁定状态时,/lock信号保持高电平,若滤波器输出了一个扣脉冲信号dec加到扣门,扣除一个时钟周期,这样分频器的输出脉冲相位就滞后了1/m图5数控振荡器模块个周期。
若滤波器输出了一个添脉冲信号到添门,控制添门打开,加入一个晶振脉冲(clk64M)到或门。
由于添加到添门的时钟信号(clkl6M2n)与添加到扣门的时钟信号(clkl6M1)频率相等,相位相差900,即这两路时钟信号在时间上是错开的,因此当从添门加入一个晶振脉冲到或门时,相当于在扣门输出的晶振信号中间插入了一个窄脉冲,就是分频器输入端添加了一个脉冲,这样分频器输出相位提前了1/m周期,整个数字锁相环按上述方式,反复调整本地时钟相位,直到本地同步时钟信号相位滞后输入码元小于2宵r/m,此时锁定检测信号/lock变为低电平,这时或门的输出信号就是clkl6M1,经过m分频器后,本地同步信号不再发生相位改变。
4仿真结果j7针对上面的设计,用VHDL语言在ISE7.1开发环境下,实现了数字锁相环的设计,并在Modelsim6.0下进行仿真,结果如下图所示。
图6有相位检测器情况的系统仿真波形98微计算机应用2008矩图7无相位检测器情况的系统仿真波形图6表示有相位检测器情况的系统仿真波形图,由图6可以看出,在环路工作初期本地时钟信号滞后与输人码元,经过环路的反复跟踪,在30us左右系统进入锁定状态,此时本地时钟信号相位滞后于输入码元并且滞后相位小于调整步长,因此锁定检测器输出为高电平,本地同步时钟相位不再进行调整图7是没有相位检测电路的仿真结果,可以看出,系统在30us时系统进入锁定状态后,系统仍然进行不断的相位调整,从而导致本地同步信号的相位抖动。
收稿日期:2008-09-13稿件编号:200809039作者简介:王文理(1955-),男,河北沧州人,教授。
研究方向:电工电子技术,电力通信设备,小型程控交换机。
1前言锁相环(PLL)的理论与研究日趋完善,应用范围遍及整个电子技术领域,如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。
随着集成电路技术的发展,集成锁相环和数字锁相环技术日趋成熟,不仅能够制成频率较高的单片集成锁相环路,还可以把整个系统集成到一个芯片上去,实现所谓的片上系统SOC 。
因此,可以把全数字锁相环路(ADPLL)作为一个功能模块嵌入SOC ,构成片内锁相环。
这里在简单介绍片内全数字锁相环系列结构的同时,给出一种智能控制捕获范围中全数字锁相环(ADPLL )的设计方法,并进行仿真和实践验证。
2ADPLL 的结构及工作原理图1给出全数字锁相环(ADPLL )的基本结构。
主要由数字鉴相器DPD,数字环路滤波器DLF ,数控振荡器DCO ,分频器4部分组成,其中心频率为f c 。
DPLL 是一种通过相位反馈来控制系统的电路结构。
根据输入信号Fin 和本地时钟输出信号Fout 之间的相位误差信号送入数字环路滤波器,并对相对误差进行平滑滤波,生成控制信号carry 和bor -row ,数字振荡器根据控制信号调节反馈,使输出信号Fout的相位逐渐跟踪输入信号Fin 的相位,最终达到锁定[1]。
3ADPLL 各模块的功能和具体实现方法3.1数字鉴相器常用的鉴相器有2种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD),设计中采用异或门鉴相器。
异或门鉴相器用于比较输入信号Fin 和输出信号Fout 之间的相位差,并输出误差信号Dout ,Dout 作为计数的方向信号输入给下一级。
3.2数字环路滤波器数字环路滤波器(DLF)由一个模值为变量K 的可逆计数器来实现。
其作用首先用于消除数字鉴相器输出的相位误差信号Dout 中的高频分量,保证锁相环路性能的稳定性和准确性;其次K 变模计数器再根据鉴相器的相位误差信号Dout 来进行加减运算。
基于FPGA的数字锁相环设计李小飞中国科学院国家授时中心,陕西临潼 710600摘要:本文介绍了数字锁相环的基本工作原理。
研究了在数字锁相的基础上实现获取与外标频率同相的编程可变的频率的方法。
同时,利用Verilog语言完成了该研究的基于FPGA芯片的设计实现,并对结果进行了仿真。
关键词:数字锁相环;Verilog;FPGA;同步1 前言锁相技术从30年代开始发展,至今已有半个多世纪,随着现代数字技术的发展,锁相技术也从原来的模拟锁相逐步发展到数字乃至全数字锁相,现在数字锁相环路已在信号处理、调制解调、时钟同步、倍频、频率综合等众多领域得到广泛应用。
基于FPGA的全数字锁相环,具有精度高且不受温度、电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,还可与直接数字频率合成器(DDS)相结合应用在数字通信系统中。
2 锁相环基本原理2.1 锁相环原理锁相环(PLL)技术也称自动相位控制技术,主要由相位比较器(PD 鉴相器),低通滤波器(LPF),压控振荡器(VCO)组成。
图1锁相环原理图其基本原理如下:PD将Vi(t)与V o(t)的相位进行比较,产生一个与二者相位差成正比的误差电压VΦ(t),VΦ(t)再经由LPF滤波(滤除高频分量),得到控制电压VdΦ(t),并加到VCO的控制端使VCO压控振荡器输出频率f2向f1靠拢,直至Δf=f2-f1=0,即f2=f1,从而使得Vi(t)、Vo (t)两信号的频率相同而相位差保持恒定(同步),即实现频率自动跟踪和相位锁定。
实际应用中一般在压控振荡器与鉴相器之间加入可控的变模分频器,来得到固定的或是可变的输出频率,输出频率与输入频率之间成比例关系.2.2 全数字锁相环的设计思路:2Nfcf图2 数字锁相环结构图数字锁相环模型是模拟锁相环系统的数字化,一阶数字锁相环的基本结构如图2所示。
主要由鉴相器、K 变模可逆计数器、加减脉冲电路和N 模分频器构成。
基于FPGA的全数字锁相环的设计与实现一、本文概述本论文聚焦于基于现场可编程门阵列(FieldProgrammable Gate Array, FPGA)技术设计与实现全数字锁相环(AllDigital PhaseLocked Loop, ADPLL)的研究工作。
全数字锁相环作为一种关键的信号处理模块,广泛应用于通信系统、雷达系统、高速数据采集、频率合成等领域,其性能直接影响到整个系统的稳定性和精度。
随着FPGA技术的发展,ADPLL在灵活性、集成度、可编程性及实时调整等方面展现出显著优势,成为现代电子系统中实现高精度频率合成与同步控制的理想选择。
本文旨在深入探讨基于FPGA平台构建全数字锁相环的理论基础、设计方案及关键技术,并通过实际工程实践验证其性能。
研究内容主要涵盖以下几个方面:理论背景与技术综述:对全数字锁相环的基本原理、组成结构以及工作模式进行全面阐述,对比分析其与传统模拟锁相环和混合信号锁相环的优缺点。
在此基础上,详细介绍FPGA技术的特点及其在ADPLL设计中的应用价值,为后续设计工作奠定理论基础。
系统架构与模块设计:详细阐述所设计的基于FPGA的全数字锁相环的整体架构,包括鉴相器(Phase Detector)、数字环路滤波器(Digital Loop Filter)、数控振荡器(Digitally Controlled Oscillator, DCO)等核心组件的设计思路与实现细节。
针对FPGA资源特性,优化各模块算法及硬件实现,确保其在有限逻辑资源下达到高性能指标。
关键算法与技术实现:探讨用于提升ADPLL性能的关键技术,如低噪声鉴相算法、快速锁定策略、频率牵引与抖动抑制技术等,并展示如何将其有效融入FPGA实现中。
同时,阐述如何利用FPGA的可编程特性实现实时参数调整与在线监控,增强系统的动态适应能力和故障诊断能力。
仿真验证与实验结果:通过高级硬件描述语言(HDL)对设计进行建模,并利用FPGA开发环境进行功能仿真与时序分析,验证设计的正确性和稳定性。
科技与创新┃Science and Technology&Innovation ·138·2020年第17期文章编号:2095-6835(2020)17-0138-02一种FPGA实现的全数字锁相环*阎昌国,李青,马登秋,安玉(遵义师范学院工学院,贵州遵义563006)摘要:锁相环技术是新能源并网发电的关键技术之一。
针对传统锁相环存在零点漂移、精度低、易受温度影响的缺点,提出了一种用FPGA实现的全数字锁相环。
详细分析了全数字锁相环的工作原理,完成了该全数字锁相环的FPGA设计与实现。
最终通过逻辑仿真与实验证实,该全数字锁相环能有效地跟踪电网电压的频率与相位,具备精度高、不受温度影响、具备可编程能力等优点。
关键词:锁相环;全数字;FPGA;逻辑仿真中图分类号:TM46文献标识码:A DOI:10.15913/ki.kjycx.2020.17.059随着科学技术的快速发展,锁相环技术已被广泛地应用在了通信、测量、自动控制等领域[1-3]。
面对当下改善生态环境、解决能源短缺的紧迫问题,诸如太阳能、风能、核能等新能源发电成了良好的方案,其并网运行的应用便成为了潮流趋势[4-6]。
其中,新能源发电系统能否实现并网运行,关键技术就在于锁相环是否能够有效并准确地保证并网逆变器输出的电流始终跟随电网电压的频率与相位。
而传统的锁相环主要由模拟电路实现,因存在直流零点漂移与器件饱和现象,易受温度与电源的影响,会导致锁相环跟踪精度下降[7]。
EDA(电子设计自动化)技术的发展,为克服模拟电路固有缺陷实现全数字化提供了良好的路径[8]。
为此,本文以FPGA(现场可编程门阵列)为载体,提出了一种全数字锁相环的实现方案,详细分析了该方案的工作原理,通过逻辑仿真与实验结果表明该方案能有效地跟踪电网电压频率与相位,可以应用到新能源并网发电系统中。
1工作原理分析全数字锁相环的原理图如图1所示,它主要由鉴相器、K模可逆计数器、脉冲加减控制电路与N分频电路四个部分组成。
基于FPGA的全数字锁相环的设计与应用的开题报告一、选题背景和研究意义随着现代电子技术的快速发展,锁相环技术已经成为一种应用广泛的时钟和信号处理技术。
锁相环的作用主要是将输入信号的时钟同步到自己的时钟上,以提高系统的可靠性和精度。
特别是在通信、雷达、测量等领域,锁相环的应用非常广泛。
基于FPGA的全数字锁相环具有易于实现、灵活性高、可编程性强等优点,已经被广泛应用。
本课题将研究基于FPGA的全数字锁相环的设计与应用,旨在探究全数字锁相环在不同应用场景下的性能和特点,并提出相应的优化策略和算法,以期对相关领域的发展贡献一份力量。
二、研究内容和方法本课题研究内容主要包括以下三个方面:1. 基于FPGA的全数字锁相环的原理与实现:主要研究全数字锁相环的工作原理和实现方法,包括相位检测器、数字控制环路、数字滤波器等模块的设计与实现。
2. 全数字锁相环在通信领域中的应用:主要研究全数字锁相环在通信领域的应用,包括同步检测、时钟恢复等。
从实际应用出发,考虑锁相环在通信系统中的性能要求、关键技术以及优化策略等。
3. 全数字锁相环在雷达测量领域中的应用:主要研究全数字锁相环在雷达测量领域中的应用,包括实时采集、数字化处理等。
从实际应用出发,考虑锁相环在雷达测量系统中的性能要求、关键技术以及优化策略等。
本课题将采用理论分析与实验验证相结合的方法进行研究,通过FPGA平台的搭建与实验验证,探究不同场景下的设计方法和性能特点,并提出相应的优化方案。
三、预期研究成果本课题预期达到的主要研究成果包括:1. 基于FPGA的全数字锁相环的工作原理和实现方法,包括相位检测器、数字控制环路、数字滤波器等模块的设计与实现。
2. 探究全数字锁相环在通信领域和雷达测量领域中的性能和特点,提出相应的设计方案、算法和优化策略。
3. 实现基于FPGA的全数字锁相环并进行实验验证,验证全数字锁相环的性能和可靠性。
四、可行性分析本课题所需要的FPGA平台、实验仪器和相关软件等均已具备条件,并且本课题所涉及的理论和实验技术已经成熟,可行性较高。